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Multidimensional Catalan and related numbers as Hausdorff
moments

Katarzyna Górska and Karol A. Penson

Abstract. We study integral representation of so-calledd-dimensional Catalan numbers

Cd(n), defined by













d−1
∏

p=0

p!
(n+p)!












(dn)!, d = 2, 3, . . ., n = 0, 1, . . . . We prove that theCd(n)’s

are thenth Hausdorff power moments of positive functionsWd(x) defined onx ∈ [0, dd].
We construct exact and explicit forms ofWd(x) and demonstrate that they can be ex-
pressed as combinations ofd − 1 hypergeometric functions of typed−1Fd−2 of argu-
ment x/dd. These solutions are unique. We analyse them analytically and graphically.
A combinatorially relevant, specific extension ofCd(n) for d even in the formDd(n) =
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d/2−1
∏

q=0

(2n+2q)!
(2q)!












is analyzed along the same lines.

1. Introduction

Amongst many existing generalizations of classical Catalan numbersC(n) = 1
n+1

(

2n
n

)

,
those that include the parameter that in certain sense can beassociated with the spacial
dimensiond, are particularly interesting. They permit to extend to higher dimensionsd > 2
the notions of objects enumerated byC(n) in d = 2. We shall be concerned in this note
with one of such generalizations, calledd-dimensional Catalan numbers [1, 2, 3], which
are defined as:

Cd(n) =

















d−1
∏

p=0

p!
(n+ p)!

















(dn)!, n = 0, 1, . . . ; d = 2, 3, . . . , (1)

which ford = 2 clearly reduce the conventional Catalan numbersC(n). The form of Eq. (1)
guarantees thatCd(0) = 1 for all d. We shall refer to Sloane’s Online Encyclopedia of
Integer Sequences (OEIS) [4] and quote initial terms,n = 0, 1, . . . , 7, of several sequences
Cd(n), d = 2, 3, 4 and 5, along with the labelling of their entries in the OEIS:

• for d = 2: 1, 1, 2, 5, 14, 42, 132, . . . (A00108), which are the Catalan numbers,
• for d = 3: 1, 1, 5, 42, 462, 6006,87516, . . . (A005789, A151334),
• for d = 4: 1, 1, 14, 462, 24024, 1662804, 140229804, . . . (A005790),
• for d = 5: 1, 1, 42, 6006, 1662804, 701149020,396499770810, . . . (A005791),
• for generald, see A060854.
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The explicit form ofCd(n)’s permits one to immediately write down some of their
characteristics. If∆(k, a) = a

k ,
a+1

k , . . . ,
a+k−1

k denotes a special list ofk elements, then the
ordinary generating function (ogf) ofCd(n)’s can be written as:

g(d, z) =
∞
∑

n=0

Cd(n) zn
= dFd−1

(

∆(d, 1)
2, 3, . . . , d

∣

∣

∣

∣
ddz

)

. (2)

Similarly, the exponential generating function (egf) ofCd(n)’s reads:

G(d, z) =
∞
∑

n=0

Cd(n)
zn

n!
= dFd

(

∆(d, 1)
1, 2, . . . , d

∣

∣

∣

∣

ddz

)

. (3)

The use of Stirling’s formula gives the leading term ofn→ ∞ asymptotics forCd(n):

Cd(n) −−−−→n→∞ n−
d2−1

2 ddn
+ . . . , d = 2, 3, . . . . (4)

In Eqs. (2) and (3) we have employed the standard notation forthe generalized hyper-

geometric functionpFq

(

(αp)
(βq)

∣

∣

∣

∣

x
)

, with (αp) and (βq) the lists ofp ”upper” andq ”lower”

parameters, respectively, see [5]. Observe that since indFd of Eq. (3) there is a pair of
lower and upper parameters differing by one, the appropriate functiondFd can be reduced
to a combination ofd−1Fd−1’s, see the formula 7.2.13.17 on page 439 of [5].

Inspired by the very fruitful interpretation of Catalan numbersC(n) as moments of a
positive function onx ∈ [0, 4], which is intimately related to the famous Wigner’s semicir-
cle law [6], we set out to consider the sequencesCd(n), d > 2 as Hausdorff power moments
and have defined an objective of obtaining ford > 2 the equivalents of the solution for
d = 2, quoted in Eq. (12) below.

The paper is organised as follows: in Sec. 2 we describe the method of obtaining exact
and explicit solutions ford ≥ 2. Subsequently we write down the general solution ford
arbitrary and quote the specific cases ofd = 2, 3, 4 and 5. In Section 3 we discuss some
possible generalizations ofCd(n)’s. In Sec. 4 we close the note with short conclusions and
comments about possible applications of the probability distributions found here.

2. Solutions of the Hausdorffmoment problem

We are seeking the solutions of the following Hausdorffmoment problem:
∫ R(d)

0
xnWd(x) dx= Cd(n), n = 0, 1, . . . , d = 2, 3, . . . , (5)

whereR(d) - the upper edge of the support ofWd(x) - will be determined below. The
conventional estimateR(d) = lim

n→∞
[Cd(n)]1/n

= dd will be confirmed later by the Mellin

transform analysis. As a preliminary step we shall demonstrate that the sought forWd(x)
defined in Eq. (5) is positive. By using the Gauss-Legendre multiplication formula for
gamma function to Eq. (1) and introducing complexssuch thatn = s− 1 we obtain

Cd(s− 1) = (2π)
1−d
2 d

1
2−d

















d−1
∏

k=0

k!

















(dd) s
d−1
∏

j=0

Γ

(

s− 1+ j+1
d

)

Γ(s+ j)
, (6)

which should be interpreted as the Mellin transform ofWd(x) i. e.
∫ ∞
0

xs−1Wd(x)dx, de-

noted byM [Wd(x); s], see Ref. [8]. Since j > j+1−d
d for all 0 ≤ j ≤ d − 1, the individual
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term labelled byj in the second product of Eq. (6) has the inverse Mellin transform [8],
see the formula 8.4.2.3 on page 631 from [5]

M−1



















Γ

(

s− 1+ j+1
d

)

Γ(s+ j)
; x



















=
x( j+1)/d−1 (1− x) j−( j+1)/d

Γ

(

1+ j − j+1
d

) , (7)

j = 0, 1, . . .d − 1, e. g. it is proportional to the standard probabilistic beta distribution [9]
in the variablex, which is a positive and absolutely continuous function for0 ≤ x ≤ 1. We
perceive nowCd(s− 1) as a product ofd such individual terms. Then the weightWd(x)
is a positive and absolutely continuous function on [0,R(d)], since it is ad-fold Mellin
convolution of positive and absolutely continuous functions on [0, 1]. In the final result we
accommodate the prefactor (dd)s which indicates, via elementary property of the Mellin
transform [8], that the solution of Eq. (5) will depend onx/dd.

It turns out that such ad-fold Mellin convolution can be carried out explicitly. Thekey
step is first to identify the weightWd(x) as a special case of MeijerG functionGm,n

p,q [5].
This is a direct consequence of (6) and reads

Wd(x) = (2π)
1−d
2 d

1
2−d

















d−1
∏

k=0

k!

















Gd,0
d,d

(

x
dd

∣

∣

∣

∣

0, 1, . . . , d− 1
−∆(d, 0)

)

, (8)

where∆(n, a) = a
n ,

a+1
n , . . . ,

a+n−1
n . Next, the MeijerG function is converted to the hyper-

geometric form, using formulas 16.17.2 and 17.17.3 of [10], which is the Slater theorem.
We quote only the final result which is equal to:

Wd(x) =
d−1
∑

j=1

c j(d)

x j/d d−1Fd−2

















− j
d ,−1− j

d , . . . ,−d+ 2− j
d

1− 1
d , 1− 2

d , . . . , 1−
j−1
d ; 1+ 1

d , 1+
2
d , . . . , 1+

d− j−1
d

∣

∣

∣

∣

x
dd

















,

(9)
defined for 0≤ x ≤ dd, which impliesR(d) = dd in Eq. (5). (For the reader’s convenience
we point out that in Eq. (9), in the lower list of parameters ofd−1Fd−2, there aretwo se-
quences of numbers, which containj − 1 andd− 1− j terms, respectively). The numerical
coefficientc j(d) is equal to

c j(d) = (2π)
1−d
2 d j−d+

1
2



















d−1
∏

p=1

p!

Γ

(

p+ j
d

)



































j−1
∏

k=1

Γ

(

k
d

)

































d−1
∏

k= j+1

Γ

(

j−k
d

)

















, (10)

where j = 1, . . . , d− 1 andd = 2, 3, . . . .
The structure of parameter list of Meijer G function in Eq. (8) warrants that the as-

sumptions of formula 2.24.2.1 in [5] are satisfied:

− 1
d

d−1
∑

k=0

k−
d−1
∑

k=0

k = −d2 − 1
2
< 0, d = 2, 3, . . . . (11)

Therefore the Mellin transform ofWd(x) is well defined forℜ(s) > d−1
d .

We shall explicitly write down the solutions ford = 2, 3, 4 and 5, starting withW2(x):

W2(x) =
1
2π

√

4− x
x
, 0 < x 6 4, (12)

which is obtained in many references [7, 11], see Fig. 1. It is the only density that can
be expressed by an elementary function. Furthermore, ford > 2 no density can be ex-
pressed bystandardspecial functions, and the hypergeometric form is the final one. For
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j 1 2 3 4

c j(3) − 33
√

3
16π3 Γ

(

2
3

)3 32

10Γ
(

2
3

)−3
— — —

c j(4) 442
75π4Γ

(

3
4

)4
− 43

15π2
46

4851Γ
(

3
4

)−4
— —

c j(5) −
59
√

5Γ
(

4
5

)5

A4

2532112π5 B

59
√

5Γ
(

3
5

)5

B4

267317π5 A − 59
√

5(AB)−1

2734132Γ

(

3
5

)5
59
√

5(AB)−1

27347219Γ
(

4
5

)4 —

c j(6) 213316 E
741331805π6 − 319D

2107365π6
221

725234π3 − 317

11253287D
222317

1145417323229E

Table 1. The coefficientsc j(d), see Eqs. (9) and (10) ford = 3, . . . , 6
and j = 1, . . . , d − 1; To simplify the notation inc j(5) andc j(6) we set

A = sin
(

π
5

)

, B = sin
(

2π
5

)

andE = Γ
(

5
6

)6
, D = Γ

(

2
3

)6
.

d = 3, . . . , 5 the solutions read:

W3(x) =
c1(3)
x1/3 2F1















− 4
3 ,−

1
3

4
3

∣

∣

∣

∣

x
33















+
c2(3)
x2/3 2F1















− 5
3 ,−

2
3

2
3

∣

∣

∣

∣

x
33















, 0 < x 6 33, (13)

W4(x) =
c1(4)
x1/4 3F2















− 9
4 ,−

5
4 ,−

1
4

5
4 ,

3
2

∣

∣

∣

∣

x
44















+
c2(4)
x1/2 3F2















− 5
2 ,−

3
2 ,−

1
2

3
4 ,

5
4

∣

∣

∣

∣

x
44















(14)

+
c3(4)
x3/4 3F2















− 11
4 ,− 7

4 ,− 3
4

1
2 ,

3
4

∣

∣

∣

∣

x
44















, 0 < x 6 44,

W5(x) =
c1(5)
x1/5 4F3















− 16
5 ,−

11
5 ,−

6
5 ,−

1
5

6
5 ,

7
5 ,

8
5

∣

∣

∣

∣

x
55















+
c2(5)
x2/5 4F3















− 17
5 ,−

12
5 ,−

7
5 ,−

2
5

4
5 ,

6
5 ,

7
5

∣

∣

∣

∣

x
55















(15)

+
c3(5)
x3/5 4F3















− 18
5 ,− 13

5 ,− 8
5 ,− 3

5
3
5 ,

4
5 ,

6
5

∣

∣

∣

∣

x

55















+
c4(5)
x4/5 4F3















− 19
5 ,−

14
5 ,−

9
5 ,−

4
5

2
5 ,

3
5 ,

4
5

∣

∣

∣

∣

x

55















,

0 < x 6 55.

The coefficientsc j(d), j = 1, . . . , d − 1, for d = 3, . . . , 6, are collected in Tab. 1. With
c j(6)’s given there and using Eqs. (9) and (10), the reader can easily reconstructW6(x),
which will not be reproduced here. The solutionW3(x) is represented in Fig. 2.

3. Generalization of multidimensional Catalan numbers

In this paragraph we analyse the extension ofC4(n) obtained by replacing (4n)! in
Eq. (1) by (2n)!(2n+ 2)! . The corresponding sequence

D4(n) ≡ 6(2n)!(2n+ 2)!

















3
∏

r=0

(n+ r)!

















−1

has attracted attention in several contexts, as it appears in [1, 12, 13, 14].
The initial terms ofD4(n) are 1, 1, 4, 30, 330, 4719,81796,1643356, for

n = 0, 1, . . . , 7. It is listed as A006149 in OEIS where also additional information can
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Figure 1. The densityW2(x), s. Eq. (12).

Figure 2. The densityW3(x), s. Eq. (13).

be found. It turns out that the ogf ofD4(n) can be expressed by the elliptic functionsE(y)
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andK(y) [10]:
∞
∑

n=0

D4(n) zn
=

1+ 6z
4z2

+
(1− 16z) (1+ 112z)

240π z3
K(4
√

z) (16)

− 1+ 224z+ 256z2

240π z3
E(4
√

z).

In fact the sequenceD4(n) allows for the same kind of analysis as does the ensemble of
Cd(n)’s. The Hausdorffmoment problem forD4(n), namely

∫ h

0
xn V4(x) dx= D4(n) =

6(2n)!(2n+ 2)!
3
∏

r=0
(n+ r)!

, n = 0, 1, . . . , (17)

can be solved by the method of Mellin convolution and the use of Meijer G function elu-
cidated above. The weight can be proven to be positive onx ∈ [0, h] with h = 16 and
reads:

V4(x) = 1
15π2

[(

64√
x
+ 56

√
x+ x3/2

4

)

E

(√

1− x
16

)

− 2
√

x(16+ x)K
(√

1− x
16

)]

. (18)

We plot the functionV4(x) on Fig. 3.

Figure 3. The densityV4(x), s. Eq. (18).

The sequenceD4(n) analysed above is a special cased = 4 of the following general-
ization ofCd(n) defined foreven d:

Dd(n) =

















d−1
∏

r=0

r!
(n+ r)!

































d/2−1
∏

s=0

(2n+ 2s)!
(2s)!

















, d = 2, 4, 6, . . . , (19)

in which the parameterd should not be associated anymore with the spacial dimension.
Several exact characteristics of the sequencesDd(n) are available. The ordinary generating
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Figure 4. The densityV6(x), s. Eq. (23) ford = 6.

function reads

g̃(d, z) = d/2Fd/2−1















1
2 ,

3
2 , . . . ,

d−1
2 , 1

d
2 + 1, d

2 + 2, . . . , d

∣

∣

∣

∣
2dz















, (20)

whereas the corresponding exponential generating function is equal to

G̃(d, z) = dFd

( 1
2 ,

3
2 , . . . ,

d−1
2 , 1, 2, . . . ,

d
2

1, 2, 3, . . . , d

∣

∣

∣

∣
2dz

)

. (21)

The leading term of then → ∞ asymptotics forDd(n) can be obtained by using the Stir-
ling’s formula and it has the following form

Dd(n) −−−−→n→∞ n−d (d−1)/4 2d n, d = 4, 6, . . . . (22)

It is remarkable that the Hausdorffmoment problem forDd(n), i. e.
∫ κ(d)

0
xn Vd(x) dx = Dd(n), n = 0, 1, . . . ; d = 4, 6, . . .

can be exactly solved as well in terms of positive functionsVd(x) defined onx ∈ [0, 2d],
i. e. κ(d) = 2d, which read:

Vd(x) =
2−d

d−1
∏

r=0
r!

d/2−1
∏

k=0
Γ

(

k+ 1
2

)

k!

Gd/2,0
d/2,d/2















x

2d

∣

∣

∣

∣

d
2 ,

d
2 + 1, . . . , d− 1

− 1
2 ,

1
2 ,

3
2 , . . . ,

d−3
2















. (23)

Here the condition 2.24.2.1 in [5] implies − d
4(d + 1) < 0, d = 4, 6, . . ., which is always

satisfied. In addition, the Mellin transform ofVd(x) is well defined forℜ(s) > 1
2. The proof

of positivity of Vd(x) can be carried out along the lines exposed in the previous Section.
Since in Eqs. (23) in both parameter lists in the Meijer G function there are index

pairs that differ by an integer, this Meijer G function cannot be represented by a sum of
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generalized hypergeometric functions. However the expression (23) can be easily manip-
ulated algebraically and represented graphically [15]. In Fig. 4 we displayV6(x) in the
rangex ∈ [10, 60]. Observe the rapid decrease of this function forx & 25, followed by a
large region where it is practically flat and equals to zero. Similar behavior is observed for
higher values ofd.

4. Discussion and Conclusions

We have treated in this work essentially two generalizations of conventional Catalan
numbers, which are related to such notions as Young tableaux, hook lengths, generalized
Dyck paths, etc. [16]. They all turn out to be moments of positive functions on supports in-
cluded in the positive half line. The relevant weight functions have been obtained explicitly
and analyzed graphically. All these positive functions areunique solutions of Hausdorff
moment problems. The key tools in this approach had been the inverse Mellin transform
and the encoding with MeijerG functions. The positivity of solutions has been rigorously
proven using the method of Mellin convolution, applied to related problems previously
[17, 18, 19].

It needs to be specified that the functionW2(x) of Eq. (12) is the known Marchenko-
Pastur distribution [7, 18] which describes the level statistic of random Wishart matrices
W = GG†, whereG is a square,N × N random Ginibre matrix. As far as applications for
random matrices are concerned two problems appear to be relevant for the distributions
found in the present work.

First it would be intriguing to know if the distributionsWd(x) for d ≥ 3, andVd(x)
for d = 4, 6, . . . would correspond to limit spectral densities of certain (ifany) ensembles
of random matrices. A second possibility is to extend the analysis of products of square
random matrices to products of rectangularN×M random matrices withr = N/M. A case
in point is a detailed analysis of products of rectangular Gaussian random matrices carried
out in [20]. Therefore, once the relevant matrix ensemble has been properly identified, it
is quite feasible to undertake the analysis of appropriate products of rectangular matrices.
This would lead, in the spirit of [20] to, for instance,W(r)

3 (x) parametrized byr, with

W(1)
3 (x) ≡W3(x). Both of these problems are under active consideration.
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