CARDINALITY OF ℓ_{1}-SEGMENTS AND GENOCCHI NUMBERS

CATALIN ZARA

Abstract

We prove that the Genocchi numbers of first and second kind give the cardinality of certain segments in permutation spaces \mathfrak{S}_{n} with respect to the ℓ_{1}-distance. Experimental data suggests that those segments have maximal cardinality among all segments in the corresponding spaces.

Contents

1. Introduction
2. Genocchi Numbers
3. Cardinality of Segments

References

1. Introduction

For a positive integer n let \mathfrak{S}_{n} be the group of permutations of $[n]=\{1,2, \ldots, n\}$. We define a distance D on \mathfrak{S}_{n} by

$$
D(u, v)=\sum_{i=1}^{n}|u(i)-v(i)|
$$

This distance is right invariant: $D(u w, v w)=D(u, v)$ for every $u, v, w \in \mathfrak{S}_{n}$. For $u \in \mathfrak{S}_{n}$, the segment $[\mathrm{id}, u]$ is the set

$$
[\mathrm{id}, u]=\left\{v \in \mathfrak{S}_{n} \mid D(\mathrm{id}, v)+D(v, u)=D(\mathrm{id}, u)\right\}
$$

Then $v \in[\mathrm{id}, u]$ if and only if

$$
\begin{equation*}
\min (i, u(i)) \leqslant v(i) \leqslant \max (i, u(i)) \tag{1.1}
\end{equation*}
$$

for all $i=1,2, \ldots, n$. Experimental data suggests that the maximal cardinality of a segment $[\mathrm{id}, u]$ in \mathfrak{S}_{n} is attained for

$$
u=w_{n}=\left\{\begin{array}{l}
(m+1 m+2 \ldots 2 m 12 \ldots m), \text { if } n=2 m \\
(m+1 m+2 \ldots 2 m+112 \ldots m), \text { if } n=2 m+1
\end{array}\right.
$$

For example, $w_{1}=(1), w_{2}=(21), w_{3}=(231), w_{4}=(3412), w_{5}=(34512), \ldots$
The sequence $\#\left[\mathrm{id}, w_{n}\right]$ starts with $1,2,3,8,17,56,155,608,2073,9440, \ldots$ and a search on the Online Encyclopedia of Integer Sequences (at oeis.org) shows a match with the sequence "A099960: An interleaving of the Genocchi numbers of the first and second kind," from the fourth term on. The goal of this article is to give a bijective proof of this characterization of $\#\left[\mathrm{id}, w_{n}\right]$, the cardinality of the segment $\left[i d, w_{n}\right]$.

2. Genocchi Numbers

The Genocchi numbers have combinatorial descriptions in terms of Dumont permutations. The Genocchi number of the first kind $G_{2 n+2}$ is the cardinality of the set $B_{2 n}$ of permutations $\pi \in \mathfrak{S}_{2 n}$ such that

$$
\begin{equation*}
\pi(2 i) \leqslant 2 i \leqslant \pi(2 i-1) \tag{2.1}
\end{equation*}
$$

for all $i=1, \ldots, n$. (BD81, Dum74]). Note that $\pi(2 n-1)=2 n$ for all $\pi \in B_{2 n}$. For example, $G_{6}=3$ is the cardinality of

$$
B_{4}=\{(2143),(3142),(3241)\}
$$

The Genocchi median (or number of the second kind) $H_{2 n+1}$ is the cardinality of the set $C_{2 n}$ of permutations $\pi \in \mathfrak{S}_{2 n}$ such that

$$
\begin{equation*}
\pi(2 i)<2 i \leqslant \pi(2 i-1) \tag{2.2}
\end{equation*}
$$

for $i=1, \ldots, n$. ([DR94]). Note that $\pi(2)=1$ and $\pi(2 n-1)=2 n$ for all $\pi \in C_{2 n}$. For example, $H_{7}=8$ is the cardinality of

$$
\begin{aligned}
C_{6}=\{ & (415263),(315263),(314265),(514263), \\
& (215364),(214365),(415362),(514362)\}
\end{aligned}
$$

We prove that $\#\left[\mathrm{id}, w_{2 m}\right]=H_{2 m+3}$ and $\#\left[\mathrm{id}, w_{2 m+1}\right]=G_{2 m+4}$ by establishing explicit bijections between [id, $w_{2 m}$] and $C_{2 m+2}$ and between [id, $w_{2 m+1}$] and $B_{2 m+2}$.

3. Cardinality of Segments

The main results and their proofs are similar. We start with the case $n=2 m+1$. Define $\rho: \mathfrak{S}_{2 m+1} \rightarrow \mathfrak{S}_{2 m+2}$ by

$$
\rho(u)=(u(1) u(2) \ldots u(2 m) 2 m+2 u(2 m+1))
$$

In other words, ρ inserts the value $2 m+2$ between on position $2 m+1$ and shifts the last position to the right by one space. For example, if $m=1$ and $u=(231) \in \mathfrak{S}_{3}$, then $\rho(u)=(2341) \in \mathfrak{S}_{4}$.

Theorem 3.1. Define the function $g: \mathfrak{S}_{2 m+1} \rightarrow \mathfrak{S}_{2 m+2}$ by $g(u)=\rho\left(\alpha u^{-1} \beta^{-1}\right)$, where $\alpha=(13 \ldots 2 m+124 \ldots 2 m)$ and $\beta=(24 \ldots 2 m 2 m+113 \ldots 2 m-1)$. Then

$$
u \in\left[\mathrm{id}, w_{2 m+1}\right] \Longleftrightarrow g(u) \in B_{2 m+2}
$$

Proof. Let $u \in \mathfrak{S}_{2 m+1}$. Then

$$
\begin{aligned}
& g(u)(2 m+1)=2 m+2 \\
& g(u)(2 m+2)=\alpha u^{-1} \beta^{-1}(2 m+1) \leqslant 2 m+1
\end{aligned}
$$

hence conditions (2.1) are satisfied by all $g(u)$ for $i=m+1$. The value $m+1$ can occur on any position of a permutation $u \in\left[\mathrm{id}, w_{2 m+1}\right]$.

Let $1 \leqslant i \leqslant m$. Then

$$
g(u)(2 i)=\rho\left(\alpha u^{-1} \beta^{-1}\right)(2 i)=\alpha\left(u^{-1}\left(\beta^{-1}(2 i)\right)\right)=\alpha\left(u^{-1}(i)\right) .
$$

Then the condition $g(u)(2 i) \leqslant 2 i$ is equivalent to

$$
u^{-1}(i) \in[1, i] \cup[m+2, m+i+1]
$$

and that is the condition for the value i to occur in u on a position that satisfies condition (1.1) for id and $w_{2 m+1}$. Similarly,

$$
g(u)(2 i-1)=\rho\left(\alpha u^{-1} \beta^{-1}\right)(2 i-1)=\alpha\left(u^{-1}\left(\beta^{-1}(2 i-1)\right)\right)=\alpha\left(u^{-1}(i+m+1)\right) .
$$

Then the condition $g(u)(2 i-1) \geqslant 2 i$ is equivalent to

$$
u^{-1}(i+m+1) \in[i, m+1] \cup[m+i+1,2 m+1],
$$

and that is the condition for the value $i+m+1$ to occur in u on a position that satisfies condition (1.1) for id and $w_{2 m+1}$.

To summarize: $g(u)$ satisfies conditions (2.1) for positions $1,2, \ldots, 2 m$ if and only if u satisfies (1.1) for values $1,2, \ldots, m, m+2, \ldots, 2 m$. Since $g(u)$ always satisfies (2.1) for positions $2 m+1,2 m+2$ and u always satisfies (1.1) for the value $m+1$, the equivalence is established and the proof is complete.

Corollary 3.2 . The cardinality of the ℓ_{1}-segment [$\mathrm{id}, w_{2 m+1}$] is $G_{2 m+4}$.
Proof. The function g induces a bijection from [id, $w_{2 m+1}$] to $B_{2 m+2}$.
Example 3.3. For $m=1$ we have $w_{3}=(231)$ and

$$
[(123),(231)]=\{(123),(132),(231)\}
$$

and

$$
B_{4}=\{(2143),(3142),(3241)\}
$$

The function $u \rightarrow \rho\left((132) u^{-1}(312)\right)$ sends (123) to (2143), (132) to (3142), and (231) to (3241), establishing a bijection between $[(123),(231)]$ and B_{4}.

The case $n=2 m$ is very similar. Define $\eta: \mathfrak{S}_{2 m} \rightarrow \mathfrak{S}_{2 m+2}$ by

$$
\eta(u)=(u(1)+11 u(2)+1 \ldots u(2 m-1)+12 m+2 u(2 m)+1)
$$

Explicitly, η inserts the value 1 on the second position, $2 m+2$ on position $2 m+1$, increases the other values by 1 and shifts them to fill the remaining positions. For example, $\eta((2413))=(315264)$.
Theorem 3.4. Define the function $h: \mathfrak{S}_{2 m} \rightarrow \mathfrak{S}_{2 m+2}$ by $h(u)=\eta\left(\alpha u^{-1} \beta^{-1}\right)$ where $\alpha=(13 \ldots 2 m-124 \ldots 2 m), \beta=(35 \ldots 2 m-112 m 24 \ldots 2 m-2)$. Then

$$
u \in\left[\mathrm{id}, w_{2 m}\right] \Longleftrightarrow h(u) \in C_{2 m+2} .
$$

Proof. Let $u \in \mathfrak{S}_{2 m}$. Then

$$
\begin{aligned}
& h(u)(1)=\alpha u^{-1} \beta^{-1}(1)+1=\alpha\left(u^{-1}(m)\right)+1 \geqslant 2 \\
& h(u)(2)=1<2 \\
& h(u)(2 m+1)=2 m+2 \geqslant 2(m+1) \\
& h(u)(2 m+2)=\alpha u^{-1} \beta^{-1}(2 m)+1=\alpha\left(u^{-1}(m+1)\right)+1<2 m+2
\end{aligned}
$$

hence conditions (2.2) are satisfied by all $h(u)$ for $i=1$ and $i=m+1$. The values m and $m+1$ can occur on any position of a permutation $u \in\left[\mathrm{id}, w_{2 m}\right]$.

Let $2 \leqslant i \leqslant m$. Then

$$
h(u)(2 i)=\eta\left(\alpha u^{-1} \beta^{-1}\right)(2 i)=\alpha\left(u^{-1}\left(\beta^{-1}(2 i-1)\right)\right)+1=\alpha\left(u^{-1}(i-1)\right)+1 .
$$

Then the condition $h(u)(2 i)<2 i$ is equivalent to

$$
u^{-1}(i-1) \in[1, i-1] \cup[m+1, m+i-1]
$$

and that is the condition for the value $i-1$ to occur in u on a position that satisfies condition (1.1) for id and $w_{2 m}$. Similarly,
$h(u)(2 i-1)=\eta\left(\alpha u^{-1} \beta^{-1}\right)(2 i-1)=\alpha\left(u^{-1}\left(\beta^{-1}(2 i-2)\right)\right)+1=\alpha\left(u^{-1}(i+m)\right)+1$.
Then the condition $h(u)(2 i) \geqslant 2 i$ is equivalent to

$$
u^{-1}(i+m) \in[i, m] \cup[m+i, 2 m],
$$

and that is the condition for the value $i+m$ to occur in u on a position that satisfies condition (1.1) for id and $w_{2 m}$.

To summarize: $h(u)$ satisfies conditions (2.2) for positions $3,4, \ldots, 2 m$ if and only if u satisfies (1.1) for values $1,2, \ldots, m-1, m+2, \ldots, 2 m$. Since $h(u)$ always satisfies (2.2) for positions $1,2,2 m+1,2 m+2$ and u always satisfies (1.1) for values $m, m+1$, the equivalence is established and the proof is complete.
Corollary 3.5. The cardinality of the ℓ_{1}-segment [id, $w_{2 m}$] is $H_{2 m+3}$.
Proof. The function h induces a bijection from [id, $w_{2 m}$] to $C_{2 m+2}$.
Example 3.6. For $m=2$ we have $w_{4}=(3412)$ and

$$
\begin{aligned}
{[(1234),(3412)]=} & \{(1234),(1324),(1423),(1432) \\
& (2314),(2413),(3214),(3412)\}
\end{aligned}
$$

The function $u \rightarrow \eta\left((1324) u^{-1}(2413)\right)$ sends the permutations in [(1234), (3412)] to the corresponding permutations in

$$
\begin{gathered}
C_{6}=\{(415263),(315263),(314265),(514263), \\
(215364),(214365),(415362),(514362)\} \\
\text { REFERENCES }
\end{gathered}
$$

[BD81] Daniel Barsky and Dominique Dumont. Congruences pour les nombres de Genocchi de 2e espèce. In Study Group on Ultrametric Analysis. 7th-8th years: 1979-1981 (Paris, 1979/1981) (French), pages Exp. No. 34, 13. Secrétariat Math., Paris, 1981.
[DR94] Dominique Dumont and Arthur Randrianarivony. Dérangements et nombres de Genocchi. Discrete Math., 132(1-3):37-49, 1994.
[Dum74] Dominique Dumont. Interprétations combinatoires des nombres de Genocchi. Duke Math. J., 41:305-318, 1974.

Department of Mathematics, University of Massachusetts Boston, MA 02125
E-mail address: catalin.zara@umb.edu

