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Abstract

We describe the subgroups of the group Zm × Zn × Zr and derive a simple formula for
the total number s(m,n, r) of the subgroups, where m,n, r are arbitrary positive integers.
An asymptotic formula for the function n 7→ s(n, n, n) is also deduced.
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1 Introduction

Throughout the paper we use the notation: N = {1, 2, . . .}, N0 = {0, 1, 2, . . .}, Zm is the
additive group of residue classes modulo m, φ is Euler’s totient function, τ(n) is the number of
divisors of n, ζ is the Riemann zeta function.

For an arbitrary finite Abelian group G of order #G let s(G) denote the total number of
its subgroups. It is known that the problem of counting the subgroups of G reduces to p-
groups. More precisely, let #G = pa11 · · · parr be the prime power factorization of #G and let
G = G1 × · · · ×Gr be the primary decomposition of G, where #Gi = paii (1 ≤ i ≤ r). Then

s(G) = s(G1) · · · s(Gr),

which follows from the properties of the subgroup lattice of G. See, e.g., R. Schmidt [12] and
M. Suzuki [14].

Now let G(p) be a p-group of type λ = (λ1, . . . , λr), with λ1 ≥ . . . ≥ λr ≥ 1, where λ
is a partition of |λ| = λ1 + . . . + λr. Formulas for the number sµ(G(p)) of subgroups of type
µ (µ ⊆ λ) of G(p) were established by several authors, see G. Birkhoff [3], S. Delsarte [6],
P. E. Dyubyuk [7], Y. Yeh [20]. One of these formulas is given, in terms of the Gaussian

coefficients
[

r
k

]

p
=
∏k

i=1
pr−k+i−1

pi−1
by

sµ(G(p)) =

λ1
∏

j=1

pµ
′

j+1
(λ′

j−µ′

j)

[

λ′
j − µ′

j+1

µ′
j − µ′

j+1

]

p

, (1.1)
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where λ′ and µ′ are the conjugates (according to the Ferrers diagrams) of λ and µ, respectively.
Hence sµ(G(p)) is a polynomial in p, with integer coefficients, depending only on λ and µ (it is

a sum of Hall polynomials). Therefore, the number of the subgroups of order pk (0 ≤ k ≤ |λ|)
of G(p) is

spk(G(p)) =
∑

µ⊆λ
|µ|=k

sµ(G(p))

and the total number of subgroups is given by s(G(p)) =
∑

0≤k≤|λ| sµ(G(p)). See the monograph
of M. L. Butler [4] for a detailed discussion of formula (1.1) and of related results of which proofs
are combinatorial and linear algebraic in nature.

Another general formula for the total number of subgroups of a p-group of arbitrary rank, ob-
tained by combinatorial arguments using divisor functions of matrices was given by G. Bhowmik
[2]. However, it is rather complicate to apply the above formulas or that of [2] to compute nu-
merically the total number of subgroups (of a given order) of a p-group. Also it is difficult to
find the coefficients of the polynomials in p representing the number of subgroups (of a given
order) of a p-group, even in the case of rank two or three.

There are other tools which can be used to derive explicit formulas for the total number
of subgroups in the case of p-groups of rank two. Namely, Goursat’s lemma for groups was
applied by G. Călugăreanu [5] and J. Petrillo [10], and the concept of the fundamental group
lattice was used by M. Tărnăuceanu [15, 16]. In the paper [8] the subgroups of Zm × Zn were
investigated, where m,n ∈ N are arbitrary, and the following compact formula was deduced.
The total number s(m,n) of subgroups of Zm × Zn is given by

s(m,n) =
∑

a|m,b|n

gcd(a, b). (1.2)

Consider now the case of p-groups of rank three. It is well known that for every prime p the
elementary Abelian group (Zp)

3 can be considered as a three dimensional linear space over the
Galois field GF (p). Its k-dimensional subspaces are exactly the subgroups of order pk and the
number of these subgroups is given by the Gaussian coefficients

[

3
k

]

p
(0 ≤ k ≤ 3). The total

number of subgroups of (Zp)
3 is s(p) =

∑3
k=0

[ 3
k

]

p
= 2(p2 + p+ 2). Similar considerations hold

also for the elementary Abelian groups (Zp)
r with r ∈ N, cf. [1, 4, 5, 16].

It seems that, excepting the case of (Zp)
3 no simple general formulas are known in the

literature to generate the subgroups and to compute the number of the subgroups of an Abelian
group of rank three. We refer here also to the paper of R. Remak [11, Sect. 2], concerning a more
general case, namely the direct product of three finite groups, but where some 156 equations
are given to describe the subgroups.

In this paper we investigate the subgroups of p-groups of rank three. In fact, we consider the
group Γ := Zm × Zn × Zr, where m,n, r are arbitrary positive integers, describe its subgroups
and derive a simple formula for the total number s(m,n, r) of subgroups of Γ. We also deduce
an asymptotic formula for the function n 7→ s(n) := s(n, n, n).

Our approach is elementary, different from those quoted above, using only simple group-
theoretic and number-theoretic arguments. The main results are given in Section 2, while their
proofs are presented in Section 3. Section 4 includes tables with numerical values and formulae
regarding s(m,n, r).
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We also remark that the number c(m,n, r) of cyclic subgroups of Γ = Zm×Zn×Zr is given
by

[section]c(m,n, r) =
∑

a|m,b|n,c|r

φ(a)φ(b)φ(c)

φ(lcm(a, b, c))
,

see [18, 19]. The functions (m,n, r) 7→ s(m,n, r) and (m,n, r) 7→ c(m,n, r) are multiplica-
tive functions of three variables (cf. e.g., [18] for this notion). The function n 7→ s(n) is a
multiplicative function of a single variable, it is the sequence [13, item A064803].

2 Results

Our first result is concerning the representation of the subgroups of Γ.

Theorem 2.1. Let m,n, r ∈ N. The subgroups of the group Γ = Zm×Zn×Zr can be represented
as follows.

(i) Choose a, b, c ∈ N such that a | m, b | n, c | r.
(ii) Compute A := gcd(a, n/b), B := gcd(b, r/c), C := gcd(a, r/c).
(iii) Compute

X :=
ABC

gcd(a(r/c), ABC)
.

(iv) Let s := at/A, where 0 ≤ t ≤ A− 1.
(v) Let

v :=
bX

B gcd(t,X)
w, where 0 ≤ w ≤ B gcd(t,X)/X − 1.

(vi) Find a solution u0 of the linear congruence

(r/c)u ≡ rvs/(bc) (mod a).

(vii) Let u := u0 + az/C, where 0 ≤ z ≤ C − 1.
(viii) Consider

Ua,b,c,t,w,z := 〈(a, 0, 0), (s, b, 0), (u, v, c)〉

= {(ia+ js+ ku, jb + kv, kc) : 0 ≤ i ≤ n/a− 1, 0 ≤ j ≤ n/b− 1, 0 ≤ k ≤ n/c− 1}.

Then Ua,b,c,t,w,z is a subgroup of order mnr/(abc) of Γ. Moreover, there is a bijection between
the set of sextuples (a, b, c, t, w, z) satisfying the conditions (i)-(viii) and the set of subgroups of
Γ.

Let P (n) :=
∑n

k=1 gcd(k, n) =
∑

d|n dφ(n/d) be the gcd-sum function. Note that the function
P is multiplicative and

P (pν) = (ν + 1)pν − νpν−1 (2.1)

for every prime power pν (ν ∈ N). See [17].
Next we give a formula for the number of subgroups of Γ.
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Theorem 2.2. For every m,n, r ∈ N the total number of subgroups of the group Zm × Zn × Zr

is given by

s(m,n, r) =
∑

a|m,b|n,c|r

ABC

X2
P (X), (2.2)

with the notation of Theorem 2.1.
The number of subgroups of order δ (δ | mnr) is given by (2.2) with the additional condition

that the summation is subject to abc = mnr/δ.

If one of m,n, r is 1, then formula (2.2) reduces to (1.2).

Corollary 2.1. For every prime p and every ν1, ν2, ν3 ∈ N, s(pν1 , pν2 , pν3) is a polynomial in p
with integer coefficients.

In particular, for every ν ∈ N, s(pν) is a polynomial in p of degree 2ν, having the leading
coefficient ν + 1.

See Section 4, Table 2 for the polynomials s(pν) with 1 ≤ ν ≤ 10.

Remark 2.1. Actually, for every ν ∈ N,

s(pν) =

2ν
∑

j=0

(

ν −

[

j − 1

2

])(

2j −

[

j − 1

2

])

p2ν−j , (2.3)

where [x] denotes the integer part of x. A proof of (2.3) will be presented elsewhere.

The asymptotic behavior of the function n 7→ s(n) is related to Dirichlet’s divisor problem.
Let θ be the number such that

∑

n≤x

τ(n) = x log x+ (2γ − 1)x+O(xθ+ε), (2.4)

for every ε > 0, where γ is the Euler-Mascheroni constant. It is known that 1/4 ≤ θ ≤
131/416 ≈ 0.3149, where the upper bound, the best up to date, is the result of M. N. Huxley
[9]. The following asymptotic formula holds. Define the multiplicative function h by

s(n) =
∑

d|n

d2τ(d)h(n/d) (n ∈ N) (2.5)

and let H(z) =
∑∞

n=1 h(n)n
−z be the Dirichlet series of h.

Theorem 2.3. For every ε > 0,

∑

n≤x

s(n) =
x3

3

(

H(3)(log x+ 2γ − 1) +H ′(3)
)

+O(x2+θ+ε), (2.6)

where H ′ is the derivative of H.

Remark 2.2. It follows from (2.3) and (2.5) by induction that h(pν) = (3ν − 1)p + 3ν + 1 for
every prime power pν (ν ∈ N). Hence,

H(z) = ζ2(z)
∏

p

(

1 +
2

pz−1
+

2

pz
+

1

p2z−1

)

(2.7)

for Re(z) > 2. In particular,

H(3) = ζ2(3)
∏

p

(

1 +
2

p2
+

2

p3
+

1

p5

)

.
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3 Proofs

We need the next general result regarding the subgroups of the group G× Zq, where (G,+)
is an arbitrary finite Abelian group. For a subgroup H of G (notation H ≤ G) consider the
congruence relation ̺H on G defined for x, x′ ∈ G by x̺H x′ if x− x′ ∈ H.

Lemma 3.1. For a finite Abelian group (G,+) and q ∈ N let

IG,q := {(H,α, d) : H ≤ G,α ∈ SH , d | q and (q/d)α ∈ H},

where SH is a complete system of representants of the equivalence classes determined by ̺H .
For (H,α, d) ∈ IG,q define

VH,α,d := {(kα+ β, kd) : 0 ≤ k ≤ q/d− 1, β ∈ H}.

Then VH,α,d is a subgroup of order (q/d)#H of G× Zq and the map (H,α, d) 7→ VH,α,d is a
bijection between the set IG,q and the set of subgroups of G× Zq.

Proof. Let V be a subgroup of G×Zq. Consider the natural projection π2 : G×Zq → Zq given
by π2(x, y) = y. Then π2(V ) is a subgroup of Zq and there is a unique divisor d of q such that
π2(V ) = 〈d〉 := {kd : 0 ≤ k ≤ q/d− 1}. Let α ∈ G such that (α, d) ∈ V .

Furthermore, consider the natural inclusion ι1 : G → G × Zq given by ι1(x) = (x, 0). Then
ι−1
1 (V ) = H is a subgroup of G. We show that V = {(kα + β, kd) : k ∈ Z, β ∈ H}. Indeed,
for every k ∈ Z and β ∈ H, (kα + β, kd) = k(α, d) + (β, 0) ∈ V . On the other hand, for
every (u, v) ∈ V one has v ∈ π2(V ) and hence there is k ∈ Z such that v = kd. We obtain
(u− kα, 0) = (u, v) − k(α, d) ∈ V , thus β := u− kα ∈ ι−1

1 (V ) = H.
Here a necessary condition is that (q/d)α ∈ H (obtained for k = q/d, β = 0). Clearly, if this

is verified, then for the above representation of V it is enough to take the values 0 ≤ k ≤ q/d−1.
Conversely, every (H,α, d) ∈ IG,q generates a subgroup VH,α,d of order (q/d)#H of G× Zq.

Furthermore, for fixed H ≤ G and d | q we have VH,α,d = HH,α′,d if and only if α̺H α′. This
completes the proof.

In the case G = Zm (and with q = n) Lemma 3.1 was given in [8, Th. 1] and it can be stated
as follows:

Lemma 3.2. For every m,n ∈ N let

Im,n := {(a, b, s) ∈ N
2 × N0 : a | m, b | n, 0 ≤ s ≤ a− 1 and a | (n/b)s}

and for (a, b, s) ∈ Im,n define
Va,b,s := 〈(a, 0), (b, s)〉 (3.1)

= {(ia+ js, jb) : 0 ≤ i ≤ m/a− 1, 0 ≤ j ≤ n/b− 1}.

Then Va,b,s is a subgroup of order mn
ab of Zm×Zn and the map (a, b, s) 7→ Va,b,s is a bijection

between the set Im,n and the set of subgroups of Zm × Zn.

Note that a | (n/b)s holds if and only if a/ gcd(a, n/b) | s. That is, for s ∈ Im,n we have

s =
at

A
, 0 ≤ t ≤ A− 1, (3.2)
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where A = gcd(a, n/b), notation given in Theorem 2.1. This leads quickly to formula (1.2)
regarding the number s(m,n) of subgroups of Zm × Zn, namely

s(m,n) =
∑

a|m,b|n

∑

0≤t≤A−1

1 =
∑

a|m,b|n

gcd(a, b).

Proof. (for Theorem 2.1) Apply Lemma 3.1 for G = Zm×Zn and with q = r. For the subgroups
V = Va,b,s given by Lemma 3.2 a complete system of representants of the equivalence classes
determined by ̺V is Sa,b = {0, 1, . . . , a − 1} × {0, 1, . . . , b − 1}. Indeed, the elements of Sa,b

are pairwise incongruent with respect to V , and for every (x, y) ∈ Zm × Zn there is a unique
(x′, y′) ∈ Sa,b such that (x, y)− (x′, y′) ∈ V . Namely, let

(x1, y1) = (x, y)− ⌊y/b⌋(s, b), (x′, y′) = (x1, y1)− ⌊x1/a⌋(a, 0).

We obtain that the subgroups of Zm × Zn × Zr are of the form

U = UH,α,c = {(kα + β, kc) : 0 ≤ k ≤ r/c− 1, β ∈ V },

where c | r and α = (u, v) ∈ Sa,b such that (r/c)α ∈ V .
Now using (3.1) we deduce

U = Ua,b,s,α,c

= {(ia+ js+ ku, jb + kv, kc) : 0 ≤ i ≤ n/a− 1, 0 ≤ j ≤ n/b− 1, 0 ≤ k ≤ n/c− 1},

where (3.2) holds and (r/c)(u, v) ∈ V . From the latter condition we deduce that there are i0, j0
such that

(r/c)u = i0a+ j0s, (r/c)v = j0b. (3.3)

The second condition of (3.3) holds if b | (r/c)v, that is b/ gcd(b, r/c) | v. Let

v =
bv1
B

, 0 ≤ v1 ≤ B − 1, (3.4)

where B = gcd(b, r/c). Also, j0 = rv/(bc) and inserting this into the first equation of (3.3) we
obtain (r/c)u ≡ rvs/(bc) (mod a). This linear congruence in u has a solution u0 if and only if

gcd(a, r/c) |
rvs

bc
(3.5)

and its all solutions are u = u0 + az/C with 0 ≤ z ≤ C − 1 with C = gcd(a, r/c).
Substituting (3.4) and (3.2) into (3.5) we obtain

gcd(a, r/c) |
rab

gcd(ab, n) gcd(bc, r)
v1t,

that is
gcd(ab, n) gcd(ac, r) gcd(bc, r) | abcrv1t,

equivalent to
gcd(ab, n) gcd(ac, r) gcd(bc, r)

gcd(abcr, gcd(ab, n) gcd(ac, r) gcd(bc, r))
| v1t,

and to
X | v1t, (3.6)
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where X is defined in the statement of Theorem 2.1. Note that X | B (indeed, A | a, C | (r/c)
and the property follows from X = B/ gcd((a/A)(r/c)/C,B).

Let t be fixed. We obtain from (3.6) that v1 is of the form v1 = Xw/ gcd(t,X), where
0 ≤ w ≤ B gcd(t,X)/X − 1. Also, from (3.4), v = bXw/B gcd(t,X). Collecting the conditions
on a, b, c, t, w, z in terms of A,B,C,X finishes the proof.

Proof. (for Theorem 2.2) According to Theorem 2.1 the number of subgroups of Γ is

s(m,n, r) =
∑

a|m,b|n,c|r

∑

0≤t≤A−1

∑

0≤w≤B gcd(t,X)/X−1

∑

0≤z≤C−1

1

=
∑

a|m,b|n,c|r

C
∑

0≤t≤A−1

B

X
gcd(t,X) =

∑

a|m,b|n,c|r

BC

X

∑

1≤t≤A

gcd(t,X).

Here X | A (similar to X | B shown above), hence the inner sum is (A/X)P (X) and we
obtain the formula (2.2).

In the case of subgroups of order δ use that the order of Ua,b,c,t,w,z is mnr/(abc), according
to Theorem 2.1.

Proof. (for Corollary 2.1) If m = pν1 , n = pν2 , r = pν3 , then for each term of the sum (2.2) all
of A,B,C,X and ABC/X2 are of form pν with some ν ∈ N0 (X | A and X | B, cf. the proof of
Theorem 2.1). Using the formula (2.1) for P (pν) we deduce that s(pν1 , pν2 , pν3) is a polynomial
in p with integer coefficients.

In the case ν1 = ν2 = ν3 = ν, by writing explicitly the terms of the sum (2.2) for various
choices of a, b, c | pν , we deduce that the maximal exponent of p is 2ν, which is obtained exactly
for a = pν , b = pλ (0 ≤ λ ≤ ν) and c = 1.

Proof. (for Theorem 2.3) It follows from (2.7) that the abscissa of absolute convergence of H(z)
is 2. But (2.7) is a consequence of the formula (2.3), not proved in the present paper. For this
reason we show here by different arguments that H(z) is absolutely convergent for every z ∈ C

with Re(z) > 9/4 + ε, which is sufficient to establish the asymptotic formula.
According to (2.5), the function s can be expressed in terms of the Dirichlet convolution ∗

as s = E2τ ∗ h, where E2(n) = n2 (n ∈ N). Therefore, h = s ∗ (µ ∗ µ)E2, µ denoting the Möbius
function. We obtain that h(p) = 2p + 4, h(p2) = 5p+ 7, h(p3) = 8p+ 10 and

h(pν) = s(pν)− 2p2s(pν−1) + p4s(pν−2) (ν ≥ 2). (3.7)

For the gcd-sum function P one has P (n) ≤ nτ(n) (n ∈ N), cf. (2.1). Hence

s(n) =
∑

a,b,c|n

gcd(a(r/c), ABC)P (X)/X ≤
∑

a,b,c|n

a(r/c)τ(X)

≤ n2τ(n)
∑

a,b,c|n

1 = n2(τ(n))4

for every n ∈ N and for every prime power pν (ν ∈ N),

s(pν) ≤ p2ν(ν + 1)4. (3.8)
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Now from (3.7) and (3.8) we deduce that for every prime power pν (ν ≥ 2),

0 < h(pν) ≤ 2p2ν(ν + 1)4. (3.9)

From the Euler product formula

H(z) =
∏

p

(

1 +
2p + 4

pz
+

5p + 7

p2z
+

8p+ 10

p3z
+

∞
∑

ν=4

h(pν)

pνz

)

and from (3.9) we obtain that H(z) is absolutely convergent for z ∈ C with 4(Re(z)−2−ε) > 1,
i.e., for Re(z) > 9/4 + ε with an arbitrary ε > 0.

Furthermore, by partial summation we obtain from (2.4) that

∑

n≤x

n2τ(n) =
1

3
x3 log x+

1

3

(

2γ −
1

3

)

x3 +O(x2+θ+ε). (3.10)

Now
∑

n≤x

s(n) =
∑

d≤x

h(d)
∑

e≤x/d

e2τ(e),

and inserting (3.10) we get

∑

n≤x

s(n) =
x3 log x

3

∑

d≤x

h(d)

d3
−

x3

3

∑

d≤x

h(d) log d

d3
+

x3

3

(

2γ −
1

3

)

∑

d≤x

h(d)

d3

+O



x2+θ+ε
∑

d≤x

|h(d)|

d2+θ+ε



 ,

where the last term is O
(

x2+θ+ε
)

. This gives the asymptotic formula (2.6).

4 Tables

The computations were performed using the software Mathematica.

Table 1. Values of s(n) for 1 ≤ n ≤ 50
n s(n) n s(n) n s(n) n s(n) n s(n)

1 1 11 268 21 3248 31 1988 41 3448

2 16 12 3612 22 4288 32 22308 42 51968

3 28 13 368 23 1108 33 7504 43 3788

4 129 14 1856 24 22456 34 9856 44 34572

5 64 15 1792 25 2607 35 7424 45 28480

6 448 16 4387 26 5888 36 57405 46 17728

7 116 17 616 27 5776 37 2816 47 4516

8 802 18 7120 28 14964 38 12224 48 122836

9 445 19 764 29 1744 39 10304 49 9009

10 1024 20 8256 30 28672 40 51328 50 41712
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Table 2. Values of s(pν) for 1 ≤ ν ≤ 10
ν s(pν)

1 4 + 2p+ 2p2

2 7 + 5p+ 8p2 + 4p3 + 3p4

3 10 + 8p+ 14p2 + 10p3 + 12p4 + 6p5 + 4p6

4 13 + 11p+ 20p2 + 16p3 + 21p4 + 15p5 + 16p6 + 8p7 + 5p8

5 16 + 14p+ 26p2 + 22p3 + 30p4 + 24p5 + 28p6 + 20p7 + 20p8

+10p9 + 6p10

6 19 + 17p+ 32p2 + 28p3 + 39p4 + 33p5 + 40p6 + 32p7 + 35p8

+25p9 + 24p10 + 12p11 + 7p12

7 22 + 20p+ 38p2 + 34p3 + 48p4 + 42p5 + 52p6 + 44p7 + 50p8

+40p9 + 42p10 + 30p11 + 28p12 + 14p13 + 8p14

8 25 + 23p+ 44p2 + 40p3 + 57p4 + 51p5 + 64p6 + 56p7 + 65p8

+55p9 + 60p10 + 48p11 + 49p12 + 35p13 + 32p14 + 16p15 + 9p16

9 28 + 26p+ 50p2 + 46p3 + 66p4 + 60p5 + 76p6 + 68p7 + 80p8

+70p9 + 78p10 + 66p11 + 70p12 + 56p13 + 56p14 + 40p15 + 36p16

+18p17 + 10p18

10 31 + 29p+ 56p2 + 52p3 + 75p4 + 69p5 + 88p6 + 80p7 + 95p8

+85p9 + 96p10 + 84p11 + 91p12 + 77p13 + 80p14 + 64p15 + 63p16

+45p17 + 40p18 + 20p19 + 11p20

9



Table 3. Values of s(pν1 , pν2 , pν3) for 1 ≤ ν1 ≤ ν2 ≤ ν3 ≤ 4
ν1 ν2 ν3 s(pν1 , pν2 , pν3)

1 1 1 4 + 2p + 2p2

1 1 2 5 + 3p + 4p2

1 2 2 6 + 4p + 6p2 + 2p3

2 2 2 7 + 5p + 8p2 + 4p3 + 3p4

1 1 3 6 + 4p + 6p2

1 2 3 7 + 5p + 8p2 + 4p3

2 2 3 8 + 6p + 10p2 + 6p3 + 6p4

1 3 3 8 + 6p + 10p2 + 6p3 + 2p4

2 3 3 9 + 7p + 12p2 + 8p3 + 9p4 + 3p5

3 3 3 10 + 8p+ 14p2 + 10p3 + 12p4 + 6p5 + 4p6

1 1 4 7 + 5p + 8p2

1 2 4 8 + 6p + 10p2 + 6p3

2 2 4 9 + 7p + 12p2 + 8p3 + 9p4

1 3 4 9 + 7p + 12p2 + 8p3 + 4p4

2 3 4 10 + 8p+ 14p2 + 10p3 + 12p4 + 6p5

3 3 4 11 + 9p+ 16p2 + 12p3 + 15p4 + 9p5 + 8p6

1 4 4 10 + 8p+ 14p2 + 10p3 + 6p4 + 2p5

2 4 4 11 + 9p+ 16p2 + 12p3 + 15p4 + 9p5 + 3p6

3 4 4 12 + 10p + 18p2 + 14p3 + 18p4 + 12p5 + 12p6 + 4p7

4 4 4 13 + 11p + 20p2 + 16p3 + 21p4 + 15p5 + 16p6 + 8p7 + 5p8
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[19] Tóth, L., On the number of cyclic subgroups of a finite Abelian group, Bull. Math. Soc.
Sci. Math. Roumanie (N.S.), 55(103) (2012), 423–428.

[20] Yeh, Y., On prime power abelian groups, Bull. Amer. Math. Soc., 54 (1948), 323–327.

Mario Hampejs
NuHAG, Faculty of Mathematics, Universität Wien
Nordbergstraße 15, A-1090 Wien
Austria
mario.hampejs@univie.ac.at

László Tóth
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