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Abstract. We study the probability measure µ0 for which the moment sequence is(
3n
n

)
1

n+1 . We prove that µ0 is absolutely continuous, find the density function and
prove that µ0 is infinitely divisible with respect to the additive free convolution.

1. Introduction

A 2-plane tree is a planted plane tree such that each vertex is colored black or white
and for each edge at least one of its ends is white. Gu and Prodinger [3] proved, that the
number of 2-plane trees on n + 1 vertices with black (white) root is

(
3n+1
n

)
1

3n+1
(Fuss-

Catalan number of order 3, sequence A001764 in OEIS [10]) and
(
3n+2
n

)
2

3n+2
(sequence

A006013 in OEIS) respectively (see also [4]). We are going to study the sequence

(1)

(
3n

n

)
2

n+ 1
=

(
3n+ 1

n

)
1

3n+ 1
+

(
3n+ 2

n

)
2

3n+ 2
,

which begins with

2, 3, 10, 42, 198, 1001, 5304, 29070, 163438, . . . ,

of total numbers of such trees (A007226 in OEIS).
Both the sequences on the right hand side of (1) are positive definite (see [5, 6]),

therefore so is the sequence
(
3n
n

)
2

n+1
itself. In this paper we are going to study the

corresponding probability measure µ0, i.e. such that the numbers
(
3n
n

)
1

n+1
are moments

of µ0. First we prove that µ0 is Mellin convolution of two beta distributions, in particular
µ0 is absolutely continuous. Then we find the density function of µ0. In the last
section we prove, that µ0 can be decomposed as additive free convolution µ1 � µ2 of
two measures, which are both infinitely divisible with respect to � and are related to
the Marchenko-Pastur distribution. In particular, the measure µ0 itself is �-infinitely
divisible.

2. The generating function

Let us consider the generating function

G(z) =
∞∑
n=0

(
3n

n

)
2zn

n+ 1
.
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According to (1), G is a sum of two generating functions. The former is usually denoted
by B3:

B3(z) =
∞∑
n=0

(
3n+ 1

n

)
zn

3n+ 1

and satisfies equation

(2) B3(z) = 1 + z · B3(z)3.

Lambert’s formula (see (5.60) in [2]) implies, that the latter is just square of B3:

B3(z)2 =
∞∑
n=0

(
3n+ 2

n

)
2zn

3n+ 2
,

so we have

(3) G(z) = B3(z) + B3(z)2.

Combining (2) and (3), we obtain the following equation for G:

(4) 2− z − (1 + 2z)G(z) + 2zG(z)2 − z2G(z)3 = 0,

which will be applied later on.
Now we will give formula for G(z).

Proposition 2.1. For the generating function of the sequence (1) we have

(5) G(z) =
12 cos2 α + 6

(4 cos2 α− 1)2
,

where α = 1
3

arcsin
(√

27z/4
)

.

Proof. Denoting (a)n := a(a+ 1) . . . (a+ n− 1) we have

2(3n)!

(n+ 1)!(2n)!
=
−2
(−2

3

)
n+1

(−1
3

)
n+1

27n+1

3(n+ 1)!
(−1

2

)
n+1

4n+1
.

Therefore

G(z) =
2− 2 · 2F1

( −2
3
, −1

3
; 1
2

∣∣ 27z
4

)
3z

.

Now we apply formula

2F1

(
−2

3
,
−1

3
;
−1

2

∣∣∣∣u) =
1

3

√
u sin

(
1

3
arcsin

(√
u
))

+
√

1− u cos

(
1

3
arcsin

(√
u
))

,

which can be proved by hypergeometric equation (note that both the functions w 7→
w sin

(
1
3

arcsin (w)
)
, w 7→ cos

(
1
3

arcsin (w)
)

are even, so the right hand side is well

defined for |u| < 1). Putting α = 1
3

arcsin (
√
u), u = 27z/4, we have

√
u = sin 3α,√

1− u = cos 3α, which after elementary calculations gives (5). �
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3. The measure

In this part we are going to study the (unique) measure µ0 for which
{(

3n
n

)
1

n+1

}∞
n=0

is
the moment sequence. We will show that µ0 can be expressed as the Mellin convolution
of two beta distributions. Then we will provide explicit formula for the density function
V (x) of µ0.

Recall (see [1]), that for α, β > 0, the beta distribution Beta(α, β) is the absolutely
continuous probability measure defined by the density function

fα,β(x) =
Γ(α + β)

Γ(α)Γ(β)
· xα−1(1− x)β−1,

for x ∈ (0, 1). The moments of Beta(α, β) are∫ 1

0

xnfα,β(x) dx =
Γ(α + β)Γ(α + n)

Γ(α)Γ(α + β + n)
=

n−1∏
i=0

α + i

α + β + i
.

For probability measures ν1, ν2 on the positive half-line [0,∞) the Mellin convolution
is defined by

(6) (ν1 ◦ ν2) (A) :=

∫ ∞
0

∫ ∞
0

χA(xy)dν1(x)dν2(y)

for every Borel set A ⊆ [0,∞) (χA denotes the indicator function of the set A). This is
the distribution of the product X1 ·X2 of two independent nonnegative random variables
with Xi ∼ νi. In particular, if c > 0 then ν ◦ δc is the dilation of ν:

(ν ◦ δc) (A) = Dcν(A) := ν

(
1

c
A

)
,

where δc denotes the Dirac delta measure at c.
If both the measures ν1, ν2 have all moments

sn(νi) :=

∫ ∞
0

xn dνi(x)

finite then so has ν1 ◦ ν2 and

sn (ν1 ◦ ν2) = sn(ν1) · sn(ν2)

for all n. The method of Mellin convolution has been recently applied to a number of
related problems, see for example [6, 8].

Now we can describe the probability measure corresponding to the sequence
(
3n
n

)
1

n+1
.

Proposition 3.1. Define µ0 as the Mellin convolution

(7) µ0 = Beta(1/3, 1/6) ◦ Beta(2/3, 4/3) ◦ δ27/4.
Then the numbers

(
3n
n

)
1

n+1
are moments of µ0:∫ 27/4

0

xn dµ0(x) =

(
3n

n

)
1

n+ 1
.

Proof. It is sufficient to check that

(3n)!

(n+ 1)!(2n)!
=

n−1∏
i=0

1/3 + i

1/2 + i
·
n−1∏
i=0

2/3 + i

2 + i
·
(

27

4

)n
.

�
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In view of formula (7), the measure µ0 is absolutely continuous and its support is the
interval [0, 27/4]. Now we are going to find the density function V (x) of µ0.

Theorem 3.2. Let

V (x) =

√
3

210/3πx2/3

(
3
√

1− 4x/27− 1
)(

1 +
√

1− 4x/27
)1/3

+
1

28/3πx1/3
√

3

(
3
√

1− 4x/27 + 1
)(

1 +
√

1− 4x/27
)−1/3

,

x ∈ (0, 27/4). Then V is the density function of µ0, i.e.∫ 27/4

0

xn V (x) dx =

(
3n

n

)
1

n+ 1

for n = 0, 1, 2, . . ..

The density V (x) of µ0 is represented in Fig. 1.B.

Proof. Putting n = s− 1 and applying the Gauss-Legendre multiplication formula

Γ(mz) = (2π)(1−m)/2mmz−1/2Γ(z)Γ

(
z +

1

m

)
Γ

(
z +

2

m

)
. . .Γ

(
z +

m− 1

m

)
we obtain (

3n

n

)
1

n+ 1
=

Γ(3n+ 1)

Γ(n+ 2)Γ(2n+ 1)
=

Γ(3s− 2)

Γ(s+ 1)Γ(2s− 1)

=
2

27

√
3

π

(
27

4

)s
Γ(s− 2/3)Γ(s− 1/3)

Γ(s− 1/2)Γ(s+ 1)
:= ψ(s).

Then ψ can be extended to an analytic function on the complex plane, except the points
1/3− n, 2/3− n, n = 0, 1, 2, . . ..

Now we are going to apply a particular type of the Meijer G-function, see [9] for

details. Let Ṽ denote the inverse Mellin transform of ψ. Then we have

Ṽ (x) =
1

2πi

∫ c+i∞

c−i∞
x−sψ(s) ds

=
2

27

√
3

π

1

2πi

∫ c+i∞

c−i∞

Γ(s− 2/3)Γ(s− 1/3)

Γ(s− 1/2)Γ(s+ 1)

(
4x

27

)−s
ds

=
2

27

√
3

π
G2,0

2,2

(
4x

27

∣∣∣∣−1/2, 1
−2/3,−1/3

)
,

where x ∈ (0, 27/4) (consult [11] for the role of c in the integrals). On the other hand,
for the parameters of the G-function we have

(−2/3− 1/3)− (−1/2 + 1) = −3/2 < 0

and hence the assumptions of formula 2.24.2.1 in [9] are satisfied. Therefore we can

apply the Mellin transform on Ṽ (x):∫ 27/4

0

xs−1Ṽ (x) dx =
2

27

√
3

π

∫ 27/4

0

xs−1G2,0
2,2

(
4x

27

∣∣∣∣−1/2, 1
−2/3,−1/3

)
dx

=
2

27

√
3

π

(
27

4

)s ∫ 1

0

us−1G2,0
2,2

(
u

∣∣∣∣−1/2, 1
−2/3,−1/3

)
du = ψ(s)
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whenever <s > 2/3. Consequently, Ṽ = V .
Now we use Slater’s formula (see [9], formula 8.2.2.3) and express V in terms of the

hypergeometric functions:

V (x) =
2

27

√
3

π

Γ(1/3)

Γ(1/6)Γ(5/3)

(
4x

27

)−2/3
2F1

(
−2

3
,
5

6
;
2

3

∣∣∣∣ 4x

27

)
+

2

27

√
3

π

Γ(−1/3)

Γ(−1/6)Γ(4/3)

(
4x

27

)−1/3
2F1

(
−1

3
,
7

6
;
4

3

∣∣∣∣ 4x

27

)
=

√
3

4πx2/3
2F1

(
−2

3
,
5

6
;
2

3

∣∣∣∣ 4x

27

)
+

1

2π
√

3x1/3
2F1

(
−1

3
,
7

6
;
4

3

∣∣∣∣ 4x

27

)
.

Applying the formula

2F1

(
t− 2

2
,
t+ 1

2
; t

∣∣∣∣ z) =
2t

2t

(
t− 1 +

√
1− z

) (
1 +
√

1− z
)1−t

(see [6]) for t = 2/3 and t = 4/3 we conclude the proof. �

4. Relations with free probability

In this part we are going to describe relations of µ0 with free probability. In particular
we will show that µ0 is infinitely divisible with respect to the additive free convolution.

Let us briefly describe the additive and multiplicative free convolutions. For details
we refer to [12, 7].

Denote by Mc the class of probability measures on R with compact support. For
µ ∈Mc, with moments

sm(µ) :=

∫
R
tm dµ(t),

and with the moment generating function:

Mµ(z) :=
∞∑
m=0

sm(µ)zm =

∫
R

dµ(t)

1− tz
,

we define its R-transform Rµ(z) by the equation

(8) Rµ

(
zMµ(z)

)
+ 1 = Mµ(z).

Then the additive free convolution of µ′, µ′′ ∈Mc is defined as the unique µ′�µ′′ ∈Mc

which satisfies
Rµ′�µ′′(z) = Rµ′(z) +Rµ′′(z).

If the support of µ ∈Mc is contained in the positive halfline [0,+∞) then we define
its S-transform Sµ(z) by

(9) Mµ

(
z

1 + z
Sµ(z)

)
= 1 + z or Rµ

(
zSµ(z)

)
= z.

on a neighborhood of 0. If µ′, µ′′ are such measures then their multiplicative free convo-
lution µ′ � µ′′ is defined by

Sµ′�µ′′(z) = Sµ′(z) · Sµ′′(z).

Recall, that for dilated measure we have: MDcµ(z) = Mµ(cz), RDcµ(z) = Rµ(cz) and
SDcµ(z) = Sµ(z)/c. The operations � and � can be regarded as free analogs of the
classical and Mellin convolution.
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For t > 0 let $t denote the Marchenko-Pastur distribution with parameter t:

(10) $t = max{1− t, 0}δ0 +

√
4t− (x− 1− t)2

2πx
dx,

with the absolutely continuous part supported on
[
(1−

√
t)2, (1 +

√
t)2
]
. Then

M$t(z) =
2

1 + z − tz +
√(

1− z − tz
)2 − 4tz2

(11)

= 1 +
∞∑
n=1

zn
n∑
k=1

(
n

k

)(
n

k − 1

)
tk

n
,(12)

(13) R$t(z) =
tz

1− z
, S$t(z) =

1

t+ z
.

In free probability the measures $t play the role of the Poisson distributions. Note that
from (13) the family {$t}t>0 constitutes a semigroup with respect to �, i.e. we have
$s �$t = $s+t for s, t > 0.

Theorem 4.1. The measure µ0 is equal to the additive free convolution µ0 = µ1 � µ2,
where µ1 = D2$1/2, so that

µ1 =
1

2
δ0 +

√
8− (x− 3)2

4πx
χ(3−

√
8,3+

√
8)(x) dx,(14)

and µ2 = 1
2
δ0 + 1

2
$1, i.e.

µ2 =
1

2
δ0 +

√
4x− x2
4πx

χ(0,4)(x) dx.(15)

The measures µ1, µ2 are infinitely divisible with respect to the additive free convolution
�, and consequently, so is µ0.

The absolutely continuous parts of the measures µ1, µ2 are represented in Fig. 1.A.

Proof. The moment generating function of µ0 is Mµ0(z) = G(z)/2. Then we have
Mµ0(0) = 1 and by (4)

2− z − 2(1 + 2z)Mµ0(z) + 8zMµ0(z)2 − 8z2Mµ0(z)3 = 0.

Let T (z) be the inverse function for Mµ0(z)− 1, so that T (0) = 0 and Mµ0

(
T (z)

)
=

1 + z. Then

2− T (z) + (−1− 2T (z))2(1 + z) + 8T (z)(1 + z)2 − 8T (z)2(1 + z)3 = 0,

which gives
8(1 + z)3T (z)2 − (8z2 + 12z + 3)T (z) + 2z = 0

and finally

T (z) =
8z2 + 12z + 3−

√
9 + 8z

16(1 + z)3
=

4z

8z2 + 12z + 3 +
√

9 + 8z
.

Therefore we can find the S-transform of µ0:

Sµ0(z) =
1 + z

z
T (z) =

8z2 + 12z + 3−
√

9 + 8z

16z(1 + z)2
=

4(1 + z)

8z2 + 12z + 3 +
√

9 + 8z
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and from (9) we get the R-transform:

Rµ0(z) =
4z − 1 +

√
1− 2z

2(1− 2z)
.

Now we observe that Rµ0(z) can be decomposed as follows:

Rµ0(z) =
z

1− 2z
+

1−
√

1− 2z

2
√

1− 2z
= R1(z) +R2(z).

Comparing with (13) we observe that R1(z) is the R-transform of µ1 = D2$1/2, which
implies that µ1 is �-infinitely divisible.

Consider the Taylor expansion of R2(z):

R2(z) =
∞∑
n=1

(
2n

n

)
2−n−1zn =

z

2
+ z2

∞∑
n=0

(
2(n+ 2)

n+ 2

)
2−n−3zn.

Since the numbers
(
2n
n

)
are moments of the arcsine distribution

1

π
√
x(4− x)

χ(0,4)(x) dx,

the coefficients of the last sum constitute a positive definite sequence. So R2(z) is R-
transform of a probability measure µ2, which is �-infinitely divisible (see Theorem 13.16
in [7]). Now using (8) we obtain

Mµ2(z) =
1 + 2z −

√
1− 4z

4z
=

1

2
+

1−
√

1− 4z

4z
=

1

2
+

1

1 +
√

1− 4z
.

Comparing with (11) for t = 1 we see that µ2 = 1
2
δ0 + 1

2
$1. �

Let us now consider the measures µ1, µ2 separately. For µ1 = D2$1/2 the moment
generating function is

Mµ1(z) =
2

1 + z +
√

1− 6z + z2
= 1 +

∞∑
n=1

zn
n∑
k=1

(
n

k

)(
n

k − 1

)
2n−k

n
,

so the moments are

1, 1, 3, 11, 45, 197, 903, 4279, 20793, 103049, 518859, . . . .

This is the A001003 sequence in OEIS (little Schroeder numbers), sn(µ1) is the number
of ways to insert parentheses in product of n + 1 symbols. There is no restriction on
the number of pairs of parentheses. The number of objects inside a pair of parentheses
must be at least 2.

On the subject of µ2, applying (9) we can find the S-transform:

Sµ2(z) =
2(1 + z)

(1 + 2z)2
=

1 + z

1/2 + z
· 1

1 + 2z
.

One can check, that 1+z
1/2+z

is the S-transform of 1
2
δ0 + 1

2
δ1, which yields

(16) µ2 =

(
1

2
δ0 +

1

2
δ1

)
� µ1.

We would like to thank G. Aubrun, C. Banderier, K. Górska and H. Prodinger for
fruitful interactions.
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(b) The density of µ0 = µ1 � µ2

Figure 1. The densities of µ1, µ2 and µ0 = µ1 � µ2
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