
ar
X

iv
:1

30
5.

39
73

v1
  [

m
at

h.
R

A
] 

 1
7 

M
ay

 2
01

3

INVARIANTS OF (−1)-SKEW POLYNOMIAL RINGS

UNDER PERMUTATION REPRESENTATIONS

E. KIRKMAN, J. KUZMANOVICH AND J.J. ZHANG

0. Introduction

Let k be a base field of characteristic zero (unless otherwise stated) and let kq[x]
denote the q-skew polynomial ring kq[x1, . . . , xn] that is generated by {xi}ni=1 and
subject to the relations xjxi = qxixj for all i < j, where q is a nonzero element
in k. In previous work [KKZ1]-[KKZ4] we have studied the invariant theory of
noncommutative Artin-Schelter regular (or AS regular, for short) algebras such as
kq[x] under linear actions by finite groups G. We have shown that often the clas-
sical invariant theory of the commutative AS regular algebra k[x] := k[x1, . . . , xn]
extends to noncommutative AS regular algebras in some analogous way. In this
paper we consider the case where G is a group of permutations of {xi}ni=1 acting on
the (−1)-skew polynomial ring k−1[x], which is generated by {xi}ni=1 and subject
to the relations

(E0.0.1) xixj = −xjxi

for all i 6= j. We have chosen to consider k−1[x] because any permutation of {xi}ni=1

preserves the relations (E0.0.1), and hence extends to an algebra automorphism of
k−1[x]; the only q-skew polynomial algebras kq[x] with this property are the cases
when q = ±1. Hence any subgroup of the symmetric group Sn acts on both k[x]
and k−1[x] as permutations, and our main focus is on the ring of invariants k−1[x]

G

when G is a subgroup of Sn.
The study of the fixed subring k[x]G under permutation groups G of the commu-

tative indeterminates {xi}ni=1 has a long and distinguished history. Gauss showed
that when G is the full symmetric group Sn, invariant polynomials could be ex-
pressed uniquely in terms of the n symmetric polynomials [Ne, Theorem 4.13];
the symmetric polynomials are algebraically independent so that k[x]G is itself a
polynomial ring. This result was generalized to other groups (so-called “reflection
groups”) by Shephard-Todd [ST] and Chevalley [Ch] in the 1950s. It follows from
[KKZ2, Theorem 1.1] that k−1[x]

G will not be an AS regular algebra, even for a
classical reflection group like the symmetric group. However, we will show that AG

is always an AS Gorenstein domain [Theorem 1.5], while k[x]G is not always Goren-
stein [Example 1.6]. In [CA] algebra generating sets for k−1[x]

Sn , the invariants
under the full symmetric group [Theorem 3.10], and for k−1[x]

An , the invariants
under the alternating group An [Theorem 4.10] have been produced. We will show
that for both the full symmetric group [Theorem 3.12] and the alternating group

2000 Mathematics Subject Classification. 16A62,16E70,20J50.
Key words and phrases. Skew polynomial ring, permutation group, symmetric function,

Hilbert series, fixed subring, complete intersection.

1

http://arxiv.org/abs/1305.3973v1


2 E. KIRKMAN, J. KUZMANOVICH AND J.J. ZHANG

[Theorem 4.15] the fixed subring is isomorphic to an AS regular algebra R modulo
a central regular sequence of R (what we call a “classical complete intersection”
in [KKZ4]). Moreover, we generalize some results for upper bounds on the de-
grees of algebra generators for k−1[x]

G [Theorems 2.5 and 2.6] from results in the
commutative case.

One motivation for this study was to consider the theorem of Kac-Watanabe
[KW], and independently of Gordeev [G1], that provides a necessary condition for
any finite group, not necessarily a permutation group, to have the property that
k[x]G is a complete intersection (the condition is that G be a group generated
by so-called “bireflections”). This theorem of Kac-Watanabe-Gordeev was a first
step toward the (independent) classification of finite groups G, acting linearly as
automorphisms of k[x], such that k[x]G is a complete intersections that was proven
by Gordeev [G2] and Nakajima [N1, N2, NW]. We verify that an analogous result
holds for k−1[x] and subgroups of the symmetric group Sn for n ≤ 4 [Example 5.6],
and conjecture that this result is true in general. We prove that the converse of the
Kac-Watanabe-Gordeev Theorem holds for k−1[x]: if G is a group of permutations
of the {xi}ni=1 that is generated by quasi-bireflections then k−1[x]

G is a classical
complete intersection [Theorem 5.4] (this result is not true for the commutative
polynomial ring k[x] [Example 5.5]).

These fixed rings of k−1[x] under permutation subgroups produce a tractable
class of AS Gorenstein domains that possess a variety of properties; in many cases
their generators have combinatorial descriptions and their Hilbert series can be
described explicitly. The following table summarizes results presented in this paper
and gives a comparison between the results of k−1[x]

G with that of k[x]G for any
subgroup {1} 6= G ⊂ Sn:

Statements about AG when A = k[x] when A = k−1[x]

Being AS Gorenstein Not always Always

Being AS regular Sometimes Never

cci+(ASn) 0 ⌊n
2 ⌋

degHAG(t) ≤ −n −n

Bound for degrees of generators max{n,
(
n
2

)
}

(
n
2

)
+ ⌊n

2 ⌋(⌊
n
2 ⌋+ 1)

KWG theorem holds Yes Conjecture

Converse of KWG holds No Yes

where KWG stands for Kac-Watanabe-Gordeev.
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1. Definitions and basic properties

An algebra A is called connected graded if

A = k ⊕A1 ⊕A2 ⊕ · · ·

and AiAj ⊂ Ai+j for all i, j ∈ N. The Hilbert series of A is defined to be

HA(t) =
∑

i∈N

(dimAi)t
i.

Definition 1.1. Let A be a connected graded algebra.

(1) We call A Artin-Schelter Gorenstein (or AS Gorenstein, for short) if the
following conditions hold:
(a) A has injective dimension d < ∞ on the left and on the right,

(b) ExtiA(Ak,AA) = ExtiA(kA, AA) = 0 for all i 6= d, and

(c) ExtdA(Ak,AA) ∼= ExtdA(kA, AA) ∼= k(l) for some integer l. Here l is
called the AS index of A.

If in addition,
(d) A has finite global dimension, and
(e) A has finite Gelfand-Kirillov dimension,
then A is called Artin-Schelter regular (or AS regular, for short) of dimen-
sion d.

(2) If A is a noetherian, AS regular graded domain of global dimension n and
HA(t) = (1− t)−n, then we call A a quantum polynomial ring of dimension
n.

Skew polynomial rings kq[x], where q ∈ k× := k \ {0}, with deg xi = 1 are
quantum polynomial rings and also Koszul algebras. Next we recall from [KKZ1]
the definition of a noncommutative version of a reflection. If A is a connected
graded algebra, let Aut(A) denote the group of all graded algebra automorphisms
of A. If g ∈ Aut(A), then the trace function of g is defined to be

TrA(g, t) =

∞∑

i=0

tr(g|Ai
)ti ∈ k[[t]],

where tr(g|Ai
) is the trace of the linear map g|Ai

. Note that TrA(g, 0) = 1 and
that the trace of the identity map is the Hilbert series of the algebra A. The trace
of a graded algebra automorphism of a Koszul algebra can be computed from the
Koszul dual using the following result.

Lemma 1.2. [JiZ, Corollary 4.4] Let A be a Koszul algebra with Koszul dual algebra
A!. Let g ∈ Aut(A) and gτ be the induced dual automorphism of A!. Then

TrA(g, t) = (TrA!(gτ ,−t))−1.

Definition 1.3. Let A be an AS regular algebra such that

HA(t) =
1

(1− t)nf(t)

where f(1) 6= 0. Let g ∈ Aut(A).

(1) [KKZ1, Definition 2.2] Then g is called a quasi-reflection of A if

TrA(g, t) =
1

(1− t)n−1q(t)
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for q(1) 6= 0. If A is a quantum polynomial ring, then HA(t) = (1 − t)−n.
In this case g is a quasi-reflection if and only if

(E1.3.1) TrA(g, t) =
1

(1 − t)n−1(1− λt)

for some scalar λ 6= 1. Note that we have chosen not to call the identity
map a quasi-reflection.

(2) [KKZ4, Definition 3.6(b)] Then g is called a quasi-bireflection of A if

TrA(g, t) =
1

(1− t)n−2q(t)

for q(1) 6= 0.

When A is noetherian and AS Gorenstein and g is in Aut(A), the homological
determinant of g, denoted by hdet g, is defined in [JoZ, Definition 2.3]. When
A = k[x], the homological determinant of g is the inverse of determinant of the
linear map, induced by g on the degree one piece A1 =

⊕n
i=1 kxi of A, and, more

generally, it is defined using a scalar map induced on the local cohomology of A;
see [JoZ] for details. The homological determinant is a group homomorphism

hdet : Aut(A) → k×.

When A is AS regular, the conditions of the following theorem are satisfied by [JiZ,
Proposition 3.3] and [JoZ, Proposition 5.5], and hdet g can be computed from the
trace of g, as given in the following result.

Lemma 1.4. [JoZ, Lemma 2.6] Let A be noetherian and AS Gorenstein and let
g ∈ Aut(A). If g is k-rational in the sense of [JoZ, Definition 1.3], then the rational
function TrA(g, t) has the form

TrA(g, t) = (−1)n(hdet g)−1t−ℓ + lower terms

when it is written as a Laurent series in t−1.

The following result is not hard to prove.

Theorem 1.5. Let G be any subgroup of the symmetric group Sn acting on k−1[x]
as permutations.

(1) The fixed subring k−1[x]
G is an AS Gorenstein domain.

(2) If G 6= {1}, then k−1[x]
G is not AS regular.

Proof. (1) The trace of any transposition g = (i, j) in Sn can be computed using
the Koszul dual (k−1[x])

! by Lemma 1.2, which is isomorphic to

k[x1, . . . , xn]/(x
2
1, . . . , x

2
n),

and found to be

TrA(g, t) =
1

(1 + t2)(1− t)n−2
= (−1)n−2t−n + lower terms.

It follows from Lemma 1.4 that the homological determinant of g is 1. Since Sn is
generated by transpositions, hdet g = 1 for all g ∈ Sn.

By the last paragraph, hdet g = 1 for all g ∈ G. The assertion follows from [JoZ,
Theorem 3.3].

(2) Since k−1[x] is a quantum polynomial ring, any quasi-reflection g has the
homological determinant λ 6= 1 where λ is given in (E1.3.1). Since hdet g = 1
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for all g ∈ G, G contains no quasi-reflection (also see Lemma 1.7(4) below). The
assertion follows from [KKZ2, Theorem 1.1]. �

The analogous theorem is not true in the commutative case. As we mentioned
in the introduction, k[x]Sn is isomorphic to the commutative polynomial ring k[x],
which is AS regular. Hence Theorem 1.5(2) fails for k[x]. The next example shows
that Theorem 1.5(1) fails for k[x].

Example 1.6. Set n = 4. Let G = 〈(1, 2, 3, 4)〉 be the cyclic subgroup of S4 gener-
ated by the 4-cycle (1, 2, 3, 4). Then G contains no reflections, and has elements of
determinant −1, so B+ := k[x1, x2, x3, x4]

G cannot be Gorenstein by [Wa]. Or, one
can also use Molien’s Theorem to check that the Hilbert series of the fixed subring
B+ is

t3 + t2 − t+ 1

(1 − t)4(1 + t)2(1 + t2)
,

which does not have the symmetry property required in Stanley’s criteria [S2, The-
orem 4.4] for B+ to be Gorenstein.

Note that for the same subgroup G, but acting on the noncommutative ring
k−1[x1, . . . , x4], the Hilbert series of the fixed ring B− := k−1[x1, . . . , x4]

G is

(t2 − t+ 1)(t6 − 2t5 + 3t4 − 2t3 + 3t2 − 2t+ 1)

(1− t)4(1 + t2)2(1 + t4)
,

which has the symmetry property, and hence is AS Gorenstein by a noncommutative
version of Stanley’s criteria [JoZ, Theorem 6.2], as well as by Theorem 1.5(1).

The trace of any permutation is computed as follows.

Lemma 1.7. Let Sn act on A = k−1[x] as permutations and g ∈ Sn.

(1) If g is an m-cycle, then

TrA(g, t) =
1

(1 + (−t)m)(1 − t)n−m
.

(2) If g = νi1 · · · νikµj1 · · ·µjℓ a product of disjoint cycles of length ip and jp,
with νip odd permutations and µjp even permutations, then

TrA(g, t) =
1

(1 + ti1) · · · (1 + tik)(1 − tj1) · · · (1− tjℓ)(1 − t)n−(i1+···+ik+j1+···+jℓ)
.

(3) The only quasi-bireflections of k−1[x] in Sn are the two-cycles and three-
cycles.

(4) Permutation groups (namely, subgroups of Sn) contain no quasi-reflections.

Proof. (1) This follows from Lemma 1.2 and direct computations.
(2) This follows from part (1) and a graded vector space decomposition of k−1[x].
(3,4) These are consequences of part (2). �

In [KKZ4] we introduced several possible generalizations of a commutative com-
plete intersection. We review these notions here.

Definition 1.8. Let A be a connected graded noetherian algebra.
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(1) We say A is a classical complete intersection (or a cci) if there is a connected
graded noetherian AS regular algebra R and a sequence of regular normal
homogeneous elements {Ω1, . . . ,Ωn} of positive degree such that A is iso-
morphic to R/(Ω1, . . . ,Ωn). The minimum such n is called the cci-number
of A and denoted by cci(A).

(2) We say A is a hypersurface if cci(A) ≤ 1.
(3) We say A is a complete intersection of noetherian type (or an nci) if the

Ext-algebra Ext∗A(k, k) :=
⊕

i≥0 Ext
i
A(Ak,A k) is noetherian.

(4) We say A is a complete intersection of growth type (or a gci) if the Ext-
algebra Ext∗A(k, k) has finite Gelfand-Kirillov dimension.

(5) We say A is a weak complete intersection (or a wci) if the Ext-algebra
Ext∗A(k, k) has subexponential growth.

In [KKZ4] we showed that a property of all of these kinds of complete intersec-
tions is the cyclotomic Gorenstein property defined below.

Definition 1.9. Let A be a connected graded noetherian algebra.

(1) We say A is cyclotomic if its Hilbert series HA(t) is a rational function
p(t)/q(t) for some coprime polynomials p(t), q(t) ∈ Z(t) and the roots of
p(t) and q(t) are roots of unity.

(2) We say A is cyclotomic Gorenstein if the following conditions hold
(i) A is AS Gorenstein;
(ii) A is cyclotomic.

Theorem 1.10. [KKZ4, Theorem 3.4] Let A be RG for some noetherian Auslander
regular algebra R and a finite subgroup G ⊂ Aut(R). If A is any of the kinds of
complete intersection in Definition 1.8, then it is cyclotomic Gorenstein.

We note that in Example 1.6 although the fixed subring AG is AS Gorenstein,
it is not any of the kinds of generalized “complete intersection” of Definition 1.8
since its Hilbert series has zeros that are not roots of unity.

The following theorem of Kac-Watanabe-Gordeev is one of the motivations for
this paper.

Theorem 1.11. [KW, G1] Let G be a finite group acting linearly on k[x]. If k[x]G

is a complete intersection, then G is generated by bireflections.

A noncommutative version of Kac-Watanabe-Gordeev Theorem holds for skew
polynomial rings kq[x] when q 6= ±1 [KKZ4, Theorem 0.3], that leaves k−1[x] the
only unknown case. In this paper we will prove some partial results for this special
skew polynomial ring. We note that in Example 1.6 the trace of a four-cycle acting
on k−1[x1, . . . , x4] is 1/(1 + t4), which is not a quasi-bireflection, supporting a
generalization of the Kac-Watanabe-Gordeev Theorem.

To conclude this section we compute the automorphism group Aut(k−1[x]).

Lemma 1.12. (1) g ∈ Aut(k−1[x]) if and only if g(xi) = aixσ(i) for some

σ ∈ Sn and {ai}
n
i=1 ⊂ k×, namely, Aut(k−1[x]) = (k×)n ⋊Sn.

(2) If g is of the form in part (a), then hdet g =
∏n

i=1 ai.

Proof. (a) Every diagonal map g : xi → aixi, for (a1, · · · , an) ∈ (k×)n, extends
easily to a unique graded algebra automorphism of k−1[x]. And we have already
seen that Sn is a subgroup of Aut(k−1[x]) such that Sn ∩ (k×)n = {1}. Thus
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(k×)n⋊Sn ⊂ Aut(k−1[x]). By [KKZ2, Lemma 3.5(e)], Aut(k−1[x]) ⊂ (k×)n⋊Sn.
The assertion follows.

(b) If g ∈ (k×)n, or g(xi) → aixi for (a1, · · · , an) ∈ (k×)n, then it is easy to see
that hdet g =

∏n
i=1 ai. If g ∈ Sn, then hdet g = 1 by the proof of Theorem 1.5(a).

The assertion follows by the fact hdet is a group homomorphism. �

2. Upper bound for the algebra generators

In this section we show that Broer’s and Göbel’s upper bounds on the degrees of
minimal generating sets of k[x]G, for arbitrary subgroup G ⊂ Sn, have analogues
in this context. In this section we do not assume that char k = 0.

The Noether upper bound on the degrees of generators does not hold for k−1[x],
as k−1[x1, x2]

S2 requires a generator of degree 3 [Example 3.1]. More generally one
can ask if the degrees of generators of k−1[x]

G are bounded above by |G| times the
dimension of the representation of G. Broer’s degree bound [DK, Proposition 3.8.5]
states that when fi are primary invariants, i.e. fi, for 1 ≤ i ≤ n, are algebraically
independent and k[x]G is a finite module over k[f1, . . . , fn], then k[x]G is generated
as an algebra by homogeneous invariants of degrees at most

deg(f1) + · · ·+ deg(fn)− n.

(The above statement is not true when n = 2 and g : x1 → x1, x2 → −x2. In this
case f1 = x1, f2 = x2

2. Therefore we need to assume n ≥ 3.) We show that this
result generalizes for any group G (not necessarily a permutation group) when the
given hypotheses are satisfied [Lemma 2.2].

Let A be any connected graded algebra. Define dA to be the maximal degree
of A≥1/(A≥1)

2. Then A is generated as an algebra by homogeneous elements of
degree at most dA.

Lemma 2.1. Let A be a noetherian connected graded AS Gorenstein algebra and
B and C be graded subalgebras of A such that C ⊂ B ⊂ A. Assume that

(i) A = B ⊕D as a right graded B-modules,
(ii) A is a finitely generated right C-module, and
(iii) There is a noetherian AS regular algebra R and a surjective graded algebra

map φ : R → C and gldimR = injdimA.

Then

(1) φ is an isomorphism and AC is free.
(2) dB ≤ max{dC , lC − lA} where lA and lC are AS index of A and C respec-

tively.

Proof. (1) Let n = injdimA. Induced by the composite map f : R → C → A we
have a convergent spectral sequence [WZ, Lemma 4.1],

ExtpA(Tor
R
q (A, k), A) =⇒ Extp+q

R (k,A).

Since AR is finitely generated and R is right noetherian, TorRq (A, k) is finite dimen-

sional for all q. Thus ExtpA(Tor
R
q (A, k), A) = 0 for all p 6= injdimA = n. The above

spectral sequence collapses to the following isomorphisms

ExtnA(Tor
R
q (A, k), A)

∼= Extn+q
R (k,A).
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For any q > 0, ExtnA(Tor
R
q (A, k), A)

∼= Extn+q
R (k,A) = 0. Since TorRq (A, k) is finite

dimensional, A is AS Gorenstein, we obtain that

dimTorRq (A, k) = dimExtnA(Tor
R
q (A, k), A) = 0

for all q > 0. Hence AR is projective, whence free, as R is connected graded. As a
consequence, f : R → A is injective. This implies that φ is an isomorphism. Since
φ is an isomorphism and AR is free, AC is free.

(2) Now we identify R with C. By part (1), A is a finitely generated free C-
module. Since A = B⊕D, both B and D are projective, whence free, graded right
C-modules. Pick a C-basis for B and D, say VB ⊂ B and VD ⊂ D. Then we have
B = VB ⊗C and D = VD ⊗C. Therefore A = VA⊗C where VA = VB ⊕VD. Hence

HA(t) = HVA
(t)HC(t) = (HVB

(t) +HVD
(t))HC(t), and HB(t) = HVB

(t)HC(t).

Since B = VB ⊗C, B is generated by VB and C as a graded algebra. Thus we have

dB ≤ max{degHVB
(t), dC} ≤ max{degHVA

(t), dC}.

It remains to show that degHVA
(t) = −lA + lC . First, as HA(t) = HVA

(t)HC(t),
we have degHVA

(t) = degHA(t) − degHC(t). Recall that C is noetherian and AS
regular. Since A is a finite module over C, HA(t) is rational and the hypotheses
(1◦, 2◦, 3◦) of [JoZ, Theorem 6.1] hold. By the proof of [JoZ, Theorem 6.1] (we are
not using the hypothesis that A is a domain),

HA(t) = ±tlAHA(t
−1)

where l is the AS index of A. SinceHA(t) is a rational function such thatHA(0) = 1,
the above equation forces that

(E2.1.1) degHA(t) = −lA.

Similarly, degHC(t) = −lC . The assertion follows. �

The degree of algebra generators of B is bounded by lC − lA when dC ≤ lC − lA,
which is easy to achieve in many cases. The following lemma is a generalization of
Broer’s upper bound [DK, Proposition 3.8.5].

Lemma 2.2 (Broer’s Bound). Let A be a quantum polynomial algebra of dimension
n and C an iterated Ore extension k[f1][f2; τ2, δ2] · · · [fn; τn, δn]. Assume that

(1) B = AH where H is a semisimple Hopf algebra acting on A,
(2) C ⊂ B ⊂ A and AC is finitely generated, and
(3) deg fi > 1 for at least two distinct i’s.

Then

dAH ≤ lC − lA =

n∑

i=1

deg fi − n.

Proof. Since H is semisimple, A = B⊕D by [KKZ3, Lemma 2.4(a)] where B = AH .
Let R = C. Then the hypotheses Lemma 2.1(i,ii,iii) hold. By Lemma 2.1,

dB ≤ max{dC , lC − lA}.

It is clear that lA = n. By induction on n, one sees that HC(t) =
1∏

n
i=1(1−tdeg fi )

.

By (E2.1.1), lC = − degHC(t) =
∑n

i=1 deg fi. Now it suffices to show that dC ≤
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∑n
i=1 deg fi − n. For the argument sake let us assume that deg fi is increasing as i

goes up. So dC = deg fn. Now
n∑

i=1

deg fi − n =

n∑

i=1

(deg fi − 1) ≥ deg fn−1 − 1 + deg fn − 1 ≥ deg fn.

The assertion follows. �

This result applies to subgroups G ⊂ Sn acting on k−1[x].
Let C be any commutative algebra over k and let n be a positive integer. Define

D be the algebra generated by C and {y1, · · · , yn} subject to the relations

(E2.2.1) [yi, c] = 0

for all c ∈ C, and

(E2.2.2) yiyj + yjyi = cij

for 1 ≤ i < j ≤ n, where {cij | 1 ≤ i < j ≤ n} is a subset of the subalgebra
C[y21 , · · · , y

2
n] (which is in the center of D).

Lemma 2.3. Retain the above notation. Then

(1) σ :

{
yi 7→ −yi ∀ i

c 7→ c ∀ c ∈ C
extends uniquely to an algebra automorphism of

D, and

(2) Let {w1, · · · , wn} be a subset of C[y21 , · · · , y
2
n]. Then φ :

{
yi 7→ wi ∀ i

c 7→ 0 ∀ c ∈ C

extends uniquely to a σ-derivation of D.

Proof. (a) Since D is generated by C and {yi}ni=1, the extension of σ is unique. It
is clear that the extension of σ preserves relations (E2.2.1) and (E2.2.2).

(b) Since D is generated by C and {yi}ni=1, the extension of φ, using the σ-
derivation rule, is unique. For any c ∈ C, using the fact φ(c) = 0, we have

φ([yi, c]) = φ(yi)c− σ(c)φ(yi) = wic− cwi = 0.

For any i,
δ(y2i ) = σ(yi)δ(yi) + δ(yi)yi = −yiδ(yi) + δ(yi)yi = 0.

As a consequence, δ(cij) = 0. Now

φ(yiyj + yjyi − cij) = φ(yi)yj + σ(yi)φ(yj) + φ(yj)yi + σ(yj)φ(yi)

= wiyj − yiwj + wjyi − yjwi = 0.

So the extension of φ is a σ-derivation. �

We need a lemma on symmetric functions of k−1[x]. For every positive integer
u, let Pu denote the uth power sum

∑n
i=1 x

u
i ∈ k−1[x]. Let C1 be the subalgebra

of k−1[x] generated by P2, P4, · · · , P2n−2, P2n, C3 be the subalgebra of k−1[x] gen-
erated by P1, P2, P3, · · · , P2n−1, P2n. Define P ′

i = Pi is i is odd and P ′
i = P2i if i is

even. Let C2 be the subalgebra of k−1[x] generated by P ′
1, P

′
2, · · · , P

′
n−1, P

′
n. Note

that C1 contains P2i for all i.

Lemma 2.4. Retain the above notation.

(1) k−1[x] is a finitely generated free module over the central subalgebra C1.
(2) If u is even, then PuPv = PvPu for any v.
(3) If u and v are odd, then PuPv + PvPu = 2Pu+v.
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(4) If u is odd, then P 2
u = P2u.

(5) C1 ⊂ C2 ⊂ C3 ⊂ k−1[x]
Sn ⊂ k−1[x]

G.
(6) C2 is isomorphic to an iterated Ore extension

R := k[P4, P8, · · · , P4⌊n
2
⌋][P1][P3; τ3, δ3] · · · [Pn′ ; τn′ , δn′ ]

where n′ = 2⌊n−1
2 ⌋+ 1.

Proof. (1) The algebra k−1[x] is a finitely generated module over k[x2
1, · · · , x

2
n] and

k[x2
1, · · · , x

2
n] is finitely generated over C1 = k[P2, P4, · · · , P2n] where each P2i is the

ith power sum of the variables {x2
1, · · · , x

2
n}. Therefore k−1[x] is finitely generated

over C1. By the proof of Lemma 2.1(1), k−1[x] is free over C1.
(2,3,4) By direct computations.
(5) If i is odd, (P ′

i )
2 = (Pi)

2 = P2i, and if i is even, P ′
i = P2i. So C1 ⊂ C2. The

rest is clear.
(6) For odd integers i < j, part (3) says that

PjPi + PiPj = 2Pi+j .

We can easily determine the automorphisms τj and derivations δj by using Lemma
2.3. As a consequence, there is a surjective map φ : R → C2. Also gldimR = n =
gldimk−1[x]. By the proof of Lemma 2.1(1), C ∼= R. �

Theorem 2.5 (Broer’s Bound for k−1[x]
G). Let G be a subgroup of Sn acting on

k−1[x] naturally. Suppose |G| does not divides char k. Then

d(k−1[x]G) ≤
1

2
n(n− 1) + ⌊

n

2
⌋(⌊

n

2
⌋+ 1) ∼

3

4
n2.

Proof. The assertion can be checked directly for n = 1, 2. Assume now that n ≥ 3.
Let A := k−1[x] and C be C2 as in Lemma 2.4(6). Then C is a subalgebra of AG

for any G ⊂ Sn. Since |G| does not divides char k, H := kG is semisimple. Note
that degPi = i. Hence all hypotheses in Lemma 2.2 are satisfied. By Lemma 2.2,

dAG ≤
∑

i=1

deg fi−n =
1

2
n(n+1)+ ⌊

n

2
⌋(⌊

n

2
⌋+1)−n =

1

2
n(n− 1)+ ⌊

n

2
⌋(⌊

n

2
⌋+1).

�

This bound is sharp when n = 2 [Example 3.1]. For larger n, we have no examples
to show this bound is sharp – and it probably is not sharp.

Next we consider a generalization of the Göbel bound [Go]. If G is a group of
permutation of {xi}

n
i=1 acting as automorphisms on k[x] then Göbel’s Theorem

states that k[x]G is generated by the n symmetric polynomials (or the power sums)
and “special polynomials”. Let OG(X

I) represent the orbit sum of XI under G.
“Special polynomials” are all G-invariants of the form OG(X

I), where λ(I) =
(λi), the partition associated to I (i.e. arranging the elements of I in weakly
decreasing order), has the properties that the last part of the partition λn = 0, and
λi − λi+1 ≤ 1 for all i. It follows that an upper bound on the degree of a minimal
set of generators of k[x]G for any n-dimensional permutation representation of G

is max{n,

(
n

2

)
}. In this context the Göbel bound can be a sharp bound, as it is

when the alternating group An acts on k[x]. A similar idea works for k−1[x], see
[CA, Corollary 3.2.4]. But we consider a modification of Sn.
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Let Ŝn be the group Sn ⋊ {±1}n, where {±1}n is the subgroup of diagonal
actions xi → aixi for all i, where ai = ±1.

Theorem 2.6 (Göbel’s Bound for k−1[x]
G). Let G be a subgroup of Ŝn. Then

dk−1[x]G ≤ n2, and dk[x]G ≤ n2.

Proof. Let A be k−1[x] or k[x]. Let C = k[P2, P4, · · · , P2n]. Then A is a finitely
generated free module over C such that C ⊂ AG. By Lemma 2.2,

dAG ≤
∑

i

deg fi − n =
∑

i

2i− n = n(n+ 1)− n = n2.

�

[CA, Corollary 3.2.4] is a consequence of the above theorems.

3. Invariants under the full symmetric group Sn

Some results in this and the next section have been proved in [CA]. We repeat
some of the arguments for completeness.

We consider the ring of invariants k−1[x]
Sn under the full symmetric group Sn.

Gauss proved that k[x]Sn is generated by the n elementary symmetric functions
σk for 1 ≤ k ≤ n, each of which is an orbit sum (sum of all the elements in the
Sn-orbit) of the given monomials. Recall that, for each 1 ≤ k ≤ n,

σk(x1, . . . , xn) =
∑

i1<i2<···<ik

xi1xi2 · · ·xik .

These σk are algebraically independent, and hence form a commutative polyno-
mial ring k[σ1, . . . , σn]. As a consequence, cci(k[x]Sn) = 0. Another basis of
algebraically independent generators of k[x]Sn is the set of the n power sums

Pk =

n∑

i=1

xk
i

for 1 ≤ k ≤ n. Hence n is the maximal degree of a set of minimal generators for
the fixed subring k[x]Sn .

The noncommutative case is different. As we have used in the last section, Pk

can be defined in the algebra k−1[x] in the same way, which is also an Sn-invariant.
However, considered as an element in k−1[x], σk is not an Sn-invariant.

Example 3.1. Let A = k−1[x1, x2] and let G = 〈g〉 = S2 for g = (1, 2). Now the
element σ2 = x1x2 is not invariant, and, moreover, P2 is not a generator because
P2 = P 2

1 ; it is easy to check that there are no other invariants of degree 2. We will
show that the invariants are generated by P1 = x1 + x2 and P3 = x3

1 + x3
2, or by

S1 = P1 = x1 + x2 and S2 = x2
1x2 + x1x

2
2. In this example the maximal degree

of a minimal set of generators is 3 [Theorem 2.5], which is larger than the order
of the group |G| (the “Noether bound” [No] guarantees the maximal degree of a
minimal set of generators of k[x]G is ≤ |G|). In the case of either set of generators,
the generators are not algebraically independent, and the ring of invariants is not
AS regular, but AS Gorenstein [Theorem 1.5]; and we will show that it is a cci in
a couple ways. First, it is a hypersurface in the AS regular algebra B generated by
x, y with relations xy2 = y2x and x2y = yx2:

AS2 ∼=
B

(2x6 − 3x3y − 3yx3 + 4y2)
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(where P1 7→ x and P3 7→ y). Second, it is a factor of the iterated Ore extension
C = k[a, b][x][y; τ, δ], where τ is the automorphism of k[a, b, x] defined by τ(a) =
a, τ(b) = b, τ(x) = −x, and δ is a τ -derivation of k[a, b, x] defined by δ(a) = δ(b) = 0
and δ(x) = 2b:

AS2 ∼=
C

(x2 − a, y2 − c)
.

Here {x2 − a, y2 − c} for c = (3ab− a3)/2 is a regular sequence of central elements
of C. In this isomorphism P2 7→ a, P4 7→ b, P1 7→ x, P3 7→ y, since we have the
relations [Lemma 2.4]

P3P1 + P1P3 = 2P4

P 2
1 = P2

P 2
3 = P6 = P2P4 − P2(P

2
2 − P4)/2.

The aim of this section is to prove the analogous result for arbitrary n. We
first repeat the analysis from [CA] and show that there are two sets of algebra
generators of k−1[x]

Sn : the n odd power sums P1, P3, · · · , P2n−1 and the n elements
for 1 ≤ k ≤ n:

Sk =
∑

x2
i1x

2
i2 · · ·x

2
ik−1

xik =: OSn
(x2

1x
2
2 · · ·x

2
k−1xk)

where the sum is taken over all distinct i1, . . . , ik with i1 < i2 < · · · < ik−1, and
OSn

represents the sum of the orbit under the full symmetric group; we call these
elements Sk the “super-symmetric polynomials” since they play the role that the
symmetric functions play in the commutative case. Hence the maximal degree of a
set of minimal generators for the full ring of invariants k−1[x]

Sn is 2n− 1.

Any monomial in k−1[x] can be written as the form ±xi1
1 xi2

2 · · ·xin
n , where the

sign is due to the fact that these xis are (−1)-commutative. Let I denote the index

(ik) := (i1, · · · , in) and let XI denote the monomial xi1
1 xi2

2 · · ·xin
n . Throughout let

G be a subgroup of Sn unless otherwise stated. Define

stabG(X
I) = {g ∈ G | g(XI) = XI in k−1[x]}.

For any permutation σ ∈ G, stabG(X
I) and stabG(x

i1
σ(1)x

i2
σ(2) · · ·x

in
σ(n)) are conju-

gate to each other. As a consequence, |stabG(XI)| = |stabG(x
i1
σ(1)x

i2
σ(2) · · ·x

in
σ(n))|.

Definition 3.2. Let λ(m) = (λ1, λ2, · · · , λn) be a partition m, where λi are weakly

decreasing and λi ≥ 0. Let Xλ be the monomial xλ1

1 xλ2

2 · · ·xλn
n . The G-orbit sum

of the monomial Xλ of (total) degree m is defined by

OG(X
λ) = OG(x

λ1

1 xλ2

2 · · ·xλn
n ) =

1

|stabG(Xλ)|

∑

g∈G

xλ1

g(1)x
λ2

g(2) · · ·x
λn

g(n).

In this section we take G = Sn and in the next G = An.

Remark 3.3. We divide by the order of the stabilizer of Xλ so that each element
of the orbit is counted only once. Throughout we will compare monomials using the
length-lexicographical order: for I = (ik) and J = (jk) we say XI < XJ if

∑
ik <∑

jk, or if
∑

ik =
∑

jk, and if k is the smallest index for which ik 6= jk then ik < jk;
when considering elements of the same degree this order is the lexicographical order
on the exponents with x1 > x2 > . . . > xn. Hence we will denote the Sn-orbit sum
by OSn

(XI), where XI is the leading term of the orbit sum under the (length)-
lexicographic order and so I is a partition, and we call OSn

(XI) the Sn-orbit sum
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corresponding to the partition I. We refer to the entries in I as the “parts” of the
partition (so a part may be 0).

The following lemma is easily verified.

Lemma 3.4. [CA, Theorem 2.1.3] Let G be a finite subgroup of Sn. Then any
G-invariant is a sum of homogeneous G-invariants and homogeneous invariants are
linear combinations of G-orbit sums.

Lemma 3.5. [CA, Lemma 2.2.2] A Sn-orbit sum corresponding to a partition
λ(m) = (λ1, λ2, · · · , λn) is zero if and only if it has repeated odd parts. Hence a
non-zero Sn-orbit sum corresponds to a partition with no repeated odd parts.

Proof. An orbit sum OSn
(XI) is zero if and only if the Sn-orbit of X

I consists of
monomials and their negatives, i.e. σXI = −XI for some σ ∈ Sn. In order for
σXI = −XI there must be a repeated exponent. Consider a monomial of the form
xe1
1 · · ·x

ej
j · · ·xek

k · · ·xen
n where ej = ek and both are odd. We claim that when the

transposition (j, k) is applied to this monomial we get the same monomial but with
a negative sign. We induct on k − j. If k − j = 1 then the result is clear. Hence
assume that result is true for k − j < ℓ and we prove it for k − j = ℓ. We write
the monomial as xe1

1 · · ·x
ej
j · · ·x

ek−1

k−1 x
ek
k · · ·xen

n and consider the case when ek−1 is

odd and the case when ek−1 is even. When ek−1 is odd then (j, k) applied to the
monomial yields

xe1
1 · · ·xek

k · · ·x
ek−1

k−1 x
ej
j · · ·xen

n

= −xe1
1 · · ·xek

k · · ·x
ej
j x

ek−1

k−1 · · ·xen
n

which by induction is

= xe1
1 · · ·x

ej
j · · ·xek

k x
ek−1

k−1 · · ·xen
n

= −xe1
1 · · ·x

ej
j · · ·x

ek−1

k−1 x
ek
k · · ·xen

n .

When ek−1 is even then (j, k) applied to the monomial yields

xe1
1 · · ·xek

k · · ·x
ek−1

k−1 x
ej
j · · ·xen

n

= xe1
1 · · ·xek

k · · ·x
ej
j x

ek−1

k−1 · · ·xen
n

which by induction is

= −xe1
1 · · ·x

ej
j · · ·xek

k x
ek−1

k−1 · · ·xen
n

= −xe1
1 · · ·x

ej
j · · ·x

ek−1

k−1 x
ek
k · · ·xen

n .

Hence σXI = −XI , and so for any τXI in the Sn-orbit of X
I we have −τXI =

τσXI is in the orbit of XI , and hence the Sn-orbit sum of XI is zero.
Clearly when indices with even exponents of the same value are permuted no

sign change occurs, and so the orbit sum will not be zero unless there is at least
one repeated odd exponent. �

By Lemma 3.5 the set of elements in k−1[x]
Sn of degree k has a vector space

basis corresponding to the partitions of k into at most n parts with no repeated
odd entries. We next will show that both the sets Sk and P2k−1 for k = 1, . . . , n
(corresponding to the partitions (2, . . . , 2, 1, 0, . . . , 0) and (2k−1, 0, . . . , 0) of 2k−1,
respectively) are algebra generators of k−1[x]

Sn .

Lemma 3.6. Let I = (λk) be a partition where no λi are both equal and odd. The

leading term of OSn
(xλ1

1 xλ2

2 · · ·xλn
n )Sk is xλ1+2

1 · · ·x
λk−1+2
k−1 xλk+1

k x
λk+1

k+1 · · ·xλn
n .
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Proof. By our assumption on I the orbit of XI does not contain another element

with the same entries as XI . Clearly xλ1+2
1 · · ·x

λk−1+2
k−1 xλk+1

k x
λk+1

k+1 · · ·xλn
n is a sum-

mand of the product of OSn
(xλ1

1 xλ2

2 · · ·xλn
n )Sk. This product of orbits can be

written as a linear combination of Sn-orbit sums; let OSn
(XE) be one of these

orbit sums. The entries of the any such partition E are obtained from the partition
I = (λ1, · · · , λn) by adding 2 to k − 1 entries of I, adding 1 to one entry of I, and
placing these entries into numerical order. It is clear that the largest such partition
E that can be obtained in this manner is (λ1+2, . . . , λk−1+2, λk+1, λk+1, · · · , λn),
and the leading term of this Sn-orbit sum occurs in the product of orbits only
once. �

The following lemma follows essentially as in Gauss’s proof for k[x]Sn ; the super-
symmetric polynomials Sk ∈ k−1[x]

Sn play the role of the symmetric polynomials
σk in k[x]Sn .

Lemma 3.7. Suppose that f 6= 0 is a Sn-invariant with leading term xλ1

1 xλ2

2 · · ·xλn
n

of degree m where at least one λk odd. Then there is a positive integer k, a partition
λ∗(m− 2k + 1) = (λ∗

1, . . . , λ
∗
n) of m− 2k + 1, and a c ∈ k× such that

f − c OSn
(x

λ∗

1

1 · · ·x
λ∗

n
n )Sk

has leading term of smaller degree than f . As a consequence, the fixed subring
k−1[x]

Sn is generated as an algebra by the n elements Sk, for k = 1, . . . , n, and
invariants with all even powers, k[x2

1, · · · , x
2
n]

Sn .

Proof. I = (λi) is a partition and hence is weakly decreasing. Let k be the largest
index with λk odd, and let

I∗ = (λ1 − 2, λ2 − 2, . . . , λk−1 − 2, λk − 1, λk+1, . . . , λn).

We claim that I∗ is a weakly decreasing sequence. First note that since λk is odd,
λk ≥ 1, and for ℓ ≥ k + 1 the λℓ are even and weakly decreasing, so for ℓ ≥ k + 1
we have λk ≥ λℓ + 1 ≥ λℓ+1 + 1, and the final n − k + 1 entries of I∗ are weakly
decreasing. Next, since λk is odd and there are no repeated odd exponents in a
nonzero Sn-orbit sum, we have λk−1 ≥ λk + 1 and λj−2 − 2 ≥ λj−1 − 2 ≥ λk − 1
for 3 ≤ j ≤ k, so the first k entries of I∗ are weakly decreasing. Hence by Lemma
3.6 we have

xλ1

1 xλ2

2 · · ·xλn
n = (xλ1−2

1 · · ·x
λk−1−2
k−1 xλk−1

k · · ·xλn
n )(x2

1 · · ·x
2
k−1xk)

is the leading term in OSn
(XI∗

)Sk, and if c is the coefficient of the leading term

of f then c O(XI∗

)Sk − f has smaller order leading term. Furthermore O(XI∗

)
also has smaller order. Since there are only a finite number of smaller orders, the
algorithm must terminate when all exponents are even. �

Since the central subring k[x2
1, . . . , x

2
n] of k−1[x] is a commutative polynomial

ring and Sn acts on it as permutations, the invariants k[x2
1, . . . , x

2
n]

Sn are generated
by either the even power sums P2, · · · , P2n or the n symmetric polynomials in the
squares; in particular, if ρi := σi(x

2
1, · · · , x

2
n) for the elementary symmetric function

σi, then k[x2
1, · · · , x

2
n]

Sn = k[ρ1, ρ2, . . . , ρn]. Since P2k ∈ k[ρ1, ρ2, . . . , ρn], each P2k

can be expressed as a polynomial in the elementary symmetric functions, say

(E3.7.1) P2k = f2k(ρ1, ρ2, . . . , ρn).
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Next we show that k[x2
1, . . . , x

2
n]

Sn is contained in the algebra generated by the
n odd power sums P1, . . . , P2n−1, and k[x2

1, . . . , x
2
n]

Sn is contained in the algebra
generated by the n super-symmetric polynomials Sk.

Lemma 3.8. The fixed subring k[x2
1, . . . , x

2
n]

Sn is contained in the algebra gener-
ated by either the odd power sums P1, · · · , P2n−1 or by the super-symmetric poly-
nomials S1, · · · , Sn in k−1[x].

Proof. We obtain the even power sums from the odd ones as follows: P2 = P 2
1 , and

more generally

(E3.8.1) P2i = (P1P2i−1 + P2i−1P1)/2

for all 1 ≤ i ≤ n. Also

(E3.8.2) ρj = OSn
(x2

1 · · ·x
2
j ) = (S1Sj + SjS1)/(2j)

for all 1 ≤ j ≤ n. �

The next argument follows as in the case of k[x] [S1, p. 4]. Given a monomial
XI , we define λ(I), the partition associated with XI , to be the elements of I listed
in weakly decreasing order (i.e. the partition associated to OSn

(XI)). We define a
total order on the set of monomials as XI < XJ if the associated partitions have
the property that λ(I) is lexicographically larger than λ(J), or, if the partitions are
equal, when I is lexicographically smaller than J . As an example for n = 3 and
degree = 4

x4
3 < x4

2 < x4
1 < x2x

3
3 < x3

2x3 < x1x
3
3 < x1x

3
2 < x3

1x3 < x3
1x2 < x2

2x
2
3

< x2
1x

2
3 < x2

1x
2
2 < x1x2x

2
3 < x1x

2
2x3 < x2

1x2x3.

In the case of k[x], where all partitions represent basis elements in the subring
of invariants, in a given degree k ≤ n the “largest” partition is (1, . . . , 1, 0 . . . , 0),
while the “smallest” partition is (k, 0 . . . , 0). In the case of of k−1[x], for monomials
that correspond to nonzero invariants there are no repeated odd parts, so for odd
degrees 2k − 1 ≤ 2n− 1, the partition (2, . . . , 2, 1, 0, . . . , 0) is “largest” under this
order, and while the partition (2k−1, 0 . . . , 0) is smallest, and x2k−1

n is the smallest
monomial of degree 2k − 1. Furthermore in a product of power sums

Pi1Pi2 · · ·Pik

the leading monomial will be cxi1
1 xi2

2 · · ·xik
k for some nonzero integer c when the ij

are weakly decreasing.

Lemma 3.9. The fixed subring k−1[x]
Sn is generated by the n odd power sums

P1, . . . , P2n−1.

Proof. By Lemma 3.8 the even power sums are generated by the odd power sums
P1, . . . , P2n−1, so it suffices to show invariants are generated by power sums Pk for
k ≤ 2n − 1. By Lemmas 3.7 and 3.8 the Sk are algebra generators of k−1[x]

Sn ,
so it suffices to show they can be expressed in terms of power sums. Hence it
suffices to describe an algorithm that writes an invariant f ∈ k−1[x]

Sn of degree

≤ 2n− 1 as a product of power sums. Write the leading term of f as axi1
1 xi2

2 · · ·xin
n

for some a ∈ k×. The exponents of the leading term are weakly decreasing, and
each is ≤ 2n− 1. The element f − a

cPi1Pi2 · · ·Pin has the same total degree as f ,
but its leading term is less than that of f . Since there are only a finite number



16 E. KIRKMAN, J. KUZMANOVICH AND J.J. ZHANG

of monomials of smaller order for a fixed degree, the algorithm terminates with f
written in terms of power sums of degree ≤ 2n− 1. �

The following theorem of Cameron Atkins follows from the lemmas above, and
gives us two choices of algebra generators for k−1[x]

Sn . It is often convenient to
choose the power sums, since they have fewer summands.

Theorem 3.10. [CA, Theorems 2.2.6 and 2.2.8] The fixed subring k−1[x]
Sn is

generated by either the set of the n odd power sums P1, · · · , P2n−1 or the set of the
n super-symmetric polynomials S1, · · · , Sn.

We next show that the AS Gorenstein domain k−1[x]
Sn is a cci. First we have

to construct a suitable AS regular algebra.
Let R = k[p1, p2, . . . , pn] be a commutative polynomial ring, and let a2i =

f2i(p1, p2, . . . , pn) where the f2i are the polynomials of (E3.7.1). Consider the
following iterated Ore extension

B = k[p1, . . . , pn][y1 : τ1, δ1] · · · [yn : τn, δn]

where coefficients are written on the left, R = k[p1, . . . , pn] is a commutative poly-
nomial ring, τj is the automorphism of k[p1, . . . , pn][y1 : τ1, δ1] · · · [yj−1 : τj−1, δj−1]
defined by τj(yi) = −yi for i < j and τj(r) = r for r ∈ k[p1, . . . , pn], and δj is the
τj-derivation δj(yi) = 2a2i+2j−2 with δj(r) = 0 for all r ∈ k[p1, . . . , pn].

By Lemma 2.3, δk are τk-derivation for all k where (τkδk) appeared in the defi-
nition of B.

We grade B by setting degree(pi) = 2i and degree(yi) = 2i−1. With this grading
the Hilbert series of B is given by

HB(t) =
1

(1 − t)(1− t2) · · · (1 − t2n−1)(1− t2n)
.

The algebra B is an AS regular algebra of dimension 2n. Let ri = y2i − a4i−2 for
each i = 1, 2, . . . , n; it is easy to see that ri is a central element of B.

Lemma 3.11. The sequence {r1, r2, . . . , rn} is a central regular sequence in B.

Proof. First we note that the ri are central since ai and y2i are central

y2i yj = yi(−yjyi + pi+j) = −yiyjyi + yipi+j = −(yiyj + pi+j)yi = yjy
2
i .

Since B is a domain, r1 6= 0 is regular in B.
Let Bi = k[p1, . . . , pn][y1 : τ1, δ1] · · · [yi : τi, δi] and let Bi = Bi/(r1, r2, . . . , ri)Bi

.

Now consider the algebra Ci = Bi[yi+1 : τi+1, δi+1] · · · [yn : τn, δn], where the τj
and δj are the induced maps. These maps are well-defined since for j > i and k ≤
i, τj(rk) = rk and δj(rk) = 0. Note that B = Bi[yi+1 : τi+1, δi+1] · · · [yn : τn, δn],
and hence every element of B can be written in the form

∑
I bIy

I where bI ∈ Bi, I =
(ei+1, ei+2, . . . , en) is a nonnegative integral vector, and yI = y

ei+1

i+1 y
ei+2

i+2 · · · yenn . The
algebra B/(r1, r2, . . . , ri)B is isomorphic to the algebra Ci under the map

∑

I

bIy
I + 〈r1, r2, . . . , ri〉B 7→

∑

I

b̄Iy
I

where b̄I denotes reduction mod (r1, r2, . . . , ri)Bi
. Now the standard polynomial

degree argument in Ci shows that the image of ri+1 is regular in Ci. �

We now can prove that k−1[x]
Sn ∼= B/(r1, r2, . . . , rn) where, by Lemma 3.11,

each ri is central in B and regular in B/(r1, r2, . . . , ri−1).
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Theorem 3.12. The algebra k−1[x]
Sn is a cci.

Proof. By Definition 3.2 and Lemma 3.5 k−1[x]
Sn as a graded vector space has

a basis of orbit sums of monomials having no repeated odd exponents. Hence its
Hilbert series is the same as the generating function for the restricted partitions
having no repeated odd parts. By Proposition 5.1 of the Appendix this Hilbert
series is given by

Dn(t) =
(1− t2)(1 − t6)(1− t10) · · · (1− t4n−2)

(1− t)(1 − t2)(1− t3) · · · (1− t2n−1)(1 − t2n)
.

Let ρi = σi(x
2
1, x

2
2, . . . , x

2
n) where σi is the ith elementary symmetric polynomial.

Then the algebra k[x2
1, x

2
2, . . . , x

2
n]

Sn = k[ρ1, ρ2, . . . , ρn] is a commutative polyno-
mial ring. By Theorem 3.10, k−1[x]

Sn is generated as an algebra by the odd power
sums, and hence k−1[x]

Sn = k[ρ1, ρ2, . . . , ρn][P1, P3, . . . , P2n−1].
Consider the iterated Ore extension B constructed above and define a map φ :

B −→ k−1[x]
Sn by φ(pi) = ρi and φ(yj) = P2j−1. Note that φ preserves degree.

Clearly φ takes R = k[p1, p2, . . . , pn] isomorphically onto k[ρ1, ρ2, . . . , ρn], and both
subrings are central. In the iterated Ore extension B, we have for i < j that

yjyi + yiyj = 2a2i+2j−2 = f2i+2j−2(p1, p2, . . . , pn).

Calculation in k−1[x]
Sn shows that

P2j−1P2i−1 + P2i−1P2j−1 = 2P2i+2j−2 = 2f2i+2j−2(ρ1, ρ2, . . . , ρn);

hence

φ(yj)φ(yi) + φ(yi)φ(yj) = 2φ(a2i+2j−2).

Hence the skew extension relations are preserved, and we conclude that φ is a
graded ring homomorphism. Since the odd power sums P1, P3, . . . , P2n−1 generate
k−1[x]

Sn as an algebra by Theorem 3.10, the homomorphism φ is an epimorphism.
Calculation yields

0 = P 2
2i−1 − P4i−2 = P 2

2i−1 − f4i−2(ρ1, ρ2, . . . , ρn)

= φ(y2i − a4i−2) = φ(ri).

Hence the ideal (r1, r2, . . . , rn) ⊆ ker(φ), and φ induces a graded ring homomor-
phism

φ̄ : B/(r1, r2, . . . , rn) −→ k−1[x]
Sn .

Since for each i the degree of ri is 4i− 2 and {r1, r2, . . . , rn} is a regular sequence,
the Hilbert series of B̄ = B/(r1, r2, . . . , rn) is given by

HB̄(t) =
(1− t2)(1 − t6)(1 − t10) · · · (1− t4n−2)

(1− t)(1 − t2)(1 − t3) · · · (1− t2n−1)(1 − t2n)
.

This shows that φ̄ is an isomorphism. �

Definition 3.13. Let A be a connected graded noetherian algebra.

(1) We say A is a classical complete intersection+ (or a cci+) if there is a
connected graded noetherian AS regular algebraR withHR(t) =

1∏
n
i=1(1−tdi )

and a sequence of regular normal homogeneous elements {Ω1, . . . ,Ωn} of
positive degree such that A is isomorphic to R/(Ω1, . . . ,Ωn). The minimum
such n is called the cci+-number of A and denoted by cci+(A).
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(2) Let A be cyclotomic (e.g., A is cci). The cyc-number of A, denoted by
cyc(A), is defined to be v if the Hilbert series of A is of the form

HA(t) =

∏v
s=1(1− tms)∏w
s=1(1− tns)

where ms 6= ns′ for all s and s′.

Clearly we have cci+(A) ≥ cci(A). It is a conjecture that every noetherian AS
regular algebra has Hilbert series of the form 1∏

n
i=1(1−tdi )

. If this conjecture holds,

then being cci+ is equivalent to being cci and cci+(A) = cci(A). One can easily
show that the expression of HA(t) in Definition 3.13(2) is unique (as we assume
that ms 6= ns′ for all s, s′). It follows from the definition that cci+(A) ≥ cyc(A).
Finally we would like to calculate cci+(k−1[x]

Sn).

Theorem 3.14. cci+(k−1[x]
Sn) = cyc(k−1[x]

Sn) = ⌊n
2 ⌋.

Proof. First we prove the claim that cci+(k−1[x]
Sn) ≤ ⌊n

2 ⌋.

Let C2 be the subalgebra of k−1[x]
Sn defined before Lemma 2.4. By Lemma

2.4(6), it is isomorphic to the iterated Ore extension

k[P4, P8, · · · , P4⌊n
2
⌋][P1][P3; τ3, δ3] · · · [Pn′ ; τn′ , δn′ ]

where n′ = 2⌊n−1
2 ⌋ + 1. By Lemma 2.4(5), C2 contains P2i for all i ≥ 1. Let

Fn′ := C2, and for any odd integer n′ < j ≤ 2n − 1, we inductively construct
a sequence of iterated Ore extensions Fj = Fj−2[Pj , τj , δj ] where τj is defined by
τj(Ps) = (−1)sPs for all even s and for all odd s ≤ j − 2, and where the τj -

derivation δj is defined by δj(Ps) =

{
0 if s is even

2Ps+j if s is odd.
. It follows from the

induction and Lemma 2.3 that τj is an automorphism of Fj−2 and δj is a τj -
derivation of Fj−2. Therefore Fj (and whence F2n−1) is an iterated Ore extension
(which is a noetherian AS regular algebra with Hilbert sires of the form (

∏n
i=1(1−

tdi))−1). Let us = P 2
2s−1 −P4s−2 for all integers from s = ⌊n−1

2 ⌋+2 to s = n. The
proof of Lemma 3.11 shows that {u⌊n−1

2
⌋+2, · · · , un} is a central regular sequence

of F2n−1. It is easy to see that F2n−1/(u⌊n−1
2

⌋+2, · · · , un) ∼= k−1[x]
Sn . Therefore

cci+(k−1[x]
Sn) ≤ n− (⌊n−1

2 ⌋+ 1) = ⌊n
2 ⌋ and we proved the claim.

By Theorem 3.12

Hk−1[x]Sn (t) = HB̄(t) =
(1 − t2)(1− t6)(1− t10) · · · (1 − t4n−2)

(1− t)(1− t2)(1− t3) · · · (1 − t2n−1)(1− t2n)

=

∏n
s=⌊n−1

2
⌋+2(1− t4s−2)

∏⌊n
2
⌋

j=1(1− t4j)
∏n

i=1(1− t2i−1)

which is an expression satisfying the condition in Definition 3.13(2). Hence

cyc(k−1[x]
Sn) = ⌊

n

2
⌋.

The assertion follows from the claim and the fact cci+(A) ≥ cyc(A). �
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4. Invariants under An

First let us review the classical case. Let An be the alternating group. Any
element of k[x]An can be written uniquely as h1 + Dh2, where h1 and h2 are
symmetric polynomials and D is the “Vandermonde determinant”

D = D(x1, · · · , xn) =
∏

i<j

(xi − xj)

[S1, p. 5]. Hence the maximal degree of a minimal set of generators of k[x]An is(
n

2

)
. A polynomial f is called “antisymmetric” if τf = −f for every odd permu-

tation τ ∈ Sn [S1, p. 5]; D is the smallest degree antisymmetric element of k[x]An .
Moreover, D2 is a symmetric polynomial, the Hilbert series of k[x]An is

1 + tr∏n
i=1(1 − ti)

=
1− t2r

(1− tr)
∏n

i=1(1 − ti)

for r =

(
n

2

)
[Be, pp. 104-5], and hence k[x]An is isomorphic to the complete

intersection
k[σ1, . . . , σn][y]

(y2 −D2)

under the map that associates y to D (and the symmetric polynomial in the xi to
σi). Following Definition 3.13, one easily gets

cci(k[x]An) = cci+(k[x]An) = cyc(k[x]An) = 1.

The group An is generated by 3-cycles, which have trace

Trk[x](g, t) =
1

(1 − t3)(1− t)n−3
,

and hence are bireflections of k[x]; the 3-cycles are a generating set of bireflec-
tions that the Kac-Watanabe-Gordeev Theorem states must exist since k[x]An is a
complete intersection.

In this section we consider the analogous situation for k−1[x]
An for n ≥ 3. As

a general setup, we are working with the noncommutative algebra k−1[x] unless
otherwise stated. Again there is an overlap between [CA] and this section.

The trace of a 3-cycle g acting on k−1[x] is also

Trk−1[x](g, t) =
1

(1 − t3)(1− t)n−3
,

hence An is generated by quasi-bireflections of k−1[x]. The aim of this section is to
show that k−1[x]

An is a cci, which is consistent with the conjectured generalization
of the Kac-Watanabe-Gordeev Theorem. Here the smallest degree antisymmetric
polynomial is OAn

(x1x2 · · ·xn−1), and the subring of invariants k−1[x]
An is gen-

erated by OAn
(x1x2 · · ·xn−1), and either the n − 1 super-symmetric polynomials

S1, . . . , Sn−1 or the power sums P1, . . . , P2n−3, and so an upper bound on the de-
grees of generators of k−1[x]

An is 2n − 3. We will show that the Hilbert series of
k−1[x]

An is given by

(E4.0.1) Hk−1[x]An (t) =
(1 + t)(1 + t3) · · · (1 + t2n−3)(1 + tn)(1 + tn−1)

(1− t2)(1 − t4) · · · (1− t2n)
.
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We construct invariants under An as OAn
(XI), the sum of the orbit of a mono-

mial XI under An [Definition 3.2]; we note that the number of terms in this sum
is the index of the An-stabilizer of X

I in An.

Lemma 4.1. [CA, Lemma 4.1.1] If there is an odd permutation that stabilizes XI

then f = OAn
(XI) is also invariant under the full symmetric group Sn.

Proof. Since the index of the subgroup stabAn
(XI) in stabSn

(XI) is less than
or equal to [Sn : An] = 2, if there is an odd permutation that stabilizes XI

then the index [stabSn
(XI) : stabAn

(XI)] = 2, and the order of the orbit XI

under Sn = [Sn : stabSn
(XI)] is the same as the order of the orbit of XI under

An = [An : stabAn
(XI)], so the orbit sum of XI under Sn is the same as that

under An; hence OAn
(XI), the orbit sum of XI under An, is Sn-invariant. �

Here is an immediate consequence.

Corollary 4.2. If I = (ij) with at least 2 indices ij = ik, an even number, then
OAn

(XI) is an Sn-invariant. In particular if there are at least 2 indices ij = ik = 0
then OAn

(XI) is an Sn-invariant.

Lemma 4.3. [CA, Lemma 4.1.2] An An-orbit sum OAn
(XI) = 0 if and only if I

has at least two indices ij = ik an even number, and two indices ir = is an odd
number.

Proof. If I has repeated even indices then OAn
(XI) = OSn

(XI) by Corollary 4.2.
Since I has repeated odd indices then OSn

(XI) = 0 by Lemma 3.5.
Conversely, suppose that OAn

(XI) = 0, then XI and −XI are in the An-orbit
of XI , hence in the Sn-orbit of XI . Hence for every τXI in the Sn-orbit of XI

we also have −τXI in the Sn-orbit, and so the Sn orbit sum is 0, which forces at
least two indices to have the same odd value by Lemma 3.5. We have τXI = −XI

for an even permutation τ . Write τ as a product of disjoint cycles

τ = ν1 · · · ν2mµ1 · · ·µk

where the νi are odd permutations and the µj are even permutations. Note that
since τXI = −XI exponents in I must be constant over the support of each cycle.
Suppose there are no repeated even indices in I, so that all repeats are of odd
indices. Hence for each µj = (a1, · · · , a2sj+1), an even cycle, µj can be written
as an even number of transpositions, interchanging variables with the same odd
exponent. By the proof of Lemma 3.5 each of these transpositions maps XI to
−XI , and hence µjX

I = XI , For similar reasons each νiX
I = −XI . It follows

that τXI = ν1 · · · ν2mµ1 · · ·µkX
I = XI , a contradiction. Hence I must also contain

at two indices with the same even number. �

Note that An-orbit sums do not necessarily correspond to partitions, e.g. when
n = 4 the orbit sums OAn

(x4
1x

3
2x

2
3x4) and OAn

(x4
1x

3
2x3x

2
4) are different (and

OAn
(x4

1x
3
2x

2
3x4) +OAn

(x4
1x

3
2x3x

2
4) = OSn

(x4
1x

3
2x

2
3x4)).

Adapting the classical definition, an element g ∈ k−1[x] is called symmetric
(respectively, antisymmetric) if τ(g) = g (respectively, τ(g) = −g) for every odd
permutation τ ∈ Sn. Note that g is symmetric if and only if g is Sn-invariant. If
g is antisymmetric, then g is An-invariant. The following lemma follows easily.

Lemma 4.4. Let f, g, h be elements in k−1[x].
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(1) Linear combinations of antisymmetric invariants are antisymmetric. Hence
if f + g and g are antisymmetric invariants, then f is an antisymmetric
invariant.

(2) If f = gh with g an antisymmetric invariant and h a symmetric invariant,
then f is an antisymmetric invariant.

(3) If f = gh with f and g antisymmetric invariants then h a symmetric in-
variant.

The following lemma follows as in the case of k[x] and the proof is omitted.

Lemma 4.5. [CA, Theorem 4.1.4] If f is an An-invariant and σ is the transposition
(1, 2) then σf = τf for any odd permutation τ . Furthermore f + σf is symmetric
and f − σf is antisymmetric. As a consequence, each invariant f ∈ k−1[x]

An can
be be written uniquely as the sum of a symmetric invariant and an antisymmetric
invariant.

Example 4.6. For n ≥ 3 the following are examples of antisymmetric invariants:
some An-orbits are antisymmetric (e.g. OAn

(x4
1x2x3) and OAn

(x3
1x

3
2x3)) and an-

tisymmetric elements can be constructed from the lemma above (e.g. f − σf for
f = OAn

(x4
1x

3
2x

2
3 )).

For the rest of this section, we assume that n ≥ 3 as A2 is trivial. In the case
k−1[x] we have the two antisymmetric orbit sums given in the lemma below; the
orbit sums of these monomials are symmetric polynomials when An acts on k[x].

Lemma 4.7. The An orbit sums

OAn
(x1x2 · · ·xn) = x1x2 · · ·xn and OAn

(x1x2 · · ·xn−1)

are both antisymmetric An-invariants. And OAn
(x1x2 · · ·xn−1) is the smallest de-

gree antisymmetric invariant.

Proof. It is easy to show that x1x2 · · ·xn is an antisymmetric An-invariant, whence
OAn

(x1x2 · · ·xn) = x1x2 · · ·xn. So we focus on OAn
(x1x2 · · ·xn−1).

We note that

OA3
(x1x2) = x1x2 − x1x3 + x2x3.

For n ≥ 4 applying the even permutation (1, 2)(n− 1, n) to x1x2 · · ·xn−1 we obtain

(1, 2)(n− 1, n)(x1x2 · · ·xn−1) = x2x1 · · ·xn−2xn = −x1x2 · · ·xn−2xn

and similarly

(1, 2)(n− 2, n)(x1x2 · · ·xn−1) = x2x1 · · ·xn−3xnxn−1 = x1x2 · · ·xn−3xn−1xn

and

(1, 2)(j, n)(x1x2 · · ·xn−1) = x2x1 · · ·xj−1xnxj+1 · · ·xn

= (−1)n−jx1x2 · · ·xj−1xj+1 · · ·xn

so that the n monomials with jth missing variable occur in the An-orbit with the
sign (−1)n−j . Since x1 · · ·xn−1 has repeated odd exponents we have seen that the
monomials in the Sn-orbit of x1 · · ·xn−1 occur with both plus and minus signs,
and the Sn-orbit sum of x1x2 · · ·xn−1 is 0. Hence the Sn-orbit of x1 · · ·xn−1 has
2n elements, and so the Sn-stabilizer of x1 · · ·xn−1 has (n − 1)!/2 elements, and
clearly the (n − 1)!/2 even permutations of {1, . . . , n − 1} stabilize x1 · · ·xn−1 so
must constitute its stabilizer. Hence the stabilizer in An must also have (n− 1)!/2
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elements, and hence the An-orbit of x1 · · ·xn−1 must be the n elements we have
computed, and hence

OAn
(x1 · · ·xn−1) = (x1 · · ·xn−1)− (x1 · · ·xn−2xn) + (x1 · · ·xn−3xn−1xn)

+ · · ·+ ((−1)n−1x2x3 · · ·xn).

Then to see the effect of any transposition (i, j) on this orbit sum, consider a
summand of the orbit sum that contains both i and j and note, as in the argument
above, that the transposition (i, j) changes the sign of this term; since any element
in an orbit represents the orbit, any transposition reverses the sign on the An-orbit
sum of x1 · · ·xn−1, and hence OAn

(x1x2 · · ·xn−1) is an antisymmetric An-invariant.
There can be no smaller degree antisymmetric An-invariant since any smaller

degree monomial XI must have at least two zero entries in I, hence O(XI) must
beSn-symmetric, and so no linear combination of such orbits can be antisymmetric.

�

The antisymmetric orbit sum OAn
(x1 · · ·xn) can be generated from the super-

symmetric polynomials and OAn
(x1 · · ·xn−1).

Lemma 4.8. The antisymmetric orbit sum OAn
(x1 · · ·xn) = x1 · · ·xn is gener-

ated by the super-symmetric polynomial P1 = S1 = OSn
(x1) = OAn

(x1) and the
antisymmetric orbit sum OAn

(x1 · · ·xn−1) as follows

OAn
(x1 · · ·xn) =

1

2n
(OAn

(x1 · · ·xn−1)S1 + (−1)n−1S1OAn
(x1 · · ·xn−1)).

Proof. Computing

OAn
(x1 · · ·xn−1)OAn

(x1)

= (x1x2 · · ·xn−1 − x1x2 · · ·xn−2xn + · · ·+ (−1)n−1x2 · · ·xn)(x1 + · · ·+ xn)

we see that the monomial x1 · · ·xn occurs n times (each with positive sign) as a
summand in this product when expanded, and

x1 · · ·xn−1x1 = (−1)n−2x2
1 · · ·xn−1

so the respective orbits sums occur in the expanded product. Since there are n2

monomials in the product OAn
(x1 · · ·xn−1)OAn

(x1), and n(n − 1) summands in
OAn

(x2
1x2 · · ·xn−1) these orbit sums account for all the terms, and so

OAn
(x1 · · ·xn−1)OAn

(x1) = nOAn
(x1 · · ·xn) + (−1)n−2OAn

(x2
1x2 · · ·xn−1).

Similarly

OAn
(x1)OAn

(x1 · · ·xn−1) = OAn
(x2

1x2 · · ·xn−1) + (−1)n−1nOAn
(x1 · · ·xn),

and the result follows. �

Next we note that the super-symmetric polynomial Sn = OSn
(x2

1 · · ·x
2
n−1xn) can

be generated by antisymmetric invariants OAn
(x1 · · ·xn) and OAn

(x1 · · ·xn−1).

Lemma 4.9. The super-symmetric polynomial Sn = OSn
(x2

1 · · ·x
2
n−1xn) can be

generated by antisymmetric invariants OAn
(x1 · · ·xn) and OAn

(x1 · · ·xn−1) as fol-
lows

OSn
(x2

1 · · ·x
2
n−1xn) = (−1)(n−2)(n−1)/2(OAn

(x1 · · ·xn−1))(OAn
(x1 · · ·xn)).
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Proof. The monomial x2
1 · · ·x

2
n−1xn is stabilized by (1, 2) so

Sn = OSn
(x2

1 · · ·x
2
n−1xn) = OAn

(x2
1 · · ·x

2
n−1xn),

and

Sn =

n∑

i=1

x2
1 · · ·x

2
i−1xix

2
i+1 · · ·x

2
n.

This expression is a sum of n terms, each with x1 · · ·xn as a factor. Consider the
product (OAn

(x1 · · ·xn−1))(x1 · · ·xn), and observe when this product is expanded
one term is

(x1 · · ·xn−1)(x1 · · ·xn) = (−1)n−2(x2
1x2 · · ·xn−1)(x2 · · ·xn)

= (−1)n−2(−1)n−3(x2
1x

2
2 · · ·xn−1)(x3 · · ·xn)

= (−1)(n−2)(n−1)/2(x2
1 · · ·x

2
n−1xn),

the last equality holding by induction. Since (OAn
(x1 · · ·xn−1))(x1 · · ·xn) is an in-

variant, the entire orbit sum of this monomial must occur as terms in this expanded
product, accounting for the n terms in Sn yielding the result. �

Here we are ready to prove a result of Cameron Atkins [CA].

Theorem 4.10. [CA, Theorem 4.2.7] The fixed subring k−1[x]
An is generated by

the super-symmetric polynomials S1, · · · , Sn−1 and the antisymmetric An-invariant
OAn

(x1 · · ·xn−1) (or the odd power sums P1, P3, . . . , P2n−3 and OAn
(x1 · · ·xn−1)).

Proof. By Lemma 4.8 S1 = P1 and O(x1 · · ·xn−1) generate x1x2 · · ·xn, which in
turn by Lemma 4.9 generate Sn. By Theorem 3.10 S1, S2, . . . , Sn generate all the
symmetric invariants. Hence it suffices to show that any antisymmetric An-invariant
f can be obtained.

We will induct on the degree of f , noting that the result is true in degrees ≤ n−1
since O(x1 · · ·xn−1) is the only antisymmetric An-invariant of degree ≤ n− 1.

Let XI be the leading term of f under the length-lexicographic order. If σ is an
transposition σf = −f also has leading termXI . Hence by applying transpositions,
we may assume that f has leading term XI where I is weakly decreasing (and hence
corresponds to a partition). We can write f as a linear combination of distinct orbit
sums f =

∑
cIOAn

(XI) where XI is the highest degree monomial in the orbit, and
where cI ∈ k [Lemma 3.4]. Since f is antisymmetric σf =

∑
cIσOAn

(XI) = −f
so that 2f = f − (−f) =

∑
cI(OAn

(XI) − σOAn
(XI)). Hence without loss of

generality we may assume that f = OAn
(XI)− σ(OAn

(XI)), with XI the leading
term of f , and with I = (λi) weakly decreasing; (since XI is the leading term of
f , and f is antisymmetric, σ(OAn

(XI)) 6= OAn
(XI)). Since x2

1 · · ·x
2
n is central

and symmetric, we can factor it out of f , obtaining an antisymmetric invariant of
smaller degree. Hence we may assume without loss of generality that λn = 0 or 1.
If λn = 1, then each xi occurs in all terms of f , so we can factor out (x1 · · ·xn)
from f and write f = h(x1 · · ·xn) for some An-invariant h. It follows that h is
symmetric, and we are done. Hence, assume that λn = 0 and I = (λ1, . . . , λn−1, 0).

Now we induct on the order of I. The lowest order possible for I is when
I = (λ1, 0, · · · , 0). Since n ≥ 3, we have λn−1 = 0. If λn−1 = 0, then the
transposition τ = (n−1, n) stabilizes XI and hence O(XI) is Sn-invariant [Lemma
4.1]. Consequently, f = 0 and we are done. Therefore we can assume that λi 6= 0
for all i = 1, · · · , n− 1. Let I∗ = (λ1 − 1, λ2− 1, . . . , λn−1 − 1, 0), which is a weakly
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decreasing sequence, and let h = OAn
(XI∗

)+σOAn
(XI∗

), which is Sn-invariant (it
is possible that O(XI) itself is Sn-invariant – e.g. if λn−1 = 1 or I∗ has two even
entries that are equal – in this case h = 2OAn

(XI∗

)). Let g = hOAn
(x1 · · ·xn−1),

which is an antisymmetric An-invariant that is a product of a Sn-invariant and
OAn

(x1 · · ·xn−1). We claim that ±f is a summand of g and that all other terms
have lower order; by induction these claims will complete the proof. Notice that
the terms g1 and g2 occur in g where

g1 = (xλ1−1
1 xλ2−1

2 · · ·x
λn−1−1
n−1 )(x1 · · ·xn−1)

g2 = (xλ1−1
2 xλ2−1

1 · · ·x
λn−1−1
n−1 )(x1 · · ·xn−1),

and hence their An-orbit sums occur in g. Note that g1 = ±XI and g2 = ±σXI

and σg1 = −g2, and hence ±f is a summand of g. Finally notice that XI is clearly
the leading term of g and so all the other terms of g are of lower order. Hence f ±g
is antisymmetric of lower order, hence of the desired form by induction.

The argument of Lemma 3.9 shows that S1, S2, . . . , Sn−1 can be obtained from
P1, P3, . . . , P2n−3. �

In the above proof we have shown that antisymmetric invariants correspond to
partitions

I 7→ OAn
(XI)− σOAn

(XI)

for any odd permutation σ. This antisymmetric invariant will be non-zero if and
only if 0 6= OAn

(XI) is not Sn-invariant, i.e. OAn
(XI) has no odd permutations

stabilizing it. By the lemma below this is equivalent to I having no repeated even
indices (by Lemma 4.3 this condition also assures OAn

(XI) 6= 0.)

Lemma 4.11. Let XI be the highest degree lexicographic ordered term in the An-
orbit of XI. Then σOAn

(XI) = OAn
(XI) for an odd permutation σ if and only if

I has at least two entries λj = λk that are an even number (including 0).

Proof. If λj = λk is even then (j, k)XI = XI so Sn = An ∪ An(j, k) and the An-
orbit of XI is the same as the Sn-orbit of X

I so (j, k)OAn
(XI) = OAn

(XI), and,
in fact, any permutation stabilizes the orbit sum.

Conversely, suppose that there is an odd permutation σ with σOAn
(XI) =

OAn
(XI). Since σXI is in the An-orbit of X

I we must have σXI = τXI for τ an
even permutation. Hence τ−1σXI = XI so XI is stabilized by an odd permutation.
Suppose that I has no repeated even entries, and write σ = ν1 · · · ν2m+1µ1 · · ·µk as
a product of disjoint cycles, where νi are odd permutations and µi are even. Noting
that entries of I in the support of each cycle must be constant and all repeated
entries are assumed to be odd, we see that each µiX

I = XI because µi is the
product of an even number of transpositions of variables with the same odd expo-
nents and so each transposition changes the sign; since there are an even number
of sign changes µiX

I = XI . However νiX
I = −XI since νi is the product of an

odd number of interchanges of variables to the same odd power, and hence results
in an odd number of sign changes. Hence

σXI = ν1 · · · ν2m+1µ1 · · ·µkX
I = ν1 · · · ν2m+1X

I = (−1)2m+1XI = −XI ,

contradicting σXI = XI . Hence I must have at least one repeated even entry. �
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We note that in the commutative case the antisymmetric nonzero invariants
OAn

(XI)−σOAn
(XI) that corresponding to a partition I are those with all entries

of I distinct.
We next compute the Hilbert series for k−1[x]

An and use it to show that k−1[x]
An

is a cci. For specific values of n the coefficients of these series do not seem to be in
the Online Encyclopedia of Integer Sequences.

Lemma 4.12. The Hilbert series of k−1[x]
An is given by

Hk−1[x]An (t) =
(1 − t2)(1− t6)(1− t10) · · · (1− t4n−2)(1 + tn)(1 + tn−1)

(1 − t)(1− t2)(1 − t3) · · · (1− t2n−1)(1− t2n)(1 + t2n−1)
.

Proof. By remarks above in each dimension the invariants are vector space direct
sums of the symmetric invariants and the antisymmetric invariants, so the Hilbert
series Hk−1[x]An (t) for the invariants under An is the sum of Hk−1[x]Sn (t) and the
generating function Sn(t) for sn(k), the number of partitions of k with at most
n parts having no repeated even parts (not even 0). By Proposition 6.3 of the
Appendix we have

Sn(t) = Dn(t)
tn−1(1 + t)

(1 + t2n−1)
.

Hence

Hk−1[x]An (t) = Dn(t) + Sn(t) = Dn(t) +Dn(t)
tn−1(1 + t)

(1 + t2n−1)

= Dn(t)

(
1 +

tn−1(1 + t)

(1 + t2n−1)

)

= Dn(t)
(1 + tn)(1 + tn−1)

(1 + t2n−1)

=
(1 − t2)(1− t6)(1− t10) · · · (1− t4n−2)(1 + tn)(1 + tn−1)

(1 − t)(1− t2)(1 − t3) · · · (1− t2n−1)(1− t2n)(1 + t2n−1)
.

Canceling yields the expression in equation (E4.0.1). �

Consider the algebras given by

Bn−1 = k[p1, · · · , pn][y1 : τ1, δ1] · · · [yn−1 : τn−1, δn−1]

Bn+1 = Bn−1[yn+1; τn+1]

Bn+2 = Bn+1[yn+2; τn+2, δn+2].

For i ≤ n − 1 define τi and δi as for the algebra B considered in the previous
section (note that B is not a subalgebra of C since yn is not adjoined). Define the
τn+1 by letting it be the identity on R = k[p1, · · · , pn] and τn+1(yi) = (−1)n−1yi
for i ≤ n − 1. Then τn+1 extends uniquely to an algebra automorphism of Bn−1.
Define the algebra automorphism τn+2 of Dn by letting it be the identity on R and
letting

τn+2(yi) =

{
(−1)nyi if i ≤ n− 1,

(−1)n+1yn+1 if i = n+ 1.

The derivation δn+2 is given by letting δn+2(a) = 0 for all a ∈ R, δn+2(yi) =
(−1)n−12na2i−2yn+1 for i ≤ n − 1, and δn+2(yn+1) = 0. Recall that a2i−2 =
f2i−2(p1, p2, . . . pn) where f2i−2 is given by (E3.7.1).

Lemma 4.13. Retain the above notation.
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(1) τn+2 is an algebra automorphism of Bn+1.
(2) δn+2 is a τn+2-derivation of Bn+1.

Proof. (1) It is straightforward to check that τn+2 is an algebra automorphism of
Bn+1.

(2) The relations of Bn+1 are of the form

yia− ayi = 0, ∀ i = 1, · · · , n− 1, n+ 1, a ∈ R

yiyj + yjyi = 2 a2i+2j−2, ∀ 1 ≤ i, j ≤ n− 1,

yn+1yi + (−1)nyiyn+1 = 0, ∀i = 1, · · · , n− 1.

The proof of δn+2 preserving the relations yia − ayi = 0 is similar to the proof of
Lemma 2.3(2). Now we show that δn+2 preserves other relations. For i, j ≤ n− 1,

δn+2(yiyj + yjyi − 2a2i+2j−2)

= δn+2(yi)yj + τn+2(yi)δn+2(yj) + δn+2(yj)yi + τn+2(yj)δn+2(yi)

= (−1)n−12na2i−2yn+1yj + (−1)nyi(−1)n−12na2j−2yn+1

+ (−1)n−12na2j−2yn+1yi + (−1)nyj(−1)n−12na2i−2yn+1

= 0

For i ≤ n− 1, we have

δn+2(yn+1yi + (−1)nyiyn+1)

= τn+2(yn+1)δn+2(yi) + (−1)nδn+2(yi)yn+1

= (−1)n+1yn+1(−1)n−12na2i−2yn+1 + (−1)n(−1)n−12na2i−2yn+1yn+1

= 0.

�

The above lemma verifies that δn+2 is a τn+2-derivation. Let C = Bn+2. The
algebra C is AS regular of dimension 2n+1. Grade C by letting degree(yi) = 2i−1
for i ≤ n− 1, degree(yn+1) = n, and degree(yn+2) = n− 1. Then the Hilbert series
of C is given by

HC(t) =
1

(1− t)(1 − t2) · · · (1− t2n−3)(1− t2n−2)(1 − t2n)(1 − tn)(1− tn−1)
.

Since An ≤ Sn, the algebra k[x2
1, x

2
2, . . . , x

2
n]

Sn is a subalgebra of k−1[x]
An . Then

k[x2
1, x

2
2, . . . , x

2
n]

Sn = k[ρ1, ρ2, . . . , ρn], a commutative polynomial ring where ρi =
σi(x

2
1, x

2
2, . . . , x

2
n) and σi is the ith elementary polynomial. Observe that

(E3.12.1) OAn
(x1 · · ·xn−1)

2 = ±OAn
((x1 · · ·xn−1)

2) = ±OAn
(x2

1 · · ·x
2
n−1)

because

(x1 · · ·xk · · ·xn−1)(x1 · · ·xk−1xk+1 · · ·xn)

= (−1)n−2(x1 · · ·xk · · ·xn−1xn)(x1 · · ·xk−1xk+1 · · ·xn−1)

= (−1)n(−1)(n−k)+(k−1)(x1 · · ·xk−1xk+1 · · ·xn−1xn)(x1 · · ·xk−1xkxk+1 · · ·xn−1)

= −(x1 · · ·xk−1xk+1 · · ·xn−1xn)(x1 · · ·xk−1xkxk+1 · · ·xn−1),

so the orbits of the cross-terms cancel out, leaving only an orbit in the x2
i that

is symmetric. Hence we can write OAn
(x2

1x
2
2 · · ·x

2
n−1) = g(ρ1, ρ2, . . . , ρn) for a

polynomial g. Similarly, (x1x2 · · ·xn)
2 = ±x2

1x
2
2 · · ·x

2
n = h(ρ1, ρ2, . . . , ρn) for a

polynomial h.
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As in the previous section let for i ≤ n− 1 let ri = y2i − a4i−2. Let

(E4.13.1) b1 = g(p1, p2, . . . , pn)

and

(E4.13.2) b2 = h(p1, p2, . . . , pn)

and consider two additional relations rn+1 = y2n+1 − b2 and rn+2 = y2n+2 − b1.
The proof of the following lemma is the same as that of Lemma 3.11.

Lemma 4.14. The sequence {r1, r2, . . . , rn−1, rn+1, rn+2} is a central regular se-
quence in C.

We are now ready to show that k−1[x]
An is a cci.

Theorem 4.15. The algebra k−1[x]
An is a cci.

Proof. Note that OAn
(x1x2 · · ·xn−1) and x1x2 · · ·xn are elements of k−1[x]

An .
Consider the algebra C constructed above and define a map φ : C −→ k−1[x]

An

as follows: for i ≤ n let φ(pi) = ρi; for i ≤ n − 1 let φ(yi) = P2i−1; let
φ(yn+1) = x1x2 · · ·xn; and let φ(yn+2) = OAn

(x1x2 · · ·xn−1). Note that φ takes
k[p1, p2, . . . , pn] isomorphically onto k[ρ1, ρ2, . . . , ρn]. In the proof of Theorem 3.12
it was shown that φ preserves the skew polynomial relations associated to yi for
i ≤ n− 1. Calculating shows that (x1x2 · · ·xn)P2i−1 = (−1)n−1(x1x2 · · ·xn)P2i−1,
and hence φ preserves the relation associated to yn+1. Further calculation shows
that

OAn
(x1x2 · · ·xn−1)P2i−1 = (−1)nP2i−1OAn

(x1x2 · · ·xn−1)

+ (−1)n−12nP2i−2 · (x1x2 · · ·xn).

Since OAn
(x1x2 · · ·xn−1)(x1x2 · · ·xn) = (−1)n−1(x1x2 · · ·xn)OAn

(x1x2 · · ·xn−1)
and P2i−2 = f2i−2(ρ1, ρ2, . . . , ρn), the relation associated to yn+2 is preserved by
φ. Hence φ is a graded ring homomorphism. The homomorphism φ is onto by
Theorem 4.10. By (E3.12.1)

0 = OAn
(x1x2 · · ·xn−1)

2 −OAn
(x2

1x
2
2 · · ·x

2
n−1)

= OAn
(x1x2 · · ·xn−1)− g(ρ1, ρ2. . . . , ρn) = φ(y2n+2 − b1) = φ(rn+2).

Similarly, φ(rn+1) = φ(y2n+1−b2) = 0. As in the proof of Theorem 3.12 φ(ri) = 0 for
i ≤ n−1. Hence (r1, r2, . . . , rn−1, rn+1, rn+2) ⊆ ker(φ), and φ induces a graded ring
homomorphism φ̄ : C −→ k−1[x]

An where C = C/(r1, r2, . . . , rn−1, rn+1, rn+2).
We have degree(ri) = 4i−2 for i ≤ n−1, degree(rn+1) = 2n, and degree(rn+2) =

2n− 2. Since {r1, r2, . . . , rn−1, rn+1, rn+2} is a regular sequence, the Hilbert series
of C is given by

HC(t) =
(1− t2)(1 − t6)(1− t10) · · · (1− t4n−6)(1 − t2n)(1− t2n−2)

(1 − t)(1− t2) · · · (1− t2n−2)(1− t2n)(1− tn)(1 − tn−1)

=
(1− t2)(1 − t6)(1− t10) · · · (1− t4n−6)(1 − t2n)(1− t2n−2)

(1 − t)(1− t2) · · · (1− t2n−2)(1− t2n)(1− tn)(1 − tn−1)

(1− t4n−2)

(1− t4n−2)

=
(1− t2)(1 − t6)(1− t10) · · · (1− t4n−2)(1 + tn)(1 + tn−1)

(1− t)(1− t2)(1− t3) · · · (1 − t2n−1)(1− t2n)(1 + t2n−1)
.

This is the Hilbert series of k−1[x]
An , and hence the ring homomorphism φ̄ is an

isomorphism as desired. The assertion follows. �

Theorem 4.16. ⌊n
2 ⌋ = cyc(k−1[x]

Sn) ≤ cci+(k−1[x]
Sn) ≤ ⌊n

2 ⌋+ 1.
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Proof. First we prove the claim that cci+(k−1[x]
Sn) ≤ ⌊n

2 ⌋+ 1.

Following the proof of Theorem 3.14, let C2 be the subalgebra of k−1[x]
Sn defined

before Lemma 2.4, which is (isomorphic to) the iterated Ore extension

k[P4, P8, · · · , P4⌊n
2
⌋][P1][P3; τ3, δ3] · · · [Pn′ ; τn′ , δn′ ]

where n′ = 2⌊n−1
2 ⌋+1. Let F2n−3 be the iterated Ore extension defined in the proof

of Theorem 3.14. (We are not going to use F2n−1, instead we will define two new
algebras H2n−1 and H2n+1.) Recall from the proof of Theorem 4.15 that pi is the
image of P2i for all i = 1, · · · , n. By Lemma 2.4(5), P2i are in C2 for all i. Define
H2n−1 = F2n−3[Q2n−1;φ2n−1] where φ2n−1 : Pi 7→ (−1)i(n−1)Pi for all even i and
all odd i ≤ 2n−3 if Pi appeared in F2n−3. It is easy to check that φ2n−1 is an algebra
automorphism of F2n−3 and therefore H2n−1 is an iterated Ore extension. Define
H2n+1 = H2n−1[Q2n+1;φ2n+1, λ2n+1] where φ2n+1 is an algebra automorphism de-

termined by φ2n+1 :

{
Pi 7→ (−1)inPi for even i or odd i ≤ 2n− 3

Q2n−1 7→ (−1)n+1Q2n−1

(see

the proof of Lemma 4.13(1)), and φ2n+1-derivation λ2n+1 is determined by

λ2n+1 :





Pi 7→ 0 if i is even and i ≤ 2n

Pi 7→ (−1)n+12nQ2n−1f2i−2(P2, · · · , P2n) if i is odd and i ≤ 2n− 3

Q2n−1 7→ 0

,

where f2i−2 is given by (E3.7.1). Similar to the proof of Lemma 4.13(2), one can
show that λ2n+1 is a φ2n+1-derivation, thereforeH2n+1 is an iterated Ore extension.
Let us = P 2

2s−1 − P4s−2 for all integers from s = ⌊n−1
2 ⌋+ 2 to s = n− 1. Let un+1

be Q2
2n−1 − b2 where b2 ∈ C1 ⊂ C2 is defined in (E4.13.2). Let un+2 be Q2

2n+1 − b1
where b1 ∈ C1 ⊂ C2 is defined in (E4.13.1).

The proof of Lemma 3.11 (see also Lemma 4.14) shows that

{u⌊n−1
2

⌋+2, · · · , un−1, un+1, un+2}

is a central regular sequence of H2n+1. It is straightforward to see that

H2n+1/(u⌊n−1
2

⌋+2, · · · , un−1, un+1, un+2) ∼= k−1[x]
Sn .

Therefore cci+(k−1[x]
Sn) ≤ n+1− (⌊n−1

2 ⌋+1) = ⌊n
2 ⌋+1 and we proved the claim.

By Theorem 4.15

Hk−1[x]An (t) = Hk−1[x]Sn (t)
(1 + tn)(1 + tn−1)

1 + t2n−1

=

∏n
s=⌊n−1

2
⌋+2(1 − t4s−2)

∏⌊n
2
⌋

j=1(1− t4j)
∏n

i=1(1 − t2i−1)

(1− t2n−1)(1 − t2n)(1− t2(n−1))

(1− t4n−2)(1 − tn)(1− tn−1)

=

∏n−1

s=⌊n−1
2

⌋+2
(1− t4s−2)

∏⌊n
2
⌋

j=1(1− t4j)
∏n−1

i=1 (1− t2i−1)

(1− t2n)(1− t2(n−1))

(1− tn)(1− tn−1)

=

∏n−1

s=⌊n−1
2

⌋+2
(1− t4s−2)

∏⌊n
2
−1⌋

j=1 (1− t4j)
∏n−1

i=1 (1− t2i−1)

(1− t2(2⌊
n−1
2

⌋+1))

(1− tn)(1 − tn−1)

which is an expression satisfying the condition in Definition 3.13(2). Hence

⌊
n

2
⌋ = cyc(k−1[x]

Sn) ≤ cci+(k−1[x]
Sn) ≤ ⌊

n

2
⌋+ 1.
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�

Question 4.17. Let A be either k−1[x]
Sn and k−1[x]

An . Let E(A) be the Ext-
algebra Ext∗A(k, k).

(1) Is E(A) noetherian?
(2) What is the GK-dimension of E(A)?

5. Converse of Kac-Watanabe-Gordeev Theorem

Kac-Watanabe-Gordeev showed that when k[x]G is a complete intersection then
G must be generated by classical bireflections. We next prove the converse of this
result for k−1[x]

G when G ⊂ Sn and note that the converse is not true for k[x]G. By
Lemma 1.7(3) a quasi-bireflection must be a 2-cycle or a 3-cycle. We conclude by
showing that for subgroups G of S4 acting on k−1[x1, x2, x3, x4], the fixed subring
k−1[x1, x2, x3, x4]

G is a cci if and only if G is generated by quasi-bireflections, and
when G is not generated by quasi-bireflections, k−1[x1, x2, x3, x4]

G is not cyclotomic
Gorenstein, hence k−1[x1, x2, x3, x4]

G is not any of the kinds of complete intersec-
tions described in Definition 1.8. The following result on permutation groups may
be well-known, but is included for completeness.

Proposition 5.1. Let G be a subgroup of Sn.

(1) If G is generated by 3-cycles, then G is an internal direct product of alter-
nating groups.

(2) If G is generated by 3-cycles and 2-cycles, then G is an internal direct
product of alternating and symmetric groups.

We first prove some lemmas. Let X be any subset of {i}ni=1 := {1, · · · , n}. We
use SX for the full symmetric group of X .

Proof. Suppose that G is generated by 3-cycles and 2-cycles. We may assume
that G = 〈τ1, τ2, . . . , τℓ〉 where τ1, τ2, . . . , τℓ are all of the 3-cycles and 2-cycles in
G. Let X = {1, 2, . . . , n}. We will show that there are disjoint nonempty subsets
X1, X2, . . . , Xk of X such that G = G1×G2×· · ·×Gk where Gi is the alternating or
symmetric group onXi. Given a permutation σ defineM(σ) = {x ∈ X : σ(x) 6= x},

the set of elements that are moved by σ. Let Y =
⋃

σ∈G

M(σ) and define a relation

∼ on Y by x ∼ y if there exists 3-cycles and/or 2-cycles σ1, σ2, . . . , σm such that
x ∈ M(σ1), y ∈ M(σm) and M(σi)∩M(σi+1) 6= ∅ for i = 1, 2, . . . ,m−1. In this case
we say that there is a path from x to y. It is easy to see that ∼ is an equivalence
relation on Y . Let X1, X2, . . . , Xk be the equivalence classes. We view the Xi as
the path connected components of Y . Clearly either M(τj) ⊆ Xi or M(τj)∩Xi = ∅
for all i, j. Let Gi = 〈τj : M(τj) ⊆ Xi〉.

Case 1: Suppose that G is generated by 3-cycles. It will be sufficient to show
that each Gi is an alternating group. Furthermore, there is no loss of generality
in assuming that there is one component Y . We will induct on ℓ. If |Y | = 3,
(the smallest possible) then G = 〈τ〉 ∼= A3. If |Y | = 4, we may assume that
Y = {1, 2, 3, 4}, τ1 = (1, 2, 3) and τ2 = (2, 3, 4). In this case |〈τ1〉〈τ2〉| = 9 and G
must be all of A4. Inductively assume that whenever G = 〈τ1, τ2, . . . , τℓ〉 has one
component Y with 4 ≤ |Y | = s ≤ n, then G ∼= As. We may let Y = {1, 2, . . . , s}.

Now suppose thatG′ = 〈τ1, τ2, . . . , τℓ+1〉 where τℓ+1 is a 3-cycle, and Y ′ =

ℓ+1⋃

1

M(τj)
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is connected. Let τi1 , τi2 , . . . , τim be a maximal path in Y ′. Then ∪j 6=imM(τj) must
be connected, for otherwise, we could extend the path. Hence there is no loss of

generality in assuming that τℓ+1 is such that Y =
⋃

i6=ℓ+1

M(τi) is connected with

|Y | = s. Let G = 〈τ1, τ2, . . . , τℓ〉. There are two subcases.
Case 1.1: |Y ′| = s + 1. We may assume, renumbering if necessary, that τℓ+1 =

(s − 1, s, s + 1). We will show that G′ contains all elements that are products of
two disjoint 2-cycles. The set of all such generates a normal subgroup of As+1,
and hence we would have G′ = As+1. By induction we have all disjoint products
(i, j)(k, ℓ) where i, j, k, ℓ ≤ s. If i, j ≤ s − 1, then (i, j)(s − 1, s)(s − 1, s, s + 1) =
(i, j)(s, s+1). Then (s−1, k)(i, j)·(i, j)(s, s+1) = (s−1, k)(s, s+1). The conjugation
(k, s, ℓ)(i, j)(s, s + 1)(k, ℓ, s) = (i, j)(ℓ, s + 1) gives the remaining products. Thus
G′ = As+1 and the result follows by induction.

Case 1.2: |Y ′| = s+2. We may assume that τℓ+1 = (s, s+1, s+2). By induction
G is As and we have the following chain from 1 to s− 1:

(1, 2, 3), (2, 3, 4), . . . , (s− 3, s− 2, s− 1).

Computing

(1, 2)(s− 1, s)(s, s+ 1, s+ 2)(1, 2)(s− 1, s) = (s− 1, s+ 1, s+ 2),

and (s − 1, s+ 1, s+ 2) ∈ G′. We have that Y ′′ = {1, 2, . . . , s− 1} ∪ {s+ 1, s+ 2}
is a connected component, and by induction G′′ = 〈As−1, (s− 1, s+ 1, s+ 2)〉 is a
copy of As+1. Then G = 〈G′′, τℓ+1〉 is the alternating group As+2 by Case 1.1.

Case 2: Once again there is no loss of generality in assuming that there is one
connected component. We may also suppose that G contains at least one 2-cycle by
Case 1. Again the proof is by induction on ℓ. If |Y | = 2, the result is clear. Since
(1, 2)(2, 3) = (1, 2, 3), we see that if |Y | = 3, then G = S3. Inductively assume that
whenever G = 〈τ1, τ2, . . . , τℓ〉 with 3 ≤ |Y | ≤ n then G is a symmetric group. Now

suppose that G′ = 〈τ1, τ2, . . . , τℓ+1〉 with Y ′ =

ℓ+1⋃

1

M(τj) connected. Again we may

assume that Y =
⋃

j 6=ℓ+1

M(τj) is connected with |Y | = s ≤ n. Then by induction

or by case 1 we have that G = 〈τ1, τ2, . . . , τℓ〉 is either a symmetric group or an
alternating group (if all τi for i ≤ ℓ are 3-cycles). We have two subcases.

Case 2.1: τℓ+1 is a 3-cycle. By the argument in Case 1, G′ contains the full
alternating group. Since G′ must also contain a 2-cycle, it is the full symmetric
group.

Case 2.2: τℓ+1 is a 2-cycle. Without loss of generality we may assume that
τℓ+1 = (s, s + 1). As noted, G is either the symmetric group or the alternating
group. In this case G′ must contain

(1, 2)(s− 1, s)(s, s+ 1) = (1, 2)(s− 1, s, s+ 1).

Squaring yields that (s − 1, s + 1, s) ∈ G′. By Case 1.1, G′ contains the full
alternating group. Since it also contains a 2-cycle, it must be the full symmetric
group.

The result follows by induction. �
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Let A and B be two graded algebra. Define A⊗−1 B be the Z
2-graded twist of

the tensor product A⊗B by the twisting system

σ := {σi,j = Idiξj−1 | (i, j) ∈ Z
2}

where ξ−1 maps a⊗b 7→ (−1)|a|+|b|a⊗b for all a⊗b ∈ A⊗B. The following lemmas
are easy to check.

Lemma 5.2. Retain the above notation.

(1) A⊗−1 B = A⊗B as Z
2-graded vector spaces.

(2) Identifying A with A⊗1 ⊂ A⊗−1B and identifying B with 1⊗B ⊂ A⊗−1B.
Then A and B are subalgebras of A⊗−1B, and the algebra A⊗−1B is equal
to the vector space generated by the products AB (and BA respectively).

(3) Under the identification in part (2), ab = (−1)|a| |b|ba for all a ∈ A and
b ∈ B.

Lemma 5.3. Let m < n.

(1) k−1[x1, · · · , xm]⊗−1 k−1[xm+1, · · · , xn] ∼= k−1[x1, · · · , xn].
(2) If G1 ⊂ Aut(A) and G2 ⊂ Aut(B), then (A⊗−1 B)G1×G2 = AG1 ⊗−1 B

G2 .
(3) [KKZ3, Lemma 2.7] If A and B are AS regular, then so is A⊗−1 B.
(4) Suppose A = R/(Ω1, · · · ,Ωm) and B = C/(f1, · · · , fd) where R and C

are AS regular and {Ωi}mi=1 and {fj}dj=1 are regular normal sequences of
positive even degrees. If R⊗C is noetherian, then A⊗−1B is a factor ring
of a noetherian AS regular algebra modulo a regular normal sequences of
positive even degrees. As a consequence, A⊗−1 B is a cci.

For any subset X of [1, · · · , n], let SX denote the symmetric group of X (all
permutations of X).

Theorem 5.4. If G is a subgroup of Sn generated by quasi-bireflections, then
k−1[x]

G is a cci.

Proof. We use induction on n. Suppose the assertion holds for G ⊂ Sm for all
m ≤ n − 1. Now let G be a subgroup of Sn generated by quasi-bireflections. If
G is {1}, the assertion is trivial. If G = Sn or An, the assertion follows from
Theorems 3.12 and 4.15. Otherwise, by Proposition 5.1, there is a disjoint union
X ∪ Y = [1, · · · , n] such that G is a product of G1 and G2, where G1 and G2 are
subgroups SX and SY respectively, and further G1 is either SX or AX and G2 is
generated by quasi-bireflections of k−1[xi | i ∈ Y ] (or equivalently, 2- or 3-cycles of
SY ). By induction, both AG1 and BG2 are cci, where A = k−1[xi | i ∈ X ] and B =
k−1[xi | i ∈ Y ]. It follows from Lemma 5.2 and 5.3 that k−1[x]

G ∼= AG1 ⊗−1 B
G2 is

a cci. �

The following example shows that for k[x] permutation groups generated by
classical bireflections need not have a fixed ring that is a complete intersection.

Example 5.5. Let S5 act on A := k[x1, x2, x3, x4, x5] by permuting the vari-
ables. Let G = 〈(1, 2)(3, 4), (2, 3)(4, 5)〉. These two generators are classical bire-
flections. Note that (1, 2)(3, 4) · (2, 3)(4, 5) = (1, 2, 4, 5, 3). Calculating shows that
〈(1, 2)(3, 4), (1, 2, 4, 5, 3)〉 is a copy of the dihedral group D5 of order 10 and is in
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fact all of G. Using Molien’s Theorem we have

HAG(t) =
1

10

(
1

(1− t)5
+

5

(1 − t)3(1 + t)2
+

4

1− t5

)

=
t6 − t5 + 2t3 − t+ 1

(1− t)2(1− t2)2(1− t5)
.

The numerator is an irreducible polynomial that is not cyclotomic; in fact, none of
its zeros are roots of unity. Hence AG cannot be a complete intersection.

We conclude by computing the invariants of A = k−1[x1, x2.x3, x4] under each
of the subgroups of S4. In this case the conjectured generalization of the Kac-
Watanabe-Gordeev Theorem becomes both necessary and sufficient. We show that
AH is a cci if and only if H is generated by quasi-bireflections (i.e. 2-cycles or
3-cycles); when H is not generated by quasi-bireflections AH is not cyclotomic
Gorenstein – hence not any kind of complete intersection by Theorem 1.10.

Example 5.6. For the following subgroups H of S4 we consider the fixed subring
AH . We show that AH is either a cci or not cyclotomic Gorenstein (and hence none
of the kinds of complete intersection we considered in Definition 1.8).

• If H is the full symmetric group or the alternating group, both generated
by quasi-bireflections, we have shown that AH is a cci. Similarly, cyclic
subgroups generated by a 2-cycle (so isomorphic to S2) or by a 3-cycle (so
isomorphic to A3) are also easily seen to give ccis when they act on A =
k−1[x1, x2, x3, x4] (we showed they did when they acted on A = k−1[x1, x2]
and A = k−1[x1, x2, x3] and the results extend by fixing the remaining
variable(s)).

• Let H be the subgroup of order 2 generated by an element that is a product
of two disjoint 2-cycles, e.g. (12)(34); this subgroup is not generated by
quasi-bireflections of A (it is generated by a bireflection of k[x1, x2, x3, x4]).
Molien’s Theorem shows that the Hilbert series of AH is

1− 2t+ 4t2 − 2t3 + t4

(1− t)4(1 + t2)2

which has zeros that are not roots of unity. Hence AH is not cyclotomic
Gorenstein.

• We have already noted (Example 1.6) that the subgroup H generated by a
4-cycle is not generated by quasi-bireflections, and that the invariants AH

are not cyclotomic Gorenstein.
• Let H be the Klein-Four subgroup generated by two disjoint 2-cycles (e.g.
H = 〈(12), (34)〉). Then H is generated by quasi-bireflections of A, the
generators of AH are x1 +x2, x3 +x4, x

3
1 +x3

2, x
3
3+x3

4, Hilbert series of A
H

is
1− t+ t2

(1− t)(1 + t2)2
,

and

AH ∼=
k[p1, p2, q1, q2][y1][y2; τ1, δ1][z1; τ2, δ2][z2; τ3, δ3]

〈y21 − a1, y22 − a2, z21 − b1, z22 − b2〉
,

where p1, p2 (resp., q1, q2) correspond to the first two symmetric polynomi-
als in x2

1, x
2
2 (resp., x

2
3, x

2
4), y1, y2 (resp., z1, z2) correspond to x1+x2, x

3
1+x3

2

(resp., x3 + x4, x
3
3 + x3

4).
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• The Klein-Four subgroup of even permutations

H = {1, (12)(34), (13)(24), (14)(23)},

which is not generated by quasi-bireflections of A. The Hilbert series of AH

is
1− 3t+ 5t2 − 3t3 + t4

(1− t)4(1 + t2)2
,

so AH is not cyclotomic Gorenstein.
• Let H be a subgroup S4 of order 6. Then H is isomorphic to the symmetric
group S3, without loss of generality of the form H = 〈(123), (12)〉. This
group is generated by quasi-bireflections, and AH is a complete intersection
(we showed this for k−1[x1, x2, x3] and the extension to A is not difficult).

• Let H be a dihedral group of order 8 (a Sylow-2 subgroup of S4). Then H
is of the form

D4 = {1, (1234), (13)(24), (1432), (13), (24), (12)(34), (14)(23)},

so not generated by quasi-bireflections. The Hilbert series of the fixed
subring is

1− 3t+ 5t2 − 5t3 + 5t4 − 5t5 + 5t6 − 3t7 + t8

(1− t)4(1 + t4)(1 + t2)2

=
(1− t+ t2)(1 − 2t+ 2t2 − t3 + 2t4 − 2t5 + t6)

(1− t)4(1 + t4)(1 + t2)2

so AH is not cyclotomic Gorenstein.

Note: It might be nice to know degrees of generators and how they compare to
n2 = 16.

Question 5.7. For H a subgroup of Sn, is k−1[x]
H a cci if and only if H is

generated by quasi-bireflections?

6. Appendix

In this section we find generating functions for the class of restricted partitions
having no repeated odd parts and the class having no repeated even parts. It is
included since we were unable to find them in the literature.

Let dn(k) be the number of partitions of k with at most n parts having no
repeated odd parts. Make the convention that dn(1) = 1 and dn(ℓ) = 0 for ℓ < 0.
Let Dn(t) be the corresponding generating function

Dn(t) =

∞∑

k=0

dn(k)t
k.

There is only one way to partition k into 1 part, so

D1(t) = 1 + t+ t2 + t3 + · · ·+ tk + · · ·

=
1

1− t

=
1− t2

(1− t)(1 − t2)

We will now try to find a recurrence relation for dn(k). We will write a partition
P of k having at most n parts as P = p1, p2, . . . , pn where p1 ≥ p2 ≥ . . . ≥ pn and
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k = p1+p2+ · · ·+pn. Let Dn,k = {P = p1, p2, . . . , pn : with no repeated odd parts}.
Then we have

Dn,k = {P : pn = 0} ∪d {P : pn = 1} ∪d {P : pn ≥ 2}.

• Clearly |{P : pn = 0}| = dn−1(k).
• If pn = 1, consider the association

P 7→ P ′ = p1 − 2, p2 − 2, . . . , pn−1 − 2, 0.

Since pn−1 > pn = 1, this will be a partition of k−1−2(n−1) = k−2n+1.
Since parity is preserved there will be no repeated odd parts, and every such
partition of k − 2n + 1 can occur in this manner. Hence |{P : pn = 1}| =
dn−1(k − 2n+ 1).

• If pn ≥ 2, consider the association

P 7→ P ′ = p1 − 2, p2 − 2, . . . , pn − 2.

This will be a partition of k − 2n with no repeated odd parts. Once again
every such partition can occur in this manner. Hence |{P : pn ≥ 2}| =
dn(k − 2n).

This yields the following recurrence relation

dn(k) = dn−1(k) + dn−1(k − 2n+ 1) + dn(k − 2n).

In terms of generating functions we have

Dn(t) = Dn−1(t) +Dn−1(t)t
2n−1 +Dn(t)t

2n.

This gives the recurrence

Dn(t) = Dn−1(t)
(1 + t2n−1)

(1− t2n)

= Dn−1(t)
(1 − t4n−2)

(1 − t2n−1)(1− t2n)
.

Using this last recurrence relation a simple induction argument proves the fol-
lowing Proposition.

Proposition 6.1. The generating function Dn(t) for the number of partitions with
at most n parts having no repeated odd parts is given by

Dn(t) =
(1− t2)(1 − t6)(1− t10) · · · (1− t4n−2)

(1− t)(1 − t2)(1− t3) · · · (1− t2n−1)(1 − t2n)
.

Remark 6.2. We note using the

Online Encyclopedia of Integer Sequences (http://oeis.org/)

for specific values of n we found that Dn(t), the Hilbert series of k−1[x]
Sn , is also

the Hilbert series of the invariants of A = k[y1 . . . , yn] ⊗ E(e1, . . . , en) under the
action of Sn, where k is any field of characteristic not equal to two, the degree of
each yi = 2, E(e1, . . . , en) is the exterior algebra on elements ei of degree 1, and
Sn acts on both k[y1 . . . , yn] and E(e1, . . . , en) by permutations. (See [AM, pp.
110-11]). We note that one can filter k−1[x] by letting I be the ideal generated by
{x2

1, . . . , x
2
n}. Then the associated graded algebra

gr(k−1[x]) = k−1[x]/I ⊕ I/I2 ⊕ I2/I3 ⊕ · · · ⊕ Im/Im+1 ⊕ · · ·
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is isomorphic as a graded algebra to A under the map that associates yi 7→ x2
i + I2

and ei 7→ xi + I. Further the action of Sn on k−1[x] extends to an action on
gr(k−1[x]), and

ASn ∼= gr(k−1[x])
Sn ∼= gr(k−1[x]

Sn).

Since gr(k−1[x]
Sn) has the same Hilbert series as k−1[x]

Sn , it follows that Dn(t)
is the Hilbert series of k−1[x]

Sn .

Let sn(k) be the number of partitions of k with at most n parts having no
repeated even parts (not even repeated 0 parts), and let Sn(t) be the corresponding
generating function. The purpose of this section is to find Sn(t).

First we briefly consider a slight variation. Let wn(k) be the number of partitions
of k with exactly n nonzero parts having no repeated even parts, and let Wn(t) be
the corresponding generating function. Let P be such a partition. Correspond to
P the partition P 7→ P ′ = p1 − 1, p2 − 1, . . . , pn − 1. This will be a partition of
k − n with at most n parts having no repeated odd parts, and any such partition
can occur in this manner. Hence wn(k) = dn(k − n), and Wn(t) = tnDn(t).

Let Sn,k be the collection of all partitions of k with at most n parts having no
repeated even parts. Then we have

Sn,k = {P : pn = 0} ∪d {P : pn = 1} ∪d {P : pn ≥ 2}.

Since there are no repeated empty parts, the partitions in the first set will be
partitions having exactly n−1 nonzero parts and |{P : pn = 0}| = wn−1(k). For each
partition P in the second set we correspond P 7→ P ′ = p1, p2, . . . , pn−1, 0, which
will be a partition of k− 1 with exactly n− 1 nonzero parts and no repeating even
parts. Since all such occur in this manner, we have |{P : pn = 1}| = wn−1(k − 1).
Similar to the no repeated odd case we see that |{P : pn ≥ 2}| = sn(k − 2n). This
gives the recurrence relation

sn(k) = wn−1(k) + wn−1(k − 1) + sn(k − 2n)

In terms of generating functions we have

Sn(t) = Wn−1(t) +Wn−1(t)t+ Sn(t)t
2n,

and

(E6.2.1) Sn(t) = Wn−1(t)
(1 + t)

(1 − t2n)
= Dn−1(t)

(1 + t)tn−1)

(1− t2n)
.

Summarizing we have the following Proposition.

Proposition 6.3. If Sn(t) is the generating function for the number of partitions
having at most n parts with no repeated even parts, then

Sn(t) =
(1− t2)(1 − t6)(1 − t10) · · · (1− t4n−2)tn−1(1 + t)

(1− t)(1− t2)(1− t3) · · · (1− t2n−1)(1− t2n)(1 + t2n−1)
.

and

Sn(t) = Dn(t)
tn−1(1 + t)

(1 + t2n−1)
.
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Proof. From (E6.2.1) we have

Sn(t) = Dn−1(t)
tn−1(1 + t)

(1 − t2n)

=

(
(1− t2)(1− t6) · · · (1− t4n−6)

(1− t)(1− t2) · · · (1 − t2n−2)

)(
tn−1(1 + t)

(1− t2n)

)

=

(
(1− t2) · · · (1 − t4n−6)

(1− t) · · · (1− t2n−2)

)(
tn−1(1 + t)

(1− t2n)

)
(1− t2n−1)(1 + t2n−1)

(1− t2n−1)(1 + t2n−1)

=
(1− t2)(1− t6)(1 − t10) · · · (1− t4n−2)tn−1(1 + t)

(1− t)(1 − t2)(1− t3) · · · (1− t2n−1)(1 − t2n)(1 + t2n−1)

= Dn(t)
tn−1(1 + t)

(1 + t2n−1)
.

�
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