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Abstract

Linked partitions are introduced by Dykema in the study of transforms in free
probability theory, whereas permutation tableaux are introduced by Steingŕımsson
andWilliams in the study of totally positive Grassmannian cells. Let [n] = {1, 2, . . . , n}.
Let L(n, k) denote the set of linked partitions of [n] with k blocks, let P (n, k) de-
note the set of permutations of [n] with k descents, and let T (n, k) denote the set of
permutation tableaux of length n with k rows. Steingŕımsson and Williams found a
bijection between the set of permutation tableaux of length n with k rows and the
set of permutations of [n] with k weak excedances. Corteel and Nadeau gave a bijec-
tion from the set of permutation tableaux of length n with k columns to the set of
permutations of [n] with k descents. In this paper, we establish a bijection between
L(n, k) and P (n, k − 1) and a bijection between L(n, k) and T (n, k). Restricting
the latter bijection to noncrossing linked partitions, we find that the corresponding
permutation tableaux can be characterized by pattern avoidance.

Keywords: linked partition, descent, permutation tableau.

AMS Classifications: 05A05, 05A19.

1 Introduction

The notion of linked partitions was introduced by Dykema [8] in the study of the un-
symmetrized T-transform in free probability theory. Let [n] = {1, 2, . . . , n}. A linked
partition of [n] is a collection of nonempty subsets B1, B2, . . . , Bk of [n], called blocks,
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such that the union of B1, B2, . . . , Bk is [n] and any two distinct blocks are nearly dis-
joint. Two blocks Bi and Bj are said to be nearly disjoint if for any k ∈ Bi ∩ Bj , one of
the following conditions holds:

(a) k = min(Bi), |Bi| > 1 and k 6= min(Bj), or

(b) k = min(Bj), |Bj| > 1 and k 6= min(Bi).

The linear representation of a linked partition was introduced by Chen, Wu and Yan
[1]. For a linked partition τ of [n], list the n vertices in a horizontal line with labels
1, 2, . . . , n. For a block B = {i1, i2, . . . , ik} with k ≥ 2 and min(B) = i1, draw an arc from
i1 to ij for j = 2, . . . , k. For example, the linear representation of the linked partition
{1, 2, 4}{2, 3}{3, 9}{5, 6}{6, 7}{8} is illustrated in Figure 1.1.

1 2 3 4 5 6 7 8 9

Figure 1.1: The linear representation of a linked partition.

For i < j, we use a pair (i, j) to denote an arc from i to j, and we call i and j the left-
hand endpoint and the right-hand endpoint of (i, j), respectively. Two arcs (i1, j1) and
(i2, j2) form a crossing if i1 < i2 < j1 < j2, and form a nesting if i1 < i2 < j2 < j1. For the
linked partition in Figure 1.1, there is one crossing formed by (1, 4) and (3, 9), while there
are three nestings: (1, 4) and (2, 3), (3, 9) and (5, 6), (3, 9) and (6, 7). A linked partition is
called noncrossing (resp., nonnesting) if there does not exist any crossing (resp., nesting)
in its linear representation. Dykema [8] showed that the number of noncrossing linked
partitions of [n + 1] is equal to the n-th large Schröder number. The sequence of the
large Schröder numbers is listed as A006318 in OEIS [9]. Chen, Wu and Yan [1] found a
bijective proof of this relation and proved that the number of nonnesting linked partitions
of [n] also equals the number of noncrossing linked partitions of [n].

Permutation tableaux are introduced by Steingŕımsson and Williams [11] in the study
of totally positive Grassmannian cells. They are closely related to the PASEP (partially
asymmetric exclusion process) model in statistical physics [2,4–6]. Permutation tableaux
are also in one-to-one correspondence with alternative tableaux introduced by Viennot
[12]. More precisely, a permutation tableau is defined by a Ferrers diagram possibly with
empty rows such that the cells are filled with 0’s and 1’s, and

(1) each column contains at least one 1;
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(2) there does not exist a 0 with a 1 above (in the same column) and a 1 to the left (in
the same row).

The length of a permutation tableau is defined as the number of rows plus the number
of columns. A permutation tableau T of length n is labeled by the elements in [n] in
increasing order from the top right corner to the bottom left corner. We use (i, j) to
denote the cell in row i and column j. For example, Figure 1.2 gives a permutation
tableau of length 11 with an empty row.

1

2

5

7

9

11

34

6

8

10

1

0

0

0

1

0

1

0

0

0

0

1

1

1

0

1

Figure 1.2: A permutation tableau of length 11.

Corteel and Nadeau [3] gave a bijection from permutation tableaux of length n with
k columns and permutations of [n] with k descents. Steingŕımsson and Williams [11]
established a one-to-one correspondence between permutation tableaux of length n with
k rows and permutations of [n] with k weak excedances.

The aim of this paper is to demonstrate that linked partitions play a role as an
intermediate structure between permutations and permutation tableaux. More precisely,
we present two bijections. The first is between linked partitions and permutations, and the
second is between linked partitions and permutation tableaux. In fact, the first bijection
maps a linked partition of [n] with k blocks to a permutation on [n] with k − 1 descents,
and the second bijection transforms a linked partition of [n] with k blocks to a permutation
tableau of length n with k rows.

Combining the above two bijections, we are led to a one-to-one correspondence between
permutations and permutation tableaux, which implies some known properties of permu-
tation tableaux obtained by Corteel and Nadeau [3] and Steingŕımsson and Williams [11].

When restricting the second bijection to noncrossing linked partitions, we find that
the corresponding permutation tableaux are exactly those that avoid a pattern J2. Simi-
larly, when restricting this bijection to nonnesting linked partitions, we get permutation
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tableaux that avoid a pattern I2. The definitions of the patterns I2 and J2 will be given
in Section 4.

2 Linked partitions and permutations

In this section, we give a bijection between linked partitions of [n] with k blocks and
permutations of [n] with k − 1 descents.

To describe the construction of this bijection, we give a classification of the vertices in
the linear representation of a linked partition. Let τ be a linked partition of [n]. A vertex
i in the linear representation of τ is called an origin if it is only a left-hand endpoint, or a
transient if it is both a left-hand point and a right-hand endpoint, or a singleton if it is an
isolated vertex, or a destination if it is only a right-hand endpoint. Figure 2.1 illustrates
the four types of vertices.

origin transient singleton destination

Figure 2.1: Four types of vertices in linked partitions.

Let L(n, k) denote the set of linked partitions of [n] with k blocks. Let π = π1π2 · · ·πn

be a permutation on [n]. An integer i (1 ≤ i ≤ n − 1) is called a decent (resp., ascent)
of π if πi > πi+1 (resp., πi < πi+1). Let P (n, k) denote the set of permutations of [n]
with k descents, which is counted by the Eulerian number A(n, k + 1), see, for example,
Stanley [10].

Theorem 2.1. There is a bijection between L(n, k) and P (n, k − 1).

Proof. We construct a bijection ϕ between L(n, k) and P (n, k−1) by a recursive procedure.
Let τ ∈ L(n, k) be a linked partition of [n] with k blocks. It is easily seen that the total
number of origins, transients and singletons equals k. Let π denote the permutation ϕ(τ),
which is given as follows.

If n = 1, that is, τ = {1}, then we set π = 1. We now assume that n ≥ 2. Let
τ ′ be the linked partition of [n − 1] obtained by removing the vertex n along with the
arcs associated to n from τ . Assume that τ ′ has s blocks. Let i1 < i2 < · · · < is be the
minimal elements of the blocks in τ ′. Let j1 < j2 < · · · < jt be the destinations of τ ′.
Clearly, t = n − 1 − s. Let π′ = π1π2 · · ·πn−1 = ϕ(τ ′). We assume that the number of
descents of π′ is one less than the number of blocks in τ ′.
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We proceed to construct a permutation π by inserting n into π′ such that the number
of descents of π is one less than the number of blocks of τ . Let k be the minimal element
in the block of τ containing n. Here are four cases.

Case 1: k = ir, where 1 ≤ r ≤ s − 1, that is, there is an arc (ir, n) in the linear
representation of τ . Set

π = π1π2 · · ·πℓ n πℓ+1 · · ·πn−1, (2.1)

where ℓ is the r-th descent of π′ from left to right.

Case 2: k = is. Set π = π′ n.

Case 3: k = jr, where 1 ≤ r ≤ t. Set

π = π1π2 · · ·πℓ n πℓ+1 · · ·πn−1,

where ℓ is the r-th ascent in π′ from left to right.

Case 4: k = n, that is, n is a singleton in τ . Set π = n π′.

In any of the above cases, it can be shown that π is a permutation in P (n, k− 1). We
shall only consider Case 1, since similar arguments apply to other cases. In Case 1, it is
easy to check that τ ′ belongs to L(n − 1, k). Hence π′ belongs to P (n − 1, k − 1). By
(2.1), we find that π has the same number of descents as π′. It follows that π belongs to
P (n, k − 1).

It is straightforward to verify that the above procedure is reversible. Hence the map
ϕ is a bijection for any n ≥ 1. This completes the proof.

For example, Figure 2.2 illustrates the linked partitions of {1, 2, 3} and the correspond-
ing permutations.

123

1 2 3

{1, 2, 3}

132

1 2 3

{1, 2}{2, 3}

231

1 2 3

{1, 3}{2}

312

1 2 3

{1, 2}{3}

213

1 2 3

{1}{2, 3}

321

1 2 3

{1}{2}{3}

Figure 2.2: Linked partitions of {1, 2, 3} and the corresponding permutations.

3 Linked partitions and permutation tableaux

The objective of this section is to give a bijection between linked partitions of [n] with
k blocks and permutation tableaux of length n with k rows. As consequences, we find
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some equidistribution properties between linked partitions and permutation tableaux with
certain restrictions. For example, the number of permutation tableaux of length n with k

rightmost restricted 0’s is equal to the number of linked partitions of [n] with k transients.
We also show that our bijections can be used to deduce some equidistribution properties of
permutation tableaux obtained by Corteel and Nadeau [3] and Steingŕımsson andWilliams
[11].

To construct the bijection between linked partitions and permutation tableaux, we
introduce the shape of a linked partition. Let τ be a linked partition of [n]. The shape
of τ is an integer partition λ of n with empty parts allowed that is defined as follows.
Recalling the labeling of a permutation tableau, we assign labels on the boundary of a
partition λ of n in increasing order from the top right corner to the bottom left corner,
see Figure 1.2. Based on this labeling, we see that λ can be represented by a sequence of
labels V and H starting with V , where V stands for the vertical direction and H stands
for the horizontal direction.

Using the linear representation of τ , we obtain a sequence S = s1s2 · · · sn of directions.
If i is a destination, we set si = H ; otherwise, we set si = V . For example, Figure 3.1
gives the shape of the linked partition in Figure 1.1.

Figure 3.1: The shape of {1, 2, 4}{2, 3}{3, 9}{5, 6}{6, 7}{8}.

The construction of the bijection between linked partitions and permutation tableaux
also requires a fact proved by Corteel and Nadeau [3] that a permutation tableau is
determined by its topmost 1’s and rightmost restricted 0’s. A 1 in a permutation tableau
is called a topmost 1 if there is no 1 above it in the same column. A 0 is said to be
restricted if there is a 1 above. The rightmost such 0 in a row is called a rightmost
restricted 0. For example, in the permutation tableau in Figure 1.2, the topmost 1’s
are in the cells (1, 4), (1, 10), (2, 3), (2, 8) and (5, 6), while the rightmost restricted 0’s
are in the cells (2, 10), (5, 8) and (7, 8). To see that a permutation tableau is uniquely
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determined by its topmost 1’s and rightmost restricted 0’s, it suffices to observe the fact
that if the positions of topmost 1’s are given, then all the cells above them are filled with
0’s; if the positions of the rightmost restricted 0’s are given, then all the cells to the left
of them are filled with 0’s; the rest of the cells are filled with 1’s.

Let T (n, k) denote the set of permutation tableaux of length n with k rows. Then we
have the following correspondence and the explicit construction is given the proof.

Theorem 3.1. There is a shape preserving bijection between L(n, k) and T (n, k).

Proof. We construct a shape preserving bijection φ between L(n, k) and T (n, k). Let τ be
a linked partition in L(n, k). We proceed to construct a permutation tableau T = φ(τ).

First, we generate the shape λ of τ , and label the boundary of λ by using the elements
of [n] in increasing order from the top right corner to the bottom left corner.

Next, we wish to fill the cells of λ with topmost 1’s and rightmost restricted 0’s. Let
i1 be the minimum origin in τ , and let j be a destination such that there exists a path
(i1, i2, . . . , im, j) from i1 to j with j being maximum in the linear representation of τ .
Then, we fill the cell (i1, j) with 1. For ℓ = 2, . . . , m, we fill the cells (iℓ, j) with 0.

Let τ ′ be the linked partition of [n] obtained from τ by removing the arcs in the path
(i1, i2, . . . , im, j). Repeating the above process for τ ′, we can fill a column with a topmost
1 and some rightmost restricted 0’s until there are no arcs left in the linear representation
of τ .

Finally, we define T to be the permutation tableau such that the 1’s and 0’s filled in λ

constitute the topmost 1’s and rightmost restricted 0’s of T , respectively. As mentioned
before, a permutation tableau is uniquely determined by its topmost 1’s and rightmost
restricted 0’s.

The reverse map of φ can be described as follows. Let T be a permutation tableau of
length n and of shape λ. We can construct a linked partition of [n]. We start with the
leftmost column. For the column labeled with j, let (i, j) be the cell filled with a topmost
1. If there does not exist any rightmost restricted 0 in column j, then let (i, j) be an arc
in the linear representation of τ . Otherwise, let (i2, j), (i3, j), . . . , (im, j) be the cells filled
with the rightmost restricted 0’s. For ℓ = 1, 2, . . . , m, let (iℓ, iℓ+1) be the arc in the linear
representation of τ , where i1 = i and im+1 = j. Note that there is a unique topmost 1 in
each column and a unique rightmost restricted 0 in each row. Thus, for any vertex j in
τ , there is at most one arc whose right-hand endpoint is j. This implies that τ is a linked
partition of [n]. Moreover, it is not hard to check that T and τ have the same shape. This
completes the proof.

For example, the permutation tableau corresponding to the linked partition in Figure
1.1 is given in Figure 3.2.
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Figure 3.2: From a linked partition to a permutation tableau.

For the permutation tableau given in Figure 1.2, the corresponding linked partition is
given in Figure 3.3.

1 2 3 4 5 6 7 8 9 10 11

Figure 3.3: The linked partition corresponding to the permutation tableau in Figure 1.2.

It is easy to see that the bijection φ has the following properties.

Corollary 3.2. For n ≥ 1, let τ be a linked partition of [n]. Then the number of arcs in
the linear representation of τ is equal to the total number of topmost 1’s and rightmost
restricted 0’s in T = φ(τ).

Corollary 3.3. Assume that n ≥ 1.

(1) For 0 ≤ k ≤ n − 2, the number of linked partitions of [n] with k transients equals
the number of permutation tableaux of length n with k rightmost restricted 0’s;

(2) For 0 ≤ k ≤ n, the number of linked partitions of [n] with k singletons equals the
number of permutation tableaux of length n with k rows that do not contain any
topmost 1 or restricted 0.
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To conclude this section, we remark that our bijections ϕ and φ can be used to de-
duce some results on permutation tableaux obtained by Corteel and Nadeau [3] and
Steingŕımsson and Williams [11]. Corteel and Nadeau [3] showed that the number of
permutation tableaux of length n with k columns is equal to the number of permutations
of [n] with k descents. This fact follows from bijections ϕ and φ. Noting that the number
of permutations of n with k − 1 descents is equal to the number of permutations of [n]
with n− k descents, we see that the number of permutation tableaux of length n with k

rows is equal to the number of permutations with n − k descents, which is equivalent to
the result of Corteel and Nadeau [3].

On the other hand, the number of permutations of [n] with k − 1 descents is equal to
the number of permutations of [n] with k weak excedances, see, for example, Stanley [10,
Chapter 1]. This leads to the fact that the number of permutation tableaux of length n

with k rows is equal to the number of permutations of [n] with k weak excedances, as
proved by Steingŕımsson and Williams [11].

4 Pattern avoiding permutation tableaux

In this section, we discuss restrictions of the bijection φ in Section 3 to noncrossing
linked partitions and nonnesting linked partitions, and characterize the corresponding
permutation tableaux by pattern avoidance.

We introduce two patterns I2 and J2 as given in Figure 4.1, where a dot means a
topmost 1 or a rightmost restricted 0. We use I2 and J2 to denote these two patterns
because similar notation has been used in the context of fillings of Ferrers diagrams, see
de Mier [7].

I2

...
...· · ·

· · ·

· · ·

j2 j1

i2

i1

J2

...
...· · ·

· · ·

· · ·

j2 j1

i2

i1

Figure 4.1: Patterns I2 and J2.

More precisely, let T be a permutation tableau of length n, and let T ′ be the permu-
tation tableau obtained from T by replacing the topmost 1’s and rightmost restricted 0’s
by dots and removing all other 1’s and 0’s. We say that T avoids the pattern I2 if T ′
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does not contain four cells (i1, j1), (i1, j2), (i2, j1) and (i2, j2), where i1 < i2 < j1 < j2,
such that the cells (i1, j2) and (i2, j1) are filled with dots, while the cell (i2, j2) is empty.
Similarly, we say that T avoids the pattern J2 if T ′ does not contain four cells (i1, j1),
(i1, j2), (i2, j1) and (i2, j2), where i1 < i2 < j1 < j2, such that the cells (i1, j1) and (i2, j2)
are filled with dots, while the cell (i2, j1) is empty. For example, Figure 4.2 illustrates a
permutation tableau avoiding the pattern I2. Note that this permutation tableau does
not avoid the pattern J2, because the cells (1, 3), (1, 6), (2, 3) and (2, 6) form pattern J2.

1

2

4

5

8

9

3

67

10111213

Figure 4.2: A permutation tableau avoiding I2.

By the construction of the bijection φ in Section 3, we obtain characterizations of per-
mutation tableaux corresponding to noncrossing linked partitions and nonnesting linked
partitions. To be more specific, we have the following correspondences.

Theorem 4.1. There is a bijection between noncrossing linked partitions of [n] and J2-
avoiding permutation tableaux of length n, and there is a bijection between nonnesting
linked partitions of [n] and I2-avoiding permutation tableaux of length n.

Since the number of noncrossing linked partitions of [n] equals the number of nonnest-
ing linked partitions of [n], see Chen, Wu and Yan [1], one sees that the number of J2-
avoiding permutation tableaux of length n equals the number of I2-avoiding permutation
tableaux of length n.
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