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NESTED COLOURINGS OF GRAPHS

DAVID COOK II

Abstract. A proper vertex colouring of a graph is nested if the vertices of each of its
colour classes can be ordered by inclusion of their open neighbourhoods. Through a relation
to partially ordered sets, we show that the nested chromatic number can be computed in
polynomial time.

Clearly, the nested chromatic number is an upper bound for the chromatic number of a
graph. We develop multiple distinct bounds on the nested chromatic number using common
properties of graphs. We also determine the behaviour of the nested chromatic number
under several graph operations, including the direct, Cartesian, strong, and lexicographic
product. Moreover, we classify precisely the possible nested chromatic numbers of graphs
on a fixed number of vertices with a fixed chromatic number.

1. Introduction

Let G be a finite simple graph on vertex set V (G) and with edge set E(G). A partition
C = C1 ·∪ · · · ·∪Ck of the vertices is a proper vertex colouring of G if the Ci are independent
sets. The chromatic number χ(G) is the least cardinality of a proper vertex colouring of G.
It is well-known that computing the chromatic number of a graph is NP -complete.

We define a novel colouring of a graph G. In particular, a proper vertex colouring of G is
nested if the vertices of each of its colour classes can be ordered by inclusion of their open
neighbourhoods. The nested chromatic number χN(G) is the least cardinality of a nested
colouring of G. The nested chromatic number clearly bounds the chromatic number from
above. Through a connection to partially ordered sets, we prove that computing the nested
chromatic number of a graph can be done in polynomial time (Theorem 2.21).

The concept of a nested colouring is extended to simplicial complexes in [3]. Using Proposi-
tion 2.16 it is shown that the nested chromatic number of the underlying graph of a simplicial
complex bounds from below the nested chromatic number of the complex itself. Moreover,
a new face ideal for a simplicial complex with respect to a colouring is defined therein. It
is the nested colourings of simplicial complexes that give rise to ideals which have minimal
linear resolutions supported on a cubical complex.

Herein we consider the properties of nested colourings and the nested chromatic number.
This note is organised as follows. In Section 2 we introduce the relevant new definitions.
In particular, we define the weak duplicate preorder which provides two distinct interpreta-
tions of nested colourings (Propositions 2.16 and 2.18). Through the latter interpretation
we see that the nested chromatic number is related to the Dilworth number of a graph
(Remark 2.20).

In Section 3 we classify the structure of graphs with nested chromatic number 2 (Theo-
rem 3.1). Further, we study the nested chromatic number of regular graphs and diamond-
and C4-free graphs therein. In Section 5 we consider the behaviour of the nested chromatic
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2 D. COOK II

number under many common operations, including: Mycielski’s construction, the disjoint
union, the join, the direct product, the Cartesian product, the strong product, and the
composition or lexicographic product. In Section 6 we provide a classification of the triples
(#V (G), χ(G), χN(G)) that can occur for some graph G (Theorem 6.2).

For standard definitions not given here and for more examples, we refer the reader to any
standard graph theory textbook, e.g., [26].

2. Nested colourings

In this section, we introduce three new concepts: nested colourings, the de-duplicate graph,
and the weak duplicate preorder.

2.1. Nested colourings & the nested chromatic number.

We first define a nested neighbourhood condition on vertices of a finite simple graph.
We use NG(u) = {v : {u, v} ∈ E(G)} to denote the open neighbourhood of u in G and
NG[u] = NG(u) ·∪ {u} to denote the closed neighbourhood of u in G.

Definition 2.1. Let G be a finite simple graph, and let u, v be vertices of G. The vertex u is
a weak duplicate of v if NG(u) ⊂ NG(v); if equality holds, then u is a duplicate of v. Further,
a duplicate-free graph is a finite simple graph for which no pair of vertices are duplicates.
An independent set I of G is nested if the vertices of I can be linearly ordered so that v ≤ u
implies u is a weak duplicate of v.

The order on the vertices of a nested independent set is unique, up to permutations of
duplicates. This will be formalised in Section 2.3.

Using this condition on the neighbourhoods, we define a novel proper vertex colouring of
a graph.

Definition 2.2. Let G be a finite simple graph, and let C be a proper vertex k-colouring
C1 ·∪ · · · ·∪Ck of G. If every colour class of C is nested, then C is a nested colouring of G.
The nested chromatic number χN(G) is the least cardinality of a nested colouring of G.
Moreover, the graph G is colour-nested if χN(G) = χ(G).

Figure 2.1. A graph G with χ(G) = 3 and χN(G) = 4.

Example 2.3. Let G be the graph in Figure 2.1. The partition {1, 4} ·∪ {2} ·∪ {3, 5, 6} is an
optimal proper vertex 3-colouring ofG. However, sinceNG(1) = {2, 3} andNG(4) = {3, 5, 6},
i.e., the independent set {1, 4} is not nested, the 3-colouring is not nested. Indeed, all
proper vertex 3-colourings of G are not nested. However, the proper vertex 4-colouring
{1} ·∪ {2} ·∪ {3, 5, 6} ·∪{4} is nested; indeed, NG(5) = NG(6) = {4} ⊂ NG(3) = {1, 2, 4}.
Notice that the vertices 5 and 6 are duplicates. Finally, as χ(G) = 3 < χN(G) = 4, we see
that G is not colour-nested.

We notice that isolated vertices are “ignorable.”
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Remark 2.4. Isolated vertices are exactly those vertices that have an empty open neigh-
bourhood. Since the empty set is a subset of every set, isolated vertices are weak duplicates
of every vertex of a graph. Thus isolated vertices can be put in to any colour class without
modifying the nesting of the colour class.

We also have a pair of immediate bounds on the nested chromatic number.

Remark 2.5. Since every nested colouring of a finite simple graph G is a proper colouring
of G, we clearly have χ(G) ≤ χN(G). Moreover, χN(G) ≤ #V (G) as the singleton colouring
·∪ v∈V (G){v} is nested.

Graphs with very small or very large chromatic number are colour-nested.

Lemma 2.6. Let G be a finite simple graph on n vertices. If χ(G) ∈ {1, n − 1, n}, where
n ≥ 2, then χN (G) = χ(G), i.e., G is colour-nested.

Proof. Suppose that χ(G) = 1. Hence E(G) = ∅ and every vertex is a duplicate of every
other vertex by Remark 2.4. Thus the set V (G) is a nested colouring of G and χN(G) = χ(G).

Suppose that χ(G) = n − 1, where n ≥ 2. Thus G is Kn with a nonempty subset of the
edges connected to some vertex, say, v, removed. Let u be a vertex nonadjacent to v. Thus
NG(u) = V (G) \ {u, v} contains NG(v), and v is a weak duplicate of u. Hence {u, v} is a
nested independent set of G and so χN (G) ≤ n− 1. By the preceding remark we thus have
χN(G) = χ(G).

Suppose that χ(G) = n. By Remark 2.5 we have χ(G) = χN (G) = #V (G). �

Moreover, the upper bound in Remark 2.5 is sometimes attained by graphs with small
chromatic number.

Example 2.7. Let P be the Petersen graph; see Figure 2.2. It is well-known that χ(P ) = 3.
However, since no vertex of P is a weak duplicate of another vertex of P , χN (P ) = 10 =
#V (P ).

Figure 2.2. The Petersen graph.

Remark 2.8. Recall that a Sperner family is a collection of sets in which no set is a subset
of another. Thus for a finite simple graph G, χN(G) = #V (G) if and only if the set of
open neighbourhoods of vertices of G forms a Sperner family. For example, the set of open
neighbourhoods of vertices of the Petersen graph form a Sperner family.
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2.2. The de-duplicate graph.

We now define a derivative graph based on the equivalence relation of duplicates.

Definition 2.9. Let G be a finite simple graph. Define ∼ to be the equivalence relation of
duplicates of G, and let [·]∼ denote an equivalence class of this relation. The de-duplicate
graph of G is the graph G⋆ with vertices given by the equivalence classes [v]∼ for v ∈ V (G)
and with an edge between [u]∼ and [v]∼ if and only if (u, v) ∈ E(G).

Notice that G ∼= G⋆ if and only if G is duplicate-free.
Passing to the de-duplicate graph of G does not change the nested chromatic number.

Proposition 2.10. If G is a finite simple graph, then χN(G) = χN (G
⋆).

Proof. Suppose C is the nested colouring C1 ·∪ · · · ·∪Ck of G. For 1 ≤ i ≤ k, let

C ′

i = {[v]∼ : v ∈ Ci} \ ∪
i−1
j=1C

′

j.

By construction, C ′

1 ·∪ · · · ·∪C ′

k is a partition C′ of V (G⋆). Since Ci is an independent set, C ′

i

is as well. Hence C′ is a proper colouring of G⋆. Moreover, since Ci is nested, C ′

i is nested
with the order on the vertices of C ′

i induced by the order of the vertices of Ci, and so C′ is a
nested colouring of G⋆. Thus χN(G) ≥ χN(G

⋆).
On the other hand, suppose D is the nested colouring D1 ·∪ · · · ·∪Dr of G

⋆. For 1 ≤ i ≤ r,
let D′

i = {v : v ∈ V (G) and [v]∼ ∈ Di}. Since D is a partition of V (G⋆), D′

1 ·∪ · · · ·∪D′

r is a
partition D′ of V (G). Moreover, since Di is an independent set, D′

i is as well. Hence D′ is a
proper colouring of G. Since each Di is nested, D

′

i is nested with the order on the vertices
of D′

i induced by the order of the vertices of Di, where the order on duplicate vertices is
arbitrary. Hence D′ is a nested colouring of G. Thus χN (G

⋆) ≥ χN(G). �

Since a complete graph is the de-duplicate of a complete multipartite graph and the Turán
graph, then its nested chromatic number is simple to compute.

Corollary 2.11. If n1, . . . , nr are positive integers, then χN(Kn1,...,nr
) = χ(Kn1,...,nr

) = r.

Corollary 2.12. If Tn,r is the Turán graph on n vertices that is r-partite, then χN(Tn,r) =
χ(Tn,r) = r.

Moreover, duplicate-free graphs have been studied under various other names.

Remark 2.13. Duplicate-free graphs were studied by Sumner [25] as “point-determining
graphs.” Sumner showed that every connected point-determining graph has at least two
vertices that can each be removed leaving point-determining induced subgraphs.

They were also studied as “mating graphs” or “M-graphs” by Bull and Pease [1] in order
to understand mating-type systems. In this case, vertices are identified with individuals in
a population, and edges correspond to compatibility in mating. Thus duplicate vertices cor-
respond to individuals with identical mating compatibilities and so need not be represented.

Kilibarda [14] proved a bijection between unlabeled (connected) mating graphs on n ver-
tices with unlabeled (connected) graphs without endpoints on n vertices. Thus [22, A004110]
and [22, A004108] enumerate the number of unlabeled (connected) duplicate-free graphs on
n vertices. We note that Kilibarda called the de-duplicate graph G⋆ the “reduction of G.’

Finally, duplicate-free graphs were used by McSorley [20] as “neighbourhood distinct
graphs” to classify the neighbourhood anti-Sperner graphs, a related but distinct set of
graphs. A graph is neighbourhood anti-Sperner, or NAS, if every vertex is weakly duplicated
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by some other vertex. Porter [23] introduced the concept of NAS graphs, and showed that
every NAS graph has a pair of duplicate vertices. Porter and Yucas [24] established more
properties of NAS graphs.

2.3. The weak duplicate preorder.

We next define a preorder on the vertices of a graph using the concept of weak duplicates.
It is particularly important to notice that the preorder is in the reverse order of containment.

Definition 2.14. Let G be a finite simple graph. The weak duplicate preorder on V (G) is
the preorder defined by v ≤ u if u is a weak duplicate of v.

Exchanging a vertex of a clique for a lesser vertex in the preorder generates another clique
of the graph.

Lemma 2.15. Let G be a finite simple graph, and let C be a clique of G. If u is a vertex of
C, and v ≤ u under the weak duplicate preorder on V (G), then (C ·∪ {v}) \ {u} is a clique
of G.

Proof. Since NG(u) ⊂ NG(v), C ⊂ NG(u) implies C ⊂ NG(v). Thus (C ·∪ {v}) \ {u} is a
clique of G. �

This gives an alternate condition on a partition of the vertices that is equivalent to being
a nested colouring.

Proposition 2.16. Let G be a finite simple graph. If C = C1 ·∪ · · · ·∪Ck is a partition of
V (G), then the following conditions are equivalent:

(i) C is nested;
(ii) there is an ordering on the vertices of each colour class Ci such that if v is less than

u in that order, and K is a clique of G containing u, then (K ·∪ {v})\{u} is a clique
of G; and

(iii) there is an ordering on the vertices of each colour class Ci such that if v is less than
u in that order, and {u, w} is an edge of G, then {v, w} is an edge of G.

Proof. Suppose that condition (i) holds. Since each independent set Ci is nested, the vertices
of Ci are comparable under the weak duplicate preorder. If we arbitrarily order the duplicates
in Ci, then the induced order on Ci is the desired order for condition (ii) by Lemma 2.15.

Clearly, condition (ii) implies condition (iii), since edges are cliques of G.
Suppose now that condition (iii) holds. Since {u, w} ∈ E(G) implies that {v, w} ∈ E(G),

NG(u) is a subset of NG(v). That is, the order on the vertices of Ci respects the weak
duplicate preorder, and so Ci is nested. In particular, condition (i) holds. �

When the graph is duplicate-free, the preorder is a partial order.

Definition 2.17. Let G be a duplicate-free finite simple graph. The weak duplicate preorder
on G is then a partial order, and we write PG for the poset on V (G) under the weak duplicate
partial order induced by G.

The key observation is that, whenG is duplicate-free, the chain covers of PG are in bijection
with the nested colourings of G.

Proposition 2.18. Let G be a duplicate-free finite simple graph. A partition C1 ·∪ · · · ·∪Ck

of V (G) is a nested colouring of G if and only if it is a chain cover of PG.
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Proof. This follows from the definitions of a nested independent set and the weak duplicate
partial order. In particular, NG(u) ⊂ NG(v) if and only if v ≤ u, and in both cases the sets
of vertices form a partition of V (G). �

Dilworth [5, Theorem 1.1] proved that the width (or Dilworth number) of a poset P , i.e.,
the maximum cardinality of an antichain of P , is precisely the minimum cardinality of a
chain cover of P . Hence the nested chromatic number of a graph is the width of the poset
of the de-duplicate of the graph.

Corollary 2.19. If G is a finite simple graph, then χN(G) is the width of PG⋆.

Remark 2.20. Let G be a finite simple graph. A vertex v of G dominates a vertex u of G
if NG(u) ⊂ NG[v]. Notice the subtle difference between domination and weak duplication,
namely, u and v may be adjacent in the former. The Dilworth number of G is the cardinality
of the largest set of vertices of G such that no vertex dominates any other in the set.

Following Felsner, Raghavan, and Spinrad [9], we partially order the vertices of a duplicate-
free graph G by v ≤ u if v dominates u. The width of this partial order is precisely the
Dilworth number of the graph G. This partial order is in the reverse order of containment,
as in the weak duplicate partial order.

The Dilworth number of a graph is not the nested chromatic number of the graph despite
the similarities. Recall that threshold graphs are precisely the graphs with Dilworth number
1. In Corollary 5.8 we classify the nested chromatic number of threshold graphs as one more
than the number of domination steps in the construction of the graph.

As a consequence, the nested chromatic number can be computed in polynomial time.

Theorem 2.21. The nested chromatic number of a finite simple graph on n vertices can be
computed in O(n3) time.

Proof. Fulkerson [10] proved that computing the width of a poset is equivalent to computing
the cardinality of a maximum matching of a related bipartite graph. Hopcroft and Karp [11]
proved that computing the latter can be done in O(n5/2) time.

Computing the relations between the n vertices corresponds to computing
(

n
2

)

subset
containments, where each subset has size at most O(n). Hence computing the poset structure
on PG⋆ takes O(n3) time. Thus computing the nested chromatic number of a finite simple
graph on n vertices via the width of the weak duplicate partial order takes O(n3) time. �

Remark 2.22. Since the nested chromatic number of a graph is the width of an associated
poset, existing tools can be used to compute the value for specific cases. Indeed, the com-
puter algebra system Macaulay2 [18] handles posets with the package Posets [4], which can
compute the width of a poset. Furthermore, using the package Nauty [2], one can generate
all the graphs on a small number of vertices (with specific restrictions, e.g., bipartite only, if
desired). The latter package uses the software nauty [19] at its core.

The ease of computing the nested chromatic number on all graphs of small size is very
helpful when proving results such as Theorem 6.2.

The poset PG need not be unique; see Figure 2.3.
Furthermore, the poset need not be ranked; see Figure 2.4.
However, the height of the poset, i.e., the length of the longest chain, is restricted to at

most half the number of vertices.
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(i) The graph G. (ii) The graph H. (iii) The poset PG = PH .

Figure 2.3. The graphs G and H are non-isomorphic, but PG = PH .

(i) The graph G. (ii) The poset PG.

Figure 2.4. The weak duplicate poset PG need not be ranked.

Proposition 2.23. If G is a duplicate-free finite simple graph on n vertices, then the height
of PG is at most

⌊

n−1
2

⌋

. That is, at most half of the vertices of G can be in a nested
independent set of G.

Proof. Suppose the height of PG is h, i.e., there exist h+1 vertices v0, . . . , vh of G such that
NG(vh) ( · · · ( NG(v0). This implies NG(v0) ≥ h, and since vi /∈ NG(v0) for 0 ≤ i ≤ h,
n ≥ 2h+ 1. That is, n−1

2
≥ h. �

Example 2.24. The preceding proposition implies that a poset with a large height relative
to the number of vertices, e.g., a chain, cannot be the poset associated to a finite simple
graph under the weak duplicate partial order. However, there exist posets with small height
that are also not associated to a finite simple graph.

Consider the poset P on {1, 2, 3, 4} with covering relations 1 < 2, 1 < 3, and 1 < 4. This
poset is not associated to a graph, as determined by a search of the 11 graphs on 4 vertices.
Notice, however, that the dual of P is the poset associated to the graph K3 ·∪K1.

Question 2.25. What posets are isomorphic to some PG, where G is a duplicate-free finite
simple graph?

3. Families of graphs

We now look at three families of graphs with well-behaved nested chromatic numbers.

3.1. Bipartite graphs.

Due to the structure of bipartite graphs it is possible to classify the graphs with nested
chromatic number 2, i.e., colour-nested bipartite graphs.

Theorem 3.1. Let r and s be positive integers, and let 1 ≤ ar ≤ · · · ≤ a1 ≤ s be a
sequence of nonnegative integers. Construct the graph G = Ga1,...,ar;s on the vertex set
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{u1, . . . , ur, v1, . . . , vs} with an edge between ui and vj if and only if j ≤ ai. Then the
following statements are true:

(i) {u1, . . . , ur} ·∪ {v1, . . . , vs} is a nested colouring of G,
(ii) χN(G) = χ(G) = 2, i.e., G is colour-nested, and
(iii) every nontrivial finite simple bipartite graph that is colour-nested arises this way.

Figure 3.1. The colour-nested bipartite graph G4,3,3,1;5.

Proof. Let U = {u1, . . . , ur} and V = {v1, . . . , vs}.
By construction NG(ui) = {v1, . . . , vai} and hence NG(vj) = {ui : ai ≥ j}. Thus U ·∪V is

a colouring of G. Since a1 ≥ 1, u1 and v1 are adjacent, hence χ(G) = 2. Since ai+1 ≤ ai,
NG(ui+1) is a subset of NG(ui) and NG(vi+1) is a subset of NG(vi). Thus U ·∪V is a nested
colouring of G, and so χN(G) = 2. This completes parts (i) and (ii).

Now let G be any nontrivial finite simple bipartite graph that is colour-nested. Sup-
pose {u1, . . . , ur} ·∪ {v1, . . . vs} is a nested colouring of G, such that NG(ui+1) ⊂ NG(ui) and
NG(vi+1) ⊂ NG(vi). Furthermore, by Remark 2.4 we may assume without loss of generality
that any isolated vertices of G are in {v1, . . . vs}. Set ai = max{j : vj ∈ NG(ui)}. Since
NG(ui+1) ⊂ NG(ui), 1 ≤ ar ≤ · · · ≤ a1 ≤ s. Thus G arises as in the construction above,
completing part (iii). �

The connected and duplicate-free colour-nested bipartite graphs have a simple classifica-
tion.

Corollary 3.2. Let r and s be positive integers, and let 1 ≤ ar ≤ · · · ≤ a1 ≤ s be a sequence
of nonnegative integers. The following statements are true.

(i) Ga1,...,ar ;s is connected if and only if a1 = s, and
(ii) Ga1,...,ar ;s is connected and duplicate-free if and only if r = s and ai = i, for 1 ≤ i ≤ r.

Proof. Let G = Ga1,...,ar;s, U = {u1, . . . , ur}, and V = {v1, . . . , vs}.
Since ar ≥ 1, we have NG(v1) = U . As U ·∪V is a nested colouring of G, G is connected

if and only if NG(u1) = V , i.e., a1 = s. This completes part (i).
Furthermore, NG(ui) = NG(uj) if and only if ai = aj , and NG(vi) = NG(vj) if and only

if max{k : ak ≥ i} = max{k : ak ≥ j}, i.e., there exists a k such that ak − ak+1 ≥ 2. This
completes part (ii). �

Further, this permits an enumeration of certain colour-nested bipartite graphs.

Corollary 3.3. If n ≥ 3 is an odd integer, then there are precisely 2n−3 unique connected
colour-nested bipartite graphs with n vertices.

Furthermore, there exists a unique duplicate-free colour-nested bipartite graph with n ver-
tices, where n ≥ 2 is an integer.
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Proof. By Theorem 3.1 and Corollary 3.2, we need only look at graphs Ga1,...,ar ;s where
1 ≤ ar ≤ · · · ≤ a1 = s such that r + s = n.

For fixed r and s, Ga1,...,ar ;s = Ga′
1
,...,a′r;s if and only if ai = a′i; otherwise the vertex degree

sequences of the ui would differ. Hence there are
(

n−2
r−1

)

graphs (we choose with repetition

the r − 1 values a1, . . . , ar−1 among the s options) with the specified r and s. Thus among
all choices of r and s there are

∑n−1
r=1

(

n−2
r−1

)

= 2n−2 possible graphs. However, if r > s, then
Ga1,...,ar ;s = Gb1,...,bs;r where bi = max{j : aj ≥ i} for 1 ≤ i ≤ s. Thus we have double counted
in our enumeration, and so there are 2n−3 unique graphs.

The second statement follows by Corollary 3.2(ii). In particular, if n = 2m, then G1,...,m;m

is the unique duplicate-free graph, and if n = 2m+1, then G1,...,m;m+1 is the unique duplicate-
free graph. �

3.2. Regular graphs.

The nested chromatic number of a graph is the same as the number of vertices if and
only if the graph is duplicate-free. Moreover, large girth can force a regular graph to be
duplicate-free.

Proposition 3.4. Let G be a d-regular finite simple graph, for d ≥ 1. The graph G is
duplicate-free if and only if χN (G) = #V (G).

In particular, if the girth of G is at least 5, then χN(G) = #V (G).

Proof. Let G be a d-regular finite simple graph. Since #NG(u) = d for all vertices u of G, u
is a weak duplicate of v if and only if u and v are duplicates.

Now suppose G has girth at least 5. If u and v are distinct duplicates, then u and v have
at least two common neighbours, say, {w, x}. Thus either {u, v, w, x} induces a 4-cycle or
{v, w, x} induces a 3-cycle, i.e., the girth of G is at most 4. This contradicts the girth of G
being at least 5, and so G is duplicate-free. �

As an immediate consequence, we can compute the nested chromatic number of snarks
and Kneser graphs. See Example 2.7 for the Petersen graph, which is both a snark and the
Kneser graph KG5,2.

Corollary 3.5. If G is a snark, then χN(G) = #V (G).

Proof. Snarks are 3-regular and have girth at least 5. �

Corollary 3.6. If n and k are positive integers so that n ≥ 2k, then the nested chromatic
number of the Kneser graph KGn,k is χN(KGn,k) = #V (KGn,k) =

(

n
k

)

.

Proof. Recall that the vertices of the Kneser graph KGn,k are the k-subsets of {1, . . . , n},
and a pair of vertices are adjacent if the corresponding sets are disjoint. This implies that no
two vertices are duplicates, otherwise they would be the same k-subset. By Proposition 3.4,
KGn,k being duplicate-free implies that χN(KGn,k) = #V (KGn,k). �

Let G denote the complement of the finite simple graph G. The nested chromatic number
of the n-cycle Cn and the n-anticycle Cn are simple expressions, for large n.

Corollary 3.7. Let n ≥ 3 be an integer. The following statements are true:

(i) χN(C3) = 3 and χN (C3) = 1,
(ii) χN(C4) = 2 and χN (C4) = 4, and
(iii) χN(Cn) = n = χN (Cn), for n ≥ 5.



10 D. COOK II

Proof. Parts (i) and (ii) are easy to verify. Since Cn has girth n and is 2-regular, by Propo-
sition 3.4, χN (Cn) = n for n ≥ 5.

Let n ≥ 5. The n-anticycle Cn is (n − 3)-regular. Suppose u and v are distinct vertices
of Cn such that u is a duplicate of v. This implies that there is a vertex w, distinct from
u and v, that is nonadjacent to u and v. Hence {u, v, w} is an independent set in Cn and
so induces a 3-cycle in Cn, which is absurd. Thus Cn is duplicate-free and χN (Cn) = n by
Proposition 3.4. �

This further emphasises the distinction between the chromatic number and the nested
chromatic number.

Remark 3.8. Since Cn is a planar graph, this shows that planar graphs can have arbitrarily
large nested chromatic number. This contrasts the chromatic number for planar graphs,
which is bounded by 4. See Proposition 6.3 for more about the nested chromatic number
and planar graphs.

Let G be a finite simple graph, and let G denote the complement of G. In this case,
χ(G) + χ(G) ≤ #V (G) + 1. However, the nested chromatic number can break this bound.
Indeed, by the previous lemma, we have χN (Cn) + χN (Cn) = 2n = 2#V (Cn) for n ≥ 5. On
the other hand, χN(P4) + χN (P4) = #V (P4) = 4, since P4

∼= P4.

We offer a conjecture suggested by the preceding remark.

Conjecture 3.9. If G is a finite simple graph, then χN(G) + χN (G) ≥ #V (G).

3.3. Diamond- and C4-free graphs.

Let the diamond graph be K4 with any edge removed; see Figure 3.2(i). If G is both
diamond- and C4-free, then only the presence of leaves, i.e., degree 1 vertices, can reduce the
nested chromatic number from #V (G).

(i) The diamond graph. (ii) The 4-cycle C4.

Figure 3.2. The forbidden graphs in Section 3.3.

Theorem 3.10. Let G be a connected finite simple graph that is both diamond- and C4-free.
If G has ℓ leaves, then #V (G) − ℓ ≤ χN(G) ≤ #V (G). Furthermore, equality holds in the
upper bound if and only if either ℓ = 0 or G = K2.

In particular, if the minimum degree of a vertex δ(G) is at least 2, then χN(G) = #V (G).

Proof. Suppose G is a connected finite simple graph that is both diamond- and C4-free, and
further suppose G has ℓ leaves.

Let u and v be distinct vertices of G. If u and v have two neighbours in common, say,
w and x, then {u, v, w, x} must be a 4-clique of G since it cannot be a diamond or a C4;
thus u and v must be adjacent. Hence if u is a weak duplicate of v, then u and v must have
exactly one neighbour in common, and so #NG(u) = 1, i.e., u is a leaf. Thus at most one
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element of each nested independent set is a non-leaf, and so χN(G) is at least the number
of non-leaves, i.e., #V (G)− ℓ.

Clearly, if G has no leaves, then χN(G) = #V (G). Suppose G is not K2, and G has at least
one leaf, say, u. Let v be the unique neighbour of v. As G is connected and not K2, v must
have at least one neighbour not u, say, w. Hence NG(u) = {v} ⊂ NG(w), and u is a weak
duplicate of w. Thus {u, w} is a nested independent set of G, and so χN(G) < #V (G). �

Clearly, graphs with girth at least 5 are diamond- and C4-free. Since d-regular graphs
have no leaves, if d ≥ 2, then this recovers the second part of Proposition 3.4, as well as
Corollary 3.5 and Corollary 3.7(iii).

Trees, which have infinite girth, are diamond- and C4-free graphs.

Corollary 3.11. Let G be a finite simple tree with at least three vertices. If G has ℓ leaves,
then #V (G)− ℓ ≤ χN(G) < #V (G).

This immediately gives the nested chromatic number for path graphs.

Corollary 3.12. Let Pn be the path graph on n vertices. The nested chromatic number of
Pn is

χN (Pn) =







2 if 2 ≤ n ≤ 4,
4 if n = 5, and
n− 2 if n ≥ 6.

Proof. If 2 ≤ n ≤ 5, then it is simple to verify the claim.
Suppose n ≥ 6, and without loss of generality assume the edges of Pn are {{1, 2}, . . . , {n−

1, n}}. In this case, NPn
(1) = {2} ⊂ NPn

(3) = {2, 4} and NPn
(n) = {n− 1} ⊂ NPn

(n− 2) =
{n− 3, n− 1}. Since n ≥ 6, n− 2 6= 3, and so

{1, 3} ·∪ {n− 2, n} ·∪ {2} ·∪ {4} ·∪ · · · ·∪ {n− 3} ·∪ {n− 1}

is a nested colouring of Pn. Hence χN(Pn) ≤ n− 2, and so equality holds by Corollary 3.11.
�

We close with some comments about the class of diamond- and C4-free graphs.

Remark 3.13. The class of diamond- and C4-free graphs has been studied in the more
general setting of diamond- and even-cycle-free graphs by Kloks, Müller, and Vušković [15].
Some of their results specify to the case of diamond- and C4-free graphs.

In a more focused case, Eschen, Hoàng, Spinrad, and Srithavan [8] studied structural
results on this class of graphs. Moreover, they provide a polynomial-time recognition algo-
rithm. They make use of an alternate classification of diamond- and C4-free graphs: they are
precisely the graphs such that every nonadjacent pair of vertices has at most one common
neighbour.

We further note that diamond- and C4-free graphs were called weakly geodetic graphs in
the past; see, e.g., [12].

4. Induced subgraphs

A first natural operation to consider is that of taking induced subgraphs.
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4.1. Induced subgraphs.

The nested chromatic number behaves the same as the chromatic number under taking
induced subgraphs.

Proposition 4.1. Let G be a finite simple graph, and let H be an induced subgraph of G.
If C1 ·∪ · · · ·∪Ck is a nested colouring C of G, then (C1 ∩ V (H)) ·∪ · · · ·∪ (Ck ∩ V (H)) is a
nested colouring C′ of H.

In particular, χN(H) ≤ χN(G).

Proof. It is already known that C′ is a proper colouring of H , since C is a proper colouring
of G. Moreover, since NH(v) = NG(v) ∩ V (H) for v ∈ V (H), the nesting of Ci implies the
nesting of Ci ∩ V (H). �

Together with Corollary 3.7, the preceding proposition implies that the maximum length
of an induced cycle, if one exists and is big enough, forms an effective lower bound for the
nested chromatic number.

Corollary 4.2. Let G be a finite simple graph which has at least one induced cycle. If the
maximum length of an induced cycle c is at least 5, then χN (G) ≥ c.

Proof. This follows from Proposition 4.1 and Corollary 3.7. �

Remark 4.3. We offer a pair of comments about the preceding corollary.

(i) If the girth of a graph is finite and at least 5, then it is a lower bound for the nested
chromatic number of the graph.

(ii) Suppose the longest induced odd cycle of G has length 2k− 1. Erdős and Hajnal [7,
Theorem 7.7] proved that χ(G) ≤ 2k. On the other hand, the preceding result shows
that χN(G) ≥ 2k − 1, if k ≥ 3. See [13] for further results bounding χ(G) using the
length of the longest induced odd cycle.

Let G be a finite simple graph, and let v be a vertex of G. The vertex deletion of G by
v is the induced subgraph G − v of G on vertex set V (G) \ {v}. The chromatic number is
reduced by at most one after vertex deletion. The nested chromatic number is reduced by
at most one more than the degree of the vertex that was deleted.

Proposition 4.4. Let G be a finite simple graph. If v is any vertex of G, then

χN(G)−#NG(v)− 1 ≤ χN (G− v) ≤ χN(G).

Proof. The upper bound follows immediately from Proposition 4.1.
Let C1 ·∪ · · · ·∪Ck be a nested colouring of G− v. This implies that C ′

1 ·∪ · · · ·∪C ′

k, where
C ′

i = Ci \NG(v), together with {v} and the singleton sets containing each neighbour of v is
a nested colouring of G. This follows as the presence of v only affects the neighbourhoods
of its neighbours. Hence k +#NG(v) + 1 ≥ χN(G), and so k ≥ χN(G)−#NG(v)− 1. �

Both bounds in the preceding proposition are achievable.

Example 4.5. Let n ≥ 3. Notice that Cn − v = Pn−1 and #NCn
(v) = 2 for any vertex

v of Cn. Combining Corollaries 3.7 and 3.12, we have that χN(Cn − v) = χN (Pn−1) =
χN(Cn)−#NCn

(v)− 1 if n ≥ 5 and n 6= 6.
On the other hand, let G be as in Figure 4.1. We have χN(G) = χN(G−5) = χN(G−6) = 4

despite #NG(5) = #NG(6) = 4.
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Figure 4.1. A graph G such that χN (G) = χN(G− 5) = χN(G− 6) = 4.

4.2. Criticality.

Recall that a vertex v of a finite simple graph G is a critical vertex if χ(G−v) = χ(G)−1.
Further, if every vertex of G is a critical vertex, then G is vertex-critical (or vertex-colour-
critical). Critical vertices are never weak duplicates of other vertices in G.

Lemma 4.6. Let G be a finite simple graph. If v is a critical vertex of G, and v is a weak
duplicate of w ∈ G, then w = v.

Proof. Suppose χ(G) = k, and let C1 ·∪ · · · ·∪Ck−1 be an optimal colouring of G−v. Assume
w 6= v and w ∈ C1, without loss of generality. Since NG(v) ⊂ NG(w), v is independent
of the vertices in C1. Hence (C1 ·∪ {v}) ·∪C2 ·∪ · · · ·∪Ck−1 is a colouring of G, contradicting
χ(G) = k. Thus w = v. �

This implies that the number of critical vertices provides a lower bound for the nested
chromatic number.

Corollary 4.7. Let G be a finite simple graph. If c is the number of critical vertices of G,
then χN(G) ≥ c.

In particular, if G is vertex-critical, then χN (G) = #V (G).

Proof. By Lemma 4.6, every critical vertex of G must be at the top of its own nested colour
class, which immediately implies the bound. �

We define a concept of criticality for the nested chromatic number.

Definition 4.8. A finite simple graphG is nested-critical if the deletion of any vertex reduces
the nested chromatic number of G.

Graphs with large nested chromatic number are nested-critical.

Proposition 4.9. Let G be a finite simple graph. If χN(G) = #V (G), then G is nested-
critical.

In particular, if G is vertex-critical, then G is nested-critical.

Proof. This follows immediately since χN(G− v) ≤ #V (G− v) < χN(G).
The second claim follows from Corollary 4.7. �

Being nested-critical does not imply being vertex-critical. For example, Pn is nested-
critical for n ≥ 7 but is never vertex-critical.

However, if G is colour-nested, then being nested-critical is equivalent to being vertex-
critical.

Proposition 4.10. Let G be a finite simple graph. If G is colour-nested, then the following
conditions are equivalent:
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(i) G is nested-critical,
(ii) G is vertex-critical,
(iii) χN(G) = #V (G), and
(iv) G = K#V (G).

Proof. Since χ(G) = χN (G), and χ(H) ≤ χN(H) in general, we clearly have condition (i)
implying condition (ii), and the latter implies condition (iii) by Corollary 4.7. Condition
(iii) implies χ(G) = #V (G), which is equivalent to G = K#V (G). Finally, K#V (G) is nested-
critical by Proposition 4.9. �

On the other hand, if G is colour-nested, then G−v need not be colour-nested. The graph
G in Figure 4.1 is colour-nested, though G− 5 and G− 6 are not colour-nested.

4.3. A topological remark.

Consider the homomorphism complex Hom(H,G) coming from the homomorphisms from
H to G, where G and H are finite simple graphs; see [16, Definition 3.2]. Kozlov showed [16,
Theorem 3.3] that Hom(H,G) collapses onto Hom(H,G−u) if u is a weak duplicate of some
other vertex v in G. Thus if C1 ·∪ · · · ·∪Ck is a nested k-colouring of G, and G′ is an induced
subgraph of G with vertex set {v1, . . . , vk}, where vi is a minimal element of Ci under the
weak duplicate preorder, then Hom(H,G) collapses onto Hom(H,G′), and so Hom(H,G)
and Hom(H,G′) have the same simple homotopy type.

This is particularly interesting as the neighbourhood complex of G, i.e., the simplicial
complex of subsets of V (G) which have a common neighbour, is homotopy equivalent to
Hom(K2, G). Thus Lovász’s lower bound on the chromatic number [17, Theorem 2] can be
interpreted as connHom(K2, G) ≤ χ(G)−3, where connX is the connectivity of the complex
X . We note that this lower bound is strict in the case of Kneser graphs.

Hence we see that there exists an induced subgraph G′ of G on χN(G) vertices such that
Hom(K2, G

′) ≤ χ(G) − 3. Thus if χN(G) < #V (G), then G has more redundancy than
necessary for such topological bounds on the chromatic number to be useful. Indeed, it is
this redundant and recursive nature that is exploited in the associated algebras studied in [3].

Further, recall that the independence complex Ind(G) of a finite simple graph G is the
simplicial complex with faces given by the independent sets of G. Engström showed [6,
Lemma 3.2] that Ind(G) collapses onto Ind(G − v) if v is weakly duplicated by some other
vertex u. More generally, this implies that if C1 ·∪ · · · ·∪Ck is a nested k-colouring of G, and
G′′ is an induced subgraph of G with vertex set {u1, . . . , uk}, where ui is a maximal element
of Ci under the weak duplicate preorder, then Ind(G) collapses onto Ind(G′′), and so Ind(G)
and Ind(G′′) have the same simple homotopy type. Again, this emphasises the redundant
structure present in graphs with χN(G) < #V (G).

We note that the de-duplicate graph G⋆ of G can be constructed in both of these fashions.
In particular, let C1 ·∪ · · · ·∪Ck be the nested k-colouring such that each colour-class is an
equivalence class of duplicates. Selecting an induced subgraph of G with precisely one
element from each colour class generates a graph isomorphic to G⋆. Hence Hom(H,G) and
Hom(H,G⋆) have the same simple homotopy type, as do Ind(G) and Ind(G⋆).

5. Behaviour of the nested chromatic number

Now we consider the behaviour of the nested chromatic number under various graph
operations.
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5.1. Mycielski’s construction.

Let G be a simple graph on V (G) = {u1, . . . , un}. The Mycielski graph of G is the graph
µ(G) with vertex set {u1, . . . , un, v1, . . . , vn, w} with edge set

E(µ(G)) = E(G) ·∪ {{ui, vj} : uj ∈ NG(ui)} ·∪ {{w, vi} : 1 ≤ i ≤ n}.

This construction was first described by Mycielski [21], wherein he proved that χ(µ(G)) =
χ(G) + 1, and further that µ(G) is triangle-free if G is triangle-free. We further note that G
is an induced subgraph of µ(G).

Unlike the chromatic number, which only increases by one, the nested chromatic number
doubles and increases by one under the Mycielski construction.

Proposition 5.1. If G is a finite simple graph, then χN(µ(G)) = 2χN(G) + 1.

Proof. The vertices of µ(G) have the open neighbourhoods: Nµ(G)(ui) = {uj, vj : uj ∈
NG(ui)}, Nµ(G)(vi) = NG(ui), and Nµ(G)(w) = {v1, . . . , vn}.

Let C be any nested colouring C1 ·∪ · · · ·∪Ck of G. Each Ci remains a nested independent
set in µ(G). Moreover, substituting vj for uj in each Ci generates a nested independent set
C ′

i in µ(G). Thus C1 ·∪ · · · ·∪Ck ·∪C ′

1 ·∪ · · · ·∪C ′

k ·∪ {w} is a nested colouring of µ(G), and so
χN(µ(G)) ≤ 2χN(G) + 1.

Isolated vertices of G remain isolated in µ(G), and none of the vj nor w can be isolated.
If ui is not an isolated vertex of G, then ui is not a weak duplicate of any vj since the vj
are not adjacent to any other vt in µ(G), and every vj is not a weak duplicate of ui since
only the vj are adjacent to w. Moreover, with the exception of isolated vertices, w is not
a weak duplicate of or weakly duplicated by any other vertex. Thus any nontrivial nested
independent set of µ(G) that does not contain isolated vertices is contained exclusively in
one of {u1, . . . , un}, {v1, . . . , vn}, and {w}.

Let C be any nested colouring C1 ·∪ · · · ·∪Ck of µ(G). By the preceding paragraph, we may
assume without loss of generality that C1 ·∪ · · · ·∪Ci = {u1, . . . , un}, Ci+1 ·∪ · · · ·∪Ck−1 =
{v1, . . . , vn}, and Ck = {w}. Thus C1 ·∪ · · · ·∪Ci induces a nested colouring on G, and so
i ≥ χN (G). Similarly, substituting uj for vj in Ci+1 ·∪ · · · ·∪Ck−1, we have another nested
colouring of G, and so k − i− 1 ≥ χN (G). Hence k ≥ 2χN(G) + 1. �

Example 5.2. In [21], Mycielski presented the family Mi recursively defined by M2 = K2

and Mk+1 = µ(Mk), for k ≥ 2. Since M2 is a triangle-free graph with χ(M2) = 2, Mk is
a triangle-free graph with χ(Mk) = k. For 2 ≤ k ≤ 4, Mk is the triangle-free graph with
fewest vertices such that χ(Mk) = k.

The nested chromatic number of M2 = K2 is #V (M2) = 2. By Proposition 5.1, it follows
that χN (Mk) = #V (Mk) = 2k−2 · 3− 1.

5.2. Disjoint union.

The chromatic number of a graph is the maximum of the chromatic numbers of the com-
ponents of the graph. The nested chromatic number, on the other hand, is additive along
the components.

Proposition 5.3. Let G be a finite simple graph without isolated vertices, and let G1, . . . , Gt

be the components of G. The partition C of V (G) is a nested colouring of G if and only if
C = C1 ·∪ · · · ·∪ Ct, where C1, . . . , Ct are nested colourings of G1, . . . , Gt, respectively.

In particular, χN(G) = χN(G1) + · · ·+ χN(Gt).
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Proof. If v ∈ Gi, then NGi
(v) = NG(v). Since there are no isolated vertices, none of these

neighbourhoods are empty. Hence no colour class can contain vertices from two separate
components of G. Furthermore, since the neighbourhoods do not change, the nesting of a
colour class does not change when it is considered in G or a component. �

Hence the disjoint union is also additive.

Corollary 5.4. If G1, . . . , Gt are finite simple graphs without isolated vertices, then

χN(G1 ·∪ · · · ·∪Gt) = χN(G1) + · · ·+ χN (Gt).

In particular, if G is a nontrivial finite simple graph and t ≥ 1, then χN(tG) = tχN (G).

Moreover, a graph with small nested chromatic number and no isolated vertices is con-
nected.

Corollary 5.5. Let G be a finite simple graph with no isolated vertices. If χN(G) ≤ 3, then
G is connected.

5.3. Join.

Let G and H be finite simple graphs. The join of G and H is the graph G∨H with vertex
set V (G) ·∪V (H), where all edges of G and H are preserved and every vertex in V (G) is
adjacent to every vertex in V (H). In particular, the open neighbourhoods of g in V (G) and
h in V (H) are

NG∨H(g) = NG(g) ·∪V (H) and NG∨H(h) = NH(h) ·∪V (G),

respectively.
Both the chromatic number and the nested chromatic number are additive across joins.

Proposition 5.6. Let G and H be finite simple graphs. The partition C of V (G) ·∪V (H)
is a nested colouring of G ∨ H if and only if C = CG ·∪ CH , where CG and CH are nested
colourings of G and H, respectively.

In particular, χN(G ∨H) = χN (G) + χN (H).

Proof. As every vertex of G is adjacent to every vertex of H , no colour class can contain
vertices from both G and H . Moreover, since all the vertices of G (resp., H) have their
neighbourhoods modified in a uniform way, nesting is not changed. �

This implies, in particular, that adding a dominating vertex, i.e., a vertex adjacent to
every other vertex, to a graph increases the nested chromatic number by precisely 1.

Example 5.7. Many common families of graphs are constructed by adding a dominating
vertex to another common graph. Consider the following examples.

(i) The star graph Sn is the trivial graph on n vertices with a dominating vertex added.
Hence χN(Sn) = 2 for n ≥ 1.

(ii) The windmill graph Wdk,n is nKk with a dominating vertex added. Hence

χN(Wdk,n) = χN (nKk) + 1 = nχN(Kk) + 1 = nk + 1.

(iii) The wheel graph Wn is the cycle graph Cn with a dominating vertex added. Hence
χN(Wn) = n + 1 for n = 3 and n ≥ 5, and χN(W4) = 3, by Corollary 3.7.

Further, threshold graphs are colour-nested. Recall that a threshold graph is a graph that
can be constructed from a single isolated vertex by repeatedly adding a new isolated vertex
or a new dominating vertex.
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Corollary 5.8. If G is a threshold graph constructed with d dominating steps, then χN (G) =
χ(G) = d+ 1.

Proof. Adding isolated vertices does not change the nested chromatic number as seen in
Remark 2.4. By Proposition 5.6, adding a dominating vertex increases the nested chromatic
number by 1. Hence the nested chromatic number of G is one more than the number of
dominating steps. That is χN(G) = d + 1. Moreover, after d dominating steps, the clique
number of G, ω(G), is d+ 1. Since ω(G) ≤ χ(G) ≤ χN(G), we have χ(G) = d+ 1. �

5.4. Direct product.

Let G and H be finite simple graphs. The direct (or tensor) product of G and H is the
graph G×H with vertex set V (G)× V (H), where (g, h) is adjacent to (g′, h′) if and only if
g is adjacent to g′ in G and h is adjacent to h′ in H . In particular, the open neighbourhood
of (g, h) in G×H is

NG×H(g, h) = NG(g)×NH(h).

Notice that G×K1
∼= Kn, so χN (G×K1) = 1. Moreover, (G ·∪G′)×H = (G×H) ·∪ (G′×H).

Thus following Section 5.2, we need only consider finite simple graphs G that are connected
and have at least two vertices.

Let (P,≤P ) and (Q,≤Q) be posets. The direct product of P and Q is the poset (P ×
Q,≤P×Q), where (p, q) ≤P×Q (p′, q′) if and only if p ≤P p′ and q ≤Q q′. The weak duplicate
poset of the direct product of two graphs is the direct product of the weak duplicate posets
of the graphs.

Lemma 5.9. If G and H are duplicate-free connected finite simple graphs, neither of which
is K1, then PG×H = PG × PH .

Proof. Since NG×H(g, h) = NG(g) × NH(h), it is immediate that (g, h) is a weak duplicate
of (g′, h′) in G×H if and only if g is a weak duplicate of g′ in G and h is a weak duplicate
of h′ in H . The claim follows immediately. �

As a consequence, the nested chromatic number of the direct product of graphs is bounded
below by the product of the nested chromatic numbers of the factors. We note that the
chromatic number of the direct product of graphs is bounded above by the minimum of the
chromatic numbers of the factors (Hedetniemi’s conjecture says equality holds).

Proposition 5.10. If G and H are connected finite simple graphs, neither of which is K1,
then

χN(G) · χN(H) ≤ χN (G×H) ≤ min{#V (G) · χN(H), χN(G) ·#V (H)}.

In particular, if χN (H) = #V (H), then χN(G×H) = χN(G) · χN(H).

Proof. By Proposition 2.10 we may assume G and H are duplicate-free. Thus by Lemma 5.9
we have that PG×H = PG×PH . Hence χN(G×H) is the width of PG×PH , by Corollary 2.19.

Clearly, if A and B are antichains of PG and PH , respectively, then A×B is an antichain
of PG×H . Hence the width of PG×H is at least the product of the widths of PG and PH , i.e.,
χN(G×H) ≥ χN (G) · χN (H).

On the other hand, let A be any antichain of PG×H . For each g in PG, let Ag = {h ∈
PH : (g, h) ∈ A}. By construction, Ag must be an antichain of PH for all g ∈ PG. This
implies that #Ag ≤ χN(H) and so χN(G × H) ≤ #V (G) · χN(H). As the graph direct
product is commutative, we also then have χN (G×H) ≤ χN (G) ·#V (H) by symmetry. �
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Both bounds are achievable.

Example 5.11. Let G = P4, and let H be the graph on V (H) = {1, 2, 3, 4} with edge set
E(H) = {{1, 2}, {1, 3}, {2, 3}, {3, 4}}. In this case, χN(G) = 2 and χN(H) = 3. However,
χN(G×H) = 8 = χN(G) ·#V (H).

On the other hand, equality holds with the lower bound for the bipartite double cover
G×K2 of G. In particular, this implies that the crown graph on 2n vertices, i.e., Kn ×K2,
has nested chromatic number 2n.

5.5. Cartesian product.

Let G and H be finite simple graphs. The Cartesian product of G and H is the graph
G�H with vertex set V (G)× V (H), where (g, h) is adjacent to (g′, h′) if and only if either
g = g′ and h is adjacent to h′ in H or h = h′ and g is adjacent to g′ in G. In particular, the
open neighbourhood of (g, h) in G�H is

NG�H(g, h) = {g} ×NH(h) ·∪NG(g)× {h}.

Notice thatG�K1 is isomorphic toG, so χN(G�K1) = χN(G). Moreover, (G ·∪G′)�H =
(G�H) ·∪ (G′

�H). Thus following Section 5.2, we need only consider finite simple graphs
G that are connected and have at least two vertices.

The weak duplicates generated in the Cartesian product come from leaves.

Lemma 5.12. Let G and H be connected finite simple graphs, neither of which is K1.
The vertex (g, h) is a weak duplicate of the distinct vertex (g′, h′) in G�H if and only if
NG(g) = {g′} and NH(h) = {h′}.

Proof. By definition, (g, h) is a weak duplicate of (g′, h′) if and only if

NG�H(g, h) = {g}×NH(h) ·∪NG(g)×{h} ⊂ NG�H(g
′, h′) = {g′}×NH(h

′) ·∪NG(g
′)×{h′}.

If g = g′, then (g, h) being a weak duplicate of (g′, h′) forces h = h′, since NG(g) is
nonempty and open. Hence we may assume g 6= g′ and h 6= h′. In this case, (g, h) is a
weak duplicate of (g′, h′) if and only if {g} × NH(h) ⊂ NG(g

′) × {h′} and NG(g) × {h} ⊂
{g′} ×NH(h

′}, since NG(g) and NH(h) are nonempty and open. The latter is equivalent to
NH(h) = {h′} and NG(g) = {g′}, again since the neighbourhoods are nonempty. �

Thus except K2�K2 = C4, all Cartesian products of connected graphs are duplicate-free.

Corollary 5.13. Let G and H be connected finite simple graphs, neither of which is K1.
The graph G�H is duplicate-free if and only if G 6= K2 or H 6= K2.

Proof. By Lemma 5.12, (g, h) is a duplicate of the distinct vertex (g′, h′) if and only if
NG(g) = {g′}, NG(g

′) = {g}, NH(h) = {h′}, and NH(h
′) = {h}, i.e., G = H = K2. �

Moreover, we can compute the nested chromatic number of Cartesian products of con-
nected graphs. Whereas the chromatic number of the Cartesian product of graphs is the
maximum of the chromatic numbers of the factors, the nested chromatic number is close
to the product of the nested chromatic numbers of the factors. We recall that [v]∼ is the
equivalence class of duplicate vertices in G, defined in Definition 2.9.

Proposition 5.14. Let G and H be connected finite simple graphs, neither of which is K1.
If G 6= K2 or H 6= K2, then

χN(G�H) = #V (G�H)− ℓ′(G) · ℓ′(H),
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where ℓ′(L) = #{[v]∼ : v is a leaf of L} for a graph L.
In particular, if G or H has minimum vertex degree of at least 2, then χN(G�H) =

#V (G�H).

Proof. By Lemma 5.12, {(g, h), (g′, h′)} is a nested independent set of G�H if and only if
NG(g) = {g′} and NH(h) = {h′}. Since G�H is duplicate-free by Corollary 5.13, no colour
class can contain more than two vertices.

Let L be the set of all colour classes of two vertices. Every nested colouring of G�H
consists of subset of L of pairwise disjoint elements together with singleton sets of the
remaining vertices. In particular, χN(G�H) is #V (G�H) minus the largest subset of L
that consists of pairwise disjoint elements.

Since the weak duplicate vertex of each element of L is unique, selection of a subset of L
of pairwise disjoint elements depends only on the weakly duplicated vertex of each element
of L. In particular, if (g, h) is the weak duplicate vertex of an element of L, then no other
element of L with weak duplicate vertex (i, j) such that [g]∼ = [i]∼ and [h]∼ = [j]∼ can be in
such a disjoint set. Thus the largest subset of L that consists of pairwise disjoint elements
is of size ℓ′(G) · ℓ′(H). �

Example 5.15. The cube graph Qn is defined recursively by Q1 = K2 and Qn = Qn−1�K2,
so Qn has no leaves for n ≥ 2. Hence χN (Qn) = 2n if n 6= 2 and χN (Q2) = 2. This also
follows by Proposition 3.4 since Qn is n regular and duplicate-free for n 6= 2 by Corollary 5.13.

5.6. Strong product.

Let G and H be finite simple graphs. The strong product of G and H is the graph G⊠H
with vertex set V (G) × V (H), where (g, h) is adjacent to the distinct vertex (g′, h′) if and
only if g = g′ or g is adjacent to g′ in G, and h = h′ and h is adjacent to h′ in H . In
particular, the open neighbourhood of (g, h) in G⊠H is

NG⊠H(g, h) = NG[g]×NH [h] \ {(g, h)}.

Notice that G⊠K1 is isomorphic to G, so χN(G⊠K1) = χN(G). Moreover, (G ·∪G′)⊠H =
(G⊠H) ·∪ (G′

⊠H). Thus following Section 5.2, we need only consider finite simple graphs
G that are connected and have at least two vertices.

With the exception of G ⊠ K1, the strong product of connected graphs has no weak
duplicate vertices.

Lemma 5.16. Let G and H be connected finite simple graphs, neither of which is K1. The
vertices (g, h) and (g′, h′) are weak duplicates in G⊠H if and only if (g, h) = (g′, h′).

Proof. Since G and H are connected, NG(g) 6= ∅ 6= NH(h).
Suppose (g, h) is a weak duplicate of (g′, h′). This implies that {g}×NH(h) ⊂ NG⊠H(g

′, h′),
and so g ∈ NG[g

′], i.e., g′ ∈ NG[g]. By symmetry, we also have h′ ∈ NH [h]. If (g, h) 6= (g′, h′),
then (g′, h′) ∈ NG⊠H(g, h) ⊂ NG⊠H(g

′, h′), which is absurd. �

Thus the nested chromatic number of the strong product is the number of vertices of the
product.

Proposition 5.17. If G and H are connected finite simple graphs, neither of which is K1,
then χN(G⊠H) = #V (G) ·#V (H).



20 D. COOK II

5.7. Composition.

Let G and H be finite simple graphs. The composition (or lexicographic product) of G and
H is the graph G[H ] with vertex set V (G)× V (H), where (g, h) is adjacent to (g′, h′) if and
only if either g is adjacent to g′ in G or g = g′ and h is adjacent to h′ in H . In particular,
the open neighbourhood of (g, h) in G[H ] is

NG[H](g, h) = NG(g)× V (H) ·∪ {g} ×NH(h).

Clearly, composition is non-commutative, in general.
The weak duplicates in the composition come from weak duplicates of the operands.

Lemma 5.18. Let G and H be finite simple graphs. The vertex (g, h) is a weak duplicate of
the distinct vertex (g′, h′) in G[H ] if and only if either g = g′ and h is a weak duplicate of h′

in H or g is a weak duplicate of g′ in G and h is an isolated vertex in H.

Proof. Suppose g = g′. This implies that (g, h) is a weak duplicate of (g′, h′) if and only if
NH(h) ⊂ NH(h

′), i.e., h is a weak duplicate of h′ in H .
Assume g 6= g′. Further suppose h is an isolated vertex in H . Thus NG[H](g, h) =

NG(g) × V (H), and so (g, h) is a weak duplicate of (g′, h′) if and only if NG(g) ⊂ NG(g
′),

i.e., g is a weak duplicate of g′ in G.
Now suppose h is not an isolated vertex in H , and suppose (g, h) is a weak duplicate

of (g′, h′). This implies that g is adjacent to g′; hence {g′} × V (H) ⊂ NG[H](g
′, h′), i.e.,

V (H) ⊂ NH(h
′), which is absurd. �

From this we can derive conditions classifying which compositions are duplicate-free.

Corollary 5.19. Let G and H be finite simple graphs. The graph G[H ] is duplicate-free if
and only if H is duplicate-free and either

(i) H has no isolated vertices, or
(ii) H has an isolated vertex and G is duplicate-free.

Proof. Let (g, h) and (g′, h′) be distinct vertices of G[H ].
Suppose g = g′. By Lemma 5.18, (g, h) and (g′, h′) are duplicates in G[H ] if and only if h

and h′ are duplicates in H .
Now suppose g 6= g′. By Lemma 5.18, (g, h) and (g′, h′) are duplicates in G[H ] if and only

if h and h′ are isolated vertices in H and g and g′ are duplicates in G. �

Further, we can bound the nested chromatic number of a graph composition, and equality
holds when the secondary graph has no isolated vertices.

Proposition 5.20. If G and H are finite simple graphs, then

χN (G[H ]) ≤ #V (G) · χN(H).

Moreover, equality holds if H has no isolated vertices.

Proof. Let C be a nested colouring C1 ·∪ · · · ·∪Ck of H . For each g ∈ V (G) and for 1 ≤ i ≤ k,
set Ci,g = {g} × Ci. By Lemma 5.18, Ci,g is a nested independent set of G[H ], and so the
family Ci,g forms a nested colouring of G[H ]. Hence χN(G[H ]) ≤ #V (G) · χN (H).

Assume H has no isolated vertices. If {(g1, h1), . . . , (gt, ht)} is a nested independent set of
G[H ], then by Lemma 5.18 g1 = · · · = gt and {h1, . . . , ht} forms a nested independent set of
H . Thus any nested colouring of G[H ] is of the form described in the first paragraph, and
so χN(G[H ]) = #V (G) · χN (H). �
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We suspect the following question has a negative answer.

Question 5.21. Does there exist a pair of finite simple graphsG andH such that χN(G[H ]) <
#V (G) · χN(H)?

5.8. Monotonicity.

Recall that a graph property is monotone decreasing (monotone increasing, respectively)
if it is preserved under deletion (respectively, addition) of edges. For example, removing an
edge can only decrease the chromatic number of a graph, so being k-colourable is a mono-
tone decreasing graph property. However, having a nested k-colouring is neither monotone
decreasing or increasing. To see this, we use three of the graph products discussed above.

Let G and H be finite simple graphs, and suppose χN(H) < #V (H). By construction,
we know that G×H is G⊠H with edges removed and G⊠H is likewise G[H ] with edges
removed. That is,

E(G×H) ⊂ E(G⊠H) ⊂ E(G[H ]) ⊂ E(K#V (G)·#V (H)).

However, by Propositions 5.10 and 5.20, both χN(G×H) and χN(G[H ]) are at most #V (G)·
χN(H) < #V (G) ·#V (H). Hence using Proposition 5.17 we have that

χN (G×H) < χN(G⊠H) > χN(G[H ]) < χN(K#V (G)·#V (H)).

6. On the existence of graphs

Given integers c and n such that 1 ≤ c ≤ n, it is known that there exists a finite simple
graph G on n vertices with χ(G) = c. We show that if we are also given an integer s such
that 1 ≤ c ≤ s ≤ n, then G can be chosen so that χN(G) = s for all but a few specific cases.

For fixed n ≥ 2, the case when c ∈ {1, n−1, n} was handled in Lemma 2.6. The one other
infinite case is that there does not exist a bipartite graph with nested chromatic number 3.

Lemma 6.1. If G is a bipartite graph, then χN(G) 6= 3.

Proof. Let G be a bipartite graph, and suppose, without loss of generality (see Remark 2.4),
that G has no isolated vertices. Suppose χN(G) ≤ 3. Hence by Corollary 5.5 we may assume
G is connected, and so G has a unique proper 2-colouring B ·∪W .

We may assume without loss of generality that W is a nested independent set of G. Let
w1, . . . , wt be the elements of W ordered such that NG(wi+1) ⊂ NG(wi). Thus for each b ∈ B
there is a k such that b ∈ NG(wi) if and only if 1 ≤ i ≤ k, i.e., NG(b) = {w1, . . . , wk}. Hence
B is also nested, and χN (G) = 2. �

We are ready to give the classification.

Theorem 6.2. Let c, s, and n be integers such that 1 ≤ c ≤ s ≤ n. There does not exist a
finite simple graph G on n vertices with χ(G) = c and χN(G) = s if and only if one of the
following conditions holds:

(i) c = 1 and s > 1,
(ii) c = 2 and s = 3,
(iii) c = 2 and (n, s) is one of (4, 4), (5, 5), (6, 5), and (7, 7), or
(iv) c = n− 1 and s = n.

Moreover, if such a graph G exists, then it may be chosen to be connected.
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Proof. If c = s = n = 1, then G = K1. Suppose n ≥ 2. If c = 1, c = n− 1, or c = n, then by
Lemma 2.6 there exists a finite simple graph G on n vertices with χ(G) = c and χN(G) = s
if and only if s = c. Hence we may also suppose 2 ≤ c ≤ n− 2.

By Lemma 6.1 if c = 2, then s 6= 3. Moreover, checking the 143 bipartite graphs with
between 4 and 7 vertices shows that if (n, s) is one of (4, 4), (5, 5), (6, 5), and (7, 7), then
there is no finite simple graph G on n vertices with χ(G) = c and χN(G) = s. Thus the
conditions (i)–(iv) each imply the absence of the desired graph.

Moreover, checking the 1251 simple graphs with between 2 and 7 vertices, we see that,
except for the conditions (i)–(iv), the desired (connected) simple graphs do indeed exist.

To show the presence of the desired graphs in the remaining case, we proceed by induction
on the number of vertices n.

Base case: Suppose n = 8. Checking the 12346 (11117 of which are connected) simple
graphs on 8 vertices, we see that there exists a (connected) simple graph with χ(G) = c and
χN(G) = s for 2 ≤ c ≤ s ≤ 6, with the exception of c = 2 and s = 3.

Inductive step: Suppose n ≥ 9. By induction, there exists a connected simple graph G on
n− 1 vertices with χ(G) = c and χN (G) = s for 2 ≤ c ≤ s ≤ n− 1, except for (c, s) = (2, 3)
and (c, s) = (n − 2, n − 1). If we duplicate any vertex of G, then the resulting connected
graph G′ has n vertices, χ(G′) = χ(G), and χN(G

′) = χ(G) since the duplicate vertex can
always be put in the same colour class as the duplicated vertex. If we add a dominating
vertex to G, then the resulting connected graph G′′ has n vertices and χ(G′′) = χ(G) + 1.
Moreover, χN(G

′′) = χ(G) + 1 by Proposition 5.6. Together these two operations generate
the desired (connected) graph for all relevant c and s, except c = 2 and s = n.

If n is even, then χ(Cn) = 2 and χN (Cn) = n, by Corollary 3.7. If n is odd, then
consider the graph H found by adding the vertex 0 and the edges {0, 1} and {0, 5} to
Cn−1. Clearly, H is a connected simple graph on n vertices. Moreover, χ(H) = 2, since the
partition of the vertices into even and odd vertices is a proper 2-colouring of H . Further
still, the neighbourhoods of H are: NH(0) = {1, 5}, NH(1) = {0, n−1, 2}, NH(5) = {0, 4, 6},
NH(n − 1) = {1, n− 2}, and NH(i) = {i − 1, i + 1} for 1 < i < n − 1 and i 6= 5. Thus no
two vertices of H are weak duplicates, and so χN (H) = n. �

See Remark 2.22 for comments about using computer algebra systems to determine the
nested chromatic number of a finite simple graph.

In Remark 3.8, we noted that the nested chromatic number for a planar graph need not
be bound above by four, as is the chromatic number. Indeed, we show that every possible
nested chromatic number can occur for a connected planar graph.

Proposition 6.3. Let n ≥ 2. For 2 ≤ k ≤ n, there exists a connected planar simple graph
G on n vertices with χN(G) = k.

Proof. Let G be the graph Kk if 2 ≤ k ≤ 4, otherwise let G be the graph Ck if k ≥ 5.
Then clearly G is a connected planar graph with χN(G) = k by Lemma 2.6 or Corollary 3.7,
respectively.

Without loss of generality, let V (G) = {1, . . . , k}, and suppose k − 1 and k are adjacent.
Modify G by adding n− k new vertices {k+1, . . . , n} and n− k new edges {k− 1, i}, where
k + 1 ≤ i ≤ n, to create the graph G′. Clearly, G′ is a connected planar graph, as the new
vertices are all leaves on the planar graph G. Further still, {1} ·∪ · · · ·∪ {k − 1} ·∪ {k, . . . , n}
is a nested colouring of G′. Thus χN(G

′) = χN(G) = k, by Proposition 4.1. �
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[15] T. Kloks, H. Müller, K. Vušković, Even-hole-free graphs that do not contain diamonds: a structure

theorem and its consequences, J. Combin. Theory Ser. B 99 (2009), no. 5, 733–800.
[16] D. N. Kozlov, A simple proof for folds on both sides in complexes of graph homomorphisms, Proc. Amer.

Math. Soc. 134 (2006), no. 5, 1265–1270.
[17] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. Theory Ser. A 25 (1978),

no. 3, 319–324.
[18] Macaulay2, a software system for research in algebraic geometry, available at

http://www.math.uiuc.edu/Macaulay2/.
[19] B. D. McKay, nauty User’s Guide (Version 2.4), available at http://cs.anu.edu.au/~bdm/nauty/.
[20] J. P. McSorley, Constructing and classifying neighborhood anti-Sperner graphs, Discrete Math. 308

(2008), no. 23, 5428–5445.
[21] J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955), 161–162.
[22] OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, published electronically at

http://oeis.org, 2013.
[23] T. D. Porter, Graphs with the anti-neighborhood-Sperner property, J. Combin. Math. Combin. Comput.

50 (2004), 123–127.
[24] T. D. Porter, J. L. Yucas, Graphs whose vertex-neighborhoods are anti-Sperner Bull. Inst. Combin.

Appl. 44 (2005), 69–77.
[25] D. P. Sumner, Point determination in graphs, Discrete Math. 5 (1973), 179–187.
[26] D. B. West, Introduction to graph theory. Prentice Hall, Upper Saddle River, NJ, 1996.

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA

E-mail address : dcook8@nd.edu

http://www.math.uiuc.edu/Macaulay2/
http://cs.anu.edu.au/~bdm/nauty/
http://oeis.org
mailto:dcook8@nd.edu

	1. Introduction
	2. Nested colourings
	2.1. Nested colourings & the nested chromatic number
	2.2. The de-duplicate graph
	2.3. The weak duplicate preorder

	3. Families of graphs
	3.1. Bipartite graphs
	3.2. Regular graphs
	3.3. Diamond- and four-cycle-free graphs

	4. Induced subgraphs
	4.1. Induced subgraphs
	4.2. Criticality
	4.3. A topological remark

	5. Behaviour of the nested chromatic number
	5.1. Mycielski's construction
	5.2. Disjoint union
	5.3. Join
	5.4. Direct product
	5.5. Cartesian product
	5.6. Strong product
	5.7. Composition
	5.8. Monotonicity

	6. On the existence of graphs
	References

