The 1-box pattern on pattern avoiding permutations

Sergey Kitaev
Department of Computer and Information Sciences
University of Strathclyde
Glasgow G1 1XH, United Kingdom
sergey.kitaev@cis.strath.ac.uk

Jeffrey Remmel
Department of Mathematics
University of California, San Diego
La Jolla, CA 92093-0112. USA
jremmel@ucsd.edu

Submitted: Date 1; Accepted: Date 2; Published: Date 3.
MR Subject Classifications: 05A15, 05E05

Abstract

This paper is continuation of the study of the 1-box pattern in permutations introduced by the authors in [7]. We derive a two-variable generating function for the distribution of this pattern on 132-avoiding permutations, and then study some of its coefficients providing a link to the Fibonacci numbers. We also find the number of separable permutations with two and three occurrences of the 1-box pattern.

Keywords: 1-box pattern, 132-avoiding permutations, separable permutations, Fibonacci numbers, Pell numbers, distribution

1 Introduction

In this paper, we study 1-box patterns, a particular case of (a, b)-rectangular patterns introduced in [7]. That is, let $\sigma=\sigma_{1} \cdots \sigma_{n}$ be a permutation written in one-line notation. Then we will consider the graph of $\sigma, G(\sigma)$, to be the set of points $\left(i, \sigma_{i}\right)$ for $i=1, \ldots, n$. For example, the graph of the permutation $\sigma=471569283$ is pictured in Figure 1.

Figure 1: The graph of $\sigma=471569283$.

Then if we draw a coordinate system centered at a point $\left(i, \sigma_{i}\right)$, we will be interested in the points that lie in the $2 a \times 2 b$ rectangle centered at the origin. That is, the (a, b)-rectangle pattern centered at $\left(i, \sigma_{i}\right)$ equals the set of points $\left(i \pm r, \sigma_{i} \pm s\right)$ such that $r \in\{0, \ldots, a\}$ and $s \in\{0, \ldots, b\}$. Thus σ_{i} matches the (a, b)-rectangle pattern in σ, if there is at least one point in the $2 a \times 2 b$-rectangle centered at the point $\left(i, \sigma_{i}\right)$ in $G(\sigma)$ other than $\left(i, \sigma_{i}\right)$. For example, when we look for matches of the (2,3)-rectangle patterns, we would look at 4×6 rectangles centered at the point $\left(i, \sigma_{i}\right)$ as pictured in Figure 2,

Figure 2: The 4×8-rectangle centered at the point $(4,5)$ in the graph of $\sigma=471569283$.
We shall refer to the (k, k)-rectangle pattern as the k-box pattern. For example, if $\sigma=471569283$, then the 2-box centered at the point $(4,5)$ in $G(\sigma)$ is the set of circled points pictured in Figure 3, Hence, σ_{i} matches the k-box pattern in σ, if there is at least one point in the k-box centered at the point $\left(i, \sigma_{i}\right)$ in $G(\sigma)$ other than $\left(i, \sigma_{i}\right)$. For example, σ_{4} matches the pattern k-box for all $k \geq 1$ in $\sigma=471569283$ since the point $(5,6)$ is present in the k-box centered at the point $(4,5)$ in $G(\sigma)$ for all $k \geq 1$. However, σ_{3} only matches the k-box pattern in $\sigma=471569283$ for $k \geq 3$ since there are no points in 1-box or 2-box centered at $(3,1)$ in $G(\sigma)$, but the point $(1,4)$ is in the 3 -box centered at $(3,1)$ in $G(\sigma)$. For $k \geq 1$, we let k-box (σ) denote the set of all i such that σ_{i} matches the k-box pattern in $\sigma=\sigma_{1} \cdots \sigma_{n}$.

Figure 3: The 2-box centered at the point $(4,5)$ in the graph of $\sigma=471569283$.
Note that σ_{i} matches the 1-box pattern in σ if either $\left|\sigma_{i}-\sigma_{i+1}\right|=1$ or $\left|\sigma_{i-1}-\sigma_{i}\right|=1$. For example, the distribution of 1-box (σ) for S_{2}, S_{3}, and S_{4} is given below, where S_{n} is the set of all permutations of length n.

σ	1 -box (σ)
12	2
21	2

σ	1 -box (σ)
123	3
132	2
213	2
231	2
312	2
321	3

σ	1-box (σ)		σ	1-box (σ)
1234	4	2134	4	
1243	4	2143	4	
1324	2		2314	2
1342	2	2341	3	
1423	2	2413	0	
1432	3		2431	2
3124	2	4123	3	
3142	0	4132	2	
3214	3	4213	2	
3241	2	4231	2	
3412	4	4312	4	
3421	4	4321	4	

The notion of k-box patterns is related to the mesh patterns introduced by Brändén and Claesson [2] to provide explicit expansions for certain permutation statistics as, possibly infinite, linear combinations of (classical) permutation patterns. This notion was further studied in [1, 4, 5, 8, 9, 10, 12]. In particular, Kitaev and Remmel [5] initiated the systematic study of distribution of marked mesh patterns on permutations, and this study was extended to 132-avoiding permutations by Kitaev, Remmel and Tiefenbruck in [8, 9, 10].

In this paper, we shall study the distribution of the 1-box pattern in 132-avoiding permutations and separable permutations. Given a sequence $\sigma=\sigma_{1} \cdots \sigma_{n}$ of distinct integers, let $\operatorname{red}(\sigma)$ be the permutation found by replacing the i-th largest integer that appears in σ by i. For example, if $\sigma=2754$, then $\operatorname{red}(\sigma)=1432$. Given a permutation $\tau=\tau_{1} \cdots \tau_{j}$ in the symmetric group S_{j}, we say that the pattern τ occurs in $\sigma=\sigma_{1} \ldots \sigma_{n} \in$ S_{n} provided there exists $1 \leq i_{1}<\cdots<i_{j} \leq n$ such that $\operatorname{red}\left(\sigma_{i_{1}} \cdots \sigma_{i_{j}}\right)=\tau$. We say that a permutation σ avoids the pattern τ if τ does not occur in σ. In particular, a permutation σ avoids the pattern 132 if σ does not contain a subsequence of three elements, where the first element is the smallest one, and the second element is the largest one. Let $S_{n}(\tau)$ denote the set of permutations in S_{n} which avoid τ. In the theory of permutation patterns (see [3] for a comprehensive introduction to the area), τ is called a classical pattern. The results in this paper can be viewed as another contribution to the long line of research in the literature which studies various distributions on pattern-avoiding permutations (e.g. see [3, Chapter 6.1.5] for relevant results).

The outline of this paper is as follows. In Section 2 we shall study the distribution of the 1-box pattern in 132-avoiding permutations. In particular, we shall derive explicit
formulas for the generating functions

$$
\begin{gathered}
A(t, x)=\sum_{n \geq 0} A_{n}(x) t^{n}, \\
B(t, x)=\sum_{n \geq 1} B_{n}(x) t^{n} \text { and } \\
E(t, x)=\sum_{n \geq 1} E_{n}(x) t^{n}
\end{gathered}
$$

where $A_{0}(x)=1$ and for $n \geq 1$,

$$
\begin{aligned}
& A_{n}(x)=\sum_{\sigma \in S_{n}(132)} x^{1-\operatorname{box}(\sigma)} \\
& B_{n}(x)=\sum_{\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}(132), \sigma_{1}=n} x^{1-\operatorname{box}(\sigma)} \text { and } \\
& E_{n}(x)=\sum_{\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}(132), \sigma_{n}=n} x^{1-\operatorname{box}(\sigma)} .
\end{aligned}
$$

In Section 3, we shall study the coefficients of x^{k} in the polynomials $A_{n}(x), B_{n}(x)$, and $E_{n}(x)$ for $k \in\{0,1,2,3,4\}$ as well as the coefficient of the highest power of x in these polynomials. Many of these coefficients can be expressed in terms of the Fibonacci numbers F_{n}. For example, for $n \geq 2$, the coefficient of x^{2} in $A_{n}(x)$ is F_{n} and the coefficient of x^{2} in $B_{n}(x)$ and $E_{n}(x)$ is F_{n-2}. Finally, in Section 4 we shall study the 1-box pattern on separable permutations.

2 Distribution of the 1-box pattern on 132-avoiding permutations

In this section, we shall study the generating functions $A(t, x), B(t, x)$, and $E(t, x)$. Clearly, $A_{1}(x)=B_{1}(x)=E_{1}(x)=1$. One can see from our tables for S_{2}, S_{3}, and S_{4} that $A_{2}(x)=2 x^{2}, A_{3}(x)=3 x^{2}+2 x^{3}$, and $A_{4}(x)=5 x^{2}+3 x^{3}+6 x^{4}$. Similarly, one can check that $B_{2}(x)=E_{2}(x)=x^{2}, B_{3}(x)=E_{3}(x)=x^{2}+x^{3}$, and $B_{4}(x)=E_{4}(x)=2 x^{2}+x^{3}+2 x^{4}$.

We shall classify the 132 -avoiding permutations $\sigma=\sigma_{1} \cdots \sigma_{n}$ by position of n in σ. That is, let $S_{n}^{(i)}(132)$ denote the set of $\sigma \in S_{n}(132)$ such that $\sigma_{i}=n$. Clearly each $\sigma \in S_{n}^{(i)}(132)$ has the structure pictured in Figure 4. That is, in the graph of σ, the elements to the left of $n, A_{i}(\sigma)$, have the structure of a 132-avoiding permutation, the elements to the right of $n, B_{i}(\sigma)$, have the structure of a 132-avoiding permutation, and all the elements in $A_{i}(\sigma)$ lie above all the elements in $B_{i}(\sigma)$. Note that the number of 132 -avoiding permutations in S_{n} is the Catalan number $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$, which is a well-known fact, and the generating function for the C_{n} 's is given by

$$
C(t)=\sum_{n \geq 0} C_{n} t^{n}=\frac{1-\sqrt{1-4 t}}{2 t}=\frac{2}{1+\sqrt{1-4 t}}
$$

Figure 4: The structure of 132 -avoiding permutations.

The following lemma establishes relations between $A_{n}(x), B_{n}(x)$, and $E_{n}(x)$.
Lemma 1. For all $n \geq 1, B_{n}(x)=E_{n}(x)$ and for $n \geq 4$,

$$
\begin{equation*}
B_{n}(x)=x^{n}+\left(A_{n-1}(x)-B_{n-1}(x)\right)+\sum_{i=2}^{n-2} x^{n-i}\left(A_{i}(x)-B_{i}(x)\right) . \tag{1}
\end{equation*}
$$

For $n \geq 2$,

$$
\begin{equation*}
A_{n}(x)=B_{n}(x)+\sum_{i=2}^{n} B_{i}(x) A_{n-i}(x) . \tag{2}
\end{equation*}
$$

Proof. We begin with deriving relationships for $B_{n}(x)$ and $E_{n}(x)$. Any 132-avoiding permutation $\pi=\pi_{1} \cdots \pi_{n}$ beginning with the largest letter n is of one of the three forms described below:

1. the decreasing permutation $n(n-1) \cdots 1$;
2. $n \ell \pi_{3} \pi_{4} \cdots \pi_{n}$ where $\ell<n-1$ and $\ell \pi_{3} \pi_{4} \cdots \pi_{n}$ is a 132 -avoiding permutation on $\{1, \ldots, n-1\}$;
3. $n(n-1) \cdots(n-i+1) \ell \pi_{i+2} \pi_{i+3} \cdots \pi_{n}$, where $2 \leq i \leq n-2, \ell<n-i$ and $\ell \pi_{i+2} \pi_{i+3} \cdots \pi_{n}$ is a 132 -avoiding permutation on $\{1, \ldots, n-i\}$.

This structural observation implies immediately (1). Indeed, in the decreasing permutation each element is an occurrence of the 1-box pattern thus giving a contribution of x^{n} to the function $B_{n}(x)$. Also, in the second case, n is not an occurrence of the 1-box pattern in π and it does not effect whether any of the remaining elements in π are occurrences of the 1box pattern in π. Thus, in this case we have a contribution of $\left(A_{n-1}(x)-B_{n-1}(x)\right)$ to $B_{n}(x)$. Finally, in the last case, for any $i, 2 \leq i \leq n-2$, each of the elements $n-i+1, n-i+2, \ldots, n$ is an occurrence of the 1-box pattern in π and these elements do not effect whether any of the remaining elements in π are occurrences of the 1-box pattern in π. Thus, in this case we have a contribution of $\sum_{i=2}^{n-2} x^{n-i}\left(A_{i}(x)-B_{i}(x)\right)$ to $B_{n}(x)$.

We can use similar methods to prove that for all $n \geq 4$,

$$
\begin{equation*}
E_{n}(x)=x^{n}+\left(A_{n-1}(x)-E_{n-1}(x)\right)+\sum_{i=2}^{n-2} x^{n-i}\left(A_{i}(x)-E_{i}(x)\right) . \tag{3}
\end{equation*}
$$

That is, if π is a 132-avoiding permutation in S_{n} that ends in n, we have the following three cases:

1. π is the increasing permutation $1 \cdots n$;
2. $\pi=\pi_{1} \cdots \pi_{n-2} \ell n$ where $\ell<n-1$ and $\pi_{1} \cdots \pi_{n-2} \ell$ is a 132 -avoiding permutation on $\{1, \ldots, n-1\}$;
3. $\pi_{1} \cdots \pi_{n-i-1} \ell(n-i+1)(n-i+2) \cdots n$, where $2 \leq i \leq n-2, \ell<n-i$ and $\pi_{1} \cdots \pi_{n-i-1} \ell$ is a 132 -avoiding permutation on $\{1, \ldots, n-i\}$.

Arguing as above, we see that the identity permutations contributes x^{n} to $E_{n}(x)$, the elements in case (2) contribute $A_{n-1}(x)-E_{n-1}(x)$ to $E_{n}(x)$, and the elements in case (3) contribute $\sum_{i=2}^{n-2} x^{n-i}\left(A_{i}(x)-E_{i}(x)\right)$ to $E_{n}(x)$.

Given that we have computed that $B_{n}(x)=E_{n}(x)$ for $1 \leq n \leq 3$, one can easily use (1) and (3) to prove that $B_{n}(x)=E_{n}(x)$ for all $n \geq 1$ by induction.

To prove (2), note that $S_{n}(132)=S_{n}^{(1)}(132) \cup S_{n}^{(n)}(132) \cup_{2 \leq i \leq n-1} S_{n}^{(i)}(132)$. Clearly, the permutations in $S_{n}^{(1)}(132)$ contribute $B_{n}(x)$ to $A_{n}(x)$ and the permutations in $S_{n}^{(n)}(132)$ contribute $E_{n}(x)$ to $A_{n}(x)$. Now suppose that $2 \leq i \leq n$ and $\pi=\pi_{1} \cdots \pi_{n} \in S_{n}^{(i)}(132)$. Then all the elements in $\pi_{1} \cdots \pi_{i-1}$ are strictly greater than all the elements in $\pi_{i+1} \cdots \pi_{n}$. It follows that $\pi_{i+1} \leq n-2$. Hence the elements $\pi_{1} \cdots \pi_{i-1} n$ have no effect as to whether any of the elements in $\pi_{i+1} \cdots \pi_{n}$ are occurrences of the 1-box pattern in π. Hence the elements $S_{n}^{(i)}(132)$ contribute $E_{i}(x) A_{n-i}(x)$ to $A_{n}(x)$. Thus for all $n \geq 2$,

$$
\begin{equation*}
A_{n}(x)=B_{n}(x)+E_{n}(x)+\sum_{i=2}^{n} E_{i}(x) A_{n-i}(x) \tag{4}
\end{equation*}
$$

It is easy to see that since $B_{n}(x)=E_{n}(x)$ for all $n \geq 1$, (4) implies (2).
The following theorem gives the generating function for the entire distribution of the 1-box pattern over 132-avoiding permutations.

Theorem 2. We have

$$
\begin{equation*}
A(t, x)=\frac{1+t+t^{2}-t x-t^{2} x-t^{3} x+t^{3} x^{2}-\sqrt{F(t, x)}}{2\left(t(1-x t)+x^{2} t^{2}\right)} \tag{5}
\end{equation*}
$$

where $F(t, x)=\left(1+t+t^{2}-t x-t^{2} x-t^{3} x+t^{3} x^{2}\right)^{2}+4\left((1+t)(1-x t)+x^{2} t^{2}\right)\left(t(1-x t)+x^{2} t^{2}\right)$. Also,

$$
B(t, x)=E(t, x)=\frac{t(1-x t)+x^{2} t^{2}}{(1+t)(1-x t)+x^{2} t^{2}} A(t, x)
$$

Proof. Multiplying both parts of (2) by t^{n} and summing over all $n \geq 2$ we obtain

$$
A(t, x)-(1+t)=(B(t, x)-t)+(B(t, x)-t) A(t, x)
$$

Solving for $A(t, x)$, we obtain that

$$
\begin{equation*}
A(t, x)=\frac{1+B(t, x)}{1+t-B(t, x)} \tag{6}
\end{equation*}
$$

Now multiplying both parts of (11) by t^{n} and summing over all $n \geq 2$ we obtain

$$
\begin{gathered}
B(t, x)-\left(t+x^{2} t^{2}+\left(x^{2}+x^{3}\right) t^{3}\right)=\frac{x^{4} t^{4}}{1-x t}+t\left(A(t, x)-\left(1+t+2 x^{2} t^{2}\right)\right) \\
-t\left(B(t, x)-\left(t+x^{2} t^{2}\right)\right)+\frac{x^{2} t^{2}}{1-x t}((A(t, x)-(1+t))-(B(t, x)-t))
\end{gathered}
$$

Solving for $B(t, x)$, we obtain that

$$
\begin{equation*}
B(t, x)=\frac{t(1-x t)+x^{2} t^{2}}{(1+t)(1-x t)+x^{2} t^{2}} A(t, x) \tag{7}
\end{equation*}
$$

Combining (6) and (7), we see that $A(t, x)$ satisfies the following quadratic equation

$$
\left(t(1-x t)+x^{2} t^{2}\right) A^{2}(t, x)-\left(1+t+t^{2}-t x-t^{2} x-t^{3} x+t^{3} x^{2}\right) A(t, x)+(1+t)(1-x t)+x^{2} t^{2}=0
$$

which can be solved to yield (5).
We used Mathematica to find the first few terms of $A(t, x)$ and $B(t, x)=E(t, x)$. That is, we have that

$$
\begin{aligned}
A(t, x)= & 1+t+2 x^{2} t^{2}+x^{2}(3+2 x) t^{3}+x^{2}\left(5+3 x+6 x^{2}\right) t^{4}+x^{2}\left(8+5 x+19 x^{2}+10 x^{3}\right) t^{5}+ \\
& x^{2}\left(13+8 x+50 x^{2}+35 x^{3}+26 x^{4}\right) t^{6}+x^{2}\left(21+13 x+119 x^{2}+95 x^{3}+127 x^{4}+54 x^{5}\right) t^{7}+ \\
& x^{2}\left(34+21 x+265 x^{2}+230 x^{3}+451 x^{4}+295 x^{5}+134 x^{6}\right) t^{8}+ \\
& x^{2}\left(55+34 x+564 x^{2}+517 x^{3}+1373 x^{4}+1118 x^{5}+895 x^{6}+306 x^{7}\right) t^{9}+ \\
& x^{2}\left(89+55 x+1160 x^{2}+1107 x^{3}+3790 x^{4}+3548 x^{5}+4010 x^{6}+2283 x^{7}+754 x^{8}\right) t^{10}+\cdots .
\end{aligned}
$$

and

$$
\begin{aligned}
B(t, x)= & E(t, x) \\
= & t+x^{2} t^{2}+x^{2}(1+x) t^{3}+x^{2}\left(2+x+2 x^{2}\right) t^{4}+ \\
& x^{2}\left(3+2 x+6 x^{2}+3 x^{3}\right) t^{5}+x^{2}\left(5+3 x+16 x^{2}+11 x^{3}+7 x^{4}\right) t^{6}+ \\
& x^{2}\left(8+5 x+39 x^{2}+30 x^{3}+36 x^{4}+14 x^{5}\right) t^{7}+ \\
& x^{2}\left(13+8 x+88 x^{2}+75 x^{3}+131 x^{4}+81 x^{5}+33 x^{6}\right) t^{8}+ \\
& x^{2}\left(21+13 x+190 x^{2}+171 x^{3}+410 x^{4}+319 x^{5}+233 x^{6}+73 x^{7}\right) t^{9}+ \\
& x^{2}\left(34+21 x+395 x^{2}+372 x^{3}+1156 x^{4}+1044 x^{5}+1087 x^{6}+579 x^{7}+174 x^{8}\right) t^{10}+\cdots .
\end{aligned}
$$

3 Properties of coefficients of $A_{n}(x)$ and $B_{n}(x)=E_{n}(x)$

In this section, we shall explain several of the coefficients of the polynomials $A_{n}(x)$ and $B_{n}(x)=E_{n}(x)$ and show their connections with the Fibonacci numbers.

In Subsection 3.1, we study the coefficients of x^{k} in the the polynomials $A_{n}(x)$ and $B_{n}(x)=E_{n}(x)$ for $k \in\{0,1,2,3,4\}$ and, in Subsection 3.2, we derive the generating functions for the highest coefficients for these polynomials.

3.1 The four smallest coefficients and the Fibonacci numbers

Clearly the coefficient of x in either $A_{n}(x), B_{n}(x)$, or $E_{n}(x)$ is 0 by the definition of an occurrence of the 1-box pattern. The following theorem states that for $n \geq 2$, each 132avoiding permutation of length n has at least two occurrences of the 1-box pattern. In what follows, we need the notion of the celebrated n-th Fibonacci number F_{n} defined as $F_{0}=F_{1}=1$ and, for $n \geq 2, F_{n}=F_{n-1}+F_{n-2}$. Also, for a polynomial $P(x)$, we let $\left.P(x)\right|_{x^{m}}$ denote the coefficient of x^{m}.

Theorem 3. For $n \geq 2,\left.A_{n}(x)\right|_{x^{0}}=\left.B_{n}(x)\right|_{x^{0}}=\left.E_{n}(x)\right|_{x^{0}}=0$.
Proof. Clearly, it is enough to prove the claim for $A_{n}(x)$. We proceed by induction on n. The claim is clearly true for $n=2$. Next suppose that $n \geq 3$ and $\sigma=S_{n}(132)$. From the structure of 132-avoiding permutations presented in Figure 4, either $A_{i}(\sigma)$ is empty in which case $B_{i}(\sigma)$ has at least two elements and it contains an occurrence of the 1-box pattern by the induction hypothesis, or $A_{i}(\sigma)$ has a single element $n-1$ leading to two occurrence of the pattern formed by n and $n-1$, or $A_{i}(\sigma)$ has at least two elements and we apply the induction hypothesis to it.

Theorem 4. For $n \geq 2,\left.A_{n}(x)\right|_{x^{2}}=F_{n}$ and $\left.B_{n}(x)\right|_{x^{2}}=\left.E_{n}(x)\right|_{x^{2}}=F_{n-2}$.
Proof. We proceed by induction on n. Note that $\left.A_{2}(x)\right|_{x^{2}}=2=F_{2}$ and $\left.B_{2}(x)\right|_{x^{2}}=$ $\left.E_{2}(x)\right|_{x^{2}}=1=F_{0}$. Similarly, $\left.A_{3}(x)\right|_{x^{2}}=3=F_{3}$ and $\left.B_{3}(x)\right|_{x^{2}}=\left.E_{3}(x)\right|_{x^{2}}=1=F_{1}$. Thus our claim holds for $n=2$ and $n=3$.

For $n \geq 4$, it follows from (1) and Theorem 3 that

$$
\begin{aligned}
\left.B_{n}(x)\right|_{x^{2}} & =\left.x^{n}\right|_{x^{2}}+\left(\left.A_{n-1}(x)\right|_{x^{2}}-\left.B_{n-1}(x)\right|_{x^{2}}\right)+\left.\sum_{i=2}^{n-2}\left(x^{n-i}\left(A_{i}(x)-B_{i}(x)\right)\right)\right|_{x^{2}} \\
& =\left.A_{n-1}(x)\right|_{x^{2}}-\left.B_{n-1}(x)\right|_{x^{2}}+\left.\left(A_{n-2}(x)-B_{n-2}(x)\right)\right|_{x^{0}} \\
& =F_{n-1}-F_{n-3}=F_{n-2} .
\end{aligned}
$$

But then by (2), we have that

$$
\begin{equation*}
\left.A_{n}(x)\right|_{x^{2}}=\left.B_{n}(x)\right|_{x^{2}}+\left.\sum_{i=2}^{n}\left(B_{i}(x) A_{n-i}(x)\right)\right|_{x^{2}} \tag{8}
\end{equation*}
$$

Note that since $n \geq 4$ and $2 \leq i \leq n$

$$
\begin{aligned}
\left.\left(B_{i}(x) A_{n-i}(x)\right)\right|_{x^{2}}= & \left.\left.\left.\left(\left.B_{i}(x)\right|_{x^{0}}\right)\left(A_{n-i}(x)\right)\right|_{x^{2}}\right)+\left.\left(\left.B_{i}(x)\right|_{x^{1}}\right)\left(A_{n-i}(x)\right)\right|_{x^{1}}\right)+ \\
& \left.\left.\left(\left.B_{i}(x)\right|_{x^{2}}\right)\left(A_{n-i}(x)\right)\right|_{x^{0}}\right) \\
= & \left.\left.\left(\left.B_{i}(x)\right|_{x^{2}}\right)\left(A_{n-i}(x)\right)\right|_{x^{0}}\right)
\end{aligned}
$$

since $\left.B_{i}(x)\right|_{x^{1}}=\left.A_{n-i}(x)\right|_{x^{1}}=0$ for $i \geq 1$ and $\left.B_{i}(x)\right|_{x^{0}}=0$ for $i \geq 2$. But then since $\left.A_{i}(x)\right|_{x^{0}}=0$ for $i \geq 2$ and $\left.A_{i}(x)\right|_{x^{0}}=1$ for $i=0,1$, it follows that (8) reduces to

$$
\begin{aligned}
\left.A_{n}(x)\right|_{x^{2}} & =\left.B_{n}(x)\right|_{x^{2}}+\left.B_{n}(x)\right|_{x^{2}}+\left.B_{n-1}(x)\right|_{x^{2}} \\
& =F_{n-2}+F_{n-2}+F_{n-3}=F_{n-2}+F_{n-1}=F_{n} .
\end{aligned}
$$

Corollary 1. For $n \geq 2$, the number of 132-avoiding permutations of length n that do not begin (resp. end) with n and contain exactly two occurrences of the 1-box pattern is F_{n-1}.

Proof. A proof is straightforward from Theorem 4, since

$$
\left.A_{n}(x)\right|_{x^{2}}-\left.B_{n}(x)\right|_{x^{2}}=\left.A_{n}(x)\right|_{x^{2}}-\left.E_{n}(x)\right|_{x^{2}}=F_{n-1}
$$

Theorem 5. For $n \geq 3,\left.A_{n}(x)\right|_{x^{3}}=F_{n-1}$ and $\left.B_{n}(x)\right|_{x^{3}}=\left.E_{n}(x)\right|_{x^{3}}=F_{n-3}$.
Proof. We proceed by induction on n, the length of permutations, and the formulas (1) and (2). Note that we have computed that $\left.A_{3}(x)\right|_{x^{2}}=2=F_{2},\left.A_{4}(x)\right|_{x^{2}}=3=F_{3}$, $\left.B_{3}(x)\right|_{x^{2}}=\left.E_{3}(x)\right|_{x^{2}}=1=F_{0}$, and $\left.B_{4}(x)\right|_{x^{2}}=\left.E_{4}(x)\right|_{x^{2}}=1=F_{1}$. Thus our claim holds for $n=3$ and $n=4$.

For $n \geq 5$, it follows from (11) and Theorem 3 that

$$
\begin{aligned}
\left.B_{n}(x)\right|_{x^{3}} & =\left.x^{n}\right|_{x^{3}}+\left(\left.A_{n-1}(x)\right|_{x^{3}}-\left.B_{n-1}(x)\right|_{x^{3}}\right)+\left.\sum_{i=2}^{n-2}\left(x^{n-i}\left(A_{i}(x)-B_{i}(x)\right)\right)\right|_{x^{3}} \\
& =\left.A_{n-1}(x)\right|_{x^{3}}-\left.B_{n-1}(x)\right|_{x^{3}}+\left.\left(A_{n-2}(x)-B_{n-2}(x)\right)\right|_{x^{1}}+\left.\left(A_{n-3}(x)-B_{n-3}(x)\right)\right|_{x^{0}} \\
& =F_{n-2}-F_{n-4}=F_{n-3}
\end{aligned}
$$

But then by (2), we have that

$$
\begin{equation*}
\left.A_{n}(x)\right|_{x^{3}}=\left.B_{n}(x)\right|_{x^{3}}+\left.\sum_{i=2}^{n}\left(B_{i}(x) A_{n-i}(x)\right)\right|_{x^{3}} . \tag{9}
\end{equation*}
$$

Note that since $n \geq 5$ and $2 \leq i \leq n$,

$$
\begin{aligned}
\left.\left(B_{i}(x) A_{n-i}(x)\right)\right|_{x^{3}}= & \left(\left.B_{i}(x)\right|_{x^{0}}\right)+\left(\left.A_{n-i}(x)\right|_{x^{3}}\right)\left(\left.B_{i}(x)\right|_{x^{1}}\right)\left(\left.A_{n-i}(x)\right|_{x^{2}}\right)+ \\
& \left(\left.B_{i}(x)\right|_{x^{2}}\right)\left(\left.A_{n-i}(x)\right|_{x^{1}}\right)+\left(\left.B_{i}(x)\right|_{x^{3}}\right)\left(\left.A_{n-i}(x)\right|_{x^{0}}\right) \\
= & \left(\left.B_{i}(x)\right|_{x^{3}}\right)\left(\left.A_{n-i}(x)\right|_{x^{0}}\right)
\end{aligned}
$$

since $\left.B_{i}(x)\right|_{x^{1}}=\left.A_{n-i}(x)\right|_{x^{1}}=0$ for $i \geq 1$ and $\left.B_{i}(x)\right|_{x^{0}}=0$ for $i \geq 2$. But then since $\left.A_{i}(x)\right|_{x^{0}}=0$ for $i \geq 2$ and $\left.A_{i}(x)\right|_{x^{0}}=1$ for $i=0,1$, it follows that (9) reduces to

$$
\begin{aligned}
\left.A_{n}(x)\right|_{x^{3}} & =\left.B_{n}(x)\right|_{x^{3}}+\left.B_{n}(x)\right|_{x^{3}}+\left.B_{n-1}(x)\right|_{x^{3}} \\
& =F_{n-3}+F_{n-3}+F_{n-4}=F_{n-3}+F_{n-2}=F_{n-1} .
\end{aligned}
$$

Corollary 2. For $n \geq 3$, the number of 132-avoiding permutations of length n that do not begin (resp. end) with n and contain exactly three occurrences of the 1-box pattern is F_{n-2}.

Proof. A proof is straightforward from Theorem [5, since

$$
\left.A_{n}(x)\right|_{x^{3}}-\left.B_{n}(x)\right|_{x^{3}}=\left.A_{n}(x)\right|_{x^{3}}-\left.E_{n}(x)\right|_{x^{3}}=F_{n-2} .
$$

Regarding the number of 132-avoiding permutations with exactly four occurrences of the 1-box pattern, we can derive the following recurrence relations involving the Fibonacci numbers.

Theorem 6. We have that for $n \leq 3,\left.A_{n}(x)\right|_{x^{4}}=\left.B_{n}(x)\right|_{x^{4}}=\left.E_{n}(x)\right|_{x^{4}}=0,\left.B_{4}(x)\right|_{x^{4}}=2$, $\left.B_{5}(x)\right|_{x^{4}}=6$, and for $n \geq 4$,

$$
\begin{equation*}
\left.A_{n}(x)\right|_{x^{4}}=\left.2 B_{n}(x)\right|_{x^{4}}+\left.B_{n-1}(x)\right|_{x^{4}}+\sum_{i=2}^{n-2} F_{i-2} F_{n-i} \tag{10}
\end{equation*}
$$

while for $n \geq 6$,

$$
\begin{equation*}
\left.B_{n}(x)\right|_{x^{4}}=\left.B_{n-1}(x)\right|_{x^{4}}+\left.B_{n-2}(x)\right|_{x^{4}}+F_{n-1}+\sum_{i=4}^{n-3} F_{i-2} F_{n-1-i} \tag{11}
\end{equation*}
$$

Proof. The initial conditions follow from the expansions of $A(t, x)$ and $B(t, x)$ given above.
By (2), we have that

$$
\begin{equation*}
\left.A_{n}(x)\right|_{x^{4}}=\left.B_{n}(x)\right|_{x^{4}}+\left.\sum_{i=2}^{n}\left(B_{i}(x) A_{n-i}(x)\right)\right|_{x^{4}} \tag{12}
\end{equation*}
$$

Note that since $n \geq 4$ and $2 \leq i \leq n$,

$$
\begin{aligned}
\left.\left(B_{i}(x) A_{n-i}(x)\right)\right|_{x^{4}}= & \left(\left.B_{i}(x)\right|_{x^{0}}\right)\left(\left.A_{n-i}(x)\right|_{x^{4}}\right)+\left(\left.B_{i}(x)\right|_{x^{1}}\right)\left(\left.A_{n-i}(x)\right|_{x^{3}}\right)+ \\
& \left(\left.B_{i}(x)\right|_{x^{2}}\right)\left(\left.A_{n-i}(x)\right|_{x^{2}}\right)+\left(\left.B_{i}(x)\right|_{x^{3}}\right)\left(\left.A_{n-i}(x)\right|_{x^{1}}\right)+ \\
& \left(\left.B_{i}(x)\right|_{x^{4}}\right)\left(\left.A_{n-i}(x)\right|_{x^{0}}\right) \\
= & \left(\left.B_{i}(x)\right|_{x^{2}}\right)\left(\left.A_{n-i}(x)\right|_{x^{2}}\right)+\left(\left.B_{i}(x)\right|_{x^{4}}\right)\left(\left.A_{n-i}(x)\right|_{x^{0}}\right)
\end{aligned}
$$

since $\left.B_{i}(x)\right|_{x^{1}}=\left.A_{n-i}(x)\right|_{x^{1}}=0$ for $i \geq 1$ and $\left.B_{i}(x)\right|_{x^{0}}=0$ for $i \geq 2$. But then since $\left.A_{i}(x)\right|_{x^{0}}=0$ for $i \geq 2$ and $\left.A_{i}(x)\right|_{x^{0}}=1$ for $i=0,1$, (12) reduces to

$$
\left.A_{n}(x)\right|_{x^{4}}=\left.B_{n}(x)\right|_{x^{4}}+\left.B_{n}(x)\right|_{x^{4}}+\left.B_{n-1}(x)\right|_{x^{4}}+\sum_{i=2}^{n-2}\left(\left.B_{i}(x)\right|_{x^{2}}\right)\left(\left.A_{n-i}(x)\right|_{x^{2}}\right)
$$

Then we can apply Theorem 4 to obtain (10).
Let $n \geq 6$. From (1),

$$
\left.B_{n}(x)\right|_{x^{4}}=\left(\left.A_{n-1}(x)\right|_{x^{4}}-\left.B_{n-1}(x)\right|_{x^{4}}\right)+\left(\left.A_{n-2}(x)\right|_{x^{2}}-\left.B_{n-2}(x)\right|_{x^{2}}\right),
$$

since only the term corresponding to $i=n-2$ from the sum contributes to x^{4}. Applying (10) and Theorem 4, we obtain

$$
\begin{aligned}
\left.B_{n}(x)\right|_{x^{4}} & =\left(\left.2 B_{n-1}(x)\right|_{x^{4}}+\left.B_{n-2}(x)\right|_{x^{4}}+\sum_{i=2}^{n-3} F_{i-2} F_{n-1-i}\right)-\left.B_{n-1}(x)\right|_{x^{4}}+F_{n-2}-F_{n-4} \\
& =\left.B_{n-1}(x)\right|_{x^{4}}+\left.B_{n-2}(x)\right|_{x^{4}}+F_{n-3}+F_{n-4}+F_{n-2}-F_{n-4}+\sum_{i=4}^{n-3} F_{i-2} F_{n-1-i} \\
& =\left.B_{n-1}(x)\right|_{x^{4}}+\left.B_{n-2}(x)\right|_{x^{4}}+F_{n-1}+\sum_{i=4}^{n-3} F_{i-2} F_{n-1-i}
\end{aligned}
$$

Note that $\left.B_{5}(x)\right|_{x^{4}}=6,\left.B_{4}(x)\right|_{x^{4}}=2,\left.B_{3}(x)\right|_{x^{4}}=0$, and $F_{4}=5$ so that (11) does not hold for $n=5$.

We can use Theorem 6 to find the generating functions for $\left.A_{n}(x)\right|_{x^{4}}$ and $\left.B_{n}(x)\right|_{x^{4}}$. That is, let

$$
\mathbb{A}_{4}(t)=\sum_{n \geq 4}\left(\left.A_{n}(x)\right|_{x^{4}}\right) t^{n}
$$

and

$$
\mathbb{B}_{4}(t)=\sum_{n \geq 4}\left(\left.B_{n}(x)\right|_{x^{4}}\right) t^{n}
$$

Then we have the following theorem.

Theorem 7.

$$
\begin{equation*}
\mathbb{A}_{4}(t)=\frac{t^{4}\left(6+t-7 t^{2}-t^{3}+3 t^{4}+t^{5}\right)}{\left(1-t-t^{2}\right)^{3}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{B}_{4}(t)=\frac{t^{4}\left(2-t^{2}+t^{3}+t^{4}\right)}{\left(1-t-t^{2}\right)^{3}} \tag{14}
\end{equation*}
$$

Proof. First observe that

$$
\begin{aligned}
\sum_{n \geq 7}\left(\sum_{i=4}^{n-3} F_{i-2} F_{n-1-i}\right) t^{n} & =t^{3} \sum_{n \geq 7}\left(\sum_{j=2}^{n-5} F_{j} F_{n-3-j}\right) t^{n-3} \\
& =t^{3} \sum_{n \geq 4}\left(\sum_{j=2}^{n-2} F_{j} F_{n-j}\right) t^{n} \\
& =t^{3}\left(\sum_{j \geq 2} F_{j} t^{j}\right)^{2} .
\end{aligned}
$$

Using the fact that $\sum_{n \geq 0} F_{n} t^{n}=\frac{1}{1-t-t^{2}}$, it follows that

$$
\begin{aligned}
\sum_{n \geq 7}\left(\sum_{i=4}^{n-3} F_{i-2} F_{n-1-i}\right) t^{n} & =t^{3}\left(\frac{1}{1-t-t^{2}}-(1+t)\right)^{2} \\
& =t^{3} \frac{\left(t^{2}(2+t)\right)^{2}}{\left(1-t-t^{2}\right)^{2}}=\frac{(2+t)^{2} t^{7}}{\left(1-t-t^{2}\right)^{2}}
\end{aligned}
$$

Next observe that

$$
\sum_{n \geq 6} F_{n-1} t^{n}=t\left(\frac{1}{1-t-t^{2}}-\left(1+t+2 t^{2}+3 t^{3}+5 t^{4}\right)\right)=\frac{(8+5 t) t^{5}}{1-t-t^{2}}
$$

Thus

$$
\begin{aligned}
H(t) & =\sum_{n \geq 6} H_{n} t^{n} \\
& =\sum_{n \geq 6} F_{n-1} t^{n}+\sum_{n \geq 7}\left(\sum_{i=4}^{n-3} F_{i-2} F_{n-1-i}\right) t^{n} \\
& =\frac{(2+t)^{2} t^{7}}{\left(1-t-t^{2}\right)^{2}}+\frac{(8+5 t) t^{5}}{1-t-t^{2}} \\
& =\frac{\left(8+t-9 t^{2}-4 t^{3}\right) t^{6}}{\left(1-t-t^{2}\right)^{2}} .
\end{aligned}
$$

Here we use Mathematica to simplify the last expression.
We can now rewrite (11) as

$$
\begin{equation*}
B_{n}(x)\left|x^{4}=B_{n-1}(x)\right| x^{4}+B_{n-2}(x) \mid x^{4}+H_{n} \tag{15}
\end{equation*}
$$

for $n \geq 6$. Multiplying both sides of (15) by t^{n} and summing for $n \geq 6$, we see that

$$
\mathbb{B}_{4}(t)-2 t^{4}-6 t^{5}=t\left(\mathbb{B}_{4}(t)-2 t^{4}\right)+t^{2} \mathbb{B}_{4}(t)+H(t)
$$

Solving for $\mathbb{B}_{4}(t)$ and using Mathematica, we obtain that

$$
\mathbb{B}_{4}(t)=\frac{t^{4}\left(2-t^{2}+t^{3}+t^{4}\right)}{\left(1-t-t^{2}\right)^{3}}
$$

Next observe that

$$
\begin{aligned}
\sum_{n \geq 4}\left(\sum_{i=2}^{n-2} F_{i-2} F_{n-i}\right) t^{n} & =\sum_{n \geq 4}\left(\sum_{j=0}^{n-4} F_{j} F_{n-2-j}\right) t^{n} \\
& =t^{2} \sum_{n \geq 4}\left(\sum_{j=0}^{n-4} F_{j} F_{n-2-j}\right) t^{n-2} \\
& =t^{2}\left(\sum_{j \geq 0} F_{j} t^{j}\right)\left(\sum_{j \geq 0} F_{j} t^{j}-(1+t)\right) \\
& =\frac{(2+t) t^{4}}{\left(1-t-t^{2}\right)^{2}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
G(t) & =\sum_{n \geq 5} G_{n} t^{n}=\sum_{n \geq 5}\left(\sum_{i=2}^{n-2} F_{i-2} F_{n-i}\right) t^{n} \\
& =\frac{(2+t) t^{4}}{\left(1-t-t^{2}\right)^{2}}-2 t^{4} \\
& =\frac{\left(5+2 t-4 t^{2}-2 t^{3}\right) t^{5}}{\left(1-t-t^{2}\right)^{2}}
\end{aligned}
$$

We can now rewrite (10) as

$$
\begin{equation*}
\left.A_{n}(x)\right|_{x^{4}}=\left.2 A_{n}(x)\right|_{x^{4}}+\left.B_{n-1}(x)\right|_{x^{4}}+G_{n} \tag{16}
\end{equation*}
$$

for $n \geq 5$. Multiplying both sides of (16) by t^{n} and summing for $n \geq 5$, we obtain that

$$
\mathbb{A}_{4}(t)-6 t^{4}=2\left(\mathbb{B}_{4}(t)-2 t^{4}\right)+t \mathbb{B}_{4}(t)+G(t)
$$

Solving for $\mathbb{A}_{4}(t)$ then gives

$$
\mathbb{A}_{4}(t)=\frac{t^{4}\left(6+t-7 t^{2}-t^{3}+3 t^{4}+t^{5}\right)}{\left(1-t-t^{2}\right)^{3}}
$$

3.2 The highest coefficient of x in $A(t, x)$ and $B(t, x)=E(t, x)$

Let $a_{n}=\left.A_{n}(x)\right|_{x^{n}}, b_{n}=\left.B_{n}(x)\right|_{x^{n}}$, and $e_{n}=\left.E_{n}(x)\right|_{x^{n}}$. Thus, for example, a_{n} is the number of permutations $\pi \in S_{n}(132)$ such that every element of π is an occurrence of the 1-box pattern in π. The identity element in S_{n} and its reverse show that a_{n}, b_{n}, and e_{n} are nonzero for all $n \geq 1$. Moreover, the fact that $B_{n}(x)=E_{n}(x)$ for all $n \geq 1$ implies $b_{n}=e_{n}$ for all $n \geq 1$. In this section, we shall compute the generating functions

$$
A(t)=\sum_{n \geq 0} a_{n} t^{n} \text { and } B(t)=\sum_{n \geq 1} b_{n} t^{n}
$$

Theorem 8.

$$
A(t)=\frac{1-t+2 t^{3}-\sqrt{1-2 t-3 t^{2}+4 t^{3}-4 t^{4}}}{2 t^{2}}
$$

and

$$
B(t)=\frac{1+t-2 t^{2}+2 t^{3}-\sqrt{1-2 t-3 t^{2}+4 t^{3}-4 t^{4}}}{2\left(1-t+t^{2}\right)} .
$$

The initial values for a_{n} are

$$
1,1,2,2,6,10,26,54,134,306,754, \ldots
$$

and the initial values for b_{n} are

$$
0,1,1,1,2,3,7,14,33,73,174, \ldots
$$

Proof. Our proof of the theorem is very similar to the proofs of Lemma 1 and Theorem 2,
First we claim that for $n \geq 4$,

$$
\begin{equation*}
b_{n}=1+\sum_{k=2}^{n-2}\left(a_{k}-b_{k}\right) . \tag{17}
\end{equation*}
$$

Here 1 corresponds to the decreasing permutation $n(n-1) \cdots 1$, and the sum counts permutations of the form $\pi_{1} \cdots \pi_{n-k-1} \ell(n-k+1)(n-k+2) \cdots n$, where $2 \leq k \leq n-2$, $\ell<n-k$ and $\pi_{1} \cdots \pi_{n-k-1} \ell$ is a 132 -avoiding permutation on $\{1, \ldots, n-k\}$ with the maximum number of occurrences of the 1-box pattern. There are no other permutations counted by b_{n}. Multiplying both parts of (17) by t^{n}, summing over all $n \geq 4$, and using the fact that $b_{1}=b_{2}=b_{3}=1$, we obtain

$$
B(t)-\left(t+t^{2}+t^{3}\right)=\frac{t^{4}}{1-t}+\frac{t^{2}}{1-t}((A(t)-(1+t))-(B(t)-t)),
$$

from where we get

$$
\begin{equation*}
B(t)=\frac{t-t^{2}+t^{2} A(t)}{1-t+t^{2}} \tag{18}
\end{equation*}
$$

Using the fact that $S_{n}(132)=S_{n}^{(1)}(132) \cup S_{n}^{(n)}(132) \cup_{2 \leq i \leq n-1} S_{n}^{(i)}(132)$, it is easy to see that for $n \geq 4$,

$$
\begin{equation*}
a_{n}=b_{n}+e_{n}+\sum_{k=2}^{n-2} e_{k} a_{n-k}=2 b_{n}+\sum_{k=2}^{n-2} b_{k} a_{n-k} \tag{19}
\end{equation*}
$$

Multiplying both sides of (19) by t^{n} and using the facts that $a_{0}=a_{1}=1$ and $a_{2}=a_{3}=2$, we see that

$$
A(t)-\left(1+t+2 t^{2}+2 t^{3}\right)=2\left(B(t)-\left(t+t^{2}+t^{3}\right)\right)+(B(t)-t)(A(t)-(1+t))
$$

This leads to

$$
\begin{equation*}
A(t)=\frac{1+t^{2}+(1-t) B(t)}{1+t-B(t)} \tag{20}
\end{equation*}
$$

Solving the system of equations given by (18) and (20) for $A(t)$ and $B(t)$ we get the desired result.

4 The 1-box pattern on separable permutations

In this section we enumerate separable permutations with $m, 0 \leq m \leq 3$, occurrences of the 1-box pattern.

For two non-empty words, A and B, we write $A<B$ to indicate that any element in A is less than each element in B. We say that $\pi^{\prime}=\pi_{i} \pi_{i+1} \cdots \pi_{j}$ is an interval in a permutation $\pi_{1} \cdots \pi_{n}$ if π^{\prime} is a permutation of $\{k, k+1, \ldots, k+j-i\}$ for some k, that is, if π^{\prime} consists of consecutive values.

Figure 5: The structure of a separable permutation.
A permutation is separable if it avoids simultaneously the patterns 2413 and 3142. It is known and is not difficult to see that any separable permutation π of length n has the following structure (also illustrated in Figure (5):

$$
\begin{equation*}
\pi=L_{1} L_{2} \cdots L_{m} n R_{m} R_{m-1} \cdots R_{1} \tag{21}
\end{equation*}
$$

where

- for $1 \leq i \leq m, L_{i}$ and R_{i} are non-empty, with possible exception of L_{1} and R_{m}, separable permutations which are intervals in π, and
- $L_{1}<R_{1}<L_{2}<R_{2}<\cdots<L_{m}<R_{m}$. In particular, L_{1}, if it is non-empty, contains the element 1 .

For example, if $\pi=215643$ then $L_{1}=21, L_{2}=5 R_{1}=43$ and $R_{2}=\emptyset$.
The following theorem is similar to the case of 132 -avoiding permutations.
Theorem 9. Apart from the empty permutation and the permutation 1, there are no separable permutations avoiding the 1-box pattern.

Proof. Our proof is straightforward by induction on n, the length of permutations and is similar to the proof of Theorem 3. Indeed, the base cases for $n \leq 2$ are easy to check. Now assume that $n \geq 3$ and R_{n} is non-empty (the case when R_{n} is empty can be considered similarly substituting R_{n} with L_{n} in our arguments). If R_{n} has only one element, $n-1$, then n and $n-1$ give two occurrences of the 1-box pattern; otherwise, R_{n} contains an occurrence of the pattern by the inductive hypothesis.

By definition of an occurrence of the 1-box pattern, we cannot have any permutations with exactly one occurrence of the 1-box pattern.

Theorem 10. The number c_{n} of separable permutations of length n with exactly two occurrences of the 1-box pattern is given by $c_{0}=c_{1}=0, c_{2}=2$, and for $n \geq 3, c_{n}=2 c_{n-1}+c_{n-2}$. The generating function for this sequence is

$$
\sum_{n \geq 0} c_{n} t^{n}=\frac{2 t^{2}}{1-2 t-t^{2}}
$$

The initial values for $c_{n} s$, for $n \geq 0$, are $0,0,2,4,10,24,58,140,338,816,1970, \ldots$, and this is essentially the sequence $A 052542$ in [11]. Apart from the initial 0 s, the sequence of $c_{n} s$ is simply twice the Pell numbers.

Proof. Suppose that $n \geq 3$ and π is a separable permutation in S_{n} which is counted by c_{n}. Thus π either contains a consecutive sequence of the form $a(a+1)$ or $(a+1) a$. If we remove a from π and decrease all the elements that are greater than or equal to $a+1$ by one, we will obtain a separable permutation π^{\prime} in S_{n-1}. By Theorem 9, we must have at least two occurrences of the pattern in the obtained permutation π^{\prime}. In fact, it is easy to see that we will either get two occurrences or three occurrences of the 1-box pattern in π^{\prime}.

By Theorem 11 below the number of possibilities to get π^{\prime} with three occurrences of the 1-box pattern (necessarily formed by either a consecutive subword of the form $a(a+1)(a+2)$ or by $(a+2)(a+1) a)$ is given by c_{n-2}. This is indeed the case because we can reverse removing the element in this case by turning $a(a+1)(a+2)$ to $a(a+2)(a+1)(a+3)$ or $(a+2)(a+1) a$ to $(a+3)(a+1)(a+2) a$ and increasing by 1 each element of π that is larger than $(a+2)$. On the other hand, the number of possibilities to get π^{\prime} with two occurrences of the 1-box pattern (formed by either a consecutive elements of the form
$a(a+1)$ or by $(a+1) a)$ is given by $2 c_{n-1}$. Indeed, to reverse removing the element in this case we need either to turn $a(a+1)$ to either $(a+1) a(a+2)$ or to $a(a+2)(a+1)$, or to turn $(a+1) a$ to either $(a+2) a(a+1)$ or to $(a+1)(a+2) a$. In each of these cases the suggested substitutions create, in an injective way, separable permutations with exactly two occurrences of the 1-box pattern.

Our considerations above justify the recursion $c_{n}=2 c_{n-1}+c_{n-2}$ (the initial values for it are easy to see). Finally, using the standard technique, it is straightforward to derive the generating function based on the recursion above.

Theorem 11. For $n \geq 1$, the number of separable permutations of length n with exactly three occurrences of the 1-box pattern is equal to the number of separable permutations of length $n-1$ with exactly two occurrences of this pattern.

Proof. It is easy to see that if a separable permutation has exactly three occurrences of the 1-box pattern, then these occurrences are necessarily formed by either a consecutive subword of the form $a(a+1)(a+2)$ or by $(a+2)(a+1) a$. In either case, removing the middle element and reducing by 1 all elements that are larger than $(a+1)$, we get a separable permutation with exactly two occurrences of the 1-box pattern. This operation is obviously reversible.

Even though we were not deriving formulas for separable permutations with other number of occurrences of the 1-box pattern, we provide initial values for the number of separable permutations with exactly four occurrences of the 1-box pattern (not in [11]):

$$
0,0,0,0,8,42,178,664,2288, \ldots,
$$

and with the maximum number of occurrences of this pattern on separable permutations (again, not in [11]):

$$
0,0,2,2,8,14,54,128,466, \ldots .
$$

References

[1] S. Avgustinovich, S. Kitaev and A. Valyuzhenich, Avoidance of boxed mesh patterns on permutations, Discrete Appl. Math. 161 (2013) 43-51.
[2] P. Brändén and A. Claesson, Mesh patterns and the expansion of permutation statistics as sums of permutation patterns, Elect. J. Comb. 18(2) (2011), \#P5, 14pp.
[3] S. Kitaev, Patterns in permutations and words, Springer-Verlag, 2011.
[4] S. Kitaev and J. Liese, Harmonic numbers, Catalan triangle and mesh patterns, arXiv:1209.6423 [math.CO].
[5] S. Kitaev and J. Remmel, Quadrant marked mesh patterns, J. Integer Sequences, 12 Issue 4 (2012), Article 12.4.7.
[6] S. Kitaev and J. Remmel, Quadrant marked mesh patterns in alternating permutations, Sem. Lothar. Combin. B68a (2012), 20pp..
[7] S. Kitaev and J. Remmel, (a, b)-rectangular patterns in permutations and words, arXiv:1304.4286.
[8] S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, Pure Mathematics and Applications (Pu.M.A.), special issue on "Permutation Patterns", to appear.
[9] S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations II, arXiv:1302.2274.
[10] S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations III, arXiv:1303.0854.
[11] N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at http://oeis.org.
[12] H. Úlfarsson, A unification of permutation patterns related to Schubert varieties, a special issue of Pure Mathematics and Applications (Pu.M.A.), to appear.

