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Abstract. We consider a linear relation which expresses Stanley’s chromatic
symmetric function for a poset in terms of the chromatic symmetric functions
of some closely related posets, which we call the modular law. By applying
this in the context of (3 + 1)-free posets, we are able to reduce Stanley and
Stembridge’s conjecture that the chromatic symmetric functions of all (3+1)-
free posets are e-positive to the case of (3 + 1)-and-(2 + 2)-free posets, also
known as unit interval orders. In fact, our reduction can be pushed further to a
much smaller class of posets, for which we have no satisfying characterization.
We also obtain a new proof of the fact that all 3-free posets have e-positive
chromatic symmetric functions.

1. Introduction

In [8], Stanley generalized the familiar notion of chromatic polynomials for (fi-
nite) graphs in two directions to obtain the notion of chromatic symmetric func-
tions, defined for either graphs or posets. Instead of counting how many proper
vertex colourings there are for a given number of colours, the chromatic symmetric
function is a generating function for all proper vertex colourings which keeps track
of the number of vertices in each colour class. Thus, for a graph G with vertex set
V , the chromatic symmetric function is

CSF(G) =
∑

proper
κ : V→P

xκ

=
∑

proper
κ : V→P

x
#κ−1(1)
1 x

#κ−1(2)
2 x

#κ−1(3)
3 · · · ,

where P = {1, 2, 3, . . .} and x = (x1, x2, x3, . . .) is a countable set of indeterminates.
For graphs, a colouring is proper if each colour class is an independent set. For
posets, a colouring is proper if each colour class is a chain. Equivalently, CSF(P )
for a poset P is the same as CSF(G) for the incomparability graph G of P .

The set of colours P can be freely permuted without affecting the definition of
CSF(P ), so the chromatic symmetric function is in fact a symmetric function. We
may ask, as Stanley did, about its expansion in the classical bases for the ring of
symmetric functions. In the basis of monomial symmetric functions, the coefficient
of mλ in CSF(P ) is simply the number of proper colourings of P where λi vertices
have colour i for each i ∈ P. In particular, all the coefficients in this basis are
nonnegative, so we say that CSF(P ) is m-positive for all posets P .

In the basis of power sum symmetric functions, the coefficient of pλ in CSF(P )
can be obtained a mobius inversion argument (see [8, Theorem 2.6]), and it is not
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2 MATHIEU GUAY-PAQUET

positive in general. However, its sign is predictable, and in fact the coefficient of
pλ in ω(CSF(P )) is always nonnegative, where ω is the fundamental involution on
symmetric functions, which sends pk to (−1)k−1pk. Thus, we may say that CSF(P )
is ω(p)-positive for all P .

For the basis of elementary symmetric functions, the situation is more compli-
cated. The coefficient of eλ in CSF(P ) is not positive in general, and it does not
appear to have a predictable sign. However, Stanley and Stembridge [8, 9] have
identified a large class of posets P which appear to be e-positive. Consider the
(3 + 1) poset, which consists of the disjoint union of a chain of length 3 and a chain
of length 1. This is the smallest poset which is not e-positive, and as Stanley and
Stembridge verified, all posets on up to 8 vertices which do not contain an induced
copy of the (3 + 1) poset have e-positive chromatic symmetric functions. Thus, the
conjecture is that all (3 + 1)-free posets are e-positive.

Note that, when considering the b-positivity of (3+1)-free posets for various bases
b, the basis of elementary symmetric functions is best-possible, in the sense that the
only e-positive bases b for which (3+1)-posets are b-positive are positive scalings of
the e basis. Indeed, consider the graded poset Pλ with λi vertices of rank i for each
i, and where every vertex of rank i is less than every vertex of rank i + 1. Then,
Pλ is (3 + 1)-free, and from the definition above, we have CSF(Pλ) = eλ ·

∏
i λi!, a

scalar multiple of a single eλ.
In the other direction, the e basis is positive in the basis of Schur symmetric

functions sλ, so e-positivity implies s-positivity. Gasharov [1] proved that the
chromatic symmetric functions of all (3 + 1)-free posets are s-positive, which gives
more evidence for the e-positivity conjecture.

In this paper, make further progress towards the e-positivity conjecture, by show-
ing that for every (3 + 1)-free poset P , its chromatic symmetric function CSF(P )
is a convex combination of the chromatic symmetric functions

{CSF(P ′) : P ′ is (3 + 1)-free and (2 + 2)-free }.

Number of vertices 1 2 3 4 5 6 7

All posets 1 2 5 16 63 318 2045
. . . (3 + 1)-free 1 2 5 15 49 173 639
. . . and (2 + 2)-free 1 2 5 14 42 132 429
. . . and basic 1 1 1 1 1 1 2

Number of vertices 8 9 10 20

All posets 16999 183231 2567284 unknown
. . . (3 + 1)-free 2469 9997 43109 219364550983697100
. . . and (2 + 2)-free 1430 4862 16796 6564120420
. . . and basic 2 5 11 35635

Table 1. Numbers of posets with a given number of vertices
in various classes of posets, up to isomorphism: all posets [7,
A000112]; those which avoid (3 + 1) [7, A079146]; those which
additionally avoid (2 + 2) [7, A000108]; those which additionally
satisfy the restrictions described in Remark 5.2.

http://oeis.org/A000112
http://oeis.org/A079146
http://oeis.org/A000108
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Thus, we reduce the e-positivity conjecture for (3 + 1)-free posets to the subclass
of (3 + 1)-and-(2 + 2)-free posets, which are much more structured: these are the
unit interval orders, and they are counted by the Catalan numbers [5]. Note that
these chromatic symmetric functions are also the subject of a recent conjecture of
Shareshian and Wachs [6, Conjecture 5.3], which relates them to Tymoczko’s [11]
representations of the symmetric groups on the equivariant cohomology of Hessen-
berg varieties.

In fact, our methods reduce the problem to a much smaller class of posets (see
Table 1 and Remark 5.2), for which we do not currently have a satisfying charac-
terization. However, this reduction has allowed us to computationally verify the
conjecture for all posets with up to 20 vertices, using modern computer hardware,
up from the previously known 8.

We also obtain a new proof of the fact that all 3-free posets (that is, posets where
every vertex is either a minimal element or a maximal element) are e-positive [8,
Corollary 3.6].

The proofs rely on a recent structural characterization [2] of (3 + 1)-free posets,
and on a new relation which expresses the CSF of a poset in terms of the CSFs of
slightly modified versions of this poset, which we call the modular law.

2. Part listings

In order to state the modular law, we will need a representation for (3 + 1)-free
posets that we can manipulate. A convenient representation for these posets is by
part listings, which we define below.
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Figure 1. On the left: a graphical representation of a part listing.
On the right: the Hasse diagram of the corresponding poset.

A part listing is an ordered list of parts, which are arranged on positive integer
levels. Each part is either a single vertex at a given level, or a bicoloured graph
where the colour classes correspond to two adjacent levels and all edges join vertices
on distinct levels.

Example 2.1. Figure 1 shows a part listing which consists of 6 parts spanning 3
levels, arranged left to right. The first part is the vertex a on level 2; the second is
vertex b on level 1; the third is vertex c on level 3; the fourth is vertex d on level 3;
the fifth is vertex e on level 1; and the sixth is the bicoloured graph G with vertices
{f, g} down on level 1, vertices {h, i} up on level 2, and edges {fh, gh, gi}.

A part listing can be given as a word over the alphabet

Σ = { vi : i ∈ P } ∪ { bi,i+1(G) : i ∈ P, G a bicoloured graph },

where the symbol vi corresponds to a vertex on level i, and the symbol bi,i+1(G)
corresponds to a copy of the bicoloured graph G on levels i and i+ 1.
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Example 2.2. The part listing from Figure 1 can be given as a word over the
alphabet Σ by v2v1v3v3v1b12(G), where G is the bicoloured graph with vertices
{f, g} coloured ‘down’, vertices {h, i} coloured ‘up’, and edges {fh, gh, gi}.

Given a part listing L, we can define an associated poset on its vertex set as
follows. If x and y are vertices in L, then let x < y if

(i) x is at least two levels below y; or
(ii) x is exactly one level below y, and the part containing x appears strictly

before the part containing y in L; or
(iii) x is exactly one level below y, and they are joined by a bicoloured graph

edge.
Example 2.3. Figure 1 shows a part listing on the left and the associated poset on
the right. The vertices {b, e, f, g} are less than the vertices {c, d} by condition (i).
The vertex a is less than the vertices {c, d}, and the vertices {b, e} are less than the
vertices {h, i} by condition (ii). The relations f < h, g < h, and g < i are given by
condition (iii).

Note that this construction does yield a poset; indeed, x < y implies that x
is on a level strictly below y, which guarantees anti-symmetry, and condition (i)
guarantees transitivity. The following two propositions justify the claim that part
listings are a suitable representation for posets which are (3 + 1)-free.
Proposition 2.4. Given any part listing L, the associated poset P is (3 + 1)-free.
Proof. Consider a chain x < y < z of three vertices in P , and suppose there is a
vertex w which is incomparable with x, y and z. Vertices can only be incomparable
if they are on the same or adjacent level, so y and w must be on the same level, with
x on the level below and z on the level above. Given the relations in P between
these vertices, it can be seen that y cannot appear before w in L because of x; that
y cannot appear after w because of z; and that y cannot be in the same part as w,
as this part would also contain x and z, and span more than two levels. Thus, P
cannot contain an induced copy of the (3 + 1) poset. �

Proposition 2.5. Given any (3 + 1)-free poset P , there exists a part listing L for
which the associated poset is P .
Proof. By [2, Theorem 3.3], every (3 + 1)-free poset P has a compatible listing L′

made up of clone sets and tangles. A clone set ci with k vertices at level i in the
compatible listing L′ corresponds to k consecutive parts vi in the part listing L,
and a tangle ti,i+1(G) in L′ corresponds to a bicoloured graph bi,i+1(G) in L. �

Note that two different part listings L and L′ can give rise to the same poset, in
which case we say that they are poset-equivalent, and write L ∼P L

′. In particular,
this happens when L′ is obtained from L by applying a sequence of commutation,
circulation and/or combination relations, as described below.

2.1. Commutation relations. If two consecutive parts of a part listing L are at
least two levels apart, then they can safely be swapped without interfering with the
definition of the associated poset. That is, if A, B are words over the alphabet Σ
and i, j are levels with j − i ≥ 2, then we have the relations

AvivjB∼
P

AvjviB, Avibj,j+1B∼
P

Abj,j+1viB,

Abi,i+1vj+1B∼
P

Avj+1bi,i+1B, Abi,i+1bj+1,j+2B∼
P

Abj+1,j+2bi,i+1B.
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Example 2.6. For the part listing given in Figure 1, the second and third parts,
corresponding to vertices b and c, can be swapped without changing the associated
poset, so v2v1v3v3v1b12(G) ∼P v2v3v1v3v1b12(G).

2.2. Circulation relations. Given a word A over the alphabet Σ, let A+ be the
word obtained by raising each symbol by one level, that is, replacing each vi by vi+1

and each bi,i+1(G) by bi+1,i+2. Then, it can be checked that, for any two words A,
B over Σ, we have the poset-equivalence

A+B∼
P

BA.

In particular, if a part listing L starts with a part on level 2 or above, then this
first part can be lowered by one level and moved to the end of L without changing
the associated poset.

Example 2.7. For the part listing given in Figure 1, the first part, corresponding
to vertex a, is on level 2, so it can be lowered to level 1 and moved to the end without
changing the associated poset. Thus, v2v1v3v3v1b12(G) ∼P v1v3v3v1b12(G)v1.

2.3. Combination relations. If two or more consecutive parts in a part listing all
lie on levels i and i+ 1, then they can be replaced by a single equivalent bicoloured
graph part, where the edges of the graph are given by the poset relations between the
vertices involved. Conversely, it may be possible to decompose a single bicoloured
graph part into a sequence of consecutive parts occupying the same two levels. If
Bi,i+1 is a word over the alphabet

{vi, vi+1} ∪ { bi,i+1(G) : G a bicoloured graph },
let us write Bi,i+1 for the equivalent bicoloured graph part. Then, for any two
words A, C over Σ, we have the poset-equivalence relation

ABi,i+1C∼
P

ABi,i+1C.

Example 2.8. For the part listing given in Figure 1, the last two parts, corre-
sponding to vertex e on level 1 and the vertices {f, g, h, i} on levels 1 and 2, can
be combined without changing the associated poset. Thus, v2v1v3v3v1b12(G) ∼P

v2v1v3v3v1b12(G) = v2v1v3v3b12(G′), where G′ is the bicoloured graph with vertices
{e, f, g} coloured ‘down’, vertices {h, i} coloured ‘up’, and edges {eh, ei, fh, gh, gi}.

Note that the tangles defined in [2] are exactly the bicoloured graphs which
cannot be decomposed using combination relations.

3. The modular law

With the notation of part listings for (3 + 1)-free posets in place, we can now
state the modular law for their chromatic symmetric functions.

Proposition 3.1 (modular law). Consider the part listing Abi,i+1(G)B, where A, B
are words over Σ and G is a bicoloured graph. Suppose G contains two edges e1, e2
incident to a common vertex y, so that e1 = xy and e2 = yz for some vertices x, z.
Let G1, G2, and G12 be the graphs obtained from G by removing the edge e1, the
edge e2, and both edges, respectively (but no vertices). Let P , P1, P2, and P12 be
the posets associated to the part listings Abi,i+1(G)B, Abi,i+1(G1)B, Abi,i+1(G2)B,
and Abi,i+1(G12)B, respectively. Then,

CSF(P ) + CSF(P12) = CSF(P1) + CSF(P2).
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Proof. Since the chromatic symmetric function is a generating function for proper
vertex colourings and all of these posets have the same vertex set, it is enough to
verify that each vertex colouring κ : V → P (whether proper or not) makes the
same contribution to both sides of the equation. For κ to make any contribution, it
must be proper for P . In particular, κ(x) 6= κ(z), and κ(y) may be equal to κ(x),
or κ(z), or neither. If κ(y) = κ(x), then κ is proper for P and P2, but not for P1

nor P12. If κ(y) = κ(z), then κ is proper for P and P1, but not for P2 nor P12. If
κ(y) is distinct from κ(x) and κ(z), then κ is proper for all of P , P1, P2 and P12.
In all cases, the contribution of κ is the same to both sides of the equation. �

Note that the proof of the modular relation only depends on the fact that x < y
and z < y (or, symmetrically, y < x and y < z) are cover relations in the poset
P . However, we state the modular law as above so that all the posets involved are
manifestly (3 + 1)-free.

Since we are concerned with linear combinations of chromatic symmetric func-
tions and linear relations between them, it will be useful to consider formal linear
combinations of part listings, and to define the CSF and poset-equivalence ∼P
on these linear combinations by linear extension. Then, we define a modular-
equivalence relation ∼M by imposing

L+ L12∼
M

L1 + L2,

where L, L1, L2, and L12 are the part listings considered in Proposition 3.1, and
extending ∼M linearly so that it is invariant under translation and scaling. Then,
we have CSF(α) = CSF(β) whenever α ∼P β or α ∼M β.

4. Dual bases for bicoloured parts

Now, let us consider some consequences of the modular law for the computation
of chromatic symmetric functions. In particular, let us fix a set of r vertices coloured
‘down’ and a set of s vertices coloured ‘up’ and look at the modular law when
restricted to bicoloured graphs on these vertices. More formally, let V sr be the
vector space over Q of formal linear combinations of the set

{ b12(G) : G is a bicoloured graph with r vertices below and s vertices above },

modulo the modular-equivalence relation ∼M. Also, consider the vectors

Uk = vs−k2 vr1v
k
2 ∈ V sr for k = 0, 1, 2, . . . , s,

which we call udu vectors (for ‘up-down-up’), and the vectors

Dk = vk1v
s
2v
r−k
1 ∈ V sr for k = 0, 1, 2, . . . , r,

which we call dud vectors. Finally, consider the linear functionals Fk : V sr → Q for
k = 0, 1, 2, . . . ,min{r, s} defined as follows, which we call probability functionals:

Let G be a bicoloured graph with r vertices below and s vertices
above. LetM be a random matching with min{r, s} edges from the
complete bicoloured graph on the same vertex set, taken uniformly
at random out of all max{r, s}!/ |r − s|! such matchings. Then,
Fk(b12(G)) is the probability that G and M have exactly k edges
in common.
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Note that this is well-defined, since the vectors b12(G) span V sr , and Fk respects
the modular-equivalence relation

b12(G) + b12(G12)∼
M

b12(G1) + b12(G2).

The following proposition summarizes some useful properties of the probability
functionals, the udu vectors, and the dud vectors.

Proposition 4.1 (dual bases).
(i) The probability functionals are a basis for space of linear functionals on V sr .
(ii) If r ≥ s, then the udu vectors are a dual basis for the probability functionals,

in the sense that Fj(Uk) = 1 is j = k and 0 otherwise.
(iii) If r ≤ s, then the dud vectors are a dual basis for the probability functionals,

in the sense that Fj(Dk) = 1 is j = k and 0 otherwise.
(iv) Every vector of the form b12(G) in V sr is a convex combination of udu

vectors or dud vectors.

Proof. (i) For k = 0, 1, 2, . . . ,min{r, s}, let Mk be the (unique, up to isomor-
phism) bicoloured matching with r vertices below, s vertices above, and k
edges. Consider the vector b12(G) ∈ V sr for an arbitrary G. If G has a
vertex of degree more than 1, let e1 and e2 be two edges incident to that
vertex. Then, the modular relation gives

b12(G)∼
M

b12(G1) + b12(G2)− b12(G12),

and by induction on the number of edges in G, it follows that b12(G) can
be expressed as

b12(G)∼
M

min{r,s}∑
k=0

ckb12(Mk)

for some coefficients ck. Thus, the vectors b12(Mk) span V sr . Also, the
probability Fj(b12(Mk)) is nonzero if j = k, and zero if j > k, so it follows
that the vectors b12(Mk) are linearly independent. Symmetrically, the linear
functionals Fj are linearly independent, and by a dimension argument, they
form a basis for space of linear functionals on V sr .

(ii) Direct computation.
(iii) Direct computation.
(iv) The numbers Fk(b12(G)) give the coefficients of b12(G) in the basis of udu

vectors or dud vectors, depending on whether r ≥ s or r ≤ s. Since these
numbers are the probabilities of a set of events which partition their sample
space, they are nonnegative and their sum is 1. �

5. Consequences

Theorem 5.1. If every (3 + 1)- and (2 + 2)-free poset is e-positive, then every
(3 + 1)-free poset is e-positive.

Proof. Every (3 + 1)-free poset can be represented as a part listing, possibly con-
taining parts of the form bi,i+1(G). By Proposition 4.1, each part of the form
bi,i+1(G) can be replaced by a convex combination of udu vectors or dud vectors
by using modular-equivalence without affecting the chromatic symmetric function.
Furthermore, each udu vector or dud vector is poset-equivalent to a list of parts
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with no bicoloured graphs. By [2], the posets associated to part listings with no
parts of the form bi,i+1(G) are exactly the (3 + 1)-and-(2 + 2)-free posets. �

Remark 5.2. In fact, the question of e-positivity for (3 + 1)-free posets can be
further reduced to a much smaller class of possible counter-examples. A first re-
duction can be obtained by throwing out not only part listings which contain parts
of the form bi,i+1(G) other than udu vectors or dud vectors, but also those which
contain parts of this form after applying the relations of poset-equivalence.

A second reduction can be obtained by noting that, if the vertex set of a poset
P can be split into nonempty sets X and Y such that x < y for all x ∈ X and
y ∈ Y , then CSF(P ) can be computed as the product of the chromatic symmetric
functions of P restricted to X and Y . Thus, only posets which cannot be split in
this way need to be checked.

A third reduction can be obtained by using the fact that the udu vector Uk ∈ V sr
and the dud vector Dk ∈ V sr are equal up to modular-equivalence when r = s,
combined with the first or second reductions.

A fourth reduction can be obtained that the chromatic symmetric function is
invariant under reversing all the relations of a poset.

After performing all these reductions, a comparatively tiny class is posets remains
(see Table 1). In particular, there are only 62152 such posets on up to 20 vertices,
and we have computationally checked that they are all e-positive.

Theorem 5.3. Every 3-free poset is e-positive.

Proof. Let P be a 3-free poset, so that it can be represented by the part listing
b12(G) for some bicoloured graph G with r vertices on level 1 and s vertices on level
2. By turning P upside down if necessary, we can assume that r ≥ s. Then, up to
modular-equivalence, we can express b12(G) as the convex combination

b12(G)∼
M

s∑
k=0

ck · vs−k2 vr1v
k
2 .

For the term k = s appearing on the right-hand side, we can directly compute

CSF(vr1v
s
2) = r! s! · er,s.

For each remaining term, we can use the circulation relation to transform the leading
v2 into a trailing v1, rewriting the term as

vs−k2 vr1v
k
2∼P vs−k−12 vr1v

k
2v1 ∈ V

s−1
r+1 .

By repeating this process of expressing as a convex combination, peeling off a term,
and rewriting the remaining terms, we eventually obtain

CSF(b12(G)) =

s∑
k=0

c′k CSF(vr+k1 vs−k2 ) =

s∑
k=0

c′k(r + k)! (s− k)! · er+k,s−k,

where the c′k are the coefficients of a convex combination. �
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Example 5.4. We can compute( )
∼
M

5
12

( )
+ 5

12

( )
+ 2

12

( )
,

then
5
12

( )
+ 2

12

( )
∼
P

5
12

( )
+ 2

12

( )
∼
M

20
60

( )
+ 15

60

( )
,

then
15
60

( )
∼
P

15
60

( )
,

and we know that

CSF
( )

= 4! 2! · e42,

CSF
( )

= 5! 1! · e51,

CSF
( )

= 6! · e6,

so we have
CSF

( )
= 20e42 + 40e51 + 180e6.
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