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Abstract

We introduce numbers depending on three parameters which we
call skyscraper numbers. We discuss properties of these numbers and
their relationship with Stirling numbers of the first kind, and we also
introduce a skyscraper sequence.

1 Introduction

In skyscraper puzzles you have to put an integer from 1 to n in each cell of a
square grid. Integers represent heights of buildings. Every row and column
needs to be filled with buildings of different heights and the numbers outside
the grid indicate how many buildings you can see from this direction. For
example, in the sequence 213645 you can see three buildings from the left
(2,3,6) and two from the right (5,6).

In mathematical terminology, we are asked to build a Latin square such
that each row is a permutation of length n with a given number of left-to-
right and right-to-left-maxima. The 7-by-7 skyscraper puzzle in Figure 1 is
from the Eighth World Puzzle Championship.

Latin squares are notoriously complicated and difficult to enumerate.
Thus, in this paper we discuss the combinatorics of a single row instead
of asking about the entire puzzle. We give formal definitions and provide
examples in Section 2. In Section 3 we give formulas for skyscraper numbers
and in Section 4 we define the skyscraper sequence. In Section 5 we prove
some properties of skyscraper numbers and the sequence.
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Figure 1: A skyscraper puzzle

2 Definitions and Examples

What can you say about a row of a skyscraper puzzle if you ignore all infor-
mation except the numbers given at the two ends of the row? In particular,
how many permutations of the buildings are there that satisfy the given re-
strictions? Of course, the outside numbers have to be between 1 and n, and
we leave as an exercise the proof that their sum must be between 3 and n+1.
Now we consider some of the simplest cases.

Suppose the two given numbers are n and 1. In this case, the row is
completely defined. There is only one possibility: the buildings should be
arranged in the increasing order from the side where we see all of them.

Suppose the grid size is n and the outside numbers are a and b. Let us
denote the total number of permutations by fn(a, b). We will assume that
a is on the left and b is on the right. We call these number fn(a, b) the
skyscraper numbers and they are the object of our study.

In the previous example, we showed that fn(n, 1) = 1. And of course we
have fn(a, b) = fn(b, a).

Let us discuss a couple of other examples.
First, we want to discuss the case when the sum of the border numbers is
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the smallest, namely 3. In this case, fn(1, 2) is (n− 2)!. Indeed, we need to
put the tallest building on the left and the second tallest on the right. After
that we can permute the leftover buildings any way we want.

Second, we want to discuss the case when the sum of the border numbers
is the largest: n+1. In this case fn(a, n+1−a) is

(
n−1
a−1

)
. Indeed, the position

of the tallest building is uniquely defined — it has to take the a-th spot from
the left. After that we can pick a set of a − 1 buildings that go to the left
from the tallest building and the row is uniquely defined by this set.

3 Skyscraper Numbers

3.1 One-sided skyscraper numbers

Before going further let us see what happens if only one of the maxima is
given. Let us denote by c(n, a) the number of permutations of n buildings
so that you can see a buildings from the left. If we put the shortest building
on the left then the leftover buildings need to be arrange so that you can see
a−1 of them. If the shortest building is not on the left, then it can be in any
of the n − 1 places and we still need to rearrange the leftover buildings so
that we can see a of them. We just proved that the function c(n, a) satisfies
the recurrence

c(n, a) = c(n−1, a−1) + (n−1)c(n−1, a) =
n−1∑
k=1

(n− 1)!

(n− k − 1)!
c(n−k, a−1).

Actually c(n, a) is a well-known function. The numbers c(n, a) are called un-
signed Stirling numbers of the first kind (see sequence A132393 in the Online
Encyclopedia of Integer Sequences [1]); not only do they count permutations
with a given number of left-to-right (or right-to-left) maxima, but they also
count permutations with a given number of cycles, and they appear as the
coefficients in the product (x+1)(x+2)(x+3) . . . (x+n), among other places;
see for example [2, Chapter 1].

3.2 The tallest building is on the left

We are now equipped to calculate fn(1, b). The tallest building must be on the
left, and the rest could be arranged so that, in addition to the tallest building,
b−1 more buildings are seen from the right. That is, fn(1, b) = c(n−1, b−1).
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b=2 b=3 b=4 b=5 b=6 b=7
n=2 1
n=3 1 1
n=4 2 3 1
n=5 6 11 6 1
n=6 24 50 35 10 1
n=7 120 274 225 85 15 1

Table 1: The Stirling numbers c(n− 1, b− 1) = fn(1, b)

The non-zero values of fn(1, b) are collected in Table 1.

3.3 Skyscraper numbers

Now we have everything we need to consider the general case. In any permu-
tation of length n, the left-to-right maxima consist of n and all left-to-right
maxima that lie to its left; similarly, the right-to-left maxima consist of n
and all the right-to-left maxima to its right. We can take any permutation
counted by fn(a, b) and split it into two parts: if the value n is in position
k + 1 for some 0 ≤ k ≤ n − 1, the first k values form a permutation with
a− 1 left-to-right maxima and the last n− k − 1 values form a permutation
with b− 1 right-to-left maxima, and there are no other restrictions. Thus,

fn(a, b) =
n−1∑
k=0

(
n− 1

k

)
c(k, a− 1) · c(n− k − 1, b− 1).

Table 2 shows f7(a, b), of which we already calculated the first row:

4 The Skyscraper Sequence

We see that the first two rows of the puzzle above (see Figure 1) have the same
pair of numbers, namely 2 and 3, outside. If we ignore all other constraints
there are 675 ways to fill in each of the first two rows. Number 675 is the
largest number in the Table 2. We can say that these two rows of the puzzle
are the most difficult to fill in: the pair of numbers 2 and 3 is the least
restrictive. Given n, we call such a pair the maximizing pair.
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b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7
a = 1 0 120 274 225 85 15 1
a = 2 120 548 675 340 75 6 0
a = 3 274 675 510 150 15 0 0
a = 4 225 340 150 20 0 0 0
a = 5 85 75 15 0 0 0 0
a = 6 15 6 0 0 0 0 0
a = 7 1 0 0 0 0 0 0

Table 2: The skyscraper numbers f7(a, b)

By the way, the sequence of the number of ways to fill in the most diffi-
cult row for n from 1 to 10 is: 1, 1, 2, 6, 22, 105, 675, 4872, 40614, 403704,
4342080, 50457000, 31548456, 8484089328, 121882518576, 1865935562400,
30341974222944, 522466493255424, 9499883854364928, 181927524046316544.
This sequence is now sequence A218531 in the OEIS [1].

The maximizing pairs (a, b) are (1, 1), (1, 2), (2, 2), (2, 2), (2, 2), (2, 3),
(2, 3), (2, 3), (3, 3), (3, 3), (3, 3), (3, 3), (3, 3), 3, 3), (3, 3), (3, 3), (3, 3),
(3, 3), (3, 3), (3, 3), (3, 4), (3, 4), (3, 4), (3, 4), (3, 4), (3, 4), (4, 4), (4, 4),
(4, 4), (4, 4). One may notice that the numbers in these pairs do not differ
by more than 1. We will prove that in Theorem 2.

The actual skyscraper puzzles are designed so that they have a unique
solution. It is the interplay between rows and columns that allows to reduce
the number of overall solutions to one.

5 Properties

If you look at the antidiagonal in Table 2 you can notice that the numbers
there are exactly a row of a Pascal triangle. Moreover, if we rescale other
lines that are parallel to the antidiagonal by their gcd we get exactly the
Pascal’s Triangle! We combine these observations in the following lemma.

Lemma 1. fn(a, b) = fn(a + b− 1, 1) ·
(
a+b−2
a−1

)
.

Proof. The number fn(a + b − 1, 1) counts the number of ways to arrange
skyscrapers so that the tallest building is on the right and the permutation
has a+b−1 left-to-right maxima. For every skyscraper that is not the tallest
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building consider a group of buildings that are immediately after it to the
right and that are located before the next left-to-right maximum. Choose
a − 1 left-to-right maxima out of them and move them together with their
groups to the right and put them in the reverse order.

We want to add a different proof of this lemma through Stirling numbers.

Proof. We want to show that fn(a, b) =
∑n−1

k=0

(
n−1
k

)
· c(k, a − 1) · c(n − k −

1, b−1) is equal to
(
a+b−2
a−1

)
· c(n, a+ b−2). We can do this using the fact that

c(n, a+ b− 2) counts also permutations of length n− 1 with a+ b− 2 cycles.
Let us count permutations of length n − 1 with a + b − 2 cycles, of which
a−1 are colored red and b−1 are colored blue, in two different ways: on one
hand, we may first choose a permutation of length n−1 with a+b−2 cycles,
then choose a − 1 of these cycles to be red, in

(
a+b−2
a−1

)
· c(n − 1, a + b − 2)

ways. On the other hand, for any k between 0 and n − 1 we may first
choose k elements to be in red cycles, then make a permutation on these
k entries with exactly a − 1 cycles, and make a permutation with exactly
b − 1 cycles on the remaining n − k − 1 entries. Thus we have in total∑n−1

k=0

(
n−1
k

)
· c(k, a − 1) · c(n − k − 1, b − 1) ways in this case. So the two

things are equal, as claimed.

Now we are ready to prove the promised theorem about maximizing pairs
for the skyscraper sequence.

Theorem 2. The numbers in the maximizing pairs do not differ by more
than 1.

Proof. The maximum number in a table corresponding to the given n is the
maximum number in its line parallel to antidiagonal. As each diaginal is
proportionate to a row in the Pascal’s triangle, the maximum can be found
in its middle.

Now let us sum all numbers in each row of Table 2. We get the following
sums: 720, 1764, 1624, 735, 175, 21, 1. This numbers bring us back to the
sequence A132393 in the OEIS [1]. These numbers are a row in the triangle
of unsigned Stirling numbers of the first kind. This brings us to the next
lemma:

Lemma 3.
∑

b fn(a, b) = fn+1(a + 1, 1).
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Proof. Consider a row of length n + 1 with a + 1 left-to-right maxima and
1 right-to-left maximum. In this configuration the tallest building is on the
right. If we remove the tallest building, the we get a row of length n with a
left-to-right maxima and an unknown number of right-to-left maxima.

Skyscraper numbers are fun to play with. We are sure that they are
hiding many more secrets.
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