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Euler constant as a renormalized value of Riemann zeta function at 
        its pole. Rationals related to Dirichlet L-functions !!
       Andrei Vieru !
 Abstract 
 This paper has two aims. Since there is more than one way to regularize the value of 
Riemann zeta function at s = 1, I wanted to provide a simple and striking illustration of 
Euler’s constant as being the true renormalized value of Riemann zeta function at its pole. 
The other aim is to show how sequences of rationals, often the same, arise in computations 
related to Dirichlet L-functions ‘at infinity’. A connection with the Liouville function seems to 
be found and we are led to ask about the possible usefulness of some extensions of this 
function to rationals.	

!
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 1. Motivation 
Euler’s constant viewed as a renormalized value of Riemann zeta function at s = 1 is still ‘a 
subject of active research’ since Stephen Hawking has published in 1977 Zeta function 
regularization of path integrals in curved spacetime, (Comm. Math. Phys. 55). 
The paragraphs 2.1 and 2.2 of this paper have mainly an esthetic motivation. We provide a 
family of expansion formulae none of which is around z = 1, and whose summarizing into 
one single formula is nevertheless much more illustrative for this issue than just the 
convention of taking as a renormalized value the constant term in the Laurent expansion of 
Riemann zeta function near s = 1, which (as pointed out by Jeffrey C. Lagarias) ‘also matches 
the constant term in the Taylor expansion of the digamma function ψ(z) around z = 1’. 
For the chapters 5-8 to the end, the real motivation is the following: since not only we know 
the distribution of primes for the first few billions of them, but we know them all, so to say, 
by their names, it seemed interesting to try to grasp something about primes starting the other 
way around, i.e., if possible, from infinity. Since, due to the Euler product formula, Riemann 
zeta function is about primes not just in the critical strip, but virtually anywhere, I tried to 
compute asymptotic expansions of functions of the form 1/(L(s)-1) in the neighborhoods of 
infinity, where L is either the Riemann zeta function or some other Dirichlet L-function: 
To explain the irregular features of these expansions, Legendre, Jacobi and Kronecker 
symbols seemed of no avail. The sequences of irregular signs and some other features of the 
rationals which arise in a large class of expansions of this type can be described in terms of 
the Liouville lambda function (adapted to a class of fractions). I formulate a not very obvious 
connection between these expansions and the Liouville lambda function (known to be directly 
related both to primes and to Riemann zeta function) taking into account the need of more 
available data of high accuracy. The studied expansions, where s and the fast growing 
function 1/(ς(s)-1) both go to infinity, are made of either surprisingly small primes or greater 
numbers with surprisingly small prime factors, very often integer powers of such primes. One 
can say that the whole study is about the way small numbers are mirrored in an ‘infinity’ 
related to the ς function (or to some other Dirichlet L-function. The tenuous link between the 
two themes treated in this paper lies in the possibility to express renormalized values of L-
functions at s = 1 in terms of iterated L-functions and of powers of rationals. 

2. Expanding lnΓ near the negative poles of the Gamma function  
Near 0, lnΓ may be written as    

    (♣) 
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   If then it would have been possible to drag the second summand  !
in the RHS under the infinite summation, thus beginning it from k =1.  
To make this analogy more convincing, we mean completely unambiguous, one may 
consider lnΓ near the negative poles of the Gamma function. 
We shall now ‘discover’ a formula where the analogy becomes much more obvious, 
because it is established not just between Euler’s constant and the values of zeta 
function at greater integer arguments, but between an extended part of a formula, 
which is indexed on some n and on some k, and where ς(k) appear in company of 
harmonic numbers of order k while γ appears in company of ordinary harmonic 
numbers. !
One has (for small x > 0): !!

                (♠) !!
In the real domain, one has for all positive integers n: !!

             !
 
 
      
(♥) 

 (which  we call ‘the second Iohannis formula’) 
Here again, under the convention ς(1) = γ, in the RHS of (♥) the third summand might 
be pulled under the infinite summation, which, doing so, would  start with k = 1: 

Note that (♥) is not based on any prior renormalization of Γ or lnΓ at their poles. 
Note also that in the numerator, as k runs through the natural integers, the signs of 
the second summand alternate for any n. But the signs of the terms of the whole 
infinite sum alternate only for even n. As we said, the analogy between Euler’s 
constant viewed as ‘ς(1)’ and the values of ς at greater integer arguments is 
strengthened by the analogy between Harmonic numbers and Generalized harmonic 
numbers of higher orders in the numerator of the fraction under the second summation 
symbol, let alone by the exponent of -1, indexed also on k and n. (We consider lnΓ 
only in the real domain, avoiding possible but unnecessary discussions in this context 
about branches in the complex domain inherited from the logarithmic function.)  
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2.1. Euler’s constant and ζ(2) expressed in terms of  Log Γ	

!!
In the general case, for non-negative n, we have: !!

 (1°) !!
Replacing (–1)n and ln –Γ by ln⏐Γ(x)⏐  we’ll have 

   
  
   (2°) !!

The RHS of this limit identity might be written as !
 !
             (3°) !!

(quotation marks needed, because thinking of Euler’s constant as “ζ(1)” is, in some 
sense, a metaphor. As generally known, the Riemann zeta function has a singularity in 
1, which is not removable, and which has residue 1. The philosophical and semiotical 
problem of metaphors in mathematics, and more generally in science, will not be 
discussed here.) 
One can notice that although the formulae !

   
   (4°) !!

and !
   
   (5°) !!

state convergence to numbers which are identical in absolute value, an arbitrarily 
chosen sequence of x that converges to 0, does not yield identical sequences (in 
absolute value) in the expressions in the LHS of (4°) and of (5°). 
One can effectively compare these sequences adding the expressions that stand under 
the limit in (4°) and in (5°) and then dividing the result by x. (In other words, writing 
in the numerator the product of the expressions whose logarithm is taken, and writing 
in the denominator the product of the denominators.) Doing so, for n=0, one can find 
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             (6°) !!

and, for n = 1, !
            
            (7°) !!

In the general case, one has: 
 

 
    
(8°) !!

and, therefore, !
!                            (9°) 

!
“Comparing” the process of convergence at two consecutive singularities of the 
gamma function we get: !

!  

!!!
The following limit formula holds as well: !
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 In this limit formula n! and (n + 1)! appear as absolute values of the residues 
in the singularity –n and –(n + 1) of the gamma function (see also [3]). !!
3. Integer powers of ln 2 expressed in terms of lnζ and lnη !!!

 !
L e t and !!
then, trivially, for any n !

 !!!
and, somewhat less trivially,    !!!!!
The Dirichlet eta function is defined as !
!         

!
a series that converges for any complex number with real part greater than 0.  !
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 !
Define  !!
then, again (more or less trivially), for any n ≥ 0 !!!!!
4. THE ITERATION OF A PAIR OF FUNCTIONS “PRESERVING ASYMPTOTIC 
PROPORTIONS AT INFINITY”  
  
The nice thing is that for any N ≥ 1 we have the following general formula, which 
holds for all iterates of g and h (of strictly positive order): !!

         (✪)  !
 

      
           (✷) !!

but no formula is known to us concerning higher order iterates of  f  and  h, let alone 
concerning relations that involve higher order iterates of  f  and  g.  !
Another beautiful formula involving iterates of g and of h is the following one: !
          
Let          (❖) 
  !
then again, for any positive integer n, we’ll have    !!!

         (❅)  !!!!!
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5. SEQUENCES OF RATIONALS ARISING IN CONNECTION WITH 
DIRICHLET L-SERIES !
Trying to better understand (✪), (✷), (❖) and (❅), I have begun expanding 1/(ς(x) -1) 
for large values. 
Having found that, for sufficiently remote x values, 
 

!
               (♚) 
  

     
I filled the first five or six of denominators in (♚) as an entry search in OEIS, and 
learned that this expansion was already known to Benoît Cloitre (A112932), to whom 
I express my admiration for his entire work. (I just added several more terms to his 
expansion; for even more terms, see below, page 14 of this paper.) !
The derived Cloitre’s formula !!!

          (♛) !!
is surprising for who doesn’t know (♚). In fact there are uncountable analogues of 
this limit formula (involving or not Euler’s constant).  
Our first observation is that several functions have an expansion with, up to the 
constant term, the same beginning: 

!
(with a gain of 1/2 in the constant term for each substitution of x by lnς(x)+1) 
The next example of substitution (which we restrain from writing down) yields the 
following analogue of (♛): 

https://oeis.org/search?q=A112932&language=english&go=Search
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 !!
The natural question about these expansions is whether other reciprocals of modified 
Dirichlet L-functions permit similar asymptotic expressions in terms of sums of 
powers of rationals. Here are but a few examples for the most popular Dirichlet eta, 
beta end lambda L-functions:    

!!
          (♔) !

As one can see, in this peculiar case, the rationals are the same, but the coefficients 
(and in particular the signs) are not. (Further terms in the expansion of η are not 
similar to those of ς.) The presence of powers of 2 in the numerators cannot escape 
our attention, nor did the presence of powers of 3 in the two following examples: 
 Let β  be the Dirichlet beta function, defined as !!!!!
Then, for large s 

           
(♕) !!

Let !!
Then, for large s      !

   
 

(♖) !
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The last expansion formula yields, for example, the two following limit formulae (and 
many others): !!

 !!
Since !!
we’ll have, using just the first terms of (♖): 

The RHS of this formula ‘happens’ to be one of the Euler-Lehmer constants, namely  
γ(1,2) (see Lehmer’s paper, [10]). One can add more terms from (♖) into the brackets 
in the LHS of this limit formula and that will speed up the convergence. The fraction 
(1/2) before the brackets derives from the following limit: !

  (this is the renormalized value of λ         
 at  s =1)          !

Now the real question is: given a descending (by absolute value) infinite sequence of 
rationals (q)n∈N , given a sequence of integer coefficients (an) and given the 
corresponding infinite series 

!
!

to what class or subclass of functions belongs 1/V(x)+C ? (where C is a constant, 
possibly 0) 
The class of these functions does not coincide with the Dirichlet L-functions. 
Surprisingly, some irregular series give birth to similar sequences of  (q)n∈N as the 
Riemann zeta function does, although not with same coefficients (an). !
Here are two examples: !!
(the prime Zeta function where the sum is taken over all primes.) We have:   

(♞) 
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Comparing (♞) with (♚), one finds among the initial terms of these asymptotic 
expansions exactly the same summands just with the 3rd, 6th, 10th, 11th, 18th, 19th, 
20th, 27th, 31st, 32nd, 33rd… terms skipped, namely -1, (2/3)^x, -2(4/9)^x, (2/5)^x, 
3(8/27)^x, (2/7)^x, -3(4/15)^x, etc… The nice thing is that (♞) and (♚) seem to obey 
to a similar law related to the Liuoville lambda function. This issue will be discussed 
later. 
Here are two more example of irregular series: !
let !!
where A is the set of numbers which correspond to the ranks of zeros in the Thue-
Morse sequence, whereas B corresponds to the set of the ranks of 1 in the same 
sequence. 
Then, for large x 

In comparison to the expansion of 1/(ς(x)-1), this one has irregularly changed signs, 
one missing summand, namely 2(4/9)^x and one missing coefficient — in front of 
(8/27)^x.  !
Let   We have, for large s: 
 

!
Another example is provided by 1/(1-1/ς(s))= ς(s)/(ς(s)-1) !

(where µ is the aperiodic Möbius function. The expansion of 
ς(s)/(ς(s)-1) is exactly (♚) but without the constant term -1). !

Turning back to Dirichlet L-series, define the function: !
(mod 3) 
(mod 3) 
(mod 3) !

Let 
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Then, for large s 

                       
               (♝) !

It seems that in the RHS of (♝) there are no denominators ≣ 0 (mod 3)… Those 
precisely which display this feature in (♚), are skipped in (♝).  
One finds for 

the asymptotical expansion 

!
                    (☯) !

Here again, there are no denominators divisible by 5.It seems that coefficients larger 
than 1 in absolute value show up often 1) when the denominators have at least two 
distinct factors 2) when the numerator and denominator are the same power of two 
different primes.   
We have, for the two Dirichlet characters modulo 6, the beginnings of the two 
following expansions.  !
Let  

!
Then, for large s 

         
            (♟) 
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!
 
  Let !!
Then, for large s 

!!
            (♙) !

As one can see, (♟) and (♙) are similar up to some signs. The rationals the 
expansions (♟) and (♙) are made of are products of the small primes (with small 
exponents) which appear in the Dirichlet L-series L(s,χ6) and L(s,χ—6): 7, 11, 13, 17, 
19, etc.  
Due to the structure of χ, the numerators are always powers of 5; in turn, even as a 
factor, 3 does not appear in the denominators, where one can find the next primes: 7, 
11, 13, 17, 19, etc. either as a factor or as an integer power (e.g. 343=73  and 2401=74). 
Examples of factors: 539=72*11, 637=72*13). The way new bigger primes appear in 
the denominators and then generate the next ones might be an interesting process. For 
example, the summands of rank 6, 7, 8 and 9 are products of the second summand — 
(25/7)^s — by, respectively, the summands of rank 3, 4, 5 divided by 5. Etc. etc.  
I will finish this chapter with the following remark: in (♚), which is about Riemann 
zeta function, the integer coefficients greater than 1 appear only near fractions that 
either have a composite denominator with at least two distinct prime factors or near a 
fraction whose numerator and denominator are exactly the same power (greater than 
1) of 2 and, respectively, 3. In the known terms of (♚), if one neglects the constant 
term, the (odd) primes appear for the first time in the denominators exactly with their 
own density multiplied by 3/2. As will be shown in the next chapter after 13, this 
frequency slows down. !!
6. TWO COMPARISONS !
For the two real Dirichlet characters modulo 10, the rationals related to 1/(L10—1) 
are easily computable (up to a certain point). !
For χ(1)=1, χ(3)=1, χ(7)=1, χ(9)=1    (otherwise 0), we have 
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  (♆) !

For the other real character modulo 10 (with χ(3) = χ(7) = -1 and χ(1) = χ(9) = 1) 

           (☬) 



      !14

Time and again, we see integer powers of 3 in the numerators, with two unexpected 
exponent 0 in the numerators of 1/7 and 1/9.  
One can notice the beginnings of an interrupted sequence of the primes < 60 in the 
denominators of fractions whose numerator is 9, and another sequence of ordered 
primes in fractions whose numerator is 3.  
We never encounter numbers divisible by 5 in the denominator: one should remember 
that χ(5) = 0. 
All composite numbers in the denominators which aren’t integer powers of primes 
brings about a coefficient equal to the numbers of its factors (distinct or not). 
An integer power of a prime does not give place to coefficients unless it coincides 
with the exponent in the numerator: e.g. 2(9/49), -2(3/23), 2(3/29) 
The changes of signs obey a not at all obvious rule. In turn, the presence of 
coefficients greater than 1 (in absolute value) might be decrypted adding to the 
aforementioned rules the following one if the number of distinct factors in the 
denominator is the power of 3 in the numerator, one sees a coefficient, e.g. -2(9/77) 
The second comparison concerns the Riemann zeta function and the Dirichlet eta 
function. They belong to different moduli, the latter being the alternate version of the 
other. !
For the Riemann zeta function, the sequence of rationals is (with the coefficients 
written in parenthesis): 
2, -4/3, -1, 8/9, -4/5, 2/3,  -16/27,  -4/7,  (2) 8/15,  (2) -4/9, 2/5, 32/81, (2) 8/21,  -4/11, 
(3)  -16/45,  8/25,  -4/13,  (3) 8/27,  2/7,  (3) -4/15,  -64/243,  (3) -16/63,  (2) 8/33,  (4) 
32/135, -4/17,  (2) 8/35, 2/9,  (3) -16/75, -4/19,  (2) 8/39,  (4) -16/81,  (3) -4/21,  2/11,  
(7) 8/45,… (These may be found in (♚), here - with several terms added.)   !
For the Dirichlet eta function, the sequence of rationals is: 

  
 
 
 

                         (♔) 
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In spite of all the similitudes, in these expansions there are a lot of new items in 
comparison to the  expansion of 1/(ς(s) - 1). The summand 2(1/3)^x does not appear in 
the zeta expansion at all. Nor does 2(1/5)^x. 
 Coefficients are not the same as in (♚). !
Interesting seems to be, in the eta Dirichlet asymptotic expansion, the presence of 
summands of the form !!!!
If the denominator of a fraction is a composite number with at least two distinct 
factors, then the coefficient of that fraction is greater than 1. Yet it is not clear wether 
and in which way it depends on the number of factors (distinct or not) in the 
denominator and/or on the power in the numerator. If the sign of summand is +, then 
coefficients coincide with the number of factors of the denominator, provided there 
exist at least two distinct factors  
If the number of factors (distinct or not) in the denominator matches the power or 2 in 
the numerator, then a coefficient > 1 (in absolute value) appears. 
It is not clear whether any odd number divides at least one denominator in the 
presumably infinite (possibly displaying farther some fractional coefficients!) with 
sequence of fractions attached to a Dirichlet L-function. 
It is not clear if the sets of denominators are or not closed under multiplication. Nor if 
the following weaker statement holds or not: for any denominators n and m in the set 
DL(s, χ) of the denominators in the expansion of 1/(L(s, χ)-1) there is a k in DL(s, χ) so 
that nm divides k.  
Statistics and dynamics of the sets of these rationals might reveal interesting. 
An informal question: suppose you wake up tomorrow morning in a world where the 
correctness and the proof of GRH is not anymore a matter of discussion. How slightly 
an ‘artificially’ constructed or altered function may deviate from having all zeros on 
its critical line? And which would be the criteria of ‘slightness’? !
7. Rationals and Hurwitz zeta function !
Hurwitz zeta function is defined as  !!!!
We’ll just give two special cases in order to show the possibility of the study of 
rationals in this broader context: !

 
(for large x) !
(also for large x values) 
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One can of course define Hurwitz analogues of Dirichlet functions, although these 
would lose some of their essential properties (as does the Riemann zeta function 
itself). 
For example the Hurwitz lambda function would be: !!!!!
One has for large values of the first argument !!!!!
 and !!!

     
   !

8. ON A CONNECTION WITH THE LIOUVILLE FUNCTION 
        
It would be nice if a connection with the Liouville function could be established at 
least for the asymptotic expansion of Dirichlet L-functions whose asymptotic part of 
the graph for real arguments lies above the line y = 1 
The Liouville function, denoted by λ(n), is defined, for positive integers, as !!!!
where Ω(n) is the number of prime factors of n, counted with multiplicity (sequence 
A008836 in OEIS) 
The Liouville function for rationals of the first kind, denoted by λV(p/q), might be 
defined as follows: 
 !

if  ⎥ Ω(p) — Ω(q)⎥ = 1 
if  Ω(p) = Ω(q)             (⨳) 
if p = 1 and q ≠ 1 (regardless of their Ω values) !

In fact, at least in (♚), (♟), (♆), (♖) (i.e. in the asymptotic expansions for Riemann 
zeta function, Dirichlet lambda, Dirichlet L(s,χ6) and Dirichlet L(s,χ10) functions), the 
signs of the summands might (conjecturally) be rewritten exactly in terms of λV(p/q).  

http://oeis.org/A008836
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One can find additional heuristic confirmation in the beginning of the following 
asymptotic expansion: 
 

!!!!
The signs in the expansions of Dirichlet L-functions (♕), (♝), (☯),  (♙), (☬), whose 
real asymptotic part of the graph lies under the line y = 1 (with the important 
exception of the Dirichlet eta function) seem to obey a completely different law: the 
signs seem to be entirely determined by the residues of the denominators taken with 
respect to the Dirichlet character modulus. !
The signs of the summands in the expansion (♔) related to the Dirichlet eta function 
deserves a separate discussion: !
We define the Liouville function for rationals (of the second kind) as follows: !

if   ⎥ Ω(p) — Ω(q)⎥ = 1    (⨸) 
if   Ω(p) = Ω(q) !

where Ω(p) denotes again the number of prime factors of p counted with multiplicity. !
 NOTE 
 Both (⨳) and (⨸) suffice to characterize the signs of the summands we were 
able to compute with sufficient accuracy (for more summands of see also page 14). 
Both these formulations are liable to be refined and/or completed when new terms of 
the expansions of 1/(ς(x)-1) and of 1/(1- η(1)) will be properly calculated. They have 
the signs predicted by, respectively, (⨳) and (⨸), but we have to b cautious: for 
example, the case ⎥ Ω(p) — Ω(q)⎥ > 1 remains unclear: till now, the only encountered 
rational with ⎥ Ω(p) — Ω(q)⎥ = 2 is (1/9) in (♆), which in that expansion has the same 
sign as (1/7). 
 It is not clear for the time being whether the summands +2(1/3)^s and 
+2(1/5)^s are positive because  ⎥Ω(1) — Ω(5)⎥ = 1 and ⎥ Ω(1) — Ω(3)⎥ = 1 or just 
because, as in (♚), it should be supposed, as for the Riemann zeta function (see (⨳)), 
that λA(1/q) = 1 for all q. At least heuristically, these questions will rapidly find their 
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answers, provided one might be interested in further computation and study of these 
expansions.  !
Liouville lambda function is related to Riemann zeta function by the well-known 
expansion formula:        !!

           (✤)             (by the way, another aperiodic character)             !!
Interestingly, the expansion is made of exactly the same summands as the 
corresponding to Riemann zeta function expansion (♚) up to some signs. 
       

!!
     (⚛) !!

The signs of this asymptotic expansion (⚛) are directly related to the Liouville λ-
function applied only to the denominators — just as in (✤) — regardless of the 
number of prime factors (i.e. regardless of the exponent of 2) in the numerator. 
Yet, (✤) holds for any s > 1, while the asymptotical (⚛) holds only in some 
neighborhood of infinity. 
This is a naive but not necessarily false way of thinking that primes ‘behave at 
infinity’ basically in the way they behave anywhere. Anyhow, since s tends to infinity, 
tiny primes and prime factors of larger numbers (e.g. 243 = 35,  135 = 5*33 ) are 
mirrored in the ‘neighborhoods of infinity’ through a function closely related to the 
Riemann zeta function. 
        
       Andrei Vieru 
       andreivieru@gmail.com 
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