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HIGHLY SYMMETRIC FUNDAMENTAL CELLS FOR LATTICES IN R2

AND R3

D. FRETTLÖH

Abstract. The fundamental cell of a lattice Γ in Rd is the fundamental domain Rd/Γ,
viewed as a compact subset of Rd. It is shown that most lattices Γ in R2 and R3 possess
fundamental cells F having more symmetries than the point group P (Γ), i.e., the group
P (Γ) ⊂ O(d) fixing Γ. In particular, P (Γ) is a subgroup of the symmetry group S(F ) of F
of index 2 in these cases. The exceptions are rhombic lattices in the plane case and cubic
lattices in the three-dimensional case.

1. Introduction

The question inspiring this work was “Given a group G acting on some space X. How much
symmetries can the fundamental domain X/G have, compared to G?”. Symmetry of G can be
understood as symmetry of the Cayley graph of G, or symmetry of some canonical embedding
of G in X. Symmetry in X can be formulated if X is a metric group, for instance. We will
specify a particular instance of this question here and provide some answers.

A lattice in Rd is the Z-span of d linearly independent vectors in Rd. The point group P (Γ)
of a lattice Γ in Rd is the set of Euclidean motions fixing both Γ and the origin. In other
words, P (Γ) ⊂ O(d) is the set of orthogonal maps fixing Γ. It is clear that each lattice Γ has
a fundamental cell having P (Γ) as its symmetry group, see Lemma 1.4. (For more detailed
definitions see below.) For instance, consider the square lattice Z2 in the plane R2. Its point
group P (Z2) is the dihedral group D4 of order eight, containing rotations by 0, π/2, π, 3π/2,
together with four reflections. One possible fundamental cell of Z2 is a unit square, centred
in 0. Clearly P (Z2) is the symmetry group of this unit square as well.

In this paper we show that most lattices in R2 and R3 possess fundamental cells with more
symmetry than the point group of the lattice. In general, these fundamental cells will be
neither simply connected, nor will their interior be connected. Some of these cells are of
fractal appearance. The two main results are the following.

Theorem 1.1. Let Γ ⊂ R2 be a lattice with point group P (Γ), such that Γ is not a rhombic
lattice. Then there is a compact fundamental cell F of Γ with symmetry group S(F ) such
that P (Γ) is a subgroup of S(F ) of index [S(F ) : P (Γ)] = 2.

Theorem 1.2. Let Γ ⊂ R3 be a lattice with point group P (Γ), such that Γ is not a cubic
lattice. Then there is a compact fundamental cell F of Γ with symmetry group S(F ) such
that P (Γ) is a subgroup of S(F ) of index [S(F ) : P (Γ)] = 2.

In the remainder of this section the necessary definitions and notations are introduced. Section
2 is dedicated to the proof of Theorem 1.1, Section 3 contains the proof of Theorem 1.2.
Section 4 contains some remarks and further questions.
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2 D. FRETTLÖH

Notation: Cn denotes the cyclic group of order n. Dn denotes the dihedral group of order
2n. O(d) is the orthogonal group over Rd. O(d) can be identified with the group of Euclidean
motions (i.e. isometries of Rd, including reflections) fixing the origin. The closure of a set
A ⊂ Rd is denoted by cl(A). For any set X ⊂ Rd, let S(X) denote the symmetry group of X;
that is, the set of all Euclidean motions (including reflections and translations) ϕ : Rd → Rd

with ϕ(X) = X. The cone centred in x spanned by m vectors v1, . . . vm ∈ Rd is defined by

cone(x; v1, . . . , vm) = {x+
m
∑

i=1

λivi : λi ≥ 0}.

A sum A+B, where A,B ⊂ Rd, always means the Minkowski sum

A+B = {a+ b | a ∈ A, b ∈ B}.
The line segment with endpoints x, y ∈ Rd is denoted by [x, y]. A lattice in Rd is a discrete
cocompact subgroup of Rd. Any lattice in Rd can be written as 〈b1, . . . , bd〉Z, where b1, . . . bd
span Rd. Such a set b1, . . . , bd is called a basis of the lattice. A basis of a given lattice is not
unique.

The fundamental domain of a lattice Γ is Rd/Γ. By a fundamental cell we denote the closure
of some geometric embedding of a fundamental domain into Rd. For instance, a fundamental
domain of Zd is the d-torus, and a fundamental cell of the lattice Zd in Rd is the d-dimensional
unit cube [0, 1]d. A particular fundamental cell of a lattice Γ = 〈b1, . . . , bd〉Z is the fundamental
parallelepiped [0, b1] + . . . + [0, bd]. Note that for any fundamental cell F of a lattice Γ,
{F + g | g ∈ Γ} is a tiling of Rd. A tiling of Rd is a packing of Rd which is also a covering of
Rd. In other words, a tiling is a covering of Rd by pairwise non-overlapping compact sets Ti.
Two compact sets are non-overlapping if their interiors are disjoint.

Trivially, the symmetry group S(Γ) of any lattice contains a subgroup isomorphic to Γ, namely,
the group of all translations by elements of Γ. The subgroup P (Γ) = S(Γ)/Γ is called point
group of Γ. For lattices in Rd, one has:

S(Γ) = P (Γ)⋉ Γ.

The following fact is usually called the crystallographic restriction (see for instance [6], Section
4.5).

Proposition 1.3. Rotations fixing a lattice in R2 or R3 are either 2-fold, 3-fold, 4-fold or
6-fold.

The Voronoi cell of a lattice point x in Rd is the set of points in Rd whose distance to x is
not greater than their distance to any other lattice point. It is easy to see that for any lattice
Γ ⊂ Rd the closed Voronoi cell V = V (0) of 0 is a fundamental cell of Γ with S(V ) = P (Γ).
We formulate this as a lemma.

Lemma 1.4. If Γ is a lattice in Rd then Γ has a fundamental cell F such that S(F ) = P (Γ).

We will use orbifold notation to denote planar symmetry groups in the sequel, compare [3].
For instance, ∗442 denotes the symmetry group S(Z2) of the square lattice Z2, and ∗432
denotes the symmetry group of the cube. For a translation of orbifold notation into your
favourite notation, see [3] or [18]. In principle we can denote cyclic groups Cn and dihedral
groups Dn in orbifold notation, too. Since the sign for Cn—regarded as the symmetry group
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of some object in the plane—is just n in orbifold notation, we will rather use the former
abbreviation for the sake of clarity.

2. Dimension 2

From the theory of Coxeter groups [4, 5, 11] we know the list of all finite groups of Euclidean
motions. Thus we know that each finite group of Euclidean motions in the plane is either Cn

or Dn. By the crystallographic restriction (Proposition 1.3) there are just 10 candidates for
such groups being point groups of a planar lattice, namely

C1, C2, C3, C4, C6,D1,D2,D3,D4,D6.

Note that C2 and D1 are equal as abstract groups, since there is only one group of order
two up to isomorphisms. But since we are dealing with groups of Euclidean motions, we will
use the convention that a cyclic group Cn contains rotations only, and a dihedral group Dn

contains n rotations (including the identity) and n reflections. The fact that each planar
lattice is fixed under a rotation through π about the origin implies that C1, C3, D1 and D3

cannot be point groups of any planar lattice. Some further thought yields the following result.

Proposition 2.1. If Γ is a lattice in R2, then P (Γ) ∈ {C2,D2,D4,D6}, and S(Γ) ∈ {∗632,
∗442, ∗2222, 2 ∗ 22, 2222}.

This result is well known. Nevertheless, since we are not aware of a decent reference, we will
sketch the proof here.

Proof. We consider the distinct possibilities of properties of basis vectors of Γ. First, if Γ
has a basis of two orthogonal vectors of equal length, this yields (up to similarity) the square
lattice Z2, with point group D4 and symmetry group ∗442. Second, if Γ has a basis of two
vectors of equal length with angle π/3, this yields (up to similarity) the hexagonal lattice

A2 = 〈(1, 0)T , (12 ,
√
3
2 )T 〉Z, with point group D6 and symmetry group ∗632. Third, if Γ has

a basis of two vectors of equal length, but neither with angle π/3 nor π/2 nor 2π/3, then
Γ is called rhombic lattice and has point group D2 and symmetry group 2 ∗ 22. A planar
lattice which has orthogonal basis vectors of different length (but not of equal length) is
called rectangular lattice. It has also point group D2, but its symmetry group is ∗2222.
In particular, the entire symmetry group of a rhombic lattice is not isomorphic to the entire
symmetry group of a rectangular lattice, even though their point groups agree. (Compare [13],
p 210.) All other lattices are called oblique lattices and have point group C2, and symmetry
group 2222. �

Regarding the five cases above in connection with Lemma 1.4 one obtains that one possible
fundamental cell of the hexagonal (square, rectangular, rhombic, oblique) lattice is a regular
hexagon (square, rectangle, hexagon with D2 symmetry, hexagon with C2 symmetry). We
will proof Theorem 1.1 by considering four out of these five cases. The first case—the square
lattice—is due to V. Elser [7]. To the knowledge of the author his proof has not been published
anywhere, so we give a detailed proof here.

Proposition 2.2 (Elser). The square lattice Z2 has a fundamental cell F� with S(F�) = D8.
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Figure 1. The first step of the construction of a fundamental cell for the
square lattice with eight-fold symmetry. The shaded octagon is F0.

Proof. The point group of the square lattice Z2 is D4. The claim is proved by constructing a
fundamental cell F� of Z2 with symmetry group D8.

Consider a packing of R2 by regular octagons, such that each x ∈ Z2 is the centre of some
octagon. Let all octagons be of edge length ℓ :=

√
2 − 1 and non-overlapping, see Figure

1. The packing looks like the Archimedean tiling 4.82 by octagons and squares, where the
squares are the holes of the packing. The intersection of two distinct octagons is either empty,
or a full edge. Denote this octagon packing by P0.

Let the octagon centred in 0 be distinguished from the others, for instance, by colouring this
octagon red and all other octagons white. Let F0 denote the red octagon. Now consider a
further packing by smaller octagons of edge length ℓ(

√
2−1), such that each vertex of a large

octagon is the centre of some small octagon (see Figure 2). The packing of R2 by these small
octagons is denoted by P1.

Proceed with each small octagon O in P1 according to the following rules: If the centre of O
is the vertex of two white octagons in P0, then O is coloured white. If the centre of O is the
vertex of one white and one red octagon in P0, then we divide O as follows: Let

e0 :=
(

1
0

)

,e1 := 2−1/2
(

1
1

)

,e2 :=
(

0
1

)

,e3 := 2−1/2
(−1

1

)

,ei+4 := −ei (0 ≤ i ≤ 4).

For convenience, let e8 := e0. Denote the centre of O by x. O is divided into eight pieces
O1, . . . , O8 by the cones cone(x;ei,ei+1):

Oi = O ∩ cone(x;ei,ei+1) (0 ≤ i ≤ 7).

Now, since O is centred on the vertex of two large octagons, exactly two of the eight points
x+ ℓ(ei + ei+1) are centres of large octagons in P0. (see Figure 2). Note, that if x+ ℓ(ei +
ei+1), x+ℓ(ej+ej+1) are those points, then |i−j| = 3. Thus the following rule is well-defined.
If x+ ℓ(e0 + e1) (or x+ ℓ(e2 + e3), or x+ ℓ(e4 + e5), or x+ ℓ(e6 + e7)) is the centre of a red
octagon, then O0, O2, O4, O6 are coloured red, O1, O3, O5, O7 are coloured white. Analogously,
if x+ ℓ(e0+e1) (or x+ ℓ(e2+e3), or x+ ℓ(e4+e5), or x+ ℓ(e6+e7)) is the centre of a white
octagon, then O0, O2, O4, O6 are coloured white, O1, O3, O5, O7 are coloured red. Denote the
union of all red pieces of small octagons by R1. Now let F1 := cl((F0 \ P1) ∪R1).
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Figure 2. The second step of the construction of an eight-fold symmetric
fundamental cell for the square lattice. The shaded part is F1.

Note that the colouring scheme in the last step can in principle produce octagons of three
different kinds: purely red octagons (all its vertices are red), purely white octagons (all its
vertices are white) and octagons of mixed colour (then its vertices are alternating red-white-
red-white...)

Let us proceed in an analogous manner. Let O(n) be the octagon of edge length (
√
2 − 1)n.

Place translates of O(n) on all vertices of the octagons of the previous packing Pn−1. Denote
this octagon packing by Pn. (Figure 3 indicates the third step of this construction.) Note that

the centre of each of these octagons O(n)+x are vertices of either one or two larger octagons in
Pn−1. If the centre of O

(n)+x is vertex of only one larger octagon, O(n)+x inherits its colour
from this vertex. Similarly, if the centre of O(n)+x is vertex of two larger octagons, and these
two vertices possess the same colour, O(n) + x inherits its colour from these two vertices. If
the centre of O(n)+x is both a white vertex (of one larger octagon in Pn−1) and at the same a

red vertex (of another larger octagon in Pn−1), we cut O
(n)+x into eight pieces O

(n)
0 , . . . , O

(n)
7

precisely as above. Then exactly two of the eight points x+ (
√
2− 1)n(ei + ei+1) are centres

of some octagons in Pn−1. As above, if x+ (
√
2− 1)n(e0 + e1), or x+ (

√
2− 1)n(e2 + e3), or

x+(
√
2−1)n(e4+e5), or x+(

√
2−1)n(e6+e7)) is the centre of a red octagon (white octagon),

then O
(n)
0 , O

(n)
2 , O

(n)
4 , O

(n)
6 are coloured red (white), O

(n)
1 , O

(n)
3 , O

(n)
5 , O

(n)
7 become white (red).

Denote the union of all red pieces of small octagons by Rn. Now let Fn := cl((Fn−1\Pn)∪Rn).

By construction, each Fn has D8-symmetry. Let F� be the closure of the limit of the sequence
Fn for n → ∞. Then F� has D8-symmetry as well. It remains to show that F� is a well-
defined compact set, and that F� is a fundamental cell for the square lattice. The latter is
equivalent to saying that {F + x |x ∈ Z2} is a tiling of R2.

Let us postpone the question of the compactness of F�. Clearly, in each step, Z2 + Fn is a
packing, where the holes occupy c · (

√
2− 1)n of the plane, where c = (

√
2− 1)2 = 3− 2

√
2 =

0.1715728 . . . is the portion of the plane occupied by the holes in the packing P0. Thus the
portion of the plane occupied by holes tends to zero in the packing Pn with growing n.
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Figure 3. The third step of the construction of an eight-fold symmetric fun-
damental cell for the square lattice

Moreover, in each step, Fn and x + Fn are non-overlapping (x ∈ Z2). This can be seen as
follows: By construction, the red parts and the white parts are distinct, thus their closures
are non-overlapping. We can repeat the construction with any other octagon coloured red,
instead of the octagon at 0. Again, this new fundamental cell (F + e1, say) does not overlap
with any white parts. In particular, it does not overlap with F . Consequently, F does not
overlap with any of its neighbours x+ F, (x ∈ Γ, x 6= 0). Thus the limit of Pn = Z2 + Fn is
a tiling of the plane, assumed F� is a compact set.

We are left with showing that F� is compact. Since we defined F� as the closure of limn→∞ Fn,
it suffices to show that F� is bounded. This follows from the construction: The diameter of

Figure 4. The fundamental cell F� (black) of Z2 and some of its copies,
illustrating how they form a tiling.
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Figure 5. The first two iterates of the construction of the 12-fold fundamental
cell F△ of the hexagonal lattice A2 (left and middle), and a higher iterate
(right).

F0 (a regular octagon with edge length one) is h := 2

√

1−
√
2
2 . In each step, the diameter of

Fn grows by h(
√
2− 1)n. Thus the diameter of F� is

(1) diam(F ) =
∑

n≥0

h(
√
2− 1)n =

h

1− (
√
2− 1)

=

√

2 +
√
2 = 1.847759 . . .

In particular, F� is bounded. �

Proposition 2.3. The hexagonal lattice A2 has a compact fundamental cell F△ with S(F△) =
D12.

Proof (sketch). The proof is very similar to the proof of Proposition 2.2. One starts with
a packing Q0 by regular dodecagons, each one centred on a point of the hexagonal lattice
A2, leaving triangular holes (corresponding to the Archimedean tiling 3.122 by triangles and
dodecagons). Then one places smaller dodecagons on the vertices of the larger ones, either
white, red or mixed, compare Figure 5. Iteration yields a fundamental cell F△ of A2 with
S(F△) = D12, see Figure 5, right. Proving that F△ is a fundamental cell is completely
analogous to the proof of Proposition 2.2. The diameter of F△ is

(2) diam(F△) =
2√
3

∑

n≥0

(2−
√
3)n =

1

3
(3 +

√
3) = 1.57735 . . .

�

Interestingly, the set F△ appears in an entirely different context in [1].

Proof (of Theorem 1.1). We consider the four cases when Γ is a square lattice, a hexagonal
lattice, a rectangular lattice and an oblique lattice.

Case 1: Γ = Z2: This is Proposition 2.2. We have S(F�) = D8 and P (Γ) = D4.

Case 2: Γ = A2: This is Proposition 2.3. We have S(F△) = D12 and P (Γ) = D6.
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(x,0)

(y,z)
F

Figure 6. A fundamental cell for an oblique lattice, with D2-symmetry.

Case 3: Let Γ be an oblique lattice. Without loss of generality one basis of Γ is b1 =
(

x
0

)

, b2 =
(

y
z

)

, z 6= 0. (A canonical fundamental cell is the parallelogram F ′ = [0, b1] + [0, b2].) Then,

let F be the rectangle with vertices
(

0
0

)

,
(

x
0

)

,
(

x
z

)

,
(

0
z

)

, see Figure 6.

It is easy to see that Γ+F = R2, and the copies of F do not overlap. Thus F is a fundamental
cell of Γ. We have S(F ) = D2 and P (Γ) = C2.

Case 4: Let Γ be a rectangular lattice, with basis
(

a
0

)

,
(

0
b

)

. In a similar way as in the proof
of Proposition 2.2, we will construct a fundamental domain with D4-symmetry, whereas
P (Γ) = D2.

Without loss of generality, let a > b. First, consider a square packing P0 with squares of
edge length b, where each x ∈ Γ is the centre of some square in P0 (see Figure 7). For later
purposes, let r0 = a, r1 = b, and v1 = ⌊ab ⌋, where ⌊x⌋ denotes the largest integer less or equal
to x. Distinguish the square with centre 0 from the others, say, by colouring it black and the
other squares grey. Let F0 denote the black square.

In the following it is convenient to distinguish between a ‘step’ of the procedure and an
‘iteration’ of the procedure. A step consists of one or more iterations. An iteration means
placing squares of some edge length ℓ on all vertices of the squares in the current packing
Pm,j , yielding a packing Pm,j+1. The next iteration in the same step places squares on all
vertices of squares in Pm,j+1, and so on. These new squares have the same edge length ℓ as in
the last iteration (see Figure 8). If such an iteration is no longer possible without producing
overlaps, one goes over to the next step. In the next step we place squares with an an edge
length strictly smaller than ℓ (see Figure 7). Several iterations—using squares of the same
edge length—are considered as one single step of the procedure.

In the first step, the first iteration is placing squares of edge length r1 = b on each vertex
of the squares in P0. Denote the collection of these new squares by P1,1. There are two
possibilities: A small square S ∈ P1,1 is centred on two coincident vertices of grey squares of
P0. Then S is coloured grey. Or the small square S is centred on the vertex of a grey square
W which coincides with a vertex of a black square G. Then S gets two colours: One quarter
of S, namely, S ∩W , is coloured grey. The opposite quarter of S is also coloured grey. The
two remaining quarters, S ∩ G and its opposite, are coloured black (see Figure 7). Denote
the union of the black pieces (black squares or black parts of squares) of P1,1 by B1,1. Let
F1,1 := cl((F0 \ P1,1) ∪ B). If v1 > 1, do further iterations (placing squares of edge length
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r1 = b on the vertices in P1,1 and so on), altogether v1 times. In each iteration we get a
packing P1,m and a set F1,m := cl((F1,m−1 \ P1,m) ∪ B1,m), where B1,m always denotes the
union of all black pieces (black squares or black parts of squares) in P1,m. After v1 iterations
we cannot proceed by placing squares of edge length b on vertices in P1,v1 without producing
overlaps. Thus we proceed with the second step.

In the n + 1-th step (n ≥ 1), let vn = ⌊ rn−1

rn
⌋. Furthermore, let rn+1 = rn−1 − vnrn. Place

squares of edge length rn+1 on the vertices of all squares in Pn,1. Do vn iterations, to obtain
the packing Pn,vn , following the same rules as above (with 1 replaced by n appropriately).

Note that after step n − 1 we are left with a packing Γ + Fn,vn , which has rectangular holes
of size rn × rn+1. Note also that the sequence (rj)j is—by definition of the rj—the output of
the Euclidean algorithm applied to a, b.

If a
b ∈ Q this yields a fundamental cell F := Fn,vn after finitely many steps. By construction,

F is a fundamental cell of Γ, and it has the desired symmetry group, namely, D4. Clearly it
is compact, since it is the finite union of compact sets.

Figure 7. A rectangular lattice and its Voronoi cells (left), the first three
steps of the construction of a fundamental cell with D4-symmetry (right).

Figure 8. The last two iterations of the construction of the D4-symmetric
fundamental cell of a lattice with basis vectors of length 5 and 8. These two
iterations correspond to one ‘step’ in the proof of Theorem 1.1.
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If a
b /∈ Q then the construction needs infinitely many steps, and we get a fundamental cell F

in the limit. As above, F is closed and D4-symmetric by construction. F is compact, since F
is bounded. F is bounded since the sequence (rj)j is the output of the Euclidean algorithm.
The length of F in direction

(

a
0

)

is

a+ b+ r2 + · · · =
∞
∑

i=0

ri.

It is known that the worst case—i.e., the slowest convergence of the partial fractions in the
continued fraction expansion —is attained if a/b = 1

2(
√
5 + 1) =: τ . Here “slow convergence”

holds in a pretty strong sense, i.e., 1
a

∞
∑

i=0
ri attains its maximal value for a/b = 1

2(
√
5+ 1), see

Hurwitz’ theorem [10, Theorem 193].

Hence the length of F in direction
(

a
0

)

is maximal for a/b = τ . Then we obtain ri = aτ−i,

and the length of F in direction
(

a
0

)

is

a
∞
∑

i=0

ri = a
∞
∑

i=0

τ−i = a
1

1− τ−1
= aτ2.

Since F has the symmetry of a square, the diameter of F is at most
√
2aτ2. �

It is not obvious how to devise some similar general construction of a fundamental cell for
any rhombic lattice.

3. Dimension 3

Similar to the proof of Theorem 1.1, the proof of Theorem 1.2 consists of considering all
possible cases. Fortunately, we can utilise Theorem 1.1 to cover most cases: we can use
thickened, three-dimensional versions of the plane fundamental cells. In R3 there are 32 finite
groups of Euclidean motions obeying the crystallographic restriction in Proposition 1.3, see
[6], Section 15.6. Only seven of them occur as point groups of lattices. Table 1 summarises
the situation: The second column contains the name of the lattice, more precisely: the
name of the family of lattices with a common symmetry group (the names as being used in
crystallography). The third column contains the point group of the lattice in orbifold notation,
the fourth column contains the order of the point group. The last column indicates the two-
dimensional fundamental cell of Theorem 1.1 which yields a three-dimensional fundamental
cell F for the current three-dimensional lattice, and the order |S(F )| in parentheses.

Since the list of finite groups of Euclidean motions in R3 is known, we know that there is
no such group containing the group ∗432 as a subgroup of index 2. (The only candidates—
the ones of order 96—are the (non-primitive) groups C96,D48 and C2 × D24, regarded as
symmetry groups of solids in R3.) The corresponding lattices are the so-called cubic lattices:
the primitive cubic lattice Z3, the body centred cubic lattice Z3 ∪

(

Z3 + (12 ,
1
2 ,

1
2)

T
)

(bcc) and
the face centred cubic lattice (fcc). So we cannot expect to find fundamental cells for these
three cubic lattices with more symmetry than their point group ∗432.

Proof (of Theorem 1.2). We consider 6 cases (numbers 4-14 in Table 1 and Figure 9, identified
if they have equal point groups). This will yield the entries of the last column of Table 1,
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= =

1 2 3 4

5 6 7

8 9 10 11

12 13

14

Figure 9. Illustrations of the 14 types of lattices in R3. The shaded nodes
indicate how the lattices consist of layers of two-dimensional lattices. Angles
omitted in the figure are assumed to be π/2 (or π/3 in 4). Edges labelled with
equal letters are of equal length. The image is taken from [17] and only slightly
modified.

which shows the name of the two-dimensional fundamental cell used, and the order of the
symmetry group of the corresponding three-dimensional fundamental cell (in parentheses).

Nr Name Point group Order 2-dim fundamental cell
(number of symmetries |S(F )|)

1 Z3 ∗432 48 —
2 body centred cubic ∗432 48 —
3 face centred cubic ∗432 48 —
4 Hexagonal ∗622 24 12fold (48)
5 Tetragonal primitive ∗422 16 8fold (32)
6 Tetragonal body-centred ∗422 16 8fold (32)
7 Rhombohedral 2 ∗ 3 12 6fold (24) / 12fold(48)
8 Orthorhombic primitive ∗222 8 4fold (16)
9 Orthorhombic base-centred ∗222 8 4fold (16)
10 Orthorhombic body-centred ∗222 8 4fold (16)
11 Orthorhombic face-centred ∗222 8 4fold (16)
12 Monoclinic primitive 2∗ 4 2fold (8)/4fold(16)
13 Monoclinic base-centred 2∗ 4 2fold (8)/4fold(16)
14 Triclinic primitive 2 2 mon.(4) / 2fold (8) / 4fold (16)

Table 1. The 14 types of lattices with respect to their point groups.
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Case 1: Hexagonal (4). The lattice consists of (equidistant) layers of hexagonal lattices.
Attaching a thickened version of the fundamental cell F△—say, F := F△ × [0, ℓ], where ℓ is
the distance of two adjacent layers—to each lattice point yields a tiling of R3. The symmetry
group S(F ) of F is ∗12 2, the new symmetries coming from rotating F along an axis which
is parallel to the layers of hexagonal lattices about π (“turning F upside down”).

Case 2: Tetragonal (5-6). These lattices consist of equidistant layers of square lattices. Thus
we can use the thickened version of the fundamental cell F� of the square lattice, its symmetry
being ∗82, having order 32.

Case 3: Rhombohedral (7). This lattice consists of equidistant layers of the hexagonal
lattice A2. So we can either use a thickened fundamental cell of A2 with D6-symmetry,
yielding a three-dimensional fundamental cell F with S(F ) = ∗62, |S(F )| = 24 and index
[S(F ) : P (Γ)] = 2. Or we can use a thickened version of F△ as in case 1, yielding a fundamental
cell with S(F ) = ∗12 2, |S(F ) = 48 and index [S(F ) : P (Γ)] = 4.

Case 4: Orthorhombic (8-11). These lattices consist of equidistant layers of rectangular
lattices. Thus we can use the thickened version of the fundamental cell of the rectangular
lattice, its symmetry group being ∗42 of order 16.

The rectangular lattices are indicated in Figure 9 by shaded points. In number 11 the rect-
angular lattice is rather hard to spot. One may ask whether lattice number 11 does indeed
consist of equidistant layers of rectangular lattices, but this is clear from the lattice property.

Case 5: Monoclinic (12-13). These two lattices also consist of equidistant layers of rectan-
gular lattices. Thus we can reason as in the preceding case.

Alternatively, we can use rectangular cuboids as fundamental cells, having symmetry group
∗222 of order 8.

Case 6: Triclinic (14). This lattice—or rather: these lattices—consist of layers of oblique
lattices. We may use a right prism over a parallelogram as a fundamental cell, or a skew
prism over a rectangle, or even a cuboid (erected on the rectangles of Figure 6). This yields
symmetry groups ∗2 of the fundamental cell of order 4, or ∗22 of order 8, or ∗222 of order 16,
respectively. �

4. Conclusions and Outlook

The above results can imply several further questions. Here we mention a few we assume to
be of possible interest.

4.1. Rhombic lattices. The reason that we excluded cubic lattices in Theorem 1.2 is that
there exist no fundamental cells F for the cubic lattices Z3, bcc or fcc such that S(F ) contains
P (Γ) (Γ ∈ {Z3,bcc, fcc}) as a proper subgroup of finite index. This is just because there are no
such groups S(F ) ⊂ O(3). There still may be fundamental cells which have more symmetries
in the sense that |S(F )| > |P (Γ)| (but the author doubts it).

The reason that we excluded rhombic lattices in Theorem 1.1 is that we were not able to
find a general construction for fundamental cells F for any rhombic lattice Γ such that S(F )
is larger than P (Γ). One can construct such fundamental cells for several particular cases,
but a general construction seems hard to obtain. If one tries to use the same idea as in
the other non-obtuse cases—start with a packing of polygons of higher symmetry (octagon,
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dodecagon, square) and refine—one runs into problems because the packings are in general
not vertex-to-vertex from some point on.

4.2. Even more symmetry. Are there fundamental cells F with [S(F ) : P (G)] > 2? We
have found a few ones: In the case of oblique plane lattices there is a rectangular fundamental
cell with [S(F ) : P (G)] = 4. In the case of the triclinic primitive lattice there is a cuboidal
fundamental cell with [S(F ) : P (G)] = 8. What is the maximal value of the index [S(F ) :
P (G)] in Rd (d ≥ 2)?

4.3. Higher Dimensions. The results in the present paper has been obtained by considering
all different classes of lattices with respect to their symmetry group. There are 5 such classes
in R2, 14 such classes in R3, 64 such classes in R4, 189 such classes in R5 and 826 such classes
in R6 [2, 8, 12, 15, 16]. At some point it seems desirable to find more general arguments
than case-by-case considerations. However, it is very likely that in higher dimensions there
are several lattices Γ with fundamental cells F such that P (Γ) is a proper subgroup of S(F ).

4.4. Non-Euclidean spaces. The constructions used in this paper work also in spherical or
hyperbolic spaces, using spherical or hyperbolic regular n-gons. The fact that these n-gons
are not similar to each other on different length scales does not matter. All we need is that
there are edge-to-edge packings by regular n-gons on different length scales.

4.5. Fractal Dimension. The fundamental cells F� of the square lattice, F△ of the hexag-
onal lattice and those of the rectangular lattices with incommensurate basis lengths are of
fractal appearance. It might be possible to compute the Hausdorff dimensions of the bound-
aries of these cells, as well as other fractal dimensions, like the box-counting dimension or
the affinity dimension [9], see also [14] and references therein. The two latter dimensions are
particularly easy to compute if one finds an iterated function system (IFS) generating the
fractal under consideration, see [14]. Up to the knowledge of the author, no IFS for F� or
F△ or the fundamental cells of rectangular lattices are known yet.

4.6. Alternative Constructions. The constructions used in this paper can be altered in
many ways. For instance, there are other ways to partition the octagons, dodecagons and
squares into two regions of different colours than the one used in the proof of Theorem 1.1.
All that is required is to keep the mirror symmetry of the partition, and take care that no
overlaps occur. One possibility is just to interchange the colours.

Acknowledgements

The research leading to these results has received funding from the European Research Council
under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement no 247029.

References

[1] M. Baake, R. Klitzing, M. Schlottmann: Fractally shaped acceptance domains of quasiperiodic square-
triangle tilings with dodecagonal symmetry, Physica A 191 (1992) 554-558.
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