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Abstract. We study the vertices of the polytopes of all affine maps (a.k.a. hom-
polytopes) between higher dimensional simplices, cubes, and crosspolytopes. Sys-
tematic study of general hom-polytopes was initiated in [3]. The study of such
vertices is the classical aspect of a conjectural homological theory of convex poly-
topes. One quickly runs into open problems even for simple source and target
polytopes. The vertices of Hom(4m,−) and Hom(−,�n) are easily understood.
In this work we describe the vertex sets of Hom(�m,4n), Hom(♦m,4n), and
Hom(♦m,♦n). The emergent pattern in our arguments is reminiscent of diagram
chasing in homological algebra.

1. Introduction

Convex polytopes serve as the main vehicle for a major part of algebraic combi-
natorics. A big part of the theory of convex polytopes studies affine properties of
these objects, i.e., the properties that are invariant under affine transformations, as
opposed to other properties such as projective, metric, discrete etc. In their turn,
affine maps are for affine spaces (e.g., the affine hulls of polytopes) what linear maps
are for vector spaces. Thus, on the one hand, the category Pol of convex polytopes
and their affine maps is a natural habitat for polytopal combinatorics and, on the
other hand, it resembles the linear category of finite dimensional vector spaces. The
latter analogy can be promoted to the following semi-folklore fact: Pol enjoys a
symmetric closed monoidal category structure, enriched on itself. In other words,
the set of affine maps between two polytopes forms a polytope in its own right and
there is another functorial construction – the tensor product of polytopes – satisfying
the usual (right) conjunction with the hom-construction [3, 9].

The importance of the basic fact that the hom-objects in Pol are polytopes is
emphasized in the last pages of [10] and the well known software package Poly-
make [6] even has a special module to actually compute these objects in terms the
source and target polytopes. Although [6] uses the name mapping polytopes, our
terminology of hom-polytopes is more in line with the categorial point of view. The
categorial perspective also suggests what the next natural steps in the process of
fusing the polytopal and linear worlds should be. For instance, can one view the
Sturmfels-Billera fiber polytopes [2], which plays the central role in the theory of
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regular triangulations, as certain kernel objects in Pol? More interestingly, is there
a framework for the still elusive dual quotient polytopes? These and other homo-
logical polytopal constructions still being crystallized, in this paper we focus on the
basic challenge of determination of the vertices of Hom(P,Q) for classical P and Q.

The first substantial treatment of hom-polytopes was given in [3], where basic
properties were established. In particular, the paper [3] emphasized on the impor-
tance of computing the vertices of hom-polytopes – it was shown that this poses a
serious problem even for supposedly tame polytopes (e.g., polygons) as the source
and target objects. In this paper we continue the investigation of hom-polytopes
along ‘simple’ examples: the simplices, cubes, and crosspolytopes in arbitrary di-
mension. The emergent rich combinatorics, resulting from the categorial approach,
is remarkable. But one can also trace patterns reminiscent of diagram chasing in
homological algebra.

Our arguments involve phenomena in polytopes which are often observed for gen-
eral polytopes and not just for the mentioned class. The most general principle
employed in this paper is the following simple perturbation criterion: an affine map
f : P → Q is not a vertex of Hom(P,Q) if and only if there is a family of affine
maps {ft : P → Q}t∈(−1,1), smoothly parameterized by t so that f0 = f . Examples
of involvement of general polytopes are Lemma 4.4 and Theorem 5.4(a).

Before describing the main results we recall the following well known fact ([3,
Section 2],[10, Section 9.4]). It explains why the determination of vertices of hom-
polytopes is the first step in understanding the hom-polytopes:

Theorem 1.1. Let P ⊂ V and Q ⊂ W be polytopes in their ambient vector spaces.

(a) The set Hom(P,Q) naturally embeds as a polytope into the vector space of
linear maps Hom(W × R, V × R).

(b) The facets of Hom(P,Q) are the subsets of the form

H(v, F ) = {f ∈ Hom(P,Q} | f(v) ∈ F},
where v ∈ P is a vertex and F ⊂ Q is a codimension one face.

(c) dim(Hom(P,Q)) = dimP dimQ+ dimQ.
(d) For every vertex w ∈ Q, the map f : P → Q, Im f = {w}, is a vertex of

Hom(P,Q).

The main results in this paper, derived from explicit smooth perturbations of
affine maps, are as follows.

� In Section 4 we show that every vertex f ∈ Hom(�m,4n) maps the m-cube �m

onto either a vertex or an edge of the n-simplex 4n. In particular, Hom(�m,4n)
has (n+ 1)(mn+ 1) vertices.

� In Section 5 it is shown that, for the m-dimensional crosspolytope ♦m and an
n-dimensional polytope P , every vertex f ∈ Hom(♦m, P ) with dim(Im f) = n
admits an n-dimensional sub-crosspolytope ♦ ⊂ ♦m such that f |♦ is a vertex of
Hom(♦, P ). Furthermore, we have a complete geometric description of the vertices
f ∈ Hom(♦m,4n). These results lead to nontrivial lower and upper estimates for
the number of vertices of Hom(♦m,4n).
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� Section 6 focuses on the polytope Hom(♦m,♦n). In view of Section 5, the only
new situation arises when the image of a vertex map f ∈ Hom(♦m,♦n) meets the
interior of ♦n. The main result here is that every such f maps the center of ♦m
to that of ♦n. As a consequence, we obtain nontrivial estimates for the number of
vertices of Hom(♦m,♦n).

Since the functors Hom(4m,−) and Hom(−,�n) are well understood (Proposition
2.3), the only remaining open case is Hom(�m,♦n). Our Polymake computations
show that an easy lower bound for the number of vertices of Hom(�m,4n) is far
from being optimal (Section 7).

Based on this work one can speculate that among the regular polytopes, the Pla-
tonic solids and regular 4-polytopes are the most challenging source/target polytopes
for determination of the vertex maps.

2. Preliminaries

Our references on general convex polytopes are [4, Ch.1] and [10]. Yet for the
reader’s convenience below we encapsulate some basic definitions and fix notation,
which are not always identical in the two sources.

2.1. Affine spaces. All our vector spaces are real and finite dimensional. An affine
space is a translate of a vector subsapcce, i.e., a subset of the form H = x+V ′ ⊂ V ,
where V is a vector space, V ′ ⊂ V is a subspace, and x ∈ V . A map between two
affine spaces f : H1 → H2 is an affine map if f respects barycentric coordinates or,
equivalently, f maps polytopes to polytopes and parallel affine subspaces to parallel
subspaces, possibly of lesser dimension.

For a subset X ⊂ Rn, denote by:
� RX the linear span of X,
� conv(X) the convex hull of X,
� Aff(X) the affine hull of X,
� lin(X) the homogenization of Aff(X), i.e., the linear subspace Aff(X) − x ⊂ Rn

where x is some (equivalently, any) element x ∈ X.

The set of affine maps H1 → H2 between two affine spaces will be denoted by
Aff(H1, H2). We put rank f = dim f(H1).

Let H1 ⊂ V1 and H2 ⊂ V2 be affine subspaces in their ambient vector spaces.
Upon fixing an affine surjective map π : V1 → H1, which restricts to the identity
map on H1, we get an injective map

ϑπ : Aff(H1, H2)→ Aff(V1, V2), f 7→ ι ◦ f ◦ π,
where ι : H2 ↪→ V2 is the inclusion map. We also have the embedding into the space
of linear maps:

ϑ : Aff(V1, V2)→ Hom(V1 × R, V2 × R),

(ϑ(f))(x, c) = (cf(c−1x), c), (ϑ(f))(x, 0) = (x, 0),

x ∈ V1, c ∈ R \ {0}.
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The composite map ϑ◦ϑπ identifies Aff(H1, H2) with an affine subspace of Hom(V1×
R, V2 × R) and the induced convexity notion in Aff(H1, H2) is independent of the
choice of π. This affine embedding is implicit in Theorem 1.1(a).

Any full rank subset of a vector space contains a basis. By dualizing we get

Lemma 2.1. For two natural numbers n ≤ m and a system of linear subspaces
V1, . . . , Vm ⊂ Rn we have the equivalence

V1 ∩ · · · ∩ Vm = 0 ⇐⇒ ∃{i1, . . . , in} ⊂ {1, . . . ,m} Vi1 ∩ · · · ∩ Vin = 0.

The standard basis vectors of Rn are denoted by e1, . . . , en.
For the dual spaces we will make the identification (Rn)ø = Rn, so that the pairing

(Rn)ø×Rn → R becomes the dot-product (x1, . . . , xn)·(y1, . . . , yn) = x1y1+· · ·+xnyn.

2.2. Polytopes. A polytope always means a convex polytope in an ambient vector
(or affine) space. An affine map between two polytopes is the restriction of an affine
map between the ambient spaces. We write P ∼= Q if P and Q are isomorphic
polytopes in Pol.

A face projection of a polytope P refers to a surjective map in Pol, representing
a parallel projection from P along the affine hull of a face of P .

For two polytopes P and Q let:
� Aff(P,Q) := Aff(Hom(P,Q)) (= Aff(Aff(P ),Aff(Q)));
� an element f ∈ Hom(P,Q) be called a vertex map if f is a vertex of Hom(P,Q);
� rank f denote the rank of the affine extension of f to Aff(P,Q);
� vert(P,Q) denote the set of vertices of Hom(P,Q);1

� vert(k)(P,Q) denote the set of rank k elements of vert(P,Q);
� F(P ) the set of facets (i.e., the faces of dimension dimP − 1) of P ;
� int(P ) the interior of P (relative to Aff(P ));
� ∂P = P \ int(P ) – the boundary of P .

If, additionally, P ⊂ Rn and 0 ∈ int(P ), denote by:
� P ø the dual polyhedron, i.e., P ø = {x ∈ Rn | x · y ≤ 1 for all y ∈ P}; P ø is a
polytope iff dimP = n; in that case dimP ø = n ([4, Section 1.B],[10, Section 2.3]);
� ♦(P ) the bi-pyramid conv(P,±en+1) ⊂ Rn+1, where Rn is viewed as the hyperplane
in Rn+1 of the first n-coordinates.

The standard n-simplex, n-cube, and n-crosspolytope are defined as follows:

4n = conv(0, e1, . . . , en),

�n = conv
(
(a1, . . . , an) | ai = ±1

)
,

♦n = conv(±e1, . . . ,±en).

In particular, �n and ♦n are dual to each other.

For a polytope P , the group of its automorphisms in Pol will be denoted by
Aut(P ). The n-th hyperoctahedral group is

BCn = Aut(�n) = Aut(♦n).

1In [3] the vertex set is denoted by vert(Hom(P,Q)).
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One has |BCn | = 2nn! and the center of BCn is isomorphic to (Z2)n ([5, Section
7.6]). Also, we think of Aut(4n) as the (n+ 1)-st permutation group Sn+1.

2.3. Cones. For generalities on cones see [4, Chapter 1] and [10, Chapter 1].
The set of nonnegative reals is denoted by R+. For a subset X ⊂ Rn, the set

R+X (the set of non-negative real linear combinations of finitely many elements
of X) is called the conical hull of X. A cone means a finite polyhedral pointed
cone, i.e., a subset of the form C = R+x1 + · · · + R+xk ⊂ Rn for some finite set
{x1, . . . , xn} ⊂ Rn and containing no non-zero linear subspace. The dual conical set
Cø = {x ∈ Rn | x · y ≥ 0 for all y ∈ C} ⊂ Rn is a cone iff dimC = n. In that case
Cø is called the dual cone for C.

Let P ⊂ Rn be a polytope and v ∈ P a vertex. The affine corner cone of P at v
is the shifted cone v+R+(P − v). If dimP = n then the normal fan of P is the fan
N (P ) in Rn whose maximal cones are the duals of the corner cones of P , i.e., the
maximal cones of N (P ) are of the form (R+(P − v))ø, where v runs over vert(P ).
For generalities on normal fans see [4, Capter 1].

For two n-dimensional polytopes P,Q ⊂ Rn, we have N (P ) = N (Q) if and only
if P and Q are of same combinatorial type and the corresponding corner cones are
equal if and only if P and Q have same combinatorial types and the corresponding
faces are parallel.

2.4. Some facts on affine maps. Every map f : P → Q in Pol factors as follows

P Q

R

f

g h

where g is surjective and h is injective. Moreover, any two such factorizations fit
into a unique commutative diagram:

R

P Q

R′

∼=

We let fsurj and finj denote any representative of such factorizations: f = finj◦fsurj.

Proposition 2.2. Let f : P → Q be an affine map of polytopes.

(a) If f(vert(P )) ⊂ vert(Q) then f ∈ vert(P,Q).
(b) If f ∈ vert(P,Q) then fsurj ∈ vert(P, Im f) and finj ∈ vert(Im f,Q).
(c) Assume rank f = 1. Then f ∈ vert(P,Q) if and only if f is a facet projection

of P onto an edge or a diagonal of Q.
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Proof. (a) follows from the perturbation criterion (pc1) in [3, Section 4]. (See Lemma
3.1 below.)

(b) is [3, Theorem 4.1(1)].
(c) follows from [3, Corollary 4.3] �
Examples showing that the implication (b) can not be reversed are given in [3,

Section 5].

Proposition 2.3. Let n be a natural numbers and P be a polytope.

(a) Hom(4n, P ) ∼= P n+1.
(b) If P ⊂ Rm, dimP = m and P is centrally symmetric w.r.t. the origin then

Hom(P,�n) ∼= ♦(P ø)n.

This is proved in [3, Corollary 3.6].
As a special case of Proposition 2.3(b), we have Hom(�m,�n) ∼= (♦m+1)n and

Hom(♦m,�n) ∼= ♦(�m)n. For P not necessarily centrally symmetric, the polytope
Hom(P,�n) is still easily described, but the information on the face lattice structure
is not as straightforward ([3, Proposition 3.2(6)]).

3. Smooth perturbation criterion

A smooth (affine) 1-family in Hom(P,Q) is a subset of the form

{ft}(−1,1) ⊂ Hom(P,Q),

where the map ψ : (−1, 1) → Aff(P,Q), determined by ψ(t)|P = ft, is injective
and smooth (respectively, affine). A smooth (affine) perturbation of an element
f ∈ Hom(P,Q) is a smooth (respectively, affine) 1-family {ft}(−1,1) ⊂ Hom(P,Q)
with f0 = f .

The following criterion for vertex maps is just a specialization of the fact that a
point in a polytope is not a vertex if and only if there is a smooth curve inside the
polytope, passing through the point, if and only if there is an open interval inside
the polytope, passing through the point.

Lemma 3.1 (Perturbation criterion). In the notation above, f /∈ vert(P,Q) if and
only if f admits a smooth perturbation if and only if f admits an affine perturbation.

In [3] only the affine perturbation criterion is used. In this paper we will need
both criteria. The smooth version is used in Lemmas 3.3 and 4.4.

Corollary 3.2. Let P,R, and Q be polytopes. Assume R ⊂ Q and m ≥ 2.

(a) If f ∈ vert(P,Q) and f(P ) ⊂ R then f ∈ vert(P,R).
(b) For P centrally symmetric we have the implication

f ∈ vert(♦m, P ) & (f(0) is the center of P ) =⇒
f(vert(♦m)) ⊂ vert(P ).

(c) If f ∈ vert(♦m, P ) then

f(vert(♦m)) = vert(Im f) ⊂ vert(P ∩ (2f(0)− P )).
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Proof. (a) A smooth 1-family in Hom(P,Q) is a smooth 1-family in Hom(P,R).

(b) Assume f(v) /∈ vert(P ) for some v ∈ vert(♦m) and fix an open interval
(x, y) ⊂ P centered at f(v). Then the family {ft}(−1,1) ⊂ Hom(♦m, P ), defined by

ft(w) =


(
(1− t)x+ (1 + t)y

)
/2, if w = v,(

(1− t)(2f(0)− x) + (1 + t)(2f(0)− y)
)
/2, if w = f(−v),

f(w), if w ∈ vert(♦m) \ {v,−v},
is an affine 1-family, contradicting Lemma 3.1.

(c) By Proposition 2.2(b), f ∈ vert(♦m, Im f). So the equality follows from part
(b). For the inclusion, we observe that Im f ⊂ P ∩ (2f(0)− P ) (just because Im f
is centrally symmetric w.r.t. f(0)). So (b) applies again. �
Lemma 3.3. Let n be a natural number, P a polytope, and f ∈ vert(P,4n). Then
there exists a face G ⊂ 4n such that dim f(P ) = dimG, f(P ) ⊂ G, and every facet
of G contains a facet of f(P ).

In the proof we will use rotations around codimension 2 affine subspaces. Let
n ≥ 2 and H ⊂ Rn be a codimension two affine subspace. A rotation around H is
an affine automorphism of the form

ρH : Rn → Rn, x 7→ ρ(x− h) + h,

where h ∈ H and ρ ∈ SO(n) is an element which fixes lin(H). We have the bijec-
tive correspondence ρH ↔ ρ. Consequently, the rotations around H are naturally
parameterized by the unit circle S1 and we get the embedding of Lie groups:

S1 → SO(n), t 7→ ρHt 7→ ρt, t ∈ S1.

(S1 is thought of as the multiplicative group of complex numbers of norm 1.)

Proof of Lemma 3.3. If P ⊂ ∂4n then induction on dimension applies in view of
Corollary 3.2(a). So there is no loss of generality in assuming f(P ) ∩ int(4n) 6= ∅.

We want to show dim(F ∩ f(P )) = n − 1 for all F ∈ F(4n), which also implies
dim f(P ) = n.

Assume, to the contrary, dim(F ∩ f(P )) ≤ n− 2 for a facet F ⊂ 4n.
Without loss of generality we can further assume F = conv(e1, . . . , en) ∈ F(4n).
Let HF = Aff(F ) and H+

F ⊂ Rn be the affine half-space containing 4n.
Let H ⊂ HF be an (n − 2)-dimensional affine subspace, containing f(P ) ∩ F .

There exists a small open arc Γ ⊂ S1, containing 1, such that

f(P ) ⊂ ρHt (H+
F ), t ∈ Γ.

Consider the simplices
4t = Rn

+ ∩ ρHt (H+
F ), t ∈ Γ.

We have
4t = conv(0, λt1e1, . . . , λtnen)

for some real numbers λt1, . . . , λtn > 0. Furthermore, the maps

Γ→ R, t 7→ λti, i = 1, . . . , n,
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are smooth and at least one of them is injective. Therefore, the linear maps

αt : Rn → Rn, αt(ei) = λ−1
ti ei, i = 1, . . . , n,

give rise to a smooth embedding Γ→ GLn(R). Moreover, for any point x ∈ int(4n),
the map

Γ→ Rn
+, t 7→ αt(x),

is smooth and injective.
Summing up, we have:

� αt(f(P )) ⊂ 4n for every t ∈ Γ,
� the map Γ→ Hom(P,4n) ↪→ Aff(P,4n), t 7→ αt ◦ f , is smooth injective.

Straightening out Γ via a diffeomorphism Γ→ (−1, 1), which maps 1 to 0, we get
a smooth perturbation of f , and this contradicts Lemma 3.1.

Figure 1 represents the face F being rotated about the codimension 2 affine space
containing Aff(f(P ) ∩ F ).

Figure 1.

�

4. vert(�m,4n)

The main result in this section is that every vertex map �m → 4n collapses the
cube into either a vertex or an edge of 4n. This fact allows a particular realization
of the set vert(�m,4n) ⊂ Rmn+n. In the proof of the main result we seek a smooth
perturbation of an arbitrary rank k ≥ 2 element of Hom(�m,4n). A dualization
argument allows us to use special perturbations of simplices in crosspolytopes, con-
structed in Lemma 4.3.

Theorem 4.1. For all natural numbers m and n we have

vert(�m,4n) = vert(0)(�m,4n) ∪ vert(1)(�m,4n).

Corollary 4.2. The polytope Hom(�m,4n) has (n + 1)(mn + 1) vertices. The
following set is a particular realization of vert(�m,4n) in Rn+nm:

0, 2ei, ei + eik, ei − eik, (ei + ej) + (eik − ejk) with i 6= j,

i, j = 1, . . . , n, k = 1, . . . ,m,
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where eν denotes the standard basis vector in the direction labeled by ν for every
(single or double) index ν.

To parse the notation in the corollary, the vertices of Hom(�m,4n) are the vertices
of a complex of crosspolytopes arranged on the edges of the dilated n-simplex,
conv(0, 2e1, . . . , 2en), embedded in Rmn+n. For every coordinate direction ei we get
m more coordinate directions, the eik, thus filling out Rmn+n. When viewed as such,
the vertices 0, 2ei, i = 1, . . . , n, are the vertices of the simplex, the vertices ei±eik are
the vertices of the crosspolytopes centered on the coordinate edges of the simplex,
and the vertices (ei + ej) + (eik− ejk) are the vertices of the crosspolytopes centered
on the non-coordinate edges of the simplex. Figure 2 represents a geometrically
symmetrized version of the above realization of Hom(�2,43).

Figure 2.

Proof of Corollary 4.2. By Proposition 2.3(b), we have the family of (m+1)-dimensional
crosspolytopes in Hom(�m,4n):

♦(i) = Hom(�m, [0, 2ei]) ⊂ Hom(�m,4n), i = 1, . . . , n.

By Proposition 2.2(c), we also have

vert(♦(i)) ⊂ vert(�m,4n), i = 1, . . . , n.

By the same Proposition 2.2(c), for every facet F ⊂ �m and every index i we have
a pair of rank 1 vertices in ♦(i). Depending on whether the function

Rm → R, (a1, . . . , an) 7→ ak, ek ⊥ F,

is increasing or decreasing, the corresponding elements of the mentioned pair will
be denoted by v+

i (F ) and v−i (F ).
For every pair of indices i, j ∈ {1, . . . , n}, the assignment

v+
i (F ) 7→ v+

j (F ), v−i (F ) 7→ v−j (F ), F ∈ F(�n),

gives rise to a bijective correspondence between vert(♦(i)) and vert(♦(j)).
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Let F ⊂ �m be a facet and π : �m → [−1, 1] an F -projection. Consider the affine
isomorphisms:

τi, ρi : [−1, 1]→ [0, 2ei], τi(−1) = 0, ρi(−1) = 2ei, i = 1, . . . , n.

The maps
(τi ◦ π + ρj ◦ π) : �m → [2ei, 2ej]

are surjective F -projections for all i, j = 1, . . . , n, i 6= j. In terms of the vertices of
the ♦(i) introduced above, this means

v+
i (F ) + v−j (F ) ∈ vert(�m,4n),

the sum on the left being the point-wise addition of maps evaluating in R+4n = Rn.
On the other hand, we have (ei + ej) + (eik − ejk) = (ei + eik) + (ej − ejk) and

{ei, ei + eik, e− eik}i=1,...,n; k=1,...,m ⊂ Rmn+n

is a linearly independent system. So the polytope with vertices as in Corollary 4.2
maps to Hom(�m,4n) by the affine map that sends 0, 2e1, . . . , 2en to the corre-
sponding elements of vert(0)(�m,4n) and sends ei±eik to the corresponding v±i (F ).
By Theorem 4.1 this is a surjective map. But the rank of the vector system in
Corollary 4.2 equals n + nm = dim(Hom(�m,4n)) (Theorem 1.1(c)). So the map
is an isomorphism. �

In the proof of Theorem 4.1 we will need the following

Lemma 4.3. For any natural numbers 2 ≤ n ≤ m and an n-simplex 4 ⊂ ♦m with
0 ∈ int(4), there is a smooth perturbation {gt}(−1,1) ⊂ Hom(4,♦m) of the identity
embedding g0 : 4→ ♦m, such that 0 ∈ int(gt(4)) for all t ∈ (−1, 1).

Proof. Let {v1, . . . , vk} = vert(♦m) ∩4 for some k.
We have k 6= n + 1, for otherwise either 4 ⊂ ∂♦m or 0 belongs to an edge of 4,

both possibilities excluded by the condition 0 ∈ int(4).
First consider the case n = m. The identity embedding 4→ ♦m does not belong

to vert(4,♦m) for otherwise Proposition 2.3(a) implies vert(4) ⊂ vert(♦m), which
we have already excluded. Consequently, 4 can be perturbed inside ♦m smoothly
in such a way that 0 is in the relative interior of the perturbed copies of 4.

So we can assume n < m. Assume, further, k = n. Because 0 ∈ int(4) we have
4 ⊂ (Rv1 + · · ·+Rvn)∩♦m. But (Rv1 + · · ·+Rvn)∩♦m ⊂ ♦m is an n-dimensional
sub-crosspolytope and the problem reduces to the full dimensional case, considered
above.

The general case has been reduced to the case k < n < m, and the proof is
completed by the next general lemma. �
Lemma 4.4. Assume k < n < m are three natural numbers, Q ⊂ Rm is an m-
polytope, z ∈ int(Q), and 4 ⊂ Q is an n-simplex such that z ∈ int(4) and vert(4)∩
vert(Q) = {v1, . . . , vk}. Then there exists a smooth perturbation

{gt}(−1,1) ⊂ Hom(4, Q)

of the identity embedding g0 : 4→ Q such that z ∈ int(gt(4)) for all t ∈ (−1, 1).
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Proof. The set vert(4) \ vert(Q) has at least two elements, say v and v′.
Without loss of generality we assume Q ⊂ Rm and z = 0. Choose a system of

hyperplanes H1, . . . , Hm−n ⊂ Rm, satisfying the condition

H1 ∩ · · · ∩Hm−n = R4.
Consider the polytope T = R4∩Q. Without loss of generality,

(1) vert(4) ⊂ vert(T ),

for, otherwise, the conditions dim4 = dimT and 0 ∈ int(4) allow a smooth pertur-
bation {gt}(−1,1) ⊂ Hom(4, T ) ⊂ Hom(4, Q) with 0 ∈ int(gt(4)) for all t ∈ (−1, 1).

The equality vert(4) ∩ vert(Q) = {v1, . . . , vk} and (1) imply that every vertex
w ∈ vert(4) \ {v1, . . . , vk} belongs to a (unique) positive dimensional face Fw ⊂ Q,
such that

w = int(Fw) ∩H1 ∩ · · · ∩Hm−n.

Denote dw = dimFw. We have dw ≤ m − n and there exists a dw-element subset
Jw ⊂ {1, . . . ,m− n}, such that

(2) w = int(Fw)
⋂(⋂

Jw

Hj

)
.

(This follows, for instance, from Lemma 2.1, applied to w instead of 0 and the system
of affine spaces Aff(Fw) ∩H1, . . . ,Aff(Fw) ∩Hm−n instead of linear subspaces.)

Next we choose a codimension two subspace H ⊂ Rm, such that H ∩ R4 =
Rv1 + · · ·+ Rvk. In particular, vert(4) \ {v1, . . . , vk} ∩H = ∅.

For a small open arc Γ ⊂ S1, containing 1, and any vertex w ∈ vert(4) \
{v1, . . . , vk}, we have

(3) dim
(
Fw
⋂

ρHt
(⋂
Jw

Hj

))
= dim

(
Fw
⋂(⋂

Jw

ρHt (Hj)
))

= 0, t ∈ Γ,

where, as in the proof of Lemma 3.3, ρHt is the corresponding rotation around H.
The equality (3) follows from the equality (2): two complementary dimensional
affine subspaces of Rn in general position remain in general position after small
perturbations.

Since the points

wt = Fw
⋂(⋂

Jw

ρHt (Hj)
)
, t ∈ Γ,

are smooth non-constant functions of t, we get a smooth family in Hom(4,♦m):

gt : 4→ ♦m, gt(w) =

{
w, if w ∈ {v1, . . . , vk},
wt, if w ∈ vert(4) \ {v1, . . . , vk},

t ∈ Γ.

Using a diffeomorphism Γ→ (−1, 1), which maps 1 to 0, we obtain a smooth family
with the desired property. �
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Proof of Theorem 4.1. Pick f ∈ Hom(�m,4n) with rank f ≥ 2. We want to show
that f admits a smooth perturbation inside Hom(�m,4n).

By Lemma 3.3, there is no loss of generality in assuming that m ≥ rank f = n.
So f(�m) is an n-dimensional zonotope in 4n.

The inclusion f(�m) ⊂ 4n gives rise to the inclusion

(4) �m ⊂ f̃−1(4n) = 4× V

where:
� f̃ : Rm → Rn is the unique affine extension of f : �m →4n,
� V = f̃−1(f(0)) ⊂ Rm, an (m− n)-dimensional linear subspace,

� 4 is the cross section of f̃−1(4n) by the n-dimensional linear subspace of Rm,
perpendicular to V .

Since f(0) ∈ int(f(�m)), we also have 0 ∈ int(4).
By dualizing, (4) implies

4′ ⊂ ♦m, 0 ∈ int(4′),

where 4′ is the n-simplex, dual to 4 within the subspace Aff(4) = R4 ⊂ Rm

w.r.t. the Euclidean norm, induced from Rm.
By Lemma 4.3, there is a smooth perturbation {gt}(−1,1) ⊂ Hom(4′,♦m) of the

identity embedding g0 : 4′ → ♦m, satisfying the condition 0 ∈ int(gt(4′)) for all
t ∈ (−1, 1). For every t ∈ (−1, 1), the dual of gt(4′) in Rm is the right prism
4t × Vt ⊂ Rm for a uniquely determined n-simplex 4t with 0 ∈ int(4t) and the
corresponding (m− n)-dimensional perpendicular subspace Vt ⊂ Rm. In fact, 4t is
the dual of gt(4′) within the linear subspace Rgt(4′) ⊂ Rm w.r.t. the Euclidean
norm, induced from Rm. In particular, 40 = 4 and V0 = V .

By dualizing, the inclusions gt(4′) ⊂ ♦m imply

(5) �m ⊂ 4t × Vt, t ∈ (−1, 1).

We can choose two smooth families:

� {ϕt : R4→ R4t | ϕt a linear isomorphism}(−1,1) ⊂ Hom(R4,Rm) ∼= Rmn,

� {ψt : V → Vt | ψt a linear isomorphism}(−1,1) ⊂ Hom(V,Rm) ∼= Rm(m−n),

satisfying ψ0 = 1V , ϕ0 = 14, and ϕt(4) = 4t for all t ∈ (−1, 1).
Consider the smooth family of linear automorphisms

αt = ϕ−1
t × ψ−1

t : Rm → Rm, (x, y) 7→(ϕ−1
t (x), ψ−1

t (y))

(x, y) ∈ 4t × Vt, t ∈ (−1, 1).

We have α0 = 1Rm .
By (5), we have the inclusions

αt(�m) ⊂ 4× V, t ∈ (−1, 1),

and, consequently,

(f̃ ◦ αt)(�m) ⊂ 4n, t ∈ (−1, 1).
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If the set (f̃ ◦αt)(�m) varies along with t then (f̃ ◦αt)|�m is a smooth perturbation
of f and we are done by Lemma 3.1. So without loss of generality we can assume
(f̃ ◦ αt)|�m does not vary along with t. Because �m is full dimensional, this means

αt =

(
βt 0
γt 1

)
, t ∈ (−1, 1),

where, for each t:
� βt : V → V is a linear automorphism,
� γt : V → R4 is linear map,
� 1 : R4→ R4 is the identity map,

� Rm is thought of as
(
V

R4

)
.

Since 4t is the compact perpendicular cross-section of the infinite prism

α−1
t (4× V ) = 4t × Vt

and

α−1
t =

(
β−1
t 0
γ′t 1

)
for an appropriate γ′t, we get 4t = 4 for all t ∈ (−1, 1), contradicting the definition
of the 4t. �

5. vert(♦m,4n)

By Proposition 2.2(b) and Lemma 3.3, for determination of the vertices as in
the title above, it is enough to consider the rank k vertices of Hom(♦m,4k) for all
k ≤ n. The main result of this section is stated in Theorem 5.4, the part (a) of
which says that, given an arbitrary n-polytope P and a vertex f ∈ vert(n)(♦m, P ),
the image Im f contains an n-dimensional crosspolytope, sitting imperturbably in
P . The parts (b,c) focus on the case when P = 4n. Theorem 5.4 allows us to give
a geometric description of all vertex maps ♦m → 4n and estimate their number
(Corollary 5.5).

We begin by introducing some integer sequences that will help us with the esti-
mation.

Consider the set of vertex maps:

V(n) = {f ∈ vert(n)(4n,�n) | 0 ∈ int(Im f)}.
We can interpret the elements of V(n) as the ordered (n+ 1)-tuples of vertices of

�n, whose convex hulls are full-dimensional and contain 0 in the interior.
The left action of BCn on Hom(4n,�n) restricts to a left actions on V(n). For

the number of orbits of the group action denote β(n) = #
(

BCn \V(n)
)
.

Lemma 5.1. Let n be a natural number.

(a) # V(n) = 2nn!β(n),

(b) β(n) =


1, if n = 1, 3,

0, if n = 2,

≥ 1, if n ≥ 4.
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(c) Assuming n ≥ 2, there is a bijection vert(n)(♦n,4n) ≈ V(n).

Proof. (a) follows from the fact that BCn acts on V(n) freely.

(b) The equality is obvious for n = 1, 2. For n = 3, we first observe that V(n)/Sn+1

has two elements, represented by the two maximal regular tetrahedra 4,4′ ⊂ �3.
Moreover, 4 can be mapped to 4′ by the 90o-rotation around the line through
the centers of a pair of opposite facets of �3. So it is enough to show that every
automorphism of 4 extends to an automorphism of �3. To this end, pick any two
vertices x, y ∈ vert(4). The reflection of R3 w.r.t. the affine plane, perpendicular
to [x, y] and through x+y

2
, swaps x and y and leaves the other two vertices of 4

fixed. We are done because this reflection is an element of BC3 and transpositions
generate Aut(4) ∼= S4.

For the inequalities we exhibit the following explicit element of V(n):

conv
(
(−1, . . . ,−1),

{
(1, . . . , 1)− 2ei

}n
i=1

)
⊂ �n.

(c) Pick f ∈ vert(n)(♦n,4n). By Lemma 3.3, every facet of 4n contains a facet of
f(♦n). By applying an affine isomorphism Rn → Rn, transforming f(♦n) into ♦n,
the simplex 4n gets transformed into an n-simplex, such that the condition on the
facets is still satisfied. Dualizing, we get an element of V(n). This is a bijective
correspondence. �

Notice. By computer assisted effective methods, we have computed the following
values: β(4) = 5 and β(5) = 408.

When n ≥ 4, the vertex map f : ♦n →4n, corresponding to the explicit element
of V(n) in the proof of Lemma 5.1(c), does not map 0 to the barycenter of 4n. To
see this, we change 4n to the regular n-simplex 4 = conv(e1, . . . , en+1) ⊂ Rn+1

and look at the corresponding vertex map g : ♦n → 4. Let γ = 1
n+1

∑n+1
i=1 ei. We

want to show g(0) 6= γ. The dual to 4 w.r.t. γ is a homothetic image 4′ of 4,
centered at γ. If g(0) = γ then 4′ sits in an n-parallelepiped the same way as
conv

(
(−1, . . . ,−1),

{
(1, . . . , 1) − 2ei

}n
i=1

)
sits in �n, with γ playing the same role

in 4′ as 0 in conv
(
(−1, . . . ,−1),

{
(1, . . . , 1) − 2ei

}n
i=1

)
. But this contradicts the

equality
∑

vert(4′)(v − γ) = 0.
It is interesting to remark that any simple 3-dimensional polytope P contains a

homothetic copy ♦ of the octahedron ♦3, such that vert(♦) ⊂ ∂P [1].

For two natural numbers m and n, denote by Σ(m,n) the set of maps

f : {1, . . . ,m} → {±1, . . . ,±n},
such that

{|f(1)|, . . . , |f(m)|} = {1, . . . , n}.
Let σ(m,n) = #Σ(m,n). (So σ(m,n) = 0 for m < n.)

Lemma 5.2. For all m ≥ n we have

σ(m,n) = 2mT (m, k) = 2mn!S(m,n) = 2m
n∑
j=0

(−1)n−j
(
n

j

)
jm,
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where T (m,n) is the number of surjective maps {1, . . . ,m} → {1, . . . , n} and S(m,n)
is the Stirling number of the second kind, i.e., the number of partitions of m objects
into n non-empty subsets.

The numbers T (m,n) and S(m,n) are listed in [8] as, correspondingly, the se-
quences A019538 and A008277.

Lemma 5.3. For any two n-dimensional simplices 4,4′ ⊂ Rn we have

# vert(4∩4′) ≤
(

2n+ 2

n+ 2

)
.

The following table explains why one should expect a substantial improvement
in the upper bound for # vert(4 ∩ 4′) in the relevant case when 4 and 4′ are
mutually centrally symmetric; see the notice after the proof of Corollary 5.5. The
five entries row-wise are, correspondingly, the dimension n, # vert

(
4n∩ (2z−4n)

)
for a small random perturbation z of the barycenter of4n (conjecturally maximizing
the number of vertices), # vert(4 ∩ 4′) for some randomly generated n-simplices
4,4′ ⊂ Rn (up to dimension 13),

(
2n+2
n+2

)
, and the percentage of the second number

to the fourth:
3 12 12 56 21.43 %
4 30 31 210 14.29 %
5 60 64 792 7.576 %
6 140 144 3003 4.662 %
7 280 334 11440 2.448 %
8 630 781 43758 1.440 %
9 1260 1586 167960 0.7502 %
10 2772 3623 646646 0.4287 %
11 5544 8912 2496144 0.2221 %
12 12012 18155 9657700 0.1244 %
13 24024 43678 37442160 0.06416 %
14 51480 − 145422675 0.03540 %
15 102960 − 565722720 0.01820 %

Proof of Lemma 5.3. Assume {v1, . . . , vm} = vert(4∩4′) for some m ∈ N.
For every index i ∈ {1, . . . ,m} we let Fi ⊂ 4 and Gi ⊂ 4′ be the faces, uniquely

determined by the condition vi = int(Fi) ∩ int(Gi).
For every index i ∈ {1, . . . ,m} there are faces F̃i ⊂ 4 and G̃i ⊂ 4′, such that

Fi ⊂ F̃i, Gi ⊂ G̃i, vi = F̃i ∩ G̃i, and dim F̃i + dim G̃i = n. In fact, if Fi =
A1∩ · · · ∩Ak and Gi = B1∩ · · · ∩Bl for the corresponding facets A1, . . . , Ak ∈ F(4)
and B1, . . . , Bl ∈ F(4′), where k = codimFi and l = codimGi, then Lemma 2.1
implies C1 ∩ · · · ∩ Cn = vi for some n-element subset

{C1, . . . , Cn} ⊂ {A1, . . . , Ak, B1, . . . , Bl}.
So we can choose

F̃i =
⋂

Cj∈{A1,...,Ak}

Cj, G̃i =
⋂

Cj∈{B1,...,Bl}

Cj.
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The existence of the F̃i and G̃i implies

m ≤
n∑
p=0

(
n+ 1

p+ 1

)(
n+ 1

n+ 1− p

)
=

n+1∑
q=1

(
n+ 1

q

)(
n+ 1

n+ 2− q

)
=

(
2n+ 2

n+ 2

)
,

the last equality resulting from the Chu-Vandermonde identity [7, Chapter 1]. �

Our main result in this section is the following

Theorem 5.4. Let m ≥ n ≥ 2 be natural numbers and P an n-polytope.

(a) Every element f ∈ vert(n)(♦m, P ) fits in a commutative diagram

♦m P

♦n

f

ν2ν1

where ν1 and ν2 are injective vertex maps and ν1(0) = 0.
(b) #{f ∈ vert(n)(♦m,4n) | Im f ∼= ♦n} = σ(m,n)β(n).
(c) All elements of vert(n)(♦m,4n) satisfy the condition Im f ∼= ♦n if and only

if either m = n or n = 3. (Figure 3 represents the claim (c) for n = 3.)

f ∈ vert(3)(♦m,43)

fsur finj

1

Figure 3.

Corollary 5.5. Let m and n be natural numbers, m ≥ 2, and P be an n-polytope.

(a) If m ≥ n then the elements f ∈ vert(n)(♦m, P ) are exactly the maps f : ♦m →
P admitting a subset {i1, . . . , in} ⊂ {1, . . . ,m} such that f |♦ ∈ vert(n)(♦, P )
and {f(ej), f(−ej)} = {vj, 2f(0)− vj}, where ♦ = conv(±ei1 , . . . ,±ein) and
vj ∈ vert(P ∩ (2f(0)− P )) for j ∈ {1, . . . , n} \ {i1, . . . , in}.
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(b)

# vert(♦m,4n) = 1 + n+2m−1n(n+ 1) +

(
n+ 1

4

)
σ(m, 3)+

+

min(m,n)∑
k=4

(
n+ 1

k + 1

)
·# vert(k)(♦m,4k).

(c) For all k ≤ m we have

σ(m, k)β(k) ≤ # vert(k)(♦m,4k) ≤
2km!

(m− k)!

(
2k + 2

k + 2

)m−k
β(k).

Proof. (a) That the mentioned maps f : ♦m → P are vertex maps follows from
the perturbation criterion, and that no element of vert(n)(♦m, P ) is left out is the
contents of Theorem 5.4(a), with help from Proposition 2.2(a) and Corollary 3.2(b).

(b) Lemma 3.3 implies

# vert(♦m,4n) =

min(m,n)∑
k=0

(
n+ 1

k + 1

)
·# vert(k)(♦m,4k).

So the equality for # vert(♦m,4n) follows because:

# vert(k)(♦m,4k) =


1 if k = 0,

2m if k = 1, by Proposition 2.2(c),

0 if k = 2, by Lemma 5.1 and Theorem 5.4(a),

σ(m, 3) if k = 3 ≤ m, by Theorem 5.4(b,c) and β(3) = 1.

(c) The lower bound follows from Theorem 5.4(b).
By Lemma 5.1, there are 2kk!β(k) possibilities for ν2 in the diagram in Theorem

5.4(a), with P = 4k.
Proposition 2.2(a) and Corollary 3.2(b) give rise to a bijective correspondence

between the elements ν ∈ vert(k)(♦k,♦m) with ν(0) = 0 and the set of injective maps
{±e1, . . . ,±ek} → {±e1, . . . ,±em}, mapping antipodes to antipodes. So there are
2k m!

(m−k)!
possibilities for ν1 in the same diagram.

By (a), for fixed ν1 and ν2, the set of f ∈ vert(k)(♦m,4k), fitting in the diagram
in Theorem 5.4(a) with P = 4k, is bijective to the set of maps of type

ψ : {±ei | 1 ≤ i ≤ k, i 6= i1, . . . , ik} → vert(4k ∩ (2ϕ(0)−4k)),

ψ(−ei) = 2ν2(0)− ψ(ei).

There are # vert(4k ∩ (2ϕ(0) − 4k))
m−k possibilities for such ψ. By Lemma 5.3,

the number of the f for fixed ν1 and ν2 is bounded above by
(

2k+2
k+2

)m−k
.

Next we reduce the multiplicities in our counting as follows: the set of the vertex
maps f : ♦m →4k for a pair (ν1, ν2) equals the set of those for (ν1α, α

−1ν2) for any
α ∈ BCk. The BCk-action on the pairs (ν1, ν2), given by α ∗ (ν1, ν2) = (ν1α, α

−1ν2),
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is free. So the product of the numbers of possibilities for ν1 and ν2 and the upper

bound
(

2k+2
k+2

)m−k
, divided by |BCk | = 2kk!, bounds above # vert(k)(♦m,4k). �

Notice. The inequality in Corollary 5.5(c) is sharp in the following sense: when
k = m the upper and lower bounds are equal to 2mm!β(m). This means that
any improvement in the upper bound should come from an improvement in the
upper bound in Lemma 5.3 in the special case when the two simplices are mutually
symmetric w.r.t. a point.

Proof of Theorem 5.4(a). We will use the following notation. For any subset J ⊂
{1, . . . ,m} we have the sub-crosspolytope

♦(J) = conv({±ej | j ∈ J} ⊂ ♦m.
In view of Proposition 2.2(a) and Corollary 3.2(b), Theorem 5.4(a) admits the

following equivalent reformulation: there exists a subset

{i1, . . . , in} ⊂ {1, . . . ,m}
such that ♦(i1, . . . , in) satisfies the condition:

f |♦(i1,...,in) ∈ vert(n)(♦(i1, . . . , in), P ).

Assume, to the contrary, that such a subset does not exist.
Pick any subset {i1, . . . , in} ⊂ {1, . . . ,m}. By Lemma 3.1, there is an affine

1-family {gt}(−1,1) ⊂ Hom(♦(i1, . . . , in), P ) with g0 = f |♦(i1,...,in).
First we observe that {gt} is not constant on 0 as t runs over (−1, 1). In fact,

if gt(0) = f(0) for all t then the system {gt} gives rise to an affine perturbation of
f by extending gt to the maps ft : ♦m → P , defined by ft(±ei) = f(±ei) for all
i ∈ {1, . . . ,m} \ {i1, . . . , in}. But f , being a vertex map, can not be perturbed.

By Corollary 3.2(c), we have f(0) 6= f(±ei) for every index i ∈ {1, . . . ,m}. We
can assume gt(0) 6= gt(±ei) for every t ∈ (−1, 1) and every index i ∈ {i1, . . . , in}.
Since {gt} is not constant on 0, for every index i ∈ {i1, . . . , in} at least one of the
two subsets

{gt(ei)}(−1,1), {gt(−ei)}(−1,1) ⊂ P

is an open interval. Pick one such interval per index i ∈ {i1, . . . , in}. We obtain a
system of open intervals

Ii1 , . . . , Iin ⊂ P,

such that either gt(eik) ∈ Iik for all t ∈ (−1, 1) or gt(−eik) ∈ Iik for all t ∈ (−1, 1),
where k ∈ {1, . . . , n}. For simplicity of notation and without loss of generality, we
can assume

gt(eik) ∈ Iik , t ∈ (−1, 1), k = 1, . . . , n.

These points are non-constant affine functions of the parameter t.
By Lemma 3.2(c), g0(eik) = f(eik) ∈ vert

(
P ∩(2f(0)−P )

)
. Therefore, the unique

faces
Fik , Gik ⊂ P, k = 1, . . . , n,

such that g0(eik) = int(Fik) ∩ int(2f(0)−Gik), satisfy the additional condition

(6) lin(Fik) ∩ lin(Gik) = 0.
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We also have Iik ⊂ int(Fik) because Iik is an open interval inside P , containing an
interior point of the face Fik ⊂ P .

Similarly, we write

g0(−eik) = f(−eik) ∈ int(2f(0)− Fik) ∩ int(Gik),

{gt(−eik)}(−1,1) ⊂ int(Gik).

(Unlike Iik , the set {gt(−eik)}(−1,1)) may be just a single point.) Consequently, as

t varies over (−1, 1), the point gt(0) = 1/2
(
gt(eik) + gt(−eik)

)
traces out an open

interval, parallel to lin(Fik) + lin(Gik):

lin
(
{gt(0)}(−1,1)

)
⊂ lin(Fik) + lin(Gik), k = 1, . . . , n.

In particular,

dim
( n⋂
k=1

Vik
)
> 0, where Vik = linFik + linGik ⊂ Rn.

It is crucial that the linear space Vik depends only on the index ik and not on
the 1-family {gt}. So we can introduce the analogous subspaces Vi ⊂ Rn for all
i = 1, . . . ,m. Let Fi, Gi ⊂ P be the pairs of faces as above, corresponding to the
indices i = 1, . . . ,m. (So we have linFi ∩ lin(Gi) = 0.)

Since the subset {i1, . . . , in} ⊂ {1, . . . ,m} in the discussion above was arbitrary,
Lemma 2.1 implies

⋂m
i=1 Vi 6= 0. Now we can choose a sufficiently small open interval

I as follows

f(0) ∈ I ⊂
(
f(0) +

m⋂
i=1

Vi
)
∩ P.

Then (6) implies that Fi∩ (2τ −Gi) and (2τ −Fi)∩Gi are singletons for every index
i ∈ {1, . . . , n} and the centrally symmetric subpolytopes

Qτ = conv
(
{Fi ∩ (2τ −Gi), (2τ − Fi) ∩Gi}ni=1

)
⊂ P ∩ (2τ − P )

define a non-constant affine deformation of Im f as τ varies over I; i.e., Q0 = Im f ,
the vertices of Qτ are affine functions of τ , and vert(Qτ ) is bijective to vert(Im f) for
every τ . In other words, f admits an affine perturbation – the desired contradiction.

�
Proof of Theorem 5.4(b). In view Proposition 2.2(b), for any rank n vertex map
f : ♦m → 4n with Im f ∼= ♦n, the map fsurj can be viewed as a surjective vertex
map fsurj : ♦m → ♦n. The surjectivity implies fsurj(0) = 0. On the other hand,
Corollary 3.2(b) implies that the set of surjective linear vertex maps ♦m → ♦n is
bijective to Σ(m,n). So there are σ(m,n) possibilities for fsurj.

By Proposition 2.2(b), the set of possible finj can be identified with vert(n)(♦n,4n).
By composing the linear surjective vertex maps ♦m → ♦n with the injective vertex
maps ♦n → 4n, we can form σ(m,n) · #

(
vert(n)(♦n,4n)/BCn

)
different maps

♦m →4n. The latter number equals σ(m,n)β(n) by Lemma 5.1(a,c).
It only remains to show that a rank n map f : ♦m → 4n is a vertex map if

fsurj : ♦m → ♦n and finj : ♦n → 4n are vertex maps. But if fsurj is a vertex map
then, by Corollary 3.2(b), f(vert(♦m)) = vert(♦n). On the other hand, if f admits
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a smooth perturbation {ft}(−1,1), then the latter is not constant on at least one
pair of opposite vertices of vert(♦m). But the two conditions together make finj

perturbable. �
Proof of Theorem 5.4(c). First we show that, for any natural numbers m > n > 3,
the set vert(n)(♦m,4n) contains an element whose image is not isomorphic to ♦n.

Pick an element f ∈ vert(n)(♦n,4n) – a non-empty set by Theorem 5.4(b). By
Corollary 3.2(c),

f(vert(♦n)) ⊂ vert(4n ∩ (2f(0)−4n)).

We have #F(4n ∩ (2f(0)−4n)) ≤ 2 ·#F(4n) = 2(n+ 1). On the other hand, the
inequality n > 3 implies 2n > 2(n + 1). Since Im f ∼= ♦n, we have #F(Im f) = 2n.
So Im f ( 4n∩(2f(0)−4n) and we can find two opposite vertices v, v′ ∈ vert(4n∩
(2f(0)−4n)) \ Im f . Consider the map

f ′ : ♦m →4n, f ′|♦n = f,

f ′(ei) = v, f ′(−ei) = v′, i = n+ 1, . . . ,m.

Since vert(Im f) ( vert(Imϕ), the polytope Im f ′ is not isomorphic to ♦n. We
are done, because f ′ ∈ vert(n)(♦m,4n) by Corollary 5.5(a). (The latter does not
use Theorem 5.4(c).)

The elements of vert(n)(♦n,4n) have images isomorphic to ♦n. So we can assume
m > n. By Theorem 5.4(b), vert(2)(♦m,42) = ∅. So it only remains to show that
Im f ∼= ♦3 for any element f ∈ vert(3)(♦m,43).

By Theorem 5.4(a), there exists g ∈ vert(3)(♦3,43) such that Im g ⊆ Im f . On
the one hand, Im g = 43 ∩ (2g(0)−43) (Lemma 5.1). On the other hand, Im f ⊆
43 ∩ (2g(0)−43) (Corollary 3.2(c)). Hence Im g = Im f . �

6. vert(♦m,♦n)

For any f ∈ vert(♦m,♦n), whose image is contained in the boundary of ♦n,
we defer to Section 5. So the only new situation is when Im f ∩ int(♦n) 6= ∅, or
equivalently, when f(0) ∈ int(♦n). The main result of this section is that in this
case f is necessarily a linear map.

Theorem 6.1. For m,n ≥ 2, we have the implication

f ∈ vert(♦m,♦n) & f(0) ∈ int(♦n) =⇒ f(0) = 0.

By Theorem 5.4(b) and Corollary 5.5(c), the next corollary yields nontrivial es-
timates for the number of vertex maps between two crosspolytopes of arbitrary
dimension.

Corollary 6.2. For m,n ≥ 2 we have

# vert(♦m,♦n) = 2mnm + 2n+ 2m+1n(n− 1) + 16

(
n

4

)
σ(m, 3)+

+

min(m,n−1)∑
k=4

2k+1

(
n

k + 1

)
·# vert(k)(♦m,4k).
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Proof. By Corollary 3.2(b) and Theorem 6.1, the elements f ∈ vert(♦m,♦n) with
f(0) ∈ int(♦n) are in bijective correspondence with the maps vert(♦m)→ vert(♦n),
mapping antipodes to antipodes. The number of such maps is 2mnm.

By Lemma 3.3, the number of the vertex maps f : ♦m → ♦n, such that f(0) is in
the interior of a k-dimensional face of ♦n for some k < n, equals # vert(k)(♦m,4k) if
m ≥ k and 0 otherwise. Since the number of k-faces of ♦n is 2k+1

(
n
k+1

)
([5, Section

7.2]), we can write

# vert(♦m,♦n) = 2mnm +

min(m,n−1)∑
k=0

2k+1

(
n

k + 1

)
·# vert(k)(♦m,4k).

Now the desired expression is obtained from the sum above by explicating the
k-th summands for k = 0, 1, 2, 3, just like we did in Corollary 5.5(b). �

The rest of the section is a series of lemmas that comprise the proof of Theorem
6.1.

For the coordinate hyperplanes in Rn we use the notation

H(i) =
∑
j 6=i

Rei ⊂ Rn, i = 1, . . . , n.

Lemma 6.3. For a point z ∈ Rn, satisfying dim(♦n ∩ (z + ♦n)) = n, we have(
♦n ∩ (z + ♦n)

)
\
(
int(♦n) ∪ int(z + ♦n)

)
⊂(

♦n ∩ (z + ♦n)
)
\

n⋂
i=1

(
H(i) ∪

(
z +H(i)

))

Proof. For simplicity of notation, denote ♦ = ♦n ∩ (z + ♦n).
Consider a subset J ⊂ {1, . . . , n}, such that the point

vJ =
(⋂

J

H(j)
) ⋂ ( ⋂

{1,...,n}\J

(
z +H(k)

))
∈ Rn

does not belong to int(♦n) ∪ int(z + ♦n). We want to show vJ /∈ ♦.
Let K = {1, . . . , n} \ J . Observe, J 6= ∅ and K 6= ∅ for, otherwise, either

vJ = 0 ∈ int(♦n) or vJ = z ∈ int(z + ♦n).
Put ♦(J) = conv

(
{±ej}J

)
and similarly for ♦(K) (as in the proof of Theorem

5.4(a)). Assume to the contrary vJ ∈ ♦. Then

vJ ∈ ♦n
⋂ (⋂

J

H(j)
)

= ♦(J),

vJ ∈ (z + ♦n)
⋂ (⋂

K

(
z +H(k)

))
= z + ♦(K).

Since int(♦(J)), int(♦(K)) ⊂ int(♦n), we conclude

vJ ∈ ∂♦(J) ∩ ∂
(
z + ♦(K))

)
= ∂♦(J) ∩

(
z + ∂♦(K)

)
.
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Assume
vJ = conv

(
{δjej}J

)
∩
(
z + conv

(
{δkek}K

))
for some δ1, . . . , δn ∈ {−1, 1}. Then we have

Aff
(
{δjej}J , {−δkek}K

)
= z + Aff

(
{−δjej}J , {δkek}K

)
,

i.e., the parallel translation by z moves one facet hyperplane of ♦n to its opposite.
But this contradicts the assumption dim♦ = n. �
Lemma 6.4. (a) Let C and D be cones in Rn and x1, x2, x3 be three distinct collinear
points in Rn. Assume x3 /∈ [x1, x2]. Then the polyhedra (x1 + C) ∩ (x3 + D) and
(x2 + C) ∩ (x3 +D) are homothetic.

(b) Let n ≥ 2 and z ∈ Rn. Assume dim(♦n ∩ (z + ♦n)) = n. Then there exists a
real number ε > 0 such that for all λ ∈ (1− ε, 1 + ε) we have the equality of normal
fans:

N
((
en+R+(♦n − en)

)⋂(
λz − en + R+(♦n + en)

))
=

N
((
en + R+(♦n − en)

)⋂(
z − en + R+(♦n + en)

))
.

Figure 3 represents the cones en + R+(♦n − en) and λz − en + R+(♦n + en) and
their intersection. Small perturbations λz of z preserve the combinatorial type of
the intersection, and thus keep the corresponding normal fans a constant.

1

Figure 4.

Notice. In the proof of Theorem 6.1 we only need the special case of Lemma 6.4(a)
when C = D is a corner cone of ♦n. But unlike the part (b), this part can be
extended to arbitrary cones C and D.

Proof. (a) For κ = x2−x3
x1−x3 we have

(x2 + C) ∩ (x3 +D) = (1− κ)x3 + κ
(
(x1 + C) ∩ (x3 +D)

)
.
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(b) Denote

∧(n) = en + R+(♦n − en), ∨(n) = z − en + R+(♦n + en).

Pick a vertex

v ∈ vert
(
∧(n) ∩

(
z + ∨(n)

))
/∈ {en, z − en}.

There are positive dimensional faces F ⊂ ∧(n) and G ⊂ ∨(n), uniquely determined
by the condition

(7) v = int(F ) ∩ (z + int(G)).

We claim F ∩ G 6= ∅. In fact, if F ∩ G = ∅ then there are facets F̃ ⊂ ∧(n) and
G̃ ⊂ ∨(n) which are centrally symmetric w.r.t. 0 and such that F ⊂ F̃ , G ⊂ G̃, and
F̃ ∩G̃ = ∅ – a general property of the faces of ♦n. But this contradicts the condition
dim(♦n ∩ (z + ♦n)) = n.

The condition F∩G 6= ∅, together with(7), implies dim(F∩G) = 0. (In particular,
F ∩G is a vertex of ♦n−1.) Consequently, z ∈ lin(F ) + lin(G). Assume z = z1 + z2

for some z1 ∈ lin(F ) and z2 ∈ lin(G). Using (7) again, for all λ, sufficiently close to
1, we can write

int(F ) ∩ (λz + int(G)) = int(F ) ∩ (λz1 + int(G)) =

(λ− 1)z1 +
(
int(F ) ∩ (z1 + int(G))

)
=

(λ− 1)z1 +
(
int(F ) ∩ (z + int(G))

)
=

(λ− 1)z1 + v.

In particular, the facets of ∧(n) ∩ (z+∨(n)), meeting at the vertex v, and those of
∧(n)∩(λz+∨(n)), meeting at the vertex (λ−1)z1+v, differ by the parallel translation
by (λ− 1)z1. So the two corner cones are same.

But the corner cones at the vertices en, λz − en ∈ vert
(
∧(n) ∩

(
λz + ∨(n)

))
are

also independent of λ. So, for a sufficiently small ε > 0, there is an affine function

Θ : (1− ε, 1 + ε)→ (Rn)N , N = # vert
(
∧(n) ∩

(
z + ∨(n)

))
,

satisfying the conditions:

� [Θ(1)] = vert
(
∧(n) ∩

(
z + ∨(n)

))
, [Θ(λ)] ⊂ vert

(
∧(n) ∩

(
λz + ∨(n)

))
, #[Θ(1)] =

#[Θ(λ)].

� for every element [Θ(1)] there is an element of [Θ(λ)] such that the corresponding
corner cones are equal,

where [Θ(−)] refers to the corresponding N -element subset of Rn.
Since [Θ(1)] is the complete vertex set of the polytope ∧(n)∩

(
z+∨(n)

)
, the corner

cones of ∧(n) ∩
(
λz + ∨(n)

)
at the elements of [Θ(λ)] also form the complete set of

corner cones of a polytope for every λ ∈ (1− ε, 1 + ε), i.e.,

[Θ(λ)] = vert
(
∧(n) ∩

(
λz + ∨(n)

))
.

�
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Lemma 6.5. For an element z ∈ Rn with dim(♦n ∩ (z + ♦n)) = n, there exists
a real number ε > 0 such that N

(
♦n ∩ (λz + ♦n)

)
= N

(
♦n ∩ (z + ♦n)

)
for all

λ ∈ (1− ε, 1 + ε).

Proof. Consider the system of semi-open pyramids over (n−1)-dimensional crosspoly-
topes:

4(i) = conv
(
ei, {±ej}j 6=i

)
\ conv

(
{±ej}j 6=i

)
,

5(i) = conv
(
− ei, {±ej}j 6=i

)
\ conv

(
{±ej}j 6=i

)
,

i = 1, . . . , n

Since the bottoms of pyramids have been removed, for every index i = 1, . . . , n,
we have the inclusion:
(8)
vert

(
4(i) ∩ (z +4(i))

)
∪ vert

(
4(i) ∩ (z +5(i))

)
∪

vert
(
5(i) ∩(z +4(i))

)
∪ vert

(
5(i) ∩(z +5(i))

)
⊂ vert

(
♦n ∩ (z + ♦n)

)
,

where vert(−) refers to the vertices of the corresponding topological closures, not in
the bases of pyramids which have been removed, and the union is disjoint.

We can choose a real number δ > 0 such that

dim
(
♦n ∩ (λz + ♦n)

)
= n, λ ∈ (1− δ, 1 + δ).

For each such λ and i = 1, . . . , n, consider the disjoint union

vert(4(i),5(i), λ) :=

vert
(
4(i) ∩ (λz +4(i))

)
∪ vert

(
4(i) ∩ (λz +5(i))

)
∪

vert
(
5(i) ∩ (λz +4(i))

)
∪ vert

(
5(i) ∩(λz +5(i))

)
.

Thus, the left hand side of (8) equals vert(4(i),5(i), 1).
By Lemma 6.4, there are 0 < δ′ ≤ δ and affine functions

Φi : (1− δ′, 1 + δ′)→ (Rn)Ni , Ni = # vert(4(i),5(i), 1), i = 1, . . . , n,

such that for every i:

� [Φi(1)] = vert(4(i),5(i), 1), [Φi(λ)] ⊂ vert(4(i),5(i), λ), #[Φi(1)] = #[Φi(λ)],

� for every element [Φi(1)] there is an element of [Φi(λ)] such that the corresponding
corner cones are equal,

where: [−] has the same meaning as in the proof of Lemma 6.4(b) and ‘the corner
cone at an element of [Φi(λ)]’ means the corresponding corner cone of the uniquely
determined set from the following four possibilities:(
4(i)∩(λz+4(i))

)
,
(
4(i)∩(λz+5(i))

)
,
(
5(i)∩(λz+4(i))

)
,
(
5(i)∩(λz+5(i))

)
.

Notice. We have not excluded the possibility of the strict containment [Φi(λ)] (
vert(4(i),5(i), λ) for some i and λ.
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For every λ ∈ (1− δ′, 1 + δ′) we have

n⋃
i=1

((
4(i) ∩

(
λz +4(i)

))
∪
(
4(i) ∩

(
λz +5(i)

))
∪

(
5(i) ∩

(
λz +4(i)

))
∪
(
5(i) ∩

(
λz +5(i)

)))
=

(
♦n ∩

(
λz + ♦n

))
\

n⋂
i=1

(
H(i) ∪

(
λz +H(i)

))
,

where, as in Lemma 6.3, H(i) ⊂ Rn denotes the i-th coordinate hyperplane.

The corner cone of ♦n ∩ (z + ♦n) at any vertex from

vert
(
♦n ∩ (z + ♦n)

)⋂(
int(♦n) ∪ int(z + ♦n)

)
is either a corner cone of ♦n or z+♦n and, therefore, the corresponding corner cone
of ♦n ∩ (λz + ♦n) is independent of λ.

Now Lemma 6.3 implies the existence of a real number ε > 0 and an affine map

Ψ : (1− ε, 1 + ε)→ (Rn)M , M = vert
(
♦n ∩ (z + ♦n)

)
,

satisfying the conditions similar to those for the Φi. Since [Ψ(1)] is the complete
vertex set of ♦n ∩ (z + ♦n), the corner cones of ♦n ∩ (λz + ♦n) at the vertices from
[Ψ(λ)] ⊂ vert

(
♦n ∩ (λz + ♦n)

)
also form the complete set of corner cones of a

polytope for every λ ∈ (1− ε, 1 + ε). That is,

[Ψ(λ)] = vert
(
♦n ∩ (λz + ♦n)

)
, λ ∈ (1− ε, 1 + ε).

�

Ending of the proof of Theorem 6.1. Assume f ∈ vert(♦m,♦n) and z = f(0) 6= 0.
By Corollary 3.2(b), f(vert(♦m)) ⊂ vert

(
♦n ∩ (z + ♦n)

)
. By Lemma 6.5, there is a

real number ε > 0 and an affine map

(1− ε, 1 + ε)→ Hom(♦m,♦n), λ 7→ fλ,

satisfying the conditions:

� f1 = f and fλ(0) = λz,

� fλ(vert(♦m)) ⊂ vert
(
♦n ∩ (λz + ♦)

)
.

But then {fλ}(1−ε,1+ε) is an affine perturbation of f (after rescaling λ along the
affine isomorphism (1− ε, 1 + ε)→ (−1, 1)), a contradiction by Lemma 3.1. �

7. Partial result on vert(�m,♦n)

Proposition 7.1. For all m,n ≥ 2 we have

# vert(�m,♦n) ≥ 2n+ 2mn(2n− 1) + 2mn(m− 1)(n− 1).
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Proof. We have # vert(0)(�m,♦n) = # vert(♦n) = 2n. By Proposition 2.2(c),
# vert(1)(�m,♦n) = 2m

(
2n
2

)
= 2mn(2n− 1).

There are
(
m
2

)
orthogonal projections of ρ : �m → �2 along the codimension 2

faces of �m, there are
(
n
2

)
isometric embeddings ♦2 → ♦n, and there are 8 affine

isomorphisms κ : �2 → ♦2. We have 8
(
m
2

)(
n
2

)
= 2mn(m− 1)(n− 1) different rank 2

maps πκρ : �m → ♦n, each mapping vert(�m) to vert(♦n). By Proposition 2.2(a),
all these πκρ-s belong to vert(2)(�m,♦n). �

The estimate in Proposition 7.1 is far from optimal: Polymake computations yield
# vert(�3,♦4) = 27968, whereas the right hand side of the inequality in the propo-
sition is just 316. Currently we do not even have a conjectural description of the
vertices of Hom(�m,4n)).
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