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Abstract

“The Baron’s omni-sequence”, B(n), first defined by Khovanova and Lewis (2011),

is a sequence that gives for each n the minimum number of weighings on balance scales

that can verify the correct labeling of n identically-looking coins with distinct integer

weights between 1 gram and n grams.

A trivial lower bound on B(n) is log3 n, and it has been shown that B(n) is

log3 n + O(log log n). In this paper we give a first nontrivial lower bound to the

Münchhausen problem, showing that there is an infinite number of n values for

which B(n) 6= ⌈log3 n⌉.

Furthermore, we show that if N(k) is the number of n values for which k =

⌈log3 n⌉ and B(n) 6= k, then N(k) is an unbounded function of k.
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1 Introduction

Coin-weighing puzzles have been abundantly discussed in the mathematical literature over

the past 60 years (see, e.g. [11, 6, 10, 5]). In coin-weighing problems one must typically

identify a counterfeit coin from a set of identically-looking coins by use of balance scales,

utilizing the knowledge that the counterfeit coin has distinctive weight. This can be gen-

eralized to the problem of identifying a coin, or a subset of the coins, based on distinctive

weight characteristics, or, alternatively, to the problem of establishing the weight of a given

coin.

This paper relates to a different kind of coin-weighing puzzle, which we call “The

Münchhausen coin-weighing problem” (following, e.g., [2]). Consider the following ques-

tion: given n coins with distinct integer weights between 1 gram and n grams, each labeled

by a distinct integer label between 1 and n, what is the minimum number of weighings of

these n coins on balance scales that can prove unequivocally that all coins are labeled by

their correct weight?

This question differs from classic coin-weighing problems in that we do not need to

discover the weights, but only to determine whether or not a given labeling of weights is

the correct one. To establish the weights one would require Ω(n log n) weighings (as can be

proved by reasoning similar to that which establishes lower bounds for comparative sorting

[9, 4]), whereas merely verifying an existing labeling can be performed trivially in O(n)

weighings.

This question, inspired by a riddle that appeared in the Moscow Mathematical Olympiad

[1], gives rise to an integer sequence, B(n), that was studied in [8] and was dubbed there

“The Baron’s omni-sequence”. It appears as sequence A186313 in the On-line Encyclopedia

of Integer Sequences [7].

Though much progress has been made to tighten the known upper bounds on B(n)
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[8, 3, 2], the trivial lower bound of log3 n has proved surprisingly resilient. This lower

bound stems from the straightforward observation that if the number of weighings is less

than log3 n, there must be at least two coins that participate in all weighings in identical

roles. (For each weighing, they are either both on the left-hand side of the scales, both on

the right-hand side or both held out from the weighing.) This being the case, the weights

of the two coins can be exchanged with no change to the outcome of any of the weighings,

and therefore the weighings cannot provide an unequivocal verification of the weights.

In this paper we present a first nontrivial lower bound for this problem. Namely, we

prove the following theorem.

Theorem 1. For any n,

3B(n) ≥ n+ Ω(log log n). (1)

Equivalently,

N(k) ∈ Ω(log k), (2)

where N(k) is the number of n values for which k = ⌈log3 n⌉ and B(n) 6= k.

2 Proof of the main theorem

We begin by introducing some terminology. First, following [2], we describe sequences of

weighings by means of matrices. A k×n matrix, M , whose elements, Mij belong to the set

{−1, 0, 1}, describes a sequence of k weighings of n coins. If Mij = 1, this indicates that

coin j is to be placed on the right hand side of the scales on the i’th weighing. If it is −1,

the coin is to be placed on the left hand side. A “0” indicates that on the i’th weighing

the coin is to be held out.

In the case of the Münchhausen problem, it is known what weights the coins to be

weighed are: the first coin weighs 1 gram, the second weighs 2 grams, and so on. We
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describe these weights by the vector ~n = [1, . . . , n]T . The result of the weighing sequence

is therefore given by the element-wise signs of the vector M~n. We describe the operation

including both multiplication by ~n and sign-taking by the single operator w(M).

A matrix is Münchhausen if the sequence of weighings it describes generates a sequence

of weigh results (signs) when weighing ~n that is unique among all possible permutations

of ~n. Equivalently, a matrix is Münchhausen if w(M) = w(Mπ) ⇒ π = I for an n × n

permutation matrix π.

The Baron’s omni-sequence is the sequence that gives for each n the minimum k for

which there exists a k × n Münchhausen matrix.

Theorem 1 gives a first nontrivial lower bound on k. We prove it now.

Proof of Theorem 1. Consider, first, the trivial lower bound for the Baron’s omni-sequence.

In matrix terminology, we claim that if a k × n matrix, M , is Münchhausen, then n ≤ 3k.

The reason for this is that if n > 3k, at least two of M ’s columns are identical. A

permutation π permuting the columns of M by switching identical columns will have no

effect on it: we have M = Mπ, and therefore necessarily also w(M) = w(Mπ).

The relevant observation regarding this proof is that it demonstrates that the columns

of M must be distinct. Because they all belong to the set {−1, 0, 1}k, of size 3k, the set,

C, of choices for the set of M ’s columns (ignoring their order) is limited by |C| ≤
(

3k

n

)

.

Consider, now, row permutations on M . For an M with a large k, there are many row

permutations of M that do not change w(M). For example, consider that each row of M

generates a sign that has only 3 possibilities. As such, there will be at least ⌈k/3⌉ rows

that share the same generated sign. Any σ1, σ2 of the (⌈k/3⌉)! possible row permutations

on M that keep all rows other than these ⌈k/3⌉ as fixed points share the same w(σ1M) =

w(σ2M) = w(M). We define R to be the set of all row permutations that satisfy w(σM) =

w(M), noting that |R| ≥ (⌈k⌉ /3⌉)!.
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We claim that for M to be Münchhausen,

|C| ≥ |R|. (3)

If we define l = 3k − n, then |C| ≤
(

3k

n

)

implies |C| < 3kl. On the other hand, log3 |R|

is Ω(k log k), so Equation (3) implies that l is Ω(log k).

Because a lower bound for l is also a lower bound for N(k) of Equation (2), Equation (3)

directly implies Equation (2), which, in turn, implies Equation (1), because k is Ω(log n).

In other words, proving Equation (3) is tantamount to proving the entire theorem. We

now proceed to establish this claim.

We define the relation f : R → C as follows. For σ ∈ R, f(σ) is the set of columns of

σM . Because changing the order of the weighings clearly has no effect on whether or not

a set of weighings establishes unequivocally the weights of n coins, σM is Münchhausen

if and only if M is Münchhausen, so by definition the set of columns of σM is necessarily

a member of C. Instead of showing Equation (3), we make the stronger claim that f is

one-to-one.

To prove this, let us assume to the contrary that f is not one-to-one. This indicates

the existence of two row permutations σ1, σ2 ∈ R for which f(σ1) = f(σ2). Because

the application of a permutation is invertible, we know that σ1M 6= σ2M . The two are

therefore related by a column permutation, π, which is not the identity, as follows:

σ1Mπ = σ2M.

Let σ
def
= σ−1

2 σ1, then

σMπ = M.
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Recall that by definition of R, we have w(M) = w(σM), so

w(σMπ) = w(M) = w(σM),

so by definition σM cannot be a Münchhausen matrix. However, as argued earlier, σM is

Münchhausen if and only if M is Münchhausen, so the above implies that M , too, is not

Münchhausen, contradicting the assumption.

3 Conclusions

With the new Theorem 1, the best known bounds now place n between 3k − Ω(log k) and

3k/O(polylog k), for n to satisfy B(n) = k. This still leaves a significant window for

further refinement. At the current time, it is not even known whether B(n) is a monotone

sequence.
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