CARDINALITY OF ℓ_1 -SEGMENTS AND GENOCCHI NUMBERS

CATALIN ZARA

ABSTRACT. We prove that the Genocchi numbers of first and second kind give the cardinality of certain segments in permutation spaces \mathfrak{S}_n with respect to the ℓ_1 -distance. Experimental data suggests that those segments have maximal cardinality among all segments in the corresponding spaces.

Contents

1.	Introduction	1
2.	Genocchi Numbers	2
3.	Cardinality of Segments	2
Rei	ferences	4

1. INTRODUCTION

For a positive integer n let \mathfrak{S}_n be the group of permutations of $[n] = \{1, 2, ..., n\}$. We define a distance D on \mathfrak{S}_n by

$$D(u, v) = \sum_{i=1}^{n} |u(i) - v(i)|.$$

This distance is right invariant: D(uw, vw) = D(u, v) for every $u, v, w \in \mathfrak{S}_n$. For $u \in \mathfrak{S}_n$, the segment [id, u] is the set

$$[\mathrm{id}, u] = \{ v \in \mathfrak{S}_n \mid D(\mathrm{id}, v) + D(v, u) = D(\mathrm{id}, u) \}.$$

Then $v \in [id, u]$ if and only if

(1.1)
$$\min(i, u(i)) \leqslant v(i) \leqslant \max(i, u(i))$$

for all i = 1, 2, ..., n. Experimental data suggests that the maximal cardinality of a segment [id, u] in \mathfrak{S}_n is attained for

$$u = w_n = \begin{cases} (m+1\,m+2\,\dots\,2m\,1\,2\,\dots\,m) \ , \ \text{if} \ n = 2m \\ (m+1\,m+2\,\dots\,2m+1\,1\,2\,\dots\,m) \ , \ \text{if} \ n = 2m+1 \end{cases}$$

For example, $w_1 = (1)$, $w_2 = (21)$, $w_3 = (231)$, $w_4 = (3412)$, $w_5 = (34512)$,

The sequence $\#[id, w_n]$ starts with 1, 2, 3, 8, 17, 56, 155, 608, 2073, 9440, ... and a search on the Online Encyclopedia of Integer Sequences (at oeis.org) shows a match with the sequence "A099960: An interleaving of the Genocchi numbers of the first and second kind," from the fourth term on. The goal of this article is to give a bijective proof of this characterization of $\#[id, w_n]$, the cardinality of the segment $[id, w_n]$.

Date: April 18, 2013.

2. Genocchi Numbers

The Genocchi numbers have combinatorial descriptions in terms of Dumont permutations. The Genocchi number of the first kind G_{2n+2} is the cardinality of the set B_{2n} of permutations $\pi \in \mathfrak{S}_{2n}$ such that

(2.1)
$$\pi(2i) \leqslant 2i \leqslant \pi(2i-1)$$

for all i = 1, ..., n. ([BD81], [Dum74]). Note that $\pi(2n-1) = 2n$ for all $\pi \in B_{2n}$. For example, $G_6 = 3$ is the cardinality of

$$B_4 = \{(2143), (3142), (3241)\}$$

The Genocchi median (or number of the second kind) H_{2n+1} is the cardinality of the set C_{2n} of permutations $\pi \in \mathfrak{S}_{2n}$ such that

$$\pi(2i) < 2i \leqslant \pi(2i-1)$$

for i = 1, ..., n. ([DR94]). Note that $\pi(2) = 1$ and $\pi(2n-1) = 2n$ for all $\pi \in C_{2n}$. For example, $H_7 = 8$ is the cardinality of

$$C_6 = \{(415263), (315263), (314265), (514263), (215364), (214365), (415362), (514362)\}$$

We prove that $\#[id, w_{2m}] = H_{2m+3}$ and $\#[id, w_{2m+1}] = G_{2m+4}$ by establishing explicit bijections between $[id, w_{2m}]$ and C_{2m+2} and between $[id, w_{2m+1}]$ and B_{2m+2} .

3. Cardinality of Segments

The main results and their proofs are similar. We start with the case n = 2m+1. Define $\rho: \mathfrak{S}_{2m+1} \to \mathfrak{S}_{2m+2}$ by

$$\rho(u) = (u(1) \ u(2) \ \dots \ u(2m) \ 2m+2 \ u(2m+1))$$

In other words, ρ inserts the value 2m+2 between on position 2m+1 and shifts the last position to the right by one space. For example, if m = 1 and $u = (231) \in \mathfrak{S}_3$, then $\rho(u) = (2341) \in \mathfrak{S}_4$.

Theorem 3.1. Define the function $g: \mathfrak{S}_{2m+1} \to \mathfrak{S}_{2m+2}$ by $g(u) = \rho(\alpha u^{-1}\beta^{-1})$, where $\alpha = (13 \dots 2m+1 \ 24 \dots 2m)$ and $\beta = (24 \dots 2m \ 2m+11 \ 3 \dots \ 2m-1)$. Then

$$u \in [\mathrm{id}, w_{2m+1}] \iff g(u) \in B_{2m+2}$$

Proof. Let $u \in \mathfrak{S}_{2m+1}$. Then

$$\begin{split} g(u)(2m+1) &= 2m+2\\ g(u)(2m+2) &= \alpha u^{-1}\beta^{-1}(2m+1) \leqslant 2m+1 \;, \end{split}$$

hence conditions (2.1) are satisfied by all g(u) for i = m+1. The value m+1 can occur on any position of a permutation $u \in [id, w_{2m+1}]$.

Let $1 \leq i \leq m$. Then

$$g(u)(2i) = \rho(\alpha u^{-1}\beta^{-1})(2i) = \alpha(u^{-1}(\beta^{-1}(2i))) = \alpha(u^{-1}(i))$$

Then the condition $g(u)(2i) \leq 2i$ is equivalent to

$$u^{-1}(i) \in [1, i] \cup [m+2, m+i+1],$$

and that is the condition for the value *i* to occur in *u* on a position that satisfies condition (1.1) for id and w_{2m+1} . Similarly,

$$g(u)(2i-1) = \rho(\alpha u^{-1}\beta^{-1})(2i-1) = \alpha(u^{-1}(\beta^{-1}(2i-1))) = \alpha(u^{-1}(i+m+1)).$$

Then the condition $g(u)(2i-1) \ge 2i$ is equivalent to

 $u^{-1}(i\!+\!m\!+\!1) \in [i,m\!+\!1] \cup [m\!+\!i\!+\!1,2m\!+\!1]\,,$

and that is the condition for the value i+m+1 to occur in u on a position that satisfies condition (1.1) for id and w_{2m+1} .

To summarize: g(u) satisfies conditions (2.1) for positions $1, 2, \ldots, 2m$ if and only if u satisfies (1.1) for values $1, 2, \ldots, m, m+2, \ldots, 2m$. Since g(u) always satisfies (2.1) for positions 2m+1, 2m+2 and u always satisfies (1.1) for the value m+1, the equivalence is established and the proof is complete.

Corollary 3.2. The cardinality of the ℓ_1 -segment [id, w_{2m+1}] is G_{2m+4} .

Proof. The function g induces a bijection from $[id, w_{2m+1}]$ to B_{2m+2} .

Example 3.3. For m = 1 we have $w_3 = (231)$ and

$$[(123), (231)] = \{(123), (132), (231)\}$$

and

$$B_4 = \{(2143), (3142), (3241)\}$$

The function $u \to \rho((132)u^{-1}(312))$ sends (123) to (2143), (132) to (3142), and (231) to (3241), establishing a bijection between [(123), (231)] and B_4 .

The case n = 2m is very similar. Define $\eta: \mathfrak{S}_{2m} \to \mathfrak{S}_{2m+2}$ by

 $\eta(u) = (u(1)+1 \ 1 \ u(2)+1 \ \dots \ u(2m-1)+1 \ 2m+2 \ u(2m)+1)$

Explicitly, η inserts the value 1 on the second position, 2m+2 on position 2m+1, increases the other values by 1 and shifts them to fill the remaining positions. For example, $\eta((2413)) = (315264)$.

Theorem 3.4. Define the function $h: \mathfrak{S}_{2m} \to \mathfrak{S}_{2m+2}$ by $h(u) = \eta(\alpha u^{-1}\beta^{-1})$ where $\alpha = (13 \dots 2m-124 \dots 2m), \beta = (35 \dots 2m-112m24 \dots 2m-2)$. Then

$$u \in [\mathrm{id}, w_{2m}] \iff h(u) \in C_{2m+2}$$

Proof. Let $u \in \mathfrak{S}_{2m}$. Then

$$\begin{split} h(u)(1) &= \alpha u^{-1} \beta^{-1}(1) + 1 = \alpha (u^{-1}(m)) + 1 \ge 2 \\ h(u)(2) &= 1 < 2 \\ h(u)(2m+1) &= 2m+2 \ge 2(m+1) \\ h(u)(2m+2) &= \alpha u^{-1} \beta^{-1}(2m) + 1 = \alpha (u^{-1}(m+1)) + 1 < 2m+2 \end{split}$$

hence conditions (2.2) are satisfied by all h(u) for i = 1 and i = m+1. The values m and m+1 can occur on any position of a permutation $u \in [id, w_{2m}]$.

Let $2 \leq i \leq m$. Then

$$h(u)(2i) = \eta(\alpha u^{-1}\beta^{-1})(2i) = \alpha(u^{-1}(\beta^{-1}(2i-1))) + 1 = \alpha(u^{-1}(i-1)) + 1.$$

Then the condition h(u)(2i) < 2i is equivalent to

$$u^{-1}(i-1) \in [1, i-1] \cup [m+1, m+i-1],$$

and that is the condition for the value i-1 to occur in u on a position that satisfies condition (1.1) for id and w_{2m} . Similarly,

$$\begin{split} h(u)(2i-1) &= \eta(\alpha u^{-1}\beta^{-1})(2i-1) = \alpha(u^{-1}(\beta^{-1}(2i-2))) + 1 = \alpha(u^{-1}(i+m)) + 1 \ . \end{split}$$
 Then the condition $h(u)(2i) \geqslant 2i$ is equivalent to

$$u^{-1}(i+m) \in [i,m] \cup [m+i,2m]$$
,

and that is the condition for the value i+m to occur in u on a position that satisfies condition (1.1) for id and w_{2m} .

To summarize: h(u) satisfies conditions (2.2) for positions $3, 4, \ldots, 2m$ if and only if u satisfies (1.1) for values $1, 2, \ldots, m-1, m+2, \ldots, 2m$. Since h(u) always satisfies (2.2) for positions 1, 2, 2m+1, 2m+2 and u always satisfies (1.1) for values m, m+1, the equivalence is established and the proof is complete.

Corollary 3.5. The cardinality of the ℓ_1 -segment [id, w_{2m}] is H_{2m+3} .

Proof. The function h induces a bijection from $[id, w_{2m}]$ to C_{2m+2} .

Example 3.6. For m = 2 we have $w_4 = (3412)$ and

$$[(1234), (3412)] = \{(1234), (1324), (1423), (1432), (2314), (2413), (3214), (3412)\}.$$

The function $u \to \eta((1324)u^{-1}(2413))$ sends the permutations in [(1234), (3412)] to the corresponding permutations in

$$C_6 = \{(415263), (315263), (314265), (514263), (215364), (214365), (415362), (514362)\}$$

References

- [BD81] Daniel Barsky and Dominique Dumont. Congruences pour les nombres de Genocchi de 2e espèce. In Study Group on Ultrametric Analysis. 7th-8th years: 1979-1981 (Paris, 1979/1981) (French), pages Exp. No. 34, 13. Secrétariat Math., Paris, 1981.
- [DR94] Dominique Dumont and Arthur Randrianarivony. Dérangements et nombres de Genocchi. Discrete Math., 132(1-3):37–49, 1994.
- [Dum74] Dominique Dumont. Interprétations combinatoires des nombres de Genocchi. Duke Math. J., 41:305–318, 1974.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MASSACHUSETTS BOSTON, MA 02125 *E-mail address*: catalin.zara@umb.edu