THE PROBABILITY MEASURE CORRESPONDING TO 2-PLANE TREES

WOJCIECH MŁOTKOWSKI, KAROL A. PENSON

Abstract

We study the probability measure μ_{0} for which the moment sequence is $\binom{3 n}{n} \frac{1}{n+1}$. We prove that μ_{0} is absolutely continuous, find the density function and prove that μ_{0} is infinitely divisible with respect to the additive free convolution.

1. Introduction

A 2-plane tree is a planted plane tree such that each vertex is colored black or white and for each edge at least one of its ends is white. Gu and Prodinger 33 proved, that the number of 2-plane trees on $n+1$ vertices with black (white) root is $\binom{3 n+1}{n} \frac{1}{3 n+1}$ (FussCatalan number of order 3 , sequence A001764 in OEIS [10]) and $\binom{3 n+2}{n} \frac{2}{3 n+2}$ (sequence A006013 in OEIS) respectively (see also [4]). We are going to study the sequence

$$
\begin{equation*}
\binom{3 n}{n} \frac{2}{n+1}=\binom{3 n+1}{n} \frac{1}{3 n+1}+\binom{3 n+2}{n} \frac{2}{3 n+2}, \tag{1}
\end{equation*}
$$

which begins with

$$
2,3,10,42,198,1001,5304,29070,163438, \ldots,
$$

of total numbers of such trees (A007226 in OEIS).
Both the sequences on the right hand side of (1) are positive definite (see [5, 6]), therefore so is the sequence $\binom{3 n}{n} \frac{2}{n+1}$ itself. In this paper we are going to study the corresponding probability measure μ_{0}, i.e. such that the numbers $\binom{3 n}{n} \frac{1}{n+1}$ are moments of μ_{0}. First we prove that μ_{0} is Mellin convolution of two beta distributions, in particular μ_{0} is absolutely continuous. Then we find the density function of μ_{0}. In the last section we prove, that μ_{0} can be decomposed as additive free convolution $\mu_{1} \boxplus \mu_{2}$ of two measures, which are both infinitely divisible with respect to \boxplus and are related to the Marchenko-Pastur distribution. In particular, the measure μ_{0} itself is \boxplus-infinitely divisible.

2. The generating function

Let us consider the generating function

$$
G(z)=\sum_{n=0}^{\infty}\binom{3 n}{n} \frac{2 z^{n}}{n+1} .
$$

[^0]According to (11), G is a sum of two generating functions. The former is usually denoted by \mathcal{B}_{3} :

$$
\mathcal{B}_{3}(z)=\sum_{n=0}^{\infty}\binom{3 n+1}{n} \frac{z^{n}}{3 n+1}
$$

and satisfies equation

$$
\begin{equation*}
\mathcal{B}_{3}(z)=1+z \cdot \mathcal{B}_{3}(z)^{3} . \tag{2}
\end{equation*}
$$

Lambert's formula (see (5.60) in [2]) implies, that the latter is just square of \mathcal{B}_{3} :

$$
\mathcal{B}_{3}(z)^{2}=\sum_{n=0}^{\infty}\binom{3 n+2}{n} \frac{2 z^{n}}{3 n+2},
$$

so we have

$$
\begin{equation*}
G(z)=\mathcal{B}_{3}(z)+\mathcal{B}_{3}(z)^{2} . \tag{3}
\end{equation*}
$$

Combining (2) and (3), we obtain the following equation for G :

$$
\begin{equation*}
2-z-(1+2 z) G(z)+2 z G(z)^{2}-z^{2} G(z)^{3}=0 \tag{4}
\end{equation*}
$$

which will be applied later on.
Now we will give formula for $G(z)$.
Proposition 2.1. For the generating function of the sequence (1) we have

$$
\begin{equation*}
G(z)=\frac{12 \cos ^{2} \alpha+6}{\left(4 \cos ^{2} \alpha-1\right)^{2}}, \tag{5}
\end{equation*}
$$

where $\alpha=\frac{1}{3} \arcsin (\sqrt{27 z / 4})$.
Proof. Denoting $(a)_{n}:=a(a+1) \ldots(a+n-1)$ we have

$$
\frac{2(3 n)!}{(n+1)!(2 n)!}=\frac{-2\left(\frac{-2}{3}\right)_{n+1}\left(\frac{-1}{3}\right)_{n+1} 27^{n+1}}{3(n+1)!\left(\frac{-1}{2}\right)_{n+1} 4^{n+1}} .
$$

Therefore

$$
G(z)=\frac{2-2 \cdot{ }_{2} F_{1}\left(\frac{-2}{3}, \frac{-1}{3} ; \frac{1}{2} \left\lvert\, \frac{27 z}{4}\right.\right)}{3 z} .
$$

Now we apply formula

$$
{ }_{2} F_{1}\left(\frac{-2}{3}, \frac{-1}{3} ; \left.\frac{-1}{2} \right\rvert\, u\right)=\frac{1}{3} \sqrt{u} \sin \left(\frac{1}{3} \arcsin (\sqrt{u})\right)+\sqrt{1-u} \cos \left(\frac{1}{3} \arcsin (\sqrt{u})\right),
$$

which can be proved by hypergeometric equation (note that both the functions $w \mapsto$ $w \sin \left(\frac{1}{3} \arcsin (w)\right), w \mapsto \cos \left(\frac{1}{3} \arcsin (w)\right)$ are even, so the right hand side is well defined for $|u|<1$). Putting $\alpha=\frac{1}{3} \arcsin (\sqrt{u}), u=27 z / 4$, we have $\sqrt{u}=\sin 3 \alpha$, $\sqrt{1-u}=\cos 3 \alpha$, which after elementary calculations gives (5).

3. The measure

In this part we are going to study the (unique) measure μ_{0} for which $\left\{\binom{3 n}{n} \frac{1}{n+1}\right\}_{n=0}^{\infty}$ is the moment sequence. We will show that μ_{0} can be expressed as the Mellin convolution of two beta distributions. Then we will provide explicit formula for the density function $V(x)$ of μ_{0}.

Recall (see [1]), that for $\alpha, \beta>0$, the beta distribution $\operatorname{Beta}(\alpha, \beta)$ is the absolutely continuous probability measure defined by the density function

$$
f_{\alpha, \beta}(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \cdot x^{\alpha-1}(1-x)^{\beta-1},
$$

for $x \in(0,1)$. The moments of $\operatorname{Beta}(\alpha, \beta)$ are

$$
\int_{0}^{1} x^{n} f_{\alpha, \beta}(x) d x=\frac{\Gamma(\alpha+\beta) \Gamma(\alpha+n)}{\Gamma(\alpha) \Gamma(\alpha+\beta+n)}=\prod_{i=0}^{n-1} \frac{\alpha+i}{\alpha+\beta+i} .
$$

For probability measures ν_{1}, ν_{2} on the positive half-line $[0, \infty)$ the Mellin convolution is defined by

$$
\begin{equation*}
\left(\nu_{1} \circ \nu_{2}\right)(A):=\int_{0}^{\infty} \int_{0}^{\infty} \chi_{A}(x y) d \nu_{1}(x) d \nu_{2}(y) \tag{6}
\end{equation*}
$$

for every Borel set $A \subseteq[0, \infty)\left(\chi_{A}\right.$ denotes the indicator function of the set $\left.A\right)$. This is the distribution of the product $X_{1} \cdot X_{2}$ of two independent nonnegative random variables with $X_{i} \sim \nu_{i}$. In particular, if $c>0$ then $\nu \circ \delta_{c}$ is the dilation of ν :

$$
\left(\nu \circ \delta_{c}\right)(A)=\mathbf{D}_{c} \nu(A):=\nu\left(\frac{1}{c} A\right),
$$

where δ_{c} denotes the Dirac delta measure at c.
If both the measures ν_{1}, ν_{2} have all moments

$$
s_{n}\left(\nu_{i}\right):=\int_{0}^{\infty} x^{n} d \nu_{i}(x)
$$

finite then so has $\nu_{1} \circ \nu_{2}$ and

$$
s_{n}\left(\nu_{1} \circ \nu_{2}\right)=s_{n}\left(\nu_{1}\right) \cdot s_{n}\left(\nu_{2}\right)
$$

for all n. The method of Mellin convolution has been recently applied to a number of related problems, see for example [6, 8].

Now we can describe the probability measure corresponding to the sequence $\binom{3 n}{n} \frac{1}{n+1}$.
Proposition 3.1. Define μ_{0} as the Mellin convolution

$$
\begin{equation*}
\mu_{0}=\operatorname{Beta}(1 / 3,1 / 6) \circ \operatorname{Beta}(2 / 3,4 / 3) \circ \delta_{27 / 4} . \tag{7}
\end{equation*}
$$

Then the numbers $\binom{3 n}{n} \frac{1}{n+1}$ are moments of μ_{0} :

$$
\int_{0}^{27 / 4} x^{n} d \mu_{0}(x)=\binom{3 n}{n} \frac{1}{n+1} .
$$

Proof. It is sufficient to check that

$$
\frac{(3 n)!}{(n+1)!(2 n)!}=\prod_{i=0}^{n-1} \frac{1 / 3+i}{1 / 2+i} \cdot \prod_{i=0}^{n-1} \frac{2 / 3+i}{2+i} \cdot\left(\frac{27}{4}\right)^{n}
$$

In view of formula (7), the measure μ_{0} is absolutely continuous and its support is the interval $[0,27 / 4]$. Now we are going to find the density function $V(x)$ of μ_{0}.
Theorem 3.2. Let

$$
\begin{aligned}
& V(x)=\frac{\sqrt{3}}{2^{10 / 3} \pi x^{2 / 3}}(3 \sqrt{1-4 x / 27}-1)(1+\sqrt{1-4 x / 27})^{1 / 3} \\
& \quad+\frac{1}{2^{8 / 3} \pi x^{1 / 3} \sqrt{3}}(3 \sqrt{1-4 x / 27}+1)(1+\sqrt{1-4 x / 27})^{-1 / 3},
\end{aligned}
$$

$x \in(0,27 / 4)$. Then V is the density function of μ_{0}, i.e.

$$
\int_{0}^{27 / 4} x^{n} V(x) d x=\binom{3 n}{n} \frac{1}{n+1}
$$

for $n=0,1,2, \ldots$.
The density $V(x)$ of μ_{0} is represented in Fig. 1.B.
Proof. Putting $n=s-1$ and applying the Gauss-Legendre multiplication formula

$$
\Gamma(m z)=(2 \pi)^{(1-m) / 2} m^{m z-1 / 2} \Gamma(z) \Gamma\left(z+\frac{1}{m}\right) \Gamma\left(z+\frac{2}{m}\right) \ldots \Gamma\left(z+\frac{m-1}{m}\right)
$$

we obtain

$$
\begin{gathered}
\binom{3 n}{n} \frac{1}{n+1}=\frac{\Gamma(3 n+1)}{\Gamma(n+2) \Gamma(2 n+1)}=\frac{\Gamma(3 s-2)}{\Gamma(s+1) \Gamma(2 s-1)} \\
\quad=\frac{2}{27} \sqrt{\frac{3}{\pi}}\left(\frac{27}{4}\right)^{s} \frac{\Gamma(s-2 / 3) \Gamma(s-1 / 3)}{\Gamma(s-1 / 2) \Gamma(s+1)}:=\psi(s) .
\end{gathered}
$$

Then ψ can be extended to an analytic function on the complex plane, except the points $1 / 3-n, 2 / 3-n, n=0,1,2, \ldots$.

Now we are going to apply a particular type of the Meijer G-function, see 9 for details. Let \widetilde{V} denote the inverse Mellin transform of ψ. Then we have

$$
\begin{aligned}
& \widetilde{V}(x)=\frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} x^{-s} \psi(s) d s \\
&=\frac{2}{27} \sqrt{\frac{3}{\pi}} \frac{1}{2 \pi \mathrm{i}} \int_{c-\mathrm{i} \infty}^{c+\mathrm{i} \infty} \frac{\Gamma(s-2 / 3) \Gamma(s-1 / 3)}{\Gamma(s-1 / 2) \Gamma(s+1)}\left(\frac{4 x}{27}\right)^{-s} d s \\
&=\frac{2}{27} \sqrt{\frac{3}{\pi}} G_{2,2}^{2,0}\left(\frac{4 x}{27}\right. \\
&\left.\begin{array}{l}
-1 / 2, \\
-2 / 3,-1 / 3
\end{array}\right),
\end{aligned}
$$

where $x \in(0,27 / 4)$ (consult [11] for the role of c in the integrals). On the other hand, for the parameters of the G-function we have

$$
(-2 / 3-1 / 3)-(-1 / 2+1)=-3 / 2<0
$$

and hence the assumptions of formula 2.24.2.1 in [9] are satisfied. Therefore we can apply the Mellin transform on $\widetilde{V}(x)$:

$$
\begin{aligned}
& \int_{0}^{27 / 4} x^{s-1} \widetilde{V}(x) d x=\frac{2}{27} \sqrt{\frac{3}{\pi}} \int_{0}^{27 / 4} x^{s-1} G_{2,2}^{2,0}\left(\frac{4 x}{27} \left\lvert\, \begin{array}{cc}
-1 / 2, & 1 \\
-2 / 3, & -1 / 3
\end{array}\right.\right) d x \\
& =\frac{2}{27} \sqrt{\frac{3}{\pi}}\left(\frac{27}{4}\right)^{s} \int_{0}^{1} u^{s-1} G_{2,2}^{2,0}\left(u \left\lvert\, \begin{array}{lc}
-1 / 2, & 1 \\
-2 / 3, & -1 / 3
\end{array}\right.\right) d u=\psi(s)
\end{aligned}
$$

whenever $\Re s>2 / 3$. Consequently, $\widetilde{V}=V$.
Now we use Slater's formula (see [9, formula 8.2.2.3) and express V in terms of the hypergeometric functions:

$$
\begin{gathered}
V(x)=\frac{2}{27} \sqrt{\frac{3}{\pi}} \frac{\Gamma(1 / 3)}{\Gamma(1 / 6) \Gamma(5 / 3)}\left(\frac{4 x}{27}\right)^{-2 / 3}{ }_{2} F_{1}\left(\frac{-2}{3}, \frac{5}{6} ; \frac{2}{3} \left\lvert\, \frac{4 x}{27}\right.\right) \\
+\frac{2}{27} \sqrt{\frac{3}{\pi}} \frac{\Gamma(-1 / 3)}{\Gamma(-1 / 6) \Gamma(4 / 3)}\left(\frac{4 x}{27}\right)^{-1 / 3}{ }_{2} F_{1}\left(\frac{-1}{3}, \frac{7}{6} ; \frac{4}{3} \left\lvert\, \frac{4 x}{27}\right.\right) \\
=\frac{\sqrt{3}}{4 \pi x^{2 / 3}}{ }_{2} F_{1}\left(\frac{-2}{3}, \frac{5}{6} ; \frac{2}{3} \left\lvert\, \frac{4 x}{27}\right.\right)+\frac{1}{2 \pi \sqrt{3} x^{1 / 3}}{ }_{2} F_{1}\left(\frac{-1}{3}, \frac{7}{6} ; \frac{4}{3} \left\lvert\, \frac{4 x}{27}\right.\right) .
\end{gathered}
$$

Applying the formula

$$
{ }_{2} F_{1}\left(\frac{t-2}{2}, \frac{t+1}{2} ; t \mid z\right)=\frac{2^{t}}{2 t}(t-1+\sqrt{1-z})(1+\sqrt{1-z})^{1-t}
$$

(see [6]) for $t=2 / 3$ and $t=4 / 3$ we conclude the proof.

4. Relations with free probability

In this part we are going to describe relations of μ_{0} with free probability. In particular we will show that μ_{0} is infinitely divisible with respect to the additive free convolution.

Let us briefly describe the additive and multiplicative free convolutions. For details we refer to [12, 7].

Denote by \mathcal{M}^{c} the class of probability measures on \mathbb{R} with compact support. For $\mu \in \mathcal{M}^{c}$, with moments

$$
s_{m}(\mu):=\int_{\mathbb{R}} t^{m} d \mu(t),
$$

and with the moment generating function:

$$
M_{\mu}(z):=\sum_{m=0}^{\infty} s_{m}(\mu) z^{m}=\int_{\mathbb{R}} \frac{d \mu(t)}{1-t z},
$$

we define its R-transform $R_{\mu}(z)$ by the equation

$$
\begin{equation*}
R_{\mu}\left(z M_{\mu}(z)\right)+1=M_{\mu}(z) . \tag{8}
\end{equation*}
$$

Then the additive free convolution of $\mu^{\prime}, \mu^{\prime \prime} \in \mathcal{M}^{c}$ is defined as the unique $\mu^{\prime} \boxplus \mu^{\prime \prime} \in \mathcal{M}^{c}$ which satisfies

$$
R_{\mu^{\prime} \boxplus \mu^{\prime \prime}}(z)=R_{\mu^{\prime}}(z)+R_{\mu^{\prime \prime}}(z) .
$$

If the support of $\mu \in \mathcal{M}^{c}$ is contained in the positive halfline $[0,+\infty)$ then we define its S-transform $S_{\mu}(z)$ by

$$
\begin{equation*}
M_{\mu}\left(\frac{z}{1+z} S_{\mu}(z)\right)=1+z \quad \text { or } \quad R_{\mu}\left(z S_{\mu}(z)\right)=z \tag{9}
\end{equation*}
$$

on a neighborhood of 0 . If $\mu^{\prime}, \mu^{\prime \prime}$ are such measures then their multiplicative free convolution $\mu^{\prime} \boxtimes \mu^{\prime \prime}$ is defined by

$$
S_{\mu^{\prime} \boxtimes \mu^{\prime \prime}}(z)=S_{\mu^{\prime}}(z) \cdot S_{\mu^{\prime \prime}}(z) .
$$

Recall, that for dilated measure we have: $M_{\mathbf{D}_{c \mu}}(z)=M_{\mu}(c z), R_{\mathbf{D}_{c \mu}}(z)=R_{\mu}(c z)$ and $S_{\mathbf{D}_{c \mu}}(z)=S_{\mu}(z) / c$. The operations \boxplus and \boxtimes can be regarded as free analogs of the classical and Mellin convolution.

For $t>0$ let ϖ_{t} denote the Marchenko-Pastur distribution with parameter t :

$$
\begin{equation*}
\varpi_{t}=\max \{1-t, 0\} \delta_{0}+\frac{\sqrt{4 t-(x-1-t)^{2}}}{2 \pi x} d x \tag{10}
\end{equation*}
$$

with the absolutely continuous part supported on $\left[(1-\sqrt{t})^{2},(1+\sqrt{t})^{2}\right]$. Then

$$
\begin{align*}
& M_{\varpi_{t}}(z)=\frac{2}{1+z-t z+\sqrt{(1-z-t z)^{2}-4 t z^{2}}} \tag{11}\\
&=1+\sum_{n=1}^{\infty} z^{n} \sum_{k=1}^{n}\binom{n}{k}\binom{n}{k-1} \frac{t^{k}}{n}, \tag{12}\\
& R_{\varpi_{t}}(z)=\frac{t z}{1-z}, \quad \quad S_{\varpi_{t}}(z)=\frac{1}{t+z} . \tag{13}
\end{align*}
$$

In free probability the measures ϖ_{t} play the role of the Poisson distributions. Note that from (13) the family $\left\{\varpi_{t}\right\}_{t>0}$ constitutes a semigroup with respect to \boxplus, i.e. we have $\varpi_{s} \boxplus \varpi_{t}=\varpi_{s+t}$ for $s, t>0$.

Theorem 4.1. The measure μ_{0} is equal to the additive free convolution $\mu_{0}=\mu_{1} \boxplus \mu_{2}$, where $\mu_{1}=\mathbf{D}_{2} \varpi_{1 / 2}$, so that

$$
\begin{equation*}
\mu_{1}=\frac{1}{2} \delta_{0}+\frac{\sqrt{8-(x-3)^{2}}}{4 \pi x} \chi_{(3-\sqrt{8}, 3+\sqrt{8})}(x) d x, \tag{14}
\end{equation*}
$$

and $\mu_{2}=\frac{1}{2} \delta_{0}+\frac{1}{2} \varpi_{1}$, i.e.

$$
\begin{equation*}
\mu_{2}=\frac{1}{2} \delta_{0}+\frac{\sqrt{4 x-x^{2}}}{4 \pi x} \chi_{(0,4)}(x) d x \tag{15}
\end{equation*}
$$

The measures μ_{1}, μ_{2} are infinitely divisible with respect to the additive free convolution \boxplus, and consequently, so is μ_{0}.

The absolutely continuous parts of the measures μ_{1}, μ_{2} are represented in Fig. 1.A.
Proof. The moment generating function of μ_{0} is $M_{\mu_{0}}(z)=G(z) / 2$. Then we have $M_{\mu_{0}}(0)=1$ and by (4)

$$
2-z-2(1+2 z) M_{\mu_{0}}(z)+8 z M_{\mu_{0}}(z)^{2}-8 z^{2} M_{\mu_{0}}(z)^{3}=0
$$

Let $T(z)$ be the inverse function for $M_{\mu_{0}}(z)-1$, so that $T(0)=0$ and $M_{\mu_{0}}(T(z))=$ $1+z$. Then

$$
2-T(z)+(-1-2 T(z)) 2(1+z)+8 T(z)(1+z)^{2}-8 T(z)^{2}(1+z)^{3}=0
$$

which gives

$$
8(1+z)^{3} T(z)^{2}-\left(8 z^{2}+12 z+3\right) T(z)+2 z=0
$$

and finally

$$
T(z)=\frac{8 z^{2}+12 z+3-\sqrt{9+8 z}}{16(1+z)^{3}}=\frac{4 z}{8 z^{2}+12 z+3+\sqrt{9+8 z}} .
$$

Therefore we can find the S-transform of μ_{0} :

$$
S_{\mu_{0}}(z)=\frac{1+z}{z} T(z)=\frac{8 z^{2}+12 z+3-\sqrt{9+8 z}}{16 z(1+z)^{2}}=\frac{4(1+z)}{8 z^{2}+12 z+3+\sqrt{9+8 z}}
$$

and from (9) we get the R-transform:

$$
R_{\mu_{0}}(z)=\frac{4 z-1+\sqrt{1-2 z}}{2(1-2 z)} .
$$

Now we observe that $R_{\mu_{0}}(z)$ can be decomposed as follows:

$$
R_{\mu_{0}}(z)=\frac{z}{1-2 z}+\frac{1-\sqrt{1-2 z}}{2 \sqrt{1-2 z}}=R_{1}(z)+R_{2}(z)
$$

Comparing with (13) we observe that $R_{1}(z)$ is the R-transform of $\mu_{1}=\mathbf{D}_{2} \varpi_{1 / 2}$, which implies that μ_{1} is \boxplus-infinitely divisible.

Consider the Taylor expansion of $R_{2}(z)$:

$$
R_{2}(z)=\sum_{n=1}^{\infty}\binom{2 n}{n} 2^{-n-1} z^{n}=\frac{z}{2}+z^{2} \sum_{n=0}^{\infty}\binom{2(n+2)}{n+2} 2^{-n-3} z^{n} .
$$

Since the numbers $\binom{2 n}{n}$ are moments of the arcsine distribution

$$
\frac{1}{\pi \sqrt{x(4-x)}} \chi_{(0,4)}(x) d x
$$

the coefficients of the last sum constitute a positive definite sequence. So $R_{2}(z)$ is R transform of a probability measure μ_{2}, which is \boxplus-infinitely divisible (see Theorem 13.16 in [7]). Now using (8) we obtain

$$
M_{\mu_{2}}(z)=\frac{1+2 z-\sqrt{1-4 z}}{4 z}=\frac{1}{2}+\frac{1-\sqrt{1-4 z}}{4 z}=\frac{1}{2}+\frac{1}{1+\sqrt{1-4 z}} .
$$

Comparing with (11) for $t=1$ we see that $\mu_{2}=\frac{1}{2} \delta_{0}+\frac{1}{2} \varpi_{1}$.
Let us now consider the measures μ_{1}, μ_{2} separately. For $\mu_{1}=\mathbf{D}_{2} \varpi_{1 / 2}$ the moment generating function is

$$
M_{\mu_{1}}(z)=\frac{2}{1+z+\sqrt{1-6 z+z^{2}}}=1+\sum_{n=1}^{\infty} z^{n} \sum_{k=1}^{n}\binom{n}{k}\binom{n}{k-1} \frac{2^{n-k}}{n},
$$

so the moments are

$$
1,1,3,11,45,197,903,4279,20793,103049,518859, \ldots .
$$

This is the A001003 sequence in OEIS (little Schroeder numbers), $s_{n}\left(\mu_{1}\right)$ is the number of ways to insert parentheses in product of $n+1$ symbols. There is no restriction on the number of pairs of parentheses. The number of objects inside a pair of parentheses must be at least 2 .

On the subject of μ_{2}, applying (9) we can find the S-transform:

$$
S_{\mu_{2}}(z)=\frac{2(1+z)}{(1+2 z)^{2}}=\frac{1+z}{1 / 2+z} \cdot \frac{1}{1+2 z}
$$

One can check, that $\frac{1+z}{1 / 2+z}$ is the S-transform of $\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}$, which yields

$$
\begin{equation*}
\mu_{2}=\left(\frac{1}{2} \delta_{0}+\frac{1}{2} \delta_{1}\right) \boxtimes \mu_{1} . \tag{16}
\end{equation*}
$$

We would like to thank G. Aubrun, C. Banderier, K. Górska and H. Prodinger for fruitful interactions.

Figure 1. The densities of μ_{1}, μ_{2} and $\mu_{0}=\mu_{1} \boxplus \mu_{2}$

References

[1] N. Balakrishnan, V. B. Nevzorov, A primer on statistical distributions, Wiley-Interscience, Hoboken, N. J. 2003.
[2] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley, New York 1994.
[3] N. S. S. Gu and H. Prodinger, Bijections for 2-plane trees and ternary trees, European J. of Combinatorics 30 (2009), 969-985.
[4] N. S. S. Gu, H. Prodinger, S. Wagner, Bijection for a class of labeled plane trees, European J. of Combinatorics 31 (2010) 720-732.
[5] W. Młotkowski, Fuss-Catalan numbers in noncommutative probability, Documenta Math. 15 (2010) 939-955.
[6] W. Młotkowski, K. A. Penson, K. Życzkowski, Densities of the Raney distributions, arXiv:1211.7259
[7] A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge University Press, 2006.
[8] K. A. Penson, K. Życzkowski, Product of Ginibre matrices: Fuss-Catalan and Raney distributions Phys. Rev. E 83 (2011) 061118, 9 pp.
[9] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integrals and Series, Gordon and Breach, Amsterdam (1998) Vol. 3: More special functions.
[10] N. J. A. Sloane, The On-line Encyclopedia of Integer Sequences, (2013), published electronically at: http://oeis.org/.
[11] I. N. Sneddon, The use of Integral Transforms, Tata McGraw-Hill Publishing Company, 1974.
[12] D. V. Voiculescu, K. J. Dykema, A. Nica, Free random variables, CRM, Montréal, 1992.
Instytut Matematyczny, Uniwersytet Wroceawski, Plac Grunwaldzki 2/4, 50-384 Wroceaw, Poland

E-mail address: mlotkow@math.uni.wroc.pl
Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), Université Pierre et Marie Curie, CNRS UMR 7600, Tour 13 - 5ième ét., Boîte Courrier 121, 4 place Jussieu, F 75252 Paris Cedex 05, France

E-mail address: penson@lptl.jussieu.fr

[^0]: 2010 Mathematics Subject Classification. Primary 44A60; Secondary 46L54.
 Key words and phrases. beta distribution, free convolution, Meijer function.
 W. M. is supported by the Polish National Science Center grant No. 2012/05/B/ST1/00626.
 K. A. P. acknowledges support from PAN/CNRS under Project PICS No. 4339 and from Agence Nationale de la Recherche (Paris, France) under Program PHYSCOMB No. ANR-08-BLAN-0243-2.

