The 1-box pattern on pattern avoiding permutations

Sergey Kitaev

Jeffrey Remmel

Department of Computer and Information Sciences University of Strathclyde Glasgow G1 1XH, United Kingdom sergey.kitaev@cis.strath.ac.uk Department of Mathematics University of California, San Diego La Jolla, CA 92093-0112. USA jremmel@ucsd.edu

Submitted: Date 1; Accepted: Date 2; Published: Date 3. MR Subject Classifications: 05A15, 05E05

Abstract

This paper is continuation of the study of the 1-box pattern in permutations introduced by the authors in [7]. We derive a two-variable generating function for the distribution of this pattern on 132-avoiding permutations, and then study some of its coefficients providing a link to the Fibonacci numbers. We also find the number of separable permutations with two and three occurrences of the 1-box pattern.

Keywords: 1-box pattern, 132-avoiding permutations, separable permutations, Fibonacci numbers, Pell numbers, distribution

1 Introduction

In this paper, we study 1-box patterns, a particular case of (a, b)-rectangular patterns introduced in [7]. That is, let $\sigma = \sigma_1 \cdots \sigma_n$ be a permutation written in one-line notation. Then we will consider the graph of σ , $G(\sigma)$, to be the set of points (i, σ_i) for $i = 1, \ldots, n$. For example, the graph of the permutation $\sigma = 471569283$ is pictured in Figure 1.

Figure 1: The graph of $\sigma = 471569283$.

Then if we draw a coordinate system centered at a point (i, σ_i) , we will be interested in the points that lie in the $2a \times 2b$ rectangle centered at the origin. That is, the (a, b)-rectangle pattern centered at (i, σ_i) equals the set of points $(i \pm r, \sigma_i \pm s)$ such that $r \in \{0, \ldots, a\}$ and $s \in \{0, \ldots, b\}$. Thus σ_i matches the (a, b)-rectangle pattern in σ , if there is at least one point in the $2a \times 2b$ -rectangle centered at the point (i, σ_i) in $G(\sigma)$ other than (i, σ_i) . For example, when we look for matches of the (2,3)-rectangle patterns, we would look at 4×6 rectangles centered at the point (i, σ_i) as pictured in Figure 2.

Figure 2: The 4 × 8-rectangle centered at the point (4, 5) in the graph of $\sigma = 471569283$.

We shall refer to the (k, k)-rectangle pattern as the k-box pattern. For example, if $\sigma = 471569283$, then the 2-box centered at the point (4, 5) in $G(\sigma)$ is the set of circled points pictured in Figure 3. Hence, σ_i matches the k-box pattern in σ , if there is at least one point in the k-box centered at the point (i, σ_i) in $G(\sigma)$ other than (i, σ_i) . For example, σ_4 matches the pattern k-box for all $k \ge 1$ in $\sigma = 471569283$ since the point (5, 6) is present in the k-box centered at the point (4, 5) in $G(\sigma)$ for all $k \ge 1$. However, σ_3 only matches the k-box pattern in $\sigma = 471569283$ for $k \ge 3$ since there are no points in 1-box or 2-box centered at (3, 1) in $G(\sigma)$, but the point (1, 4) is in the 3-box centered at (3, 1) in $G(\sigma)$. For $k \ge 1$, we let k-box (σ) denote the set of all i such that σ_i matches the k-box pattern in $\sigma = \sigma_1 \cdots \sigma_n$.

Figure 3: The 2-box centered at the point (4, 5) in the graph of $\sigma = 471569283$.

Note that σ_i matches the 1-box pattern in σ if either $|\sigma_i - \sigma_{i+1}| = 1$ or $|\sigma_{i-1} - \sigma_i| = 1$. For example, the distribution of 1-box (σ) for S_2 , S_3 , and S_4 is given below, where S_n is the set of all permutations of length n.

σ	$1\text{-box}(\sigma)$
12	2
21	2

σ	$1\text{-box}(\sigma)$
123	3
132	2
213	2
231	2
312	2
321	3

σ	$1\text{-box}(\sigma)$	σ	$1 - box(\sigma)$
1234	4	2134	4
1243	4	2143	4
1324	2	2314	2
1342	2	2341	3
1423	2	2413	0
1432	3	2431	2
3124	2	4123	3
3142	0	4132	2
3214	3	4213	2
3241	2	4231	2
3412	4	4312	4
3421	4	4321	4

The notion of k-box patterns is related to the mesh patterns introduced by Brändén and Claesson [2] to provide explicit expansions for certain permutation statistics as, possibly infinite, linear combinations of (classical) permutation patterns. This notion was further studied in [1, 4, 5, 8, 9, 10, 12]. In particular, Kitaev and Remmel [5] initiated the systematic study of distribution of marked mesh patterns on permutations, and this study was extended to 132-avoiding permutations by Kitaev, Remmel and Tiefenbruck in [8, 9, 10].

In this paper, we shall study the distribution of the 1-box pattern in 132-avoiding permutations and separable permutations. Given a sequence $\sigma = \sigma_1 \cdots \sigma_n$ of distinct integers, let $\operatorname{red}(\sigma)$ be the permutation found by replacing the *i*-th largest integer that appears in σ by *i*. For example, if $\sigma = 2754$, then $\operatorname{red}(\sigma) = 1432$. Given a permutation $\tau = \tau_1 \cdots \tau_j$ in the symmetric group S_j , we say that the pattern τ occurs in $\sigma = \sigma_1 \ldots \sigma_n \in$ S_n provided there exists $1 \leq i_1 < \cdots < i_j \leq n$ such that $\operatorname{red}(\sigma_{i_1} \cdots \sigma_{i_j}) = \tau$. We say that a permutation σ avoids the pattern τ if τ does not occur in σ . In particular, a permutation σ avoids the pattern 132 if σ does not contain a subsequence of three elements, where the first element is the smallest one, and the second element is the largest one. Let $S_n(\tau)$ denote the set of permutations in S_n which avoid τ . In the theory of permutation patterns (see [3] for a comprehensive introduction to the area), τ is called a *classical pattern*. The results in this paper can be viewed as another contribution to the long line of research in the literature which studies various distributions on pattern-avoiding permutations (e.g. see [3, Chapter 6.1.5] for relevant results).

The outline of this paper is as follows. In Section 2 we shall study the distribution of the 1-box pattern in 132-avoiding permutations. In particular, we shall derive explicit formulas for the generating functions

$$A(t, x) = \sum_{n \ge 0} A_n(x)t^n,$$

$$B(t, x) = \sum_{n \ge 1} B_n(x)t^n \text{ and}$$

$$E(t, x) = \sum_{n \ge 1} E_n(x)t^n$$

where $A_0(x) = 1$ and for $n \ge 1$,

$$A_n(x) = \sum_{\sigma \in S_n(132)} x^{1-\operatorname{box}(\sigma)}$$

$$B_n(x) = \sum_{\sigma = \sigma_1 \dots \sigma_n \in S_n(132), \sigma_1 = n} x^{1-\operatorname{box}(\sigma)} \text{ and }$$

$$E_n(x) = \sum_{\sigma = \sigma_1 \dots \sigma_n \in S_n(132), \sigma_n = n} x^{1-\operatorname{box}(\sigma)}.$$

In Section 3, we shall study the coefficients of x^k in the polynomials $A_n(x)$, $B_n(x)$, and $E_n(x)$ for $k \in \{0, 1, 2, 3, 4\}$ as well as the coefficient of the highest power of x in these polynomials. Many of these coefficients can be expressed in terms of the Fibonacci numbers F_n . For example, for $n \ge 2$, the coefficient of x^2 in $A_n(x)$ is F_n and the coefficient of x^2 in $B_n(x)$ and $E_n(x)$ is F_{n-2} . Finally, in Section 4, we shall study the 1-box pattern on separable permutations.

2 Distribution of the 1-box pattern on 132-avoiding permutations

In this section, we shall study the generating functions A(t, x), B(t, x), and E(t, x). Clearly, $A_1(x) = B_1(x) = E_1(x) = 1$. One can see from our tables for S_2 , S_3 , and S_4 that $A_2(x) = 2x^2$, $A_3(x) = 3x^2 + 2x^3$, and $A_4(x) = 5x^2 + 3x^3 + 6x^4$. Similarly, one can check that $B_2(x) = E_2(x) = x^2$, $B_3(x) = E_3(x) = x^2 + x^3$, and $B_4(x) = E_4(x) = 2x^2 + x^3 + 2x^4$.

We shall classify the 132-avoiding permutations $\sigma = \sigma_1 \cdots \sigma_n$ by position of n in σ . That is, let $S_n^{(i)}(132)$ denote the set of $\sigma \in S_n(132)$ such that $\sigma_i = n$. Clearly each $\sigma \in S_n^{(i)}(132)$ has the structure pictured in Figure 4. That is, in the graph of σ , the elements to the left of n, $A_i(\sigma)$, have the structure of a 132-avoiding permutation, the elements to the right of n, $B_i(\sigma)$, have the structure of a 132-avoiding permutation, and all the elements in $A_i(\sigma)$ lie above all the elements in $B_i(\sigma)$. Note that the number of 132-avoiding permutations in S_n is the Catalan number $C_n = \frac{1}{n+1} {2n \choose n}$, which is a well-known fact, and the generating function for the C_n 's is given by

$$C(t) = \sum_{n \ge 0} C_n t^n = \frac{1 - \sqrt{1 - 4t}}{2t} = \frac{2}{1 + \sqrt{1 - 4t}}$$

Figure 4: The structure of 132-avoiding permutations.

The following lemma establishes relations between $A_n(x)$, $B_n(x)$, and $E_n(x)$. Lemma 1. For all $n \ge 1$, $B_n(x) = E_n(x)$ and for $n \ge 4$,

$$B_n(x) = x^n + (A_{n-1}(x) - B_{n-1}(x)) + \sum_{i=2}^{n-2} x^{n-i} (A_i(x) - B_i(x)).$$
(1)

For $n \geq 2$,

$$A_n(x) = B_n(x) + \sum_{i=2}^n B_i(x) A_{n-i}(x).$$
 (2)

Proof. We begin with deriving relationships for $B_n(x)$ and $E_n(x)$. Any 132-avoiding permutation $\pi = \pi_1 \cdots \pi_n$ beginning with the largest letter n is of one of the three forms described below:

- 1. the decreasing permutation $n(n-1)\cdots 1$;
- 2. $n\ell\pi_3\pi_4\cdots\pi_n$ where $\ell < n-1$ and $\ell\pi_3\pi_4\cdots\pi_n$ is a 132-avoiding permutation on $\{1,\ldots,n-1\};$
- 3. $n(n-1)\cdots(n-i+1)\ell\pi_{i+2}\pi_{i+3}\cdots\pi_n$, where $2 \le i \le n-2$, $\ell < n-i$ and $\ell\pi_{i+2}\pi_{i+3}\cdots\pi_n$ is a 132-avoiding permutation on $\{1, \ldots, n-i\}$.

This structural observation implies immediately (1). Indeed, in the decreasing permutation each element is an occurrence of the 1-box pattern thus giving a contribution of x^n to the function $B_n(x)$. Also, in the second case, n is not an occurrence of the 1-box pattern in π and it does not effect whether any of the remaining elements in π are occurrences of the 1-box pattern in π . Thus, in this case we have a contribution of $(A_{n-1}(x)-B_{n-1}(x))$ to $B_n(x)$. Finally, in the last case, for any $i, 2 \leq i \leq n-2$, each of the elements $n-i+1, n-i+2, \ldots, n$ is an occurrence of the 1-box pattern in π and these elements do not effect whether any of the remaining elements in π . Thus, in this case we have a contribution of $(A_{n-1}(x)-B_{n-1}(x))$ to $B_n(x)$.

We can use similar methods to prove that for all $n \ge 4$,

$$E_n(x) = x^n + (A_{n-1}(x) - E_{n-1}(x)) + \sum_{i=2}^{n-2} x^{n-i} (A_i(x) - E_i(x)).$$
(3)

That is, if π is a 132-avoiding permutation in S_n that ends in n, we have the following three cases:

- 1. π is the increasing permutation $1 \cdots n$;
- 2. $\pi = \pi_1 \cdots \pi_{n-2} \ell n$ where $\ell < n-1$ and $\pi_1 \cdots \pi_{n-2} \ell$ is a 132-avoiding permutation on $\{1, \ldots, n-1\};$
- 3. $\pi_1 \cdots \pi_{n-i-1} \ell(n-i+1)(n-i+2) \cdots n$, where $2 \leq i \leq n-2$, $\ell < n-i$ and $\pi_1 \cdots \pi_{n-i-1} \ell$ is a 132-avoiding permutation on $\{1, \ldots, n-i\}$.

Arguing as above, we see that the identity permutations contributes x^n to $E_n(x)$, the elements in case (2) contribute $A_{n-1}(x) - E_{n-1}(x)$ to $E_n(x)$, and the elements in case (3) contribute $\sum_{i=2}^{n-2} x^{n-i} (A_i(x) - E_i(x))$ to $E_n(x)$.

Given that we have computed that $B_n(x) = E_n(x)$ for $1 \le n \le 3$, one can easily use (1) and (3) to prove that $B_n(x) = E_n(x)$ for all $n \ge 1$ by induction.

To prove (2), note that $S_n(132) = S_n^{(1)}(132) \cup S_n^{(n)}(132) \cup_{2 \le i \le n-1} S_n^{(i)}(132)$. Clearly, the permutations in $S_n^{(1)}(132)$ contribute $B_n(x)$ to $A_n(x)$ and the permutations in $S_n^{(n)}(132)$ contribute $E_n(x)$ to $A_n(x)$. Now suppose that $2 \le i \le n$ and $\pi = \pi_1 \cdots \pi_n \in S_n^{(i)}(132)$. Then all the elements in $\pi_1 \cdots \pi_{i-1}$ are strictly greater than all the elements in $\pi_{i+1} \cdots \pi_n$. It follows that $\pi_{i+1} \le n-2$. Hence the elements $\pi_1 \cdots \pi_{i-1}n$ have no effect as to whether any of the elements in $\pi_{i+1} \cdots \pi_n$ are occurrences of the 1-box pattern in π . Hence the elements $S_n^{(i)}(132)$ contribute $E_i(x)A_{n-i}(x)$ to $A_n(x)$. Thus for all $n \ge 2$,

$$A_n(x) = B_n(x) + E_n(x) + \sum_{i=2}^n E_i(x) A_{n-i}(x).$$
(4)

It is easy to see that since $B_n(x) = E_n(x)$ for all $n \ge 1$, (4) implies (2).

The following theorem gives the generating function for the entire distribution of the 1-box pattern over 132-avoiding permutations.

Theorem 2. We have

$$A(t,x) = \frac{1+t+t^2-tx-t^2x-t^3x+t^3x^2-\sqrt{F(t,x)}}{2(t(1-xt)+x^2t^2)}$$
(5)

where $F(t,x) = (1+t+t^2-tx-t^2x-t^3x+t^3x^2)^2 + 4((1+t)(1-xt)+x^2t^2)(t(1-xt)+x^2t^2)$. Also,

$$B(t,x) = E(t,x) = \frac{t(1-xt) + x^2t^2}{(1+t)(1-xt) + x^2t^2}A(t,x).$$

Proof. Multiplying both parts of (2) by t^n and summing over all $n \ge 2$ we obtain

$$A(t,x) - (1+t) = (B(t,x) - t) + (B(t,x) - t)A(t,x).$$

Solving for A(t, x), we obtain that

$$A(t,x) = \frac{1+B(t,x)}{1+t-B(t,x)}.$$
(6)

Now multiplying both parts of (1) by t^n and summing over all $n \ge 2$ we obtain

$$B(t,x) - (t + x^{2}t^{2} + (x^{2} + x^{3})t^{3}) = \frac{x^{4}t^{4}}{1 - xt} + t(A(t,x) - (1 + t + 2x^{2}t^{2}))$$
$$-t(B(t,x) - (t + x^{2}t^{2})) + \frac{x^{2}t^{2}}{1 - xt}((A(t,x) - (1 + t)) - (B(t,x) - t)).$$

Solving for B(t, x), we obtain that

$$B(t,x) = \frac{t(1-xt) + x^2 t^2}{(1+t)(1-xt) + x^2 t^2} A(t,x).$$
(7)

Combining (6) and (7), we see that A(t, x) satisfies the following quadratic equation

$$(t(1-xt)+x^{2}t^{2})A^{2}(t,x) - (1+t+t^{2}-tx-t^{2}x-t^{3}x+t^{3}x^{2})A(t,x) + (1+t)(1-xt) + x^{2}t^{2} = 0$$
which can be solved to yield (5).

which can be solved to yield (5).

We used Mathematica to find the first few terms of A(t, x) and B(t, x) = E(t, x). That is, we have that

$$\begin{aligned} A(t,x) &= 1 + t + 2x^{2}t^{2} + x^{2}(3+2x)t^{3} + x^{2}\left(5+3x+6x^{2}\right)t^{4} + x^{2}\left(8+5x+19x^{2}+10x^{3}\right)t^{5} + \\ & x^{2}\left(13+8x+50x^{2}+35x^{3}+26x^{4}\right)t^{6} + x^{2}\left(21+13x+119x^{2}+95x^{3}+127x^{4}+54x^{5}\right)t^{7} + \\ & x^{2}\left(34+21x+265x^{2}+230x^{3}+451x^{4}+295x^{5}+134x^{6}\right)t^{8} + \\ & x^{2}\left(55+34x+564x^{2}+517x^{3}+1373x^{4}+1118x^{5}+895x^{6}+306x^{7}\right)t^{9} + \\ & x^{2}\left(89+55x+1160x^{2}+1107x^{3}+3790x^{4}+3548x^{5}+4010x^{6}+2283x^{7}+754x^{8}\right)t^{10} + \cdots \end{aligned}$$

and

$$B(t,x) = E(t,x)$$

$$= t + x^{2}t^{2} + x^{2}(1+x)t^{3} + x^{2}(2+x+2x^{2})t^{4} + x^{2}(3+2x+6x^{2}+3x^{3})t^{5} + x^{2}(5+3x+16x^{2}+11x^{3}+7x^{4})t^{6} + x^{2}(3+2x+6x^{2}+30x^{3}+36x^{4}+14x^{5})t^{7} + x^{2}(13+8x+88x^{2}+75x^{3}+131x^{4}+81x^{5}+33x^{6})t^{8} + x^{2}(21+13x+190x^{2}+171x^{3}+410x^{4}+319x^{5}+233x^{6}+73x^{7})t^{9} + x^{2}(34+21x+395x^{2}+372x^{3}+1156x^{4}+1044x^{5}+1087x^{6}+579x^{7}+174x^{8})t^{10} + \cdots$$

3 Properties of coefficients of $A_n(x)$ and $B_n(x) = E_n(x)$

In this section, we shall explain several of the coefficients of the polynomials $A_n(x)$ and $B_n(x) = E_n(x)$ and show their connections with the Fibonacci numbers.

In Subsection 3.1, we study the coefficients of x^k in the the polynomials $A_n(x)$ and $B_n(x) = E_n(x)$ for $k \in \{0, 1, 2, 3, 4\}$ and, in Subsection 3.2, we derive the generating functions for the highest coefficients for these polynomials.

3.1 The four smallest coefficients and the Fibonacci numbers

Clearly the coefficient of x in either $A_n(x)$, $B_n(x)$, or $E_n(x)$ is 0 by the definition of an occurrence of the 1-box pattern. The following theorem states that for $n \ge 2$, each 132-avoiding permutation of length n has at least two occurrences of the 1-box pattern. In what follows, we need the notion of the celebrated n-th Fibonacci number F_n defined as $F_0 = F_1 = 1$ and, for $n \ge 2$, $F_n = F_{n-1} + F_{n-2}$. Also, for a polynomial P(x), we let $P(x)|_{x^m}$ denote the coefficient of x^m .

Theorem 3. For $n \ge 2$, $A_n(x)|_{x^0} = B_n(x)|_{x^0} = E_n(x)|_{x^0} = 0$.

Proof. Clearly, it is enough to prove the claim for $A_n(x)$. We proceed by induction on n. The claim is clearly true for n = 2. Next suppose that $n \ge 3$ and $\sigma = S_n(132)$. From the structure of 132-avoiding permutations presented in Figure 4, either $A_i(\sigma)$ is empty in which case $B_i(\sigma)$ has at least two elements and it contains an occurrence of the 1-box pattern by the induction hypothesis, or $A_i(\sigma)$ has a single element n - 1 leading to two occurrence of the pattern formed by n and n - 1, or $A_i(\sigma)$ has at least two elements and we apply the induction hypothesis to it.

Theorem 4. For $n \ge 2$, $A_n(x)|_{x^2} = F_n$ and $B_n(x)|_{x^2} = E_n(x)|_{x^2} = F_{n-2}$.

Proof. We proceed by induction on n. Note that $A_2(x)|_{x^2} = 2 = F_2$ and $B_2(x)|_{x^2} = E_2(x)|_{x^2} = 1 = F_0$. Similarly, $A_3(x)|_{x^2} = 3 = F_3$ and $B_3(x)|_{x^2} = E_3(x)|_{x^2} = 1 = F_1$. Thus our claim holds for n = 2 and n = 3.

For $n \ge 4$, it follows from (1) and Theorem 3 that

$$B_{n}(x)|_{x^{2}} = x^{n}|_{x^{2}} + (A_{n-1}(x)|_{x^{2}} - B_{n-1}(x)|_{x^{2}}) + \sum_{i=2}^{n-2} (x^{n-i}(A_{i}(x) - B_{i}(x)))|_{x^{2}}$$

$$= A_{n-1}(x)|_{x^{2}} - B_{n-1}(x)|_{x^{2}} + (A_{n-2}(x) - B_{n-2}(x))|_{x^{0}}$$

$$= F_{n-1} - F_{n-3} = F_{n-2}.$$

But then by (2), we have that

$$A_n(x)|_{x^2} = B_n(x)|_{x^2} + \sum_{i=2}^n (B_i(x)A_{n-i}(x))|_{x^2}.$$
(8)

Note that since $n \ge 4$ and $2 \le i \le n$

$$(B_i(x)A_{n-i}(x))|_{x^2} = (B_i(x)|_{x^0})(A_{n-i}(x))|_{x^2}) + (B_i(x)|_{x^1})(A_{n-i}(x))|_{x^1}) + (B_i(x)|_{x^2})(A_{n-i}(x))|_{x^0}) = (B_i(x)|_{x^2})(A_{n-i}(x))|_{x^0})$$

since $B_i(x)|_{x^1} = A_{n-i}(x)|_{x^1} = 0$ for $i \ge 1$ and $B_i(x)|_{x^0} = 0$ for $i \ge 2$. But then since $A_i(x)|_{x^0} = 0$ for $i \ge 2$ and $A_i(x)|_{x^0} = 1$ for i = 0, 1, it follows that (8) reduces to

$$A_n(x)|_{x^2} = B_n(x)|_{x^2} + B_n(x)|_{x^2} + B_{n-1}(x)|_{x^2}$$

= $F_{n-2} + F_{n-2} + F_{n-3} = F_{n-2} + F_{n-1} = F_n.$

Corollary 1. For $n \ge 2$, the number of 132-avoiding permutations of length n that do not begin (resp. end) with n and contain exactly two occurrences of the 1-box pattern is F_{n-1} .

Proof. A proof is straightforward from Theorem 4, since

$$A_n(x)|_{x^2} - B_n(x)|_{x^2} = A_n(x)|_{x^2} - E_n(x)|_{x^2} = F_{n-1}.$$

Theorem 5. For $n \ge 3$, $A_n(x)|_{x^3} = F_{n-1}$ and $B_n(x)|_{x^3} = E_n(x)|_{x^3} = F_{n-3}$.

Proof. We proceed by induction on n, the length of permutations, and the formulas (1) and (2). Note that we have computed that $A_3(x)|_{x^2} = 2 = F_2$, $A_4(x)|_{x^2} = 3 = F_3$, $B_3(x)|_{x^2} = E_3(x)|_{x^2} = 1 = F_0$, and $B_4(x)|_{x^2} = E_4(x)|_{x^2} = 1 = F_1$. Thus our claim holds for n = 3 and n = 4.

For $n \geq 5$, it follows from (1) and Theorem 3 that

$$B_{n}(x)|_{x^{3}} = x^{n}|_{x^{3}} + (A_{n-1}(x)|_{x^{3}} - B_{n-1}(x)|_{x^{3}}) + \sum_{i=2}^{n-2} (x^{n-i}(A_{i}(x) - B_{i}(x)))|_{x^{3}}$$

$$= A_{n-1}(x)|_{x^{3}} - B_{n-1}(x)|_{x^{3}} + (A_{n-2}(x) - B_{n-2}(x))|_{x^{1}} + (A_{n-3}(x) - B_{n-3}(x))|_{x^{0}}$$

$$= F_{n-2} - F_{n-4} = F_{n-3}.$$

But then by (2), we have that

$$A_n(x)|_{x^3} = B_n(x)|_{x^3} + \sum_{i=2}^n (B_i(x)A_{n-i}(x))|_{x^3}.$$
(9)

Note that since $n \ge 5$ and $2 \le i \le n$,

$$(B_{i}(x)A_{n-i}(x))|_{x^{3}} = (B_{i}(x)|_{x^{0}}) + (A_{n-i}(x)|_{x^{3}})(B_{i}(x)|_{x^{1}})(A_{n-i}(x)|_{x^{2}}) + (B_{i}(x)|_{x^{2}})(A_{n-i}(x)|_{x^{1}}) + (B_{i}(x)|_{x^{3}})(A_{n-i}(x)|_{x^{0}}) = (B_{i}(x)|_{x^{3}})(A_{n-i}(x)|_{x^{0}})$$

since $B_i(x)|_{x^1} = A_{n-i}(x)|_{x^1} = 0$ for $i \ge 1$ and $B_i(x)|_{x^0} = 0$ for $i \ge 2$. But then since $A_i(x)|_{x^0} = 0$ for $i \ge 2$ and $A_i(x)|_{x^0} = 1$ for i = 0, 1, it follows that (9) reduces to

$$A_n(x)|_{x^3} = B_n(x)|_{x^3} + B_n(x)|_{x^3} + B_{n-1}(x)|_{x^3}$$

= $F_{n-3} + F_{n-3} + F_{n-4} = F_{n-3} + F_{n-2} = F_{n-1}.$

Corollary 2. For $n \ge 3$, the number of 132-avoiding permutations of length n that do not begin (resp. end) with n and contain exactly three occurrences of the 1-box pattern is F_{n-2} .

Proof. A proof is straightforward from Theorem 5, since

$$A_n(x)|_{x^3} - B_n(x)|_{x^3} = A_n(x)|_{x^3} - E_n(x)|_{x^3} = F_{n-2}.$$

Regarding the number of 132-avoiding permutations with exactly four occurrences of the 1-box pattern, we can derive the following recurrence relations involving the Fibonacci numbers.

Theorem 6. We have that for $n \leq 3$, $A_n(x)|_{x^4} = B_n(x)|_{x^4} = E_n(x)|_{x^4} = 0$, $B_4(x)|_{x^4} = 2$, $B_5(x)|_{x^4} = 6$, and for $n \geq 4$,

$$A_n(x)|_{x^4} = 2B_n(x)|_{x^4} + B_{n-1}(x)|_{x^4} + \sum_{i=2}^{n-2} F_{i-2}F_{n-i};$$
(10)

while for $n \geq 6$,

$$B_n(x)|_{x^4} = B_{n-1}(x)|_{x^4} + B_{n-2}(x)|_{x^4} + F_{n-1} + \sum_{i=4}^{n-3} F_{i-2}F_{n-1-i}.$$
 (11)

Proof. The initial conditions follow from the expansions of A(t, x) and B(t, x) given above. By (2), we have that

$$A_n(x)|_{x^4} = B_n(x)|_{x^4} + \sum_{i=2}^n (B_i(x)A_{n-i}(x))|_{x^4}.$$
(12)

Note that since $n \ge 4$ and $2 \le i \le n$,

$$(B_{i}(x)A_{n-i}(x))|_{x^{4}} = (B_{i}(x)|_{x^{0}})(A_{n-i}(x)|_{x^{4}}) + (B_{i}(x)|_{x^{1}})(A_{n-i}(x)|_{x^{3}}) + (B_{i}(x)|_{x^{2}})(A_{n-i}(x)|_{x^{2}}) + (B_{i}(x)|_{x^{3}})(A_{n-i}(x)|_{x^{1}}) + (B_{i}(x)|_{x^{4}})(A_{n-i}(x)|_{x^{0}}) = (B_{i}(x)|_{x^{2}})(A_{n-i}(x)|_{x^{2}}) + (B_{i}(x)|_{x^{4}})(A_{n-i}(x)|_{x^{0}})$$

since $B_i(x)|_{x^1} = A_{n-i}(x)|_{x^1} = 0$ for $i \ge 1$ and $B_i(x)|_{x^0} = 0$ for $i \ge 2$. But then since $A_i(x)|_{x^0} = 0$ for $i \ge 2$ and $A_i(x)|_{x^0} = 1$ for i = 0, 1, (12) reduces to

$$A_n(x)|_{x^4} = B_n(x)|_{x^4} + B_n(x)|_{x^4} + B_{n-1}(x)|_{x^4} + \sum_{i=2}^{n-2} (B_i(x)|_{x^2}) (A_{n-i}(x)|_{x^2}).$$

Then we can apply Theorem 4 to obtain (10).

Let $n \ge 6$. From (1),

$$B_n(x)|_{x^4} = (A_{n-1}(x)|_{x^4} - B_{n-1}(x)|_{x^4}) + (A_{n-2}(x)|_{x^2} - B_{n-2}(x)|_{x^2}),$$

since only the term corresponding to i = n - 2 from the sum contributes to x^4 . Applying (10) and Theorem 4, we obtain

$$B_{n}(x)|_{x^{4}} = \left(2B_{n-1}(x)|_{x^{4}} + B_{n-2}(x)|_{x^{4}} + \sum_{i=2}^{n-3} F_{i-2}F_{n-1-i}\right) - B_{n-1}(x)|_{x^{4}} + F_{n-2} - F_{n-4}$$
$$= B_{n-1}(x)|_{x^{4}} + B_{n-2}(x)|_{x^{4}} + F_{n-3} + F_{n-4} + F_{n-2} - F_{n-4} + \sum_{i=4}^{n-3} F_{i-2}F_{n-1-i}$$
$$= B_{n-1}(x)|_{x^{4}} + B_{n-2}(x)|_{x^{4}} + F_{n-1} + \sum_{i=4}^{n-3} F_{i-2}F_{n-1-i}.$$

Note that $B_5(x)|_{x^4} = 6$, $B_4(x)|_{x^4} = 2$, $B_3(x)|_{x^4} = 0$, and $F_4 = 5$ so that (11) does not hold for n = 5.

We can use Theorem 6 to find the generating functions for $A_n(x)|_{x^4}$ and $B_n(x)|_{x^4}$. That is, let

$$\mathbb{A}_4(t) = \sum_{n \ge 4} (A_n(x)|_{x^4}) t^n$$

and

$$\mathbb{B}_4(t) = \sum_{n \ge 4} (B_n(x)|_{x^4}) t^n.$$

Then we have the following theorem.

Theorem 7.

$$\mathbb{A}_4(t) = \frac{t^4(6+t-7t^2-t^3+3t^4+t^5)}{(1-t-t^2)^3} \tag{13}$$

and

$$\mathbb{B}_4(t) = \frac{t^4(2-t^2+t^3+t^4)}{(1-t-t^2)^3}.$$
(14)

Proof. First observe that

$$\sum_{n\geq 7} \left(\sum_{i=4}^{n-3} F_{i-2} F_{n-1-i} \right) t^n = t^3 \sum_{n\geq 7} \left(\sum_{j=2}^{n-5} F_j F_{n-3-j} \right) t^{n-3}$$
$$= t^3 \sum_{n\geq 4} \left(\sum_{j=2}^{n-2} F_j F_{n-j} \right) t^n$$
$$= t^3 \left(\sum_{j\geq 2} F_j t^j \right)^2.$$

Using the fact that $\sum_{n\geq 0} F_n t^n = \frac{1}{1-t-t^2}$, it follows that

$$\begin{split} \sum_{n\geq 7} \left(\sum_{i=4}^{n-3} F_{i-2}F_{n-1-i}\right) t^n &= t^3 \left(\frac{1}{1-t-t^2} - (1+t)\right)^2 \\ &= t^3 \frac{(t^2(2+t))^2}{(1-t-t^2)^2} = \frac{(2+t)^2 t^7}{(1-t-t^2)^2}. \end{split}$$

Next observe that

$$\sum_{n\geq 6} F_{n-1}t^n = t\left(\frac{1}{1-t-t^2} - (1+t+2t^2+3t^3+5t^4)\right) = \frac{(8+5t)t^5}{1-t-t^2}.$$

Thus

$$\begin{aligned} H(t) &= \sum_{n \ge 6} H_n t^n \\ &= \sum_{n \ge 6} F_{n-1} t^n + \sum_{n \ge 7} \left(\sum_{i=4}^{n-3} F_{i-2} F_{n-1-i} \right) t^n \\ &= \frac{(2+t)^2 t^7}{(1-t-t^2)^2} + \frac{(8+5t) t^5}{1-t-t^2} \\ &= \frac{(8+t-9t^2-4t^3) t^6}{(1-t-t^2)^2}. \end{aligned}$$

Here we use Mathematica to simplify the last expression.

We can now rewrite (11) as

$$B_n(x)|x^4 = B_{n-1}(x)|x^4 + B_{n-2}(x)|x^4 + H_n$$
(15)

for $n \ge 6$. Multiplying both sides of (15) by t^n and summing for $n \ge 6$, we see that

$$\mathbb{B}_4(t) - 2t^4 - 6t^5 = t(\mathbb{B}_4(t) - 2t^4) + t^2 \mathbb{B}_4(t) + H(t).$$

Solving for $\mathbb{B}_4(t)$ and using Mathematica, we obtain that

$$\mathbb{B}_4(t) = \frac{t^4(2-t^2+t^3+t^4)}{(1-t-t^2)^3}.$$

Next observe that

$$\sum_{n\geq 4} \left(\sum_{i=2}^{n-2} F_{i-2}F_{n-i}\right) t^n = \sum_{n\geq 4} \left(\sum_{j=0}^{n-4} F_jF_{n-2-j}\right) t^n$$
$$= t^2 \sum_{n\geq 4} \left(\sum_{j=0}^{n-4} F_jF_{n-2-j}\right) t^{n-2}$$
$$= t^2 \left(\sum_{j\geq 0} F_jt^j\right) \left(\sum_{j\geq 0} F_jt^j - (1+t)\right)$$
$$= \frac{(2+t)t^4}{(1-t-t^2)^2}.$$

Thus

$$G(t) = \sum_{n \ge 5} G_n t^n = \sum_{n \ge 5} \left(\sum_{i=2}^{n-2} F_{i-2} F_{n-i} \right) t^n$$

$$= \frac{(2+t)t^4}{(1-t-t^2)^2} - 2t^4$$

$$= \frac{(5+2t-4t^2-2t^3)t^5}{(1-t-t^2)^2}.$$

We can now rewrite (10) as

$$A_n(x)|_{x^4} = 2A_n(x)|_{x^4} + B_{n-1}(x)|_{x^4} + G_n$$
(16)

for $n \ge 5$. Multiplying both sides of (16) by t^n and summing for $n \ge 5$, we obtain that

$$\mathbb{A}_4(t) - 6t^4 = 2(\mathbb{B}_4(t) - 2t^4) + t\mathbb{B}_4(t) + G(t).$$

Solving for $\mathbb{A}_4(t)$ then gives

$$\mathbb{A}_4(t) = \frac{t^4(6+t-7t^2-t^3+3t^4+t^5)}{(1-t-t^2)^3}.$$

3.2 The highest coefficient of x in A(t,x) and B(t,x) = E(t,x)

Let $a_n = A_n(x)|_{x^n}$, $b_n = B_n(x)|_{x^n}$, and $e_n = E_n(x)|_{x^n}$. Thus, for example, a_n is the number of permutations $\pi \in S_n(132)$ such that every element of π is an occurrence of the 1-box pattern in π . The identity element in S_n and its reverse show that a_n , b_n , and e_n are nonzero for all $n \ge 1$. Moreover, the fact that $B_n(x) = E_n(x)$ for all $n \ge 1$ implies $b_n = e_n$ for all $n \ge 1$. In this section, we shall compute the generating functions

$$A(t) = \sum_{n \ge 0} a_n t^n$$
 and $B(t) = \sum_{n \ge 1} b_n t^n$

Theorem 8.

$$A(t) = \frac{1 - t + 2t^3 - \sqrt{1 - 2t - 3t^2 + 4t^3 - 4t^4}}{2t^2}$$

and

$$B(t) = \frac{1 + t - 2t^2 + 2t^3 - \sqrt{1 - 2t - 3t^2 + 4t^3 - 4t^4}}{2(1 - t + t^2)}.$$

The initial values for a_n are

 $1, 1, 2, 2, 6, 10, 26, 54, 134, 306, 754, \ldots$

and the initial values for b_n are

$$0, 1, 1, 1, 2, 3, 7, 14, 33, 73, 174, \ldots$$

Proof. Our proof of the theorem is very similar to the proofs of Lemma 1 and Theorem 2. First we claim that for $n \ge 4$,

$$b_n = 1 + \sum_{k=2}^{n-2} (a_k - b_k).$$
(17)

Here 1 corresponds to the decreasing permutation $n(n-1)\cdots 1$, and the sum counts permutations of the form $\pi_1 \cdots \pi_{n-k-1} \ell(n-k+1)(n-k+2)\cdots n$, where $2 \leq k \leq n-2$, $\ell < n-k$ and $\pi_1 \cdots \pi_{n-k-1} \ell$ is a 132-avoiding permutation on $\{1, \ldots, n-k\}$ with the maximum number of occurrences of the 1-box pattern. There are no other permutations counted by b_n . Multiplying both parts of (17) by t^n , summing over all $n \geq 4$, and using the fact that $b_1 = b_2 = b_3 = 1$, we obtain

$$B(t) - (t + t^{2} + t^{3}) = \frac{t^{4}}{1 - t} + \frac{t^{2}}{1 - t} \left((A(t) - (1 + t)) - (B(t) - t) \right),$$

from where we get

$$B(t) = \frac{t - t^2 + t^2 A(t)}{1 - t + t^2}.$$
(18)

Using the fact that $S_n(132) = S_n^{(1)}(132) \cup S_n^{(n)}(132) \cup_{2 \le i \le n-1} S_n^{(i)}(132)$, it is easy to see that for $n \ge 4$,

$$a_n = b_n + e_n + \sum_{k=2}^{n-2} e_k a_{n-k} = 2b_n + \sum_{k=2}^{n-2} b_k a_{n-k}.$$
 (19)

Multiplying both sides of (19) by t^n and using the facts that $a_0 = a_1 = 1$ and $a_2 = a_3 = 2$, we see that

$$A(t) - (1 + t + 2t^{2} + 2t^{3}) = 2(B(t) - (t + t^{2} + t^{3})) + (B(t) - t)(A(t) - (1 + t)).$$

This leads to

$$A(t) = \frac{1 + t^2 + (1 - t)B(t)}{1 + t - B(t)}.$$
(20)

Solving the system of equations given by (18) and (20) for A(t) and B(t) we get the desired result.

4 The 1-box pattern on separable permutations

In this section we enumerate separable permutations with $m, 0 \le m \le 3$, occurrences of the 1-box pattern.

For two non-empty words, A and B, we write A < B to indicate that any element in A is less than each element in B. We say that $\pi' = \pi_i \pi_{i+1} \cdots \pi_j$ is an *interval* in a permutation $\pi_1 \cdots \pi_n$ if π' is a permutation of $\{k, k+1, \ldots, k+j-i\}$ for some k, that is, if π' consists of consecutive values.

Figure 5: The structure of a separable permutation.

A permutation is *separable* if it avoids simultaneously the patterns 2413 and 3142. It is known and is not difficult to see that any separable permutation π of length n has the following structure (also illustrated in Figure 5):

$$\pi = L_1 L_2 \cdots L_m n R_m R_{m-1} \cdots R_1 \tag{21}$$

where

- for $1 \leq i \leq m$, L_i and R_i are non-empty, with possible exception of L_1 and R_m , separable permutations which are intervals in π , and
- $L_1 < R_1 < L_2 < R_2 < \cdots < L_m < R_m$. In particular, L_1 , if it is non-empty, contains the element 1.

For example, if $\pi = 215643$ then $L_1 = 21$, $L_2 = 5$ $R_1 = 43$ and $R_2 = \emptyset$. The following theorem is similar to the case of 132-avoiding permutations.

Theorem 9. Apart from the empty permutation and the permutation 1, there are no separable permutations avoiding the 1-box pattern.

Proof. Our proof is straightforward by induction on n, the length of permutations and is similar to the proof of Theorem 3. Indeed, the base cases for $n \leq 2$ are easy to check. Now assume that $n \geq 3$ and R_n is non-empty (the case when R_n is empty can be considered similarly substituting R_n with L_n in our arguments). If R_n has only one element, n - 1, then n and n - 1 give two occurrences of the 1-box pattern; otherwise, R_n contains an occurrence of the pattern by the inductive hypothesis.

By definition of an occurrence of the 1-box pattern, we cannot have any permutations with exactly one occurrence of the 1-box pattern.

Theorem 10. The number c_n of separable permutations of length n with exactly two occurrences of the 1-box pattern is given by $c_0 = c_1 = 0$, $c_2 = 2$, and for $n \ge 3$, $c_n = 2c_{n-1}+c_{n-2}$. The generating function for this sequence is

$$\sum_{n \ge 0} c_n t^n = \frac{2t^2}{1 - 2t - t^2}.$$

The initial values for $c_n s$, for $n \ge 0$, are $0, 0, 2, 4, 10, 24, 58, 140, 338, 816, 1970, \ldots$, and this is essentially the sequence A052542 in [11]. Apart from the initial 0s, the sequence of $c_n s$ is simply twice the Pell numbers.

Proof. Suppose that $n \geq 3$ and π is a separable permutation in S_n which is counted by c_n . Thus π either contains a consecutive sequence of the form a(a + 1) or (a + 1)a. If we remove a from π and decrease all the elements that are greater than or equal to a + 1 by one, we will obtain a separable permutation π' in S_{n-1} . By Theorem 9, we must have at least two occurrences of the pattern in the obtained permutation π' . In fact, it is easy to see that we will either get two occurrences or three occurrences of the 1-box pattern in π' .

By Theorem 11 below the number of possibilities to get π' with three occurrences of the 1-box pattern (necessarily formed by either a consecutive subword of the form a(a+1)(a+2)or by (a+2)(a+1)a) is given by c_{n-2} . This is indeed the case because we can reverse removing the element in this case by turning a(a+1)(a+2) to a(a+2)(a+1)(a+3)or (a+2)(a+1)a to (a+3)(a+1)(a+2)a and increasing by 1 each element of π that is larger than (a+2). On the other hand, the number of possibilities to get π' with two occurrences of the 1-box pattern (formed by either a consecutive elements of the form a(a + 1) or by (a + 1)a is given by $2c_{n-1}$. Indeed, to reverse removing the element in this case we need either to turn a(a + 1) to either (a + 1)a(a + 2) or to a(a + 2)(a + 1), or to turn (a + 1)a to either (a + 2)a(a + 1) or to (a + 1)(a + 2)a. In each of these cases the suggested substitutions create, in an injective way, separable permutations with exactly two occurrences of the 1-box pattern.

Our considerations above justify the recursion $c_n = 2c_{n-1} + c_{n-2}$ (the initial values for it are easy to see). Finally, using the standard technique, it is straightforward to derive the generating function based on the recursion above.

Theorem 11. For $n \ge 1$, the number of separable permutations of length n with exactly three occurrences of the 1-box pattern is equal to the number of separable permutations of length n - 1 with exactly two occurrences of this pattern.

Proof. It is easy to see that if a separable permutation has exactly three occurrences of the 1-box pattern, then these occurrences are necessarily formed by either a consecutive subword of the form a(a+1)(a+2) or by (a+2)(a+1)a. In either case, removing the middle element and reducing by 1 all elements that are larger than (a + 1), we get a separable permutation with exactly two occurrences of the 1-box pattern. This operation is obviously reversible.

Even though we were not deriving formulas for separable permutations with other number of occurrences of the 1-box pattern, we provide initial values for the number of separable permutations with exactly four occurrences of the 1-box pattern (not in [11]):

 $0, 0, 0, 0, 8, 42, 178, 664, 2288, \ldots,$

and with the maximum number of occurrences of this pattern on separable permutations (again, not in [11]):

 $0, 0, 2, 2, 8, 14, 54, 128, 466, \ldots$

References

- [1] S. Avgustinovich, S. Kitaev and A. Valyuzhenich, Avoidance of boxed mesh patterns on permutations, *Discrete Appl. Math.* **161** (2013) 43–51.
- [2] P. Brändén and A. Claesson, Mesh patterns and the expansion of permutation statistics as sums of permutation patterns, *Elect. J. Comb.* 18(2) (2011), #P5, 14pp.
- [3] S. Kitaev, Patterns in permutations and words, Springer-Verlag, 2011.
- [4] S. Kitaev and J. Liese, Harmonic numbers, Catalan triangle and mesh patterns, arXiv:1209.6423 [math.CO].
- [5] S. Kitaev and J. Remmel, Quadrant marked mesh patterns, J. Integer Sequences, 12 Issue 4 (2012), Article 12.4.7.

- [6] S. Kitaev and J. Remmel, Quadrant marked mesh patterns in alternating permutations, Sem. Lothar. Combin. B68a (2012), 20pp..
- [7] S. Kitaev and J. Remmel, (a, b)-rectangular patterns in permutations and words, arXiv:1304.4286.
- [8] S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, *Pure Mathematics and Applications (Pu.M.A.)*, special issue on "Permutation Patterns", to appear.
- [9] S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations II, arXiv:1302.2274.
- [10] S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations III, arXiv:1303.0854.
- [11] N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at http://oeis.org.
- [12] H. Úlfarsson, A unification of permutation patterns related to Schubert varieties, a special issue of *Pure Mathematics and Applications (Pu.M.A.*), to appear.