A generalization of carries processes and Eulerian numbers
 Fumihiko Nakand ${ }^{1}$ and Taizo Sadahird ${ }^{2}$

Abstract

We study a generalization of Holte's amazing matrix, the transition probability matrix of the Markov chains of the 'carries' in a non-standard numeration system. The stationary distributions are explicitly described by the numbers which can be regarded as a generalization of the Eulerian numbers and the MacMahon numbers. We also show that similar properties hold even for the numeration systems with the negative bases.

MSC: 60C05, 60J10, 05E99
Keywords: Carries, Markov chain, Eulerian number.

1 Introduction and statements of results

The transition probability matrix so-called 'amazing matrix' of the Markov chain of the 'carries' has very nice properties [5], and has unexpected connection to the Markov chains of riffle shuffles [2, 3]. Diaconis and Fulman [3] studies a variant of the carries process, type B carries process. Novelli and Thibon studies the carries process in terms of noncommutative symmetric functions [7]. This paper studies a generalization of the carries process which includes Diaconis and Fulman's type B carries process as a special case. We study the transition probability matrices of the Markov chains of the carries in the numeration systems with non-standard digit sets. We show that the matrices have the eigenvectors which can be perfectly described by a generalization of Eulerian numbers and the MacMahon numbers [8, 6, 1, 3]. We also show that similar properties hold even for the numeration systems with negative bases.

1.1 Numeration system

Throughout the paper, b denotes a positive integer and $\mathcal{D}=\{d, d+1, \ldots, d+b-1\}$ denotes a set of integers containing 0 . Therefore, $-b<d<b$. Then, we have a numeration system (b, \mathcal{D}) : Suppose that an integer x has a representation of the form,

$$
\begin{equation*}
x=\left(x_{k} x_{k-1} \cdots x_{0}\right)_{b} \stackrel{\text { def }}{=} x_{0}+x_{1} b+x_{2} b^{2}+\cdots+x_{k} b^{k}, \quad x_{0}, x_{1}, \ldots, x_{k} \in \mathcal{D}, x_{k} \neq 0 \tag{1}
\end{equation*}
$$

Then, it can be easily shown that this representation is uniquely determined for x and

$$
\left\{\left(x_{k} x_{k-1} \cdots x_{0}\right)_{b} \mid k \geq 0, x_{0}, x_{1}, \ldots, x_{k} \in \mathcal{D}\right\}= \begin{cases}\mathbb{Z} & d \neq 0,-b+1 \\ \mathbb{N} & d=0 \\ -\mathbb{N} & d=-b+1\end{cases}
$$

is closed under the addition, where \mathbb{N} denotes the set of non-negative integers.

[^0]
1.2 Carries process

Let $\left\{X_{i, j}\right\}_{1 \leq i \leq n, j \geq 0}$ be the set of independent random variables each of which is distributed uniformly over \mathcal{D}. Define the two stochastic processes $\left(A_{0}, A_{1}, A_{2}, \ldots\right)$, and ($\left.C_{0}, C_{1}, C_{2}, \ldots\right)$ in the following way: $C_{0}=0$ with probability one. $\left(A_{i}\right)_{i \geq 0}$ is a sequence of \mathcal{D}-valued random variables satisfying

$$
A_{i} \equiv C_{i}+X_{1, i}+\cdots+X_{n, i} \quad(\bmod b), \quad i=0,1,2, \ldots
$$

and

$$
C_{i}=\frac{C_{i-1}+X_{1, i-1}+\cdots+X_{n, i-1}-A_{i-1}}{b}, \quad i=1,2,3, \ldots
$$

(See Figure 1.) It is obvious that $\left(C_{0}, C_{1}, C_{2}, \ldots\right)$ is a Markov process, which we call the carries process with n summands or simply n-carry process over (b, \mathcal{D}).

\cdots	C_{4}	C_{3}	C_{2}	C_{1}	C_{0}
\cdots					
\cdots	$X_{1,4}$	$X_{1,3}$	$X_{1,2}$	$X_{1,1}$	$X_{1,0}$
\cdots	$X_{2,4}$	$X_{2,3}$	$X_{2,2}$	$X_{2,1}$	$X_{2,0}$
\cdots	$X_{3,4}$	$X_{3,3}$	$X_{3,2}$	$X_{3,1}$	$X_{3,0}$
\cdots	\vdots	\vdots	\vdots	\vdots	\vdots
$+)$	\cdots	$X_{n, 4}$	$X_{n, 3}$	$X_{n, 2}$	$X_{n, 1}$

Figure 1: Carries process

1.3 A generalization of Eulerian numbers

Let $p \geq 1$ be a real number and n a positive integer. Then we define an array of numbers $v_{i, j}^{(p)}(n)$ for $i=0,1, \ldots, n$ and $j=0,1, \ldots, n+1$ by

$$
\begin{equation*}
v_{i, j}^{(p)}(n)=\sum_{r=0}^{j}(-1)^{r}\binom{n+1}{r}[p(j-r)+1]^{n-i}, \tag{2}
\end{equation*}
$$

and define $v_{i,-1}^{(p)}(n)=0$. We denote

$$
\left\langle\begin{array}{c}
n \\
j
\end{array}\right\rangle_{p}=v_{0, j}^{(p)}(n),
$$

which can be regarded as a generalization of the Eulerian numbers. In fact, $\left\{\left\langle\begin{array}{c}n \\ j\end{array}\right\rangle_{p}\right\}$ forms the array of the ordinary Eulerian numbers when $p=1$, and MacMahon numbers [8, 6, 1, 3] when $p=2$.

1.4 Statement of the result

Throughout the paper, $\Omega=\Omega_{n}(b, \mathcal{D})$ denotes the state space of the n-carry process over (b, \mathcal{D}), that is, the set of possible values of carries, and $p_{i, j}$ denotes the transition probability $\operatorname{Pr}\left(C_{i+1}=j \mid C_{i}=i\right)$ for $i, j \in \Omega_{n}(b, \mathcal{D})$. For computational convenience, it is desirable for the transition probability matrix to have indices starting from 0 . We define $\tilde{p}_{i, j}=p_{i+s, j+s}$, where s is the minimal element of $\Omega_{n}(b, \mathcal{D})$. Then, we define the matrix P by

$$
\begin{equation*}
P=\left(\tilde{p}_{i, j}\right)_{0 \leq i, j \leq \# \Omega-1}, \tag{3}
\end{equation*}
$$

where $\# \Omega$ denotes the size of the state space, which is explicitly computed in Lemma 1 is the central object of this paper.

Remark 1. As we will show in the later sections, this matrix P which we regard as a generalization of Holte's amazing matrix is determined only by b, n and p, and therefore these amazing matrices with same n and p form a commutative family. Holte's amazing matrix corresponds to the case when $p=1$ and Diaconis and Fulman's type B carries process corresponds to the case when $p=2$.

Theorem 1. Let $\Omega=\Omega_{n}(b, \mathcal{D})$ be the state space of the n-carry process over (b, \mathcal{D}), and $m=$ $\# \Omega_{n}(b, \mathcal{D})$. let p be defined by

$$
p= \begin{cases}\frac{1}{\{(n-1)(-l)\}} & (n-1) l \notin \mathbb{Z}, \tag{4}\\ 1 & (n-1) l \in \mathbb{Z},\end{cases}
$$

where $l=d /(b-1)$ and $\{x\}=x-\lfloor x\rfloor$, and let $V=\left(v_{i, j}^{(p)}(n)\right)_{0 \leq i, j \leq m-1}$. Then, the transition probability matrix P is diagonalized by V :

$$
V P V^{-1}=\operatorname{diag}\left(1, b^{-1}, \ldots, b^{-(m-1)}\right)
$$

In particular, by Lemma [5, the probability vector π of the stationary distribution of the carries process is

$$
\pi=(\pi(s), \pi(s+1), \ldots, \pi(s+m-1))=\frac{1}{p^{n} n!}\left(\left\langle\begin{array}{c}
n \\
0
\end{array}\right\rangle_{p}, \ldots,\left\langle\begin{array}{c}
n \\
m-1
\end{array}\right\rangle_{p}\right)
$$

Remark 2. It is remarkable that our amazing matrix has the eigenvalues of the same form $1,1 / b, 1 / b^{2}, \ldots$ as those of Holte's amazing matrix.

Corollary 1. Let S_{n} be the sum of n independent random variables each of which is distributed uniformly over the unit interval $[0,1]$. Then, for all positive real numbers $p \geq 1$ and integers k, the probability of S_{n} being in the interval $\frac{1}{p}+[k-1, k]$ is

$$
\operatorname{Pr}\left(S_{n} \in \frac{1}{p}+[k-1, k]\right)=\frac{1}{p^{n} n!}\left\langle\begin{array}{c}
n \tag{5}\\
k
\end{array}\right\rangle_{p} .
$$

Remark 3. This corollary can be derived directly from the formula of the distribution of sums of independent uniform random variables in [4], and it is shown for the case $p=2$ in [3].

Example 1. Let $p \geq 1$ be a real number. As will be shown in the later section, the array of generalized Eulerian numbers satisfies the following recursive relations

$$
\left\langle\begin{array}{c}
n+1 \\
k
\end{array}\right\rangle_{p}=(p k+1)\left\langle\begin{array}{l}
n \\
k
\end{array}\right\rangle_{p}+(p(n+1-k)-1)\left\langle\begin{array}{c}
n \\
k-1
\end{array}\right\rangle_{p} .
$$

and the boundary conditions

$$
\left\langle\begin{array}{c}
n \\
0
\end{array}\right\rangle_{p}=1, \quad \text { and } \quad\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle_{p}=0 \text { for } k>n .
$$

(See Figure 2.)

$$
p=1 \quad p=2
$$

$$
p=3
$$

$$
p=\frac{5}{3}
$$

Figure 2: Arrays of generalized Eulerian numbers for $p=1$ (upper left), $p=2$ (upper right), $p=3$ (lower left), and $p=\frac{5}{3}$ (lower right)

The probability density function of S_{3} described in Theorem 1 is

$$
f(x)= \begin{cases}x^{2} / 2 & \text { if } 0 \leq x<1 \\ -\left(x-\frac{3}{2}\right)^{2}+\frac{3}{4} & \text { if } 1 \leq x<2 \\ (x-3)^{2} / 2 & \text { if } 2 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

p	$\operatorname{Pr}\left(S_{3} \in 1 / p+[-1,0]\right)$	$\operatorname{Pr}\left(S_{3} \in 1 / p+[0,1]\right)$	$\operatorname{Pr}\left(S_{3} \in 1 / p+[1,2]\right)$	$\operatorname{Pr}\left(S_{3} \in 1 / p+[2,3]\right)$
1	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$	0
2	$\frac{1}{48}$	$\frac{23}{48}$	$\frac{23}{48}$	$\frac{1}{48}$
3	$\frac{1}{162}$	$\frac{60}{162}$	$\frac{93}{162}$	$\frac{8}{162}$
$5 / 3$	$\frac{27}{750}$	$\frac{404}{750}$	$\frac{311}{750}$	$\frac{8}{750}$

The probability vectors appear in the third rows of the triangles of the generalized Eulerian numbers (Figure (2).

2 Proof

2.1 State space and transition probability

Lemma 1. Let $\Omega=\Omega_{n}(b, \mathcal{D})$ be the state space of the n-carry process over the numeration system (b, \mathcal{D}). Then, $\Omega=\{s, s+1, \ldots, t\}$ with

$$
s=-\lceil(n-1)(-l)\rceil=\lfloor(n-1) l\rfloor, \quad t=\lceil(n-1)(l+1)\rceil \text {, }
$$

where $l=d /(b-1)$. Therefore, the size of the state space Ω is

$$
\# \Omega= \begin{cases}n+1 & (n-1) l \notin \mathbb{Z} \\ n & (n-1) l \in \mathbb{Z}\end{cases}
$$

Proof. Suppose that we add n numbers,

$$
\left(x_{1, \nu} x_{1, \nu-1} \cdots x_{1,1} x_{1,0}\right)_{b},\left(x_{2, \nu} x_{2, \nu-1} \cdots x_{2,1} x_{2,0}\right)_{b}, \ldots,\left(x_{n, \nu} x_{n, \nu-1} \cdots x_{n, 1} x_{n, 0}\right)_{b}
$$

and get the sum $\left(a_{\nu+1}, a_{\nu}, \ldots, a_{1}, a_{0}\right)_{b}$ and the carries $c_{0}, c_{1}, c_{2}, \ldots$ That is, $c_{0}=0$ and

$$
c_{i+1}=\frac{c_{i}+x_{1, i}+\cdots+x_{n, i}-a_{i}}{b},
$$

where $a_{i} \in \mathcal{D}$ and $a_{i} \equiv c_{i}+x_{1, i}+\cdots+x_{n, i}(\bmod b)$. Let F be defined by

$$
F=\left\{x_{1} b^{-1}+x_{2} b^{-2}+\cdots+x_{m} b^{-m} \mid x_{i} \in \mathcal{D}_{b}, m>0 \in \mathbb{Z}\right\} .
$$

Then, F is a dense subset of the interval $(l, l+1)$, where $l=d /(b-1)$.

$$
\begin{aligned}
c_{i}=c & \Longleftrightarrow\left(x_{1, i-1} \cdots x_{1,0}\right)_{b}+\cdots+\left(x_{n, i-1} \cdots x_{n, 0}\right)_{b}=c b^{i}+\left(a_{i-1} \cdots a_{0}\right)_{b} \\
& \Longleftrightarrow \frac{\left(x_{1, i-1} \cdots x_{1,0}\right)_{b}}{b^{i}}+\cdots+\frac{\left(x_{n, i-1} \cdots x_{n, 0}\right)_{b}}{b^{i}}=c+\frac{\left(a_{i-1} \cdots a_{0}\right)_{b}}{b^{i}}
\end{aligned}
$$

Since $\frac{\left(x_{i-1}^{1} \cdots x_{0}^{1}\right)_{b}}{b^{i}}, \ldots, \frac{\left(x_{i-1}^{n} \cdots x_{0}^{n}\right)_{b}}{b^{i}}, \frac{\left(a_{i-1} \cdots a_{0}\right)_{b}}{b^{i}} \in F$, we have $c \in n F-F \subset((n-1) l-1,(n-1)(l+1)+1)$. Conversely, if $c \in((n-1) l-1,(n-1)(l+1)+1) \cap \mathbb{Z}$, then $c+F \subset n F$. Therefore s is the smallest integer strictly greater than $(n-1) l-1$ and t is the greatest integer strictly smaller than $(n-1)(l+1)+1$, that is,

$$
s=-\lceil(n-1)(-l)\rceil, \quad t=\lceil(n-1)(l+1)\rceil
$$

Theorem 2.

$$
p_{i, j}=\frac{1}{b^{n}} \sum_{k=0}^{j-\left\lfloor\frac{d(n-1)+i}{b}\right\rfloor}(-1)^{k}\binom{n+1}{k}\binom{n+b(j+1-k)-d(n-1)-i-1}{n}, \quad i, j \in \Omega_{n}(b, \mathcal{D})
$$

Proof. This proof is essentially the same as that of Holte [5] for the case when $\mathcal{D}=\{0,1, \ldots, b-1\}$. $p_{i, j}$ is the probability of $C_{k+1}=j$ under $C_{k}=i$ for some $k>0 . C_{k+1}=j$ and $C_{k}=i$ implies there exists a number $a \in \mathcal{D}$, such that,

$$
j=\frac{i+X_{1, k}+X_{2, k}+\cdots+X_{n, k}-a}{b}
$$

We count the number N of the solutions $\left(x_{1}, x_{2}, \ldots, x_{n}, a\right) \in \mathcal{D}^{n+1}$ of the equation

$$
b j+a=i+x_{1}+x_{2}+\cdots+x_{n}
$$

This is equal to the number of solutions $\left(x_{1}, x_{2}, \ldots, x_{n}, y\right) \in \mathcal{D}^{n} \times\{0,1, \ldots, b-1\}$ for the equation

$$
b j+d+b-1-i=x_{1}+x_{2}+\cdots+x_{n}+y
$$

By adding d to the both sides, N is equal to the number of solutions $\left(x_{1}, \ldots, x_{n}, z\right) \in \mathcal{D}^{n+1}$ for

$$
b(j+1)+2 d-1-i=x_{1}+x_{2}+\cdots+x_{n}+z
$$

Thus, N is the coefficient of $x^{b(j+1)+2 d-1-i}$ in $\left(x^{d}+x^{d+1}+\cdots+x^{d+b-1}\right)^{n+1}$. Since

$$
\begin{aligned}
\left(x^{d}+x^{d+1}+\cdots+x^{d+b-1}\right)^{n+1} & =\left\{x^{d}\left(1+x+\cdots+x^{b-1}\right)\right\}^{n+1} \\
& =x^{d(n+1)}\left(\frac{1-x^{b}}{1-x}\right)^{n+1} \\
& =x^{d(n+1)}\left(\sum_{k=0}^{n+1}(-1)^{k}\binom{n+1}{k} x^{b k}\right)\left(\sum_{r=0}^{\infty}\binom{n+r}{n} x^{r}\right)
\end{aligned}
$$

we have

$$
\begin{aligned}
N & =\sum_{\substack{r, k \geq 0 \\
d(n+1)+b k+r=b(j+1)+2 d-1-i}}(-1)^{k}\binom{n+1}{k}\binom{n+r}{n} x^{r} \\
& =\sum_{\substack{k \geq 0 \\
b(j+1)+2 d-1-i-d(n+1)-b k \geq 0}}(-1)^{k}\binom{n+1}{k}\binom{n+b(j+1)+2 d-1-i-d(n+1)-b k}{n} x^{r} \\
& =\sum_{k=0}^{j+1+\left\lfloor-\frac{1+i+d(n-1)}{b}\right\rfloor}(-1)^{k}\binom{n+1}{k}\binom{n+b(j+1)-1-i-d(n-1)-b k}{n} x^{r} .
\end{aligned}
$$

$j+1+\left\lfloor-\frac{1+i+d(n-1)}{b}\right\rfloor=j-\left\lfloor\frac{i+d(n-1)}{b}\right\rfloor, p_{i, j}=\frac{N}{b^{n}}$ and the theorem follows.
Lemma 2. Let $P=\left(\tilde{p}_{i, j}\right)$ be the matrix defined by (3) and let p be defined by (44). Then,

$$
\begin{equation*}
\tilde{p}_{i, j}=\frac{1}{b^{n}} \sum_{r=0}^{j}(-1)^{r}\binom{n+1}{r}\binom{n+b(j-r)+\frac{b-1}{p}-i}{n} . \tag{6}
\end{equation*}
$$

Proof. Let s be the minimal element of the state space $\Omega_{n}(b, \mathcal{D})$ of the n-carry process. Then, recall that

$$
s=-\left\lceil(n-1) \frac{-d}{b-1}\right\rceil=\left\lfloor(n-1) \frac{d}{b-1}\right\rfloor .
$$

Therefore,

$$
\begin{aligned}
& \tilde{p}_{i, j}=p_{i+s, j+s}=\frac{1}{b^{n}} \sum_{r \geq 0}(-1)^{r}\binom{n+1}{r}\binom{n+b(j+s+1-r)-d(n-1)-i-s-1}{n} \\
& n+b(j+s+1-r)-d(n-1)-i-s-1 \\
& =n+(b-1) s+b(j+1-r)-d(n-1)-i-1 \\
& =n+(b-1)\left\lfloor(n-1) \frac{-d}{b-1}\right\rfloor+b(j+1-r)-d(n-1)-i-1 \\
& =n+(b-1) \frac{(n-1) d-(n-1) d(\bmod b-1)}{b-1}+b(j+1-r)-d(n-1)-i-1 \\
& =n+(b-1)-(n-1) d(\bmod b-1)+b(j-r)-i \\
& =n+(b-1) \frac{(b-1)-(n-1) d(\bmod b-1)}{b-1}+b(j-r)-i \\
& = \begin{cases}n+(b-1)\left\{\frac{(n-1)(-d)}{b-1}\right\}+b(j-r)-i & \frac{(n-1)(-d)}{b-1} \in \mathbb{Z}, \\
n+(b-1)+b(j-r)-i & \frac{(n-1)(-d)}{b-1} \notin \mathbb{Z} .\end{cases}
\end{aligned}
$$

Here, $x(\bmod N)$ denotes the integer $y \in\{0,1, \ldots, N-1\}$ such that $x-y \in N \mathbb{Z}$. Then, we calculate a common upper bound of the range of the summation in (6):

$$
n+b(j-r)+\frac{b-1}{p}-i \geq n \Longleftrightarrow r \leq j+\frac{b-1}{p b}-\frac{i}{p}
$$

Since $p \geq 1$ and $b>1, j+\frac{b-1}{p b}-\frac{i}{p} \leq j$.

2.2 Generalized Eulerian numbers

Lemma 3.

$$
v_{i, n+1}^{(p)}(n)=0 .
$$

Proof.

$$
v_{i, n+1}^{(p)}(n)=\sum_{r=0}^{n+1}(-1)^{r}\binom{n+1}{r}[p(n+1-r)+1]^{n-i}
$$

This is a linear combination of

$$
\sum_{r=0}^{n+1}(-1)^{r}\binom{n+1}{r} r^{k}=0, \quad k=0,1, \ldots, n
$$

Lemma 4.

$$
\begin{equation*}
v_{i, j}^{(p)}(n)=[p(n+1-j)-1] v_{i, j-1}^{(p)}(n-1)+(p j+1) v_{i, j}^{(p)}(n-1) . \tag{7}
\end{equation*}
$$

Proof. The first term T_{1} of right hand side of (17) can be rewritten as

$$
T_{1}=\sum_{k=1}^{j}(-1)^{k-1}\binom{n}{k-1}[p(n+1-j)-1][p(j-k)+1]^{n-1-i},
$$

and the second term T_{2}

$$
T_{2}=\sum_{k=1}^{j}(-1)^{k}\binom{n}{k}(p j+1)[p(j-k)+1]^{n-1-i}+(p j+1)(p j+1)^{n-1-i} .
$$

Thus the right hand side of (7) is

$$
\begin{aligned}
& T_{1}+T_{2}= \sum_{k=1}^{j}(-1)^{k}\left\{-\binom{n}{k-1}[p(n+1-j)-1]+\binom{n}{k}(p j+1)\right\}[p(j-k)+1]^{n-1-i} \\
& \quad+(p j+1)^{n-i} \\
&= \sum_{k=1}^{j}(-1)^{k}\binom{n+1}{k}[p(j-k)+1]^{n-i}+(p j+1)^{n-i} \\
&= v_{i, j}^{(p)}(n) .
\end{aligned}
$$

Lemma 5.

$$
\sum_{j=0}^{n} v_{i, j}^{(p)}(n)= \begin{cases}p^{n} n! & \text { if } i=0 \\ 0 & \text { if } i>0\end{cases}
$$

Proof. By Lemma 4, we have

$$
\begin{aligned}
\sum_{j=0}^{n} v_{i, j}^{(p)}(n) & =\sum_{j=0}^{n}\left\{[p(n+1-j)-1] v_{i, j-1}^{(p)}(n-1)+(p j+1) v_{i, j}^{(p)}(n-1)\right\} \\
& =\sum_{j=0}^{n}[p(n+1-j)-1] v_{i, j-1}^{(p)}(n-1)+\sum_{j=0}^{n}(p j+1) v_{i, j}^{(p)}(n-1) \\
& =\sum_{j=0}^{n-1}[p(n-j)-1] v_{i, j}^{(p)}(n-1)+\sum_{j=0}^{n-1}(p j+1) v_{i, j}^{(p)}(n-1) \\
& =\sum_{j=0}^{n-1} p m v_{i, j}^{(p)}(n-1) \\
& =p n \sum_{j=0}^{n-1} v_{i, j}^{(p)}(n-1) \\
& = \begin{cases}p^{n} n! & \text { if } i=0, \\
0 & \text { if } i>0 .\end{cases}
\end{aligned}
$$

The following Proposition 1 shows a symmetry of the generalized Eulerian number.
Proposition 1. Let n be a positive integer. Then

$$
v_{i, n-1-j}^{(1)}=(-1)^{i} v_{i, j}^{(1)}(n) \quad \text { for } 0 \leq j \leq n-1 .
$$

Let $p>1$ and p^{*} be the real number satisfying

$$
\frac{1}{p}+\frac{1}{p^{*}}=1 .
$$

Then,

$$
v_{i, n-j}^{\left(p^{*}\right)}(n)=(-1)^{i}\left(\frac{p^{*}}{p}\right)^{n-i} v_{i, j}^{(p)}(n) \quad \text { for } 0 \leq j \leq n
$$

Proof. We show the proof only for the second part. The first part can be proved in the same manner.

If $p>1$ then $p^{*}=p /(p-1)$.

$$
\begin{aligned}
v_{i, n-j}^{\left(p^{*}\right)}(n) & =\sum_{k=0}^{n-j}(-1)^{k}\binom{n+1}{k}\left(p^{*}(n-j-k)+1\right)^{n-i} \\
& =\sum_{k=n+1-j}^{n+1}(-1)^{k}\binom{n+1}{k}\left(p^{*}(n-j-k)+1\right)^{n-i} \\
& =-\sum_{k^{\prime}=0}^{j}(-1)^{n+1-k^{\prime}}\binom{n+1}{n+1-k^{\prime}}\left(p^{*}\left(n-j-\left(n+1-k^{\prime}\right)\right)+1\right)^{n-i} \\
& =-\sum_{k^{\prime}=0}^{j}(-1)^{n+1-k^{\prime}}\binom{n+1}{k^{\prime}}\left(\frac{p}{p-1}\left(k^{\prime}-j-1\right)+1\right)^{n-i} \\
& =-\sum_{k=0}^{j}(-1)^{n+1-k}\binom{n+1}{k}\left(\frac{-1}{p-1}\right)^{n-i}(p(j-k+1)-p+1)^{n-i} \\
& =(-1)^{n}\left(\frac{-1}{p-1}\right)^{n-i} \sum_{k=0}^{j}(-1)^{k}\binom{n+1}{k}(p(j-k)+1)^{n-i} \\
& =\frac{(-1)^{i}}{(p-1)^{n-i}} \sum_{k=0}^{j}(-1)^{k}\binom{n+1}{k}(p(j-k)+1)^{n-i}
\end{aligned}
$$

2.3 Left eigenvectors

Proof of Theorem 11. The proof is essentially the same as that of Holte [5]. It suffices to show that

$$
\sum_{k=0}^{m-1} v_{i, k}^{(p)}(n) \tilde{p}_{k, j}=\frac{1}{b^{i}} v_{i, j}^{(p)}(n) .
$$

We prove the theorem for the case in which $p \neq 1$, i.e., $m=n+1$, and the other case can be proved in the same manner. By Lemma 2 we have

$$
\tilde{p}_{k, j}=\frac{1}{b^{n}} \sum_{r=0}^{j}(-1)^{r}\binom{n+1}{r}\binom{n+K(j, r)-k}{n}
$$

where we put $K(j, r)=b(j-r)+\frac{b-1}{p}$ for the simplicity of the notation.

$$
\begin{aligned}
\sum_{k=0}^{n} v_{i, k}^{(p)}(n) \tilde{p}_{k, j} & =\sum_{k=0}^{n} \frac{1}{b^{n}} \sum_{r=0}^{j}(-1)^{r}\binom{n+1}{r}\binom{n+K(j, r)-k}{n} v_{i, k}^{(p)}(n) \\
& =\frac{1}{b^{n}} \sum_{r=0}^{j}(-1)^{r}\binom{n+1}{r} \sum_{k=0}^{K(j, r)}\binom{n+K(j, r)-k}{n} v_{i, k}^{(p)}(n) \\
& =\frac{1}{b^{n}} \sum_{r=0}^{j}(-1)^{r}\binom{n+1}{r}\{p K(j, r)+1\}^{n-i} .
\end{aligned}
$$

The third equality in the above transformation is derived as follows: First recall that $v_{i, k}^{(p)}(n)$ is the coefficient of x^{k} in

$$
\left(\sum_{\nu=0}^{n+1}(-1)^{\nu}\binom{n+1}{\nu} x^{\nu}\right)\left(\sum_{\mu=0}^{\infty}(p \mu+1)^{n-i} x^{\mu}\right)=(1-x)^{n+1}\left(\sum_{\mu=0}^{\infty}(p \mu+1)^{n-i} x^{\mu}\right)
$$

and

$$
\frac{1}{(1-x)^{n+1}}=\sum_{k=0}^{\infty}\binom{n+k}{n} x^{k} .
$$

Therefore, $\sum_{k=0}^{K(j, r)}\binom{n+K(j, r)-k}{n} v_{i, k}^{(p)}(n)$ is the coefficient of $x^{K(j, r)}$ in $\sum_{\mu=0}^{\infty}(p \mu+1)^{n-i} x^{\mu}$.
It can be easily confirmed that $p K(j, r)+1=b(p(j-r)+1)$ which completes the proof.
Theorem 1 gives a way of finding a numeration $\operatorname{system}(b, \mathcal{D})$ whose n-carry process has the stationary distribution of the form

$$
\pi=(\pi(s), \pi(s+1), \ldots, \pi(s+m-1))=\frac{1}{p^{n} n!}\left(\left\langle\begin{array}{c}
n \\
0
\end{array}\right\rangle_{p},\left\langle\begin{array}{c}
n \\
1
\end{array}\right\rangle_{p}, \ldots,\left\langle\begin{array}{c}
n \\
m-1
\end{array}\right\rangle_{p}\right)
$$

for any given n and rational $p \geq 1$. For instance, if $p=\frac{K}{L}$ where K and L are coprime positive integers such that $K \geq L$, then we can choose b and d as

$$
\begin{equation*}
b=(n-1) K+1, \quad d=-L . \tag{8}
\end{equation*}
$$

Example 2. We construct numeration systems for $p=2$ and $5 / 3$.

n	b	D	P	V
2	3	$\{-1,0,1\}$	$\frac{1}{3^{2}}\left(\begin{array}{lll}3 & 6 & 0 \\ 1 & 7 & 1 \\ 0 & 6 & 3\end{array}\right)$	$\left(\begin{array}{ccc}1 & 6 & 1 \\ 1 & 0 & -1 \\ 1 & -2 & 1\end{array}\right)$
3	5	$\{-1,0,1,2,3\}$	$\frac{1}{5^{3}}\left(\begin{array}{cccc}10 & 80 & 35 & 0 \\ 4 & 68 & 52 & 1 \\ 1 & 52 & 68 & 4 \\ 0 & 35 & 80 & 10\end{array}\right)$	$\left(\begin{array}{cccc}1 & 23 & 23 & 1 \\ 1 & 5 & -5 & -1 \\ 1 & -1 & -1 & 1 \\ 1 & -3 & 3 & -1\end{array}\right)$
4	7	$\{-1,0,1,2,3,4,5\}$	$\frac{1}{7^{4}}\left(\begin{array}{ccccc}35 & 826 & 1330 & 210 & 0 \\ 15 & 640 & 1420 & 325 & 1 \\ 5 & 470 & 1451 & 470 & 5 \\ 1 & 325 & 1420 & 640 & 15 \\ 0 & 210 & 1330 & 826 & 35\end{array}\right)$	$\left(\begin{array}{ccccc}1 & 76 & 230 & 76 & 1 \\ 1 & 22 & 0 & -22 & -1 \\ 1 & 4 & -10 & 4 & 1 \\ 1 & -2 & 0 & 2 & -1 \\ 1 & -4 & 6 & -4 & 1\end{array}\right)$

Table 1: Amazing matrices with $p=2$

n	b	D		P	V
2	6	$\{-3,-2, \ldots, 2\}$		$\frac{1}{6^{2}}\left(\begin{array}{ccc}10 & 25 & 1 \\ 6 & 27 & 3 \\ 3 & 27 & 6\end{array}\right)$	$\left(\begin{array}{ccc}1 & 37 / 9 & 4 / 9 \\ 1 & -1 / 3 & -2 / 3 \\ 1 & -2 & 1\end{array}\right)$
3	11	$\{-3,-2, \ldots, 7\}$		$\frac{1}{11^{4}}\left(\begin{array}{cccc}84 & 804 & 439 & 4 \\ 56 & 745 & 520 & 10 \\ 35 & 676 & 600 & 20 \\ 20 & 600 & 676 & 35\end{array}\right)$	$\left(\begin{array}{cccc}1 & 404 / 27 & 311 / 27 & 8 / 27 \\ 1 & 28 / 9 & -11 / 3 & -4 / 9 \\ 1 & -4 / 3 & -1 / 3 & 2 / 3 \\ 1 & -3 & 3 & -1\end{array}\right)$
4	16	$\{-3,-2, \ldots, 12\}$	$\frac{1}{16^{4}}$	$\left(\begin{array}{ccccc}715 & 20176 & 37390 & 7240 & 15 \\ 495 & 18000 & 38326 & 8680 & 35 \\ 330 & 15900 & 38960 & 10276 & 70 \\ 210 & 13900 & 39280 & 12020 & 126 \\ 126 & 12020 & 39280 & 13900 & 210\end{array}\right)$	$\left(\begin{array}{ccccc}1 & 3691 / 81 & 8891 / 81 & 2321 / 81 & 16 / 81 \\ 1 & 377 / 27 & -31 / 9 & -101 / 9 & -8 / 27 \\ 1 & 19 / 9 & -61 / 9 & 29 / 9 & 4 / 9 \\ 1 & -7 / 3 & 1 & 1 & -2 / 3 \\ 1 & -4 & 6 & -4 & 1\end{array}\right)$

Table 2: Amazing matrices with $p=\frac{5}{3}$

2.4 Sum of independent uniform random variables

Proof of Corollary [1. Let $X_{i, j}(i=1,2, \ldots, n, j=1,2, \ldots)$ be independent random variables each distributed uniformly on \mathcal{D}. Then, for each integer $k \geq 1$, the random variables

$$
X_{i}^{(k)}=\frac{X_{i, 1}}{b}+\frac{X_{i, 2}}{b^{2}}+\cdots+\frac{X_{i, k}}{b^{k}}, \quad i=1,2, \ldots, n
$$

are independent random variables uniformly distributed over the set

$$
R_{k}=\left\{\left.\frac{x_{1}}{b}+\frac{x_{2}}{b^{2}}+\cdots+\frac{x_{k}}{b^{k}} \right\rvert\, x_{i} \in \mathcal{D}\right\} .
$$

Therefore

$$
\lim _{k \rightarrow \infty} \operatorname{Pr}\left(X_{i}^{(k)} \in[a, b]\right)=b-a, \quad \text { for } a \geq b \in[l, l+1] \text { and } i=1,2, \ldots, n
$$

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables each of which is distributed uniformly over $[l, l+1]$. Then, for any integer $c \in \Omega$,

$$
\lim _{k \rightarrow \infty} \operatorname{Pr}\left(X_{1}^{(k)}+X_{2}^{(k)}+\cdots+X_{n}^{(k)} \in c+[l, l+1]\right)=\operatorname{Pr}\left(X_{1}+X_{2}+\cdots X_{n} \in c+[l, l+1]\right) .
$$

Since

$$
\lim _{k \rightarrow \infty} \operatorname{Pr}\left(X_{1}^{(k)}+X_{2}^{(k)}+\cdots+X_{n}^{(k)} \in c+[l, l+1]\right)=\pi(c)
$$

we have

$$
\pi(c)=\operatorname{Pr}\left(X_{1}+X_{2}+\cdots X_{n} \in c+[l, l+1]\right) .
$$

Let $p>1$ be a non-integral rational number, and suppose that we choose b and d so that

$$
p=\frac{1}{\{(n-1)(-l)\}}
$$

holds, which is always possible by (8). Then, we have

$$
\begin{aligned}
\frac{1}{p}=(n-1)(-l)-\lfloor(n-1)(-l)\rfloor & \Longleftrightarrow n l+\frac{1}{p}=l-\lfloor(n-1)(-l)\rfloor=l+(1-\lceil(n-1)(-l)\rceil) \\
& \Longleftrightarrow n l+\frac{1}{p}+[k-1, k]=(s+k)+[l, l+1]
\end{aligned}
$$

Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be independent random variables each uniformly distributed on the unit interval $[0,1]$.

$$
\begin{aligned}
\operatorname{Pr}\left(Y_{1}+Y_{2}+\ldots+Y_{n} \in \frac{1}{p}+[k-1, k]\right) & =\operatorname{Pr}\left(\left(Y_{1}+l\right)+\ldots+\left(Y_{n}+l\right) \in n l+\frac{1}{p}+[k-1, k]\right) \\
& =\operatorname{Pr}\left(X_{1}+X_{2}+\cdots+X_{l} \in n l+\frac{1}{p}+[k-1, k]\right) \\
& =\operatorname{Pr}\left(X_{1}+X_{2}+\cdots+X_{l} \in(s+k)+[l, l+1]\right) \\
& =\pi(s+k) \\
& =\frac{1}{p^{n} n!}\left\langle\begin{array}{c}
n \\
k
\end{array}\right\rangle_{p}
\end{aligned}
$$

When p is an integer, the statement is proved by a similar argument. Since both sides of the equation (15) are continuous function of p, the statement of the theorem holds when p is irrational.

Remark 4. Corollary 1 gives a different proof and a new interpretation for Proposition 1 for the case $i=0$.

3 Negative base

In this section, we consider carries processes over the numeration systems with the negative bases. Let $b>1$ be an integer and $\mathcal{D}=\{d, d+1, \ldots, d+b-1\}$ a set of integers containing 0 . Suppose an integer x can be represented in the form:

$$
x=\left(x_{l} x_{l-1} \cdots x_{0}\right)_{-b}=x_{l}(-b)^{l}+x_{l-1}(-b)^{l-1}+\cdots+x_{1}(-b)+x_{0}
$$

where l is a non-negative integer and $x_{l} \neq 0$. Then this representation is unique and the set

$$
\left\{\left(x_{l} x_{l-1} \ldots x_{0}\right)_{-b} \mid l \geq 0, x_{k} \in \mathcal{D}\right\}
$$

is closed under the addition. We can define the n-carry process over the numeration system $(-b, \mathcal{D})$ in the same manner as the positive base case. Let $\left\{X_{i, j}\right\}_{1 \leq i \leq n, j \geq 0}$ be a set of i.i.d. random variables each distributed uniformly on \mathcal{D}. Then the carries process $\left(C_{0}, C_{1}, C_{2}, \ldots\right)$ is defined as follows: $\operatorname{Pr}\left(C_{0}=0\right)=1$ and

$$
C_{i}=\frac{C_{i-1}+X_{1, i-1}+\cdots+X_{n, i-1}-A_{i-1}}{-b} \quad \text { for } i>0
$$

where A_{j} is \mathcal{D}-valued. These carries processes have the properties similar to those of the positive base cases. The proofs of the following Lemma 6, Theorem 3, and Lemma 7 are similar to those of Lemma 1, Theorem 2, and Lemma 2, The proof of Theorem 4 needs an additional combinatorial argument.

Lemma 6. Let $\Omega=\Omega_{n}(-b, \mathcal{D})$ be the state space of the n-carry process over the numeration system $(-b, \mathcal{D})$. Then, $\Omega=\{s, s+1, \ldots, t\}$ with

$$
s=-\lceil(n-1)(-l)\rceil=\lfloor(n-1) l\rfloor, \quad t=\lceil(n-1)(l+1)\rceil,
$$

where $l=(-d-b) /(b+1)$. Therefore, the size of the state space Ω is

$$
\# \Omega= \begin{cases}n+1 & (n-1) l \notin \mathbb{Z} \\ n & (n-1) l \in \mathbb{Z}\end{cases}
$$

Theorem 3. Let $i, j \in \Omega(-b, \mathcal{D})$. Then the transition probability $p_{i, j}=\operatorname{Pr}\left(C_{t+1}=j \mid C_{t}=i\right)$ for $t>0$ is

$$
p_{i, j}=\frac{1}{b^{n}} \sum_{r=0}^{-j+1+\left\lfloor\frac{-i-1+(1-n) d}{b}\right\rfloor}(-1)^{r}\binom{n+1}{r}\binom{n-b(j-1+r)-i-1+(1-n) d}{n}
$$

We denote

$$
\tilde{p}_{i, j}=p_{i+s, j+s}
$$

where s is the minimal element of the state space $\Omega(-b, \mathcal{D})$ of the n-carry process over $(-b, \mathcal{D})$.
Lemma 7. Let p be defined by

$$
p= \begin{cases}\frac{1}{\{(n-1) l\}} & (n-1) l \notin \mathbb{Z} \tag{9}\\ 1 & (\Leftrightarrow m=n+1), \\ 1 & (n-1) l \in \mathbb{Z} \\ (\Leftrightarrow m=n) .\end{cases}
$$

where $l=(-d-b) /(b+1)$ and $m=\# \Omega_{n}(-b, \mathcal{D})$. Then,

$$
\tilde{p}_{i, j}=\frac{1}{b^{n}} \sum_{r=0}^{n-j}(-1)^{r}\binom{n+1}{r}\binom{n+b(n+1-j-r)-\frac{b+1}{p}-i}{n} .
$$

Theorem 4. Let $P=\left(\tilde{p}_{i, j}\right)_{0 \leq i, j \leq m-1}$ be the transition probability matrix of the n-carry process over the numeration system $(-b, \mathcal{D})$, and $m=\# \Omega(-b, \mathcal{D})$ be the size of the state space. Let p be defined by

$$
p= \begin{cases}\frac{1}{\{(n-1) l\}} & (n-1) l \notin \mathbb{Z} \\ 1 & (\Leftrightarrow m=n+1), \\ 1 & (n-1) l \in \mathbb{Z} \\ (\Leftrightarrow m=n) .\end{cases}
$$

where $l=(-d-b) /(b+1)$ and $\{x\}=x-\lfloor x\rfloor$. Let $V=\left(v_{i, j}^{(p)}\right)_{0 \leq i, j \leq m-1}$. Then, we have

$$
V P V^{-1}=\operatorname{diag}\left(1,(-b)^{-1}, \ldots,(-b)^{m-1}\right)
$$

In particular, the n-carry process over $(-b, \mathcal{D})$ has the stationary distribution

$$
\pi=(\pi(s), \pi(s+1), \ldots, \pi(s+m-1))=\frac{1}{p^{n} n!}\left(\left\langle\begin{array}{c}
n \\
0
\end{array}\right\rangle_{p},\left\langle\begin{array}{c}
n \\
1
\end{array}\right\rangle_{p}, \ldots,\left\langle\begin{array}{c}
n \\
m-1
\end{array}\right\rangle_{p}\right) .
$$

Proof. It suffices to show that

$$
\begin{equation*}
\sum_{k=0}^{m-1} v_{i, k}^{(p)}(n) \tilde{p}_{k, j}=\frac{1}{(-b)^{i}} v_{i, j}^{(p)}(n) . \tag{10}
\end{equation*}
$$

Recall that

$$
\tilde{p}_{k, j}=\frac{1}{b^{n}} \sum_{r=0}^{n-j}(-1)^{r}\binom{n+1}{r}\binom{n+K(j, r)-k}{n},
$$

where, we put $K(j, r)=b(n+1-j-r)-\frac{b+1}{p}$ for the simplicity of the notation. Therefore,

$$
\begin{aligned}
\text { L.H.S. of (10) } & =\sum_{k=0}^{m} \frac{1}{b^{n}} \sum_{r=0}^{n-j}(-1)^{r}\binom{n+1}{r}\binom{n+K(j, r)-k}{n} v_{i, k}^{(p)}(n) \\
& =\frac{1}{b^{n}} \sum_{r=0}^{n-j} \sum_{k=0}^{K(j, r)}(-1)^{r}\binom{n+1}{r}\binom{n+K(j, r)-k}{n} v_{i, k}^{(p)}(n) \\
& =\frac{1}{b^{n}} \sum_{r=0}^{n-j}(-1)^{r}\binom{n+1}{r} \sum_{k=0}^{K(j, r)}\binom{n+K(j, r)-k}{n} v_{i, k}^{(p)}(n) \\
& =\frac{1}{b^{n}} \sum_{r=0}^{n-j}(-1)^{r}\binom{n+1}{r}[p K(j, r)+1]^{n-i}
\end{aligned}
$$

(We use the same argument as in the proof of Theorem 2])
$=\frac{1}{b^{n}} \sum_{r^{\prime}=j+1}^{n+1}(-1)^{n+1-r^{\prime}}\binom{n+1}{n+1-r^{\prime}}\left[p K\left(j, n+1-r^{\prime}\right)+1\right]^{n-i}$
(We use the transformation $r^{\prime}=n+1-r$.)
$=\frac{1}{b^{n}} \sum_{r=j+1}^{n+1}(-1)^{n+1-r}\binom{n+1}{r}\left[-b\left(p\left(j-r^{\prime}\right)+1\right)\right]^{n-i}$.

4 Concluding remarks

Many natural questions arise.
In the forthcoming paper, we will show a formula for the right eigenvectors, which involves Stirling numbers.

Our theorems hold only for the numeration systems (b, \mathcal{D}), where \mathcal{D} consists of consecutive integers containing 0 . For example, the 2 -carry process over $(3,\{-1,0,4\})$ has rather large state space

$$
\Omega_{2}(3,\{-1,0,4\})=\{-5,-4, \ldots, 4\},
$$

and the transition probability matrix

$$
P=\frac{1}{9}\left(\begin{array}{llllllllll}
1 & 2 & 0 & 3 & 0 & 2 & 1 & 0 & 0 & 0 \\
2 & 0 & 0 & 2 & 1 & 4 & 0 & 0 & 0 & 0 \\
1 & 0 & 2 & 0 & 3 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 & 3 & 0 & 2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 & 2 & 1 & 4 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 3 & 2 & 0 & 1 & 0 \\
0 & 0 & 1 & 2 & 0 & 3 & 0 & 2 & 1 & 0 \\
0 & 0 & 2 & 0 & 0 & 2 & 1 & 4 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 3 & 2 & 0 & 1 \\
0 & 0 & 0 & 1 & 2 & 0 & 3 & 0 & 2 & 1
\end{array}\right),
$$

whose characteristic polynomial $\operatorname{det}(x I-P)$ is

$$
(x-1)(3 x-1)(9 x-1)\left(531441 x^{7}-19683 x^{5}+5103 x^{4}-1944 x^{3}-297 x^{2}+24 x+2\right) .
$$

Although there are eigenvalues of the form $1,1 / 3,1 / 3^{2}$, we have no knowledge on the rest of the eigenvalues. The difficulty comes from the geometric structure of the fundamental domain $\left\{\left(x_{l} x_{l-1} \ldots x_{0}\right)_{b} \mid l \geq 0, x_{k} \in \mathcal{D}\right\}$.

Diaconis and Fulman [2, [3] shows the relation between carries processes and shufflings for the case when $p=1$ and 2 . We do not know whether there exist some shufflings corresponding to the cases with $p \neq 1,2$.

References

[1] C. Chow, I. M. Gessel, On the descent numbers and major indices for the hyperoctahedral group, Adv. Appl. Math., 38 (2007) 275-301.
[2] P. Diaconis, J. Fulman, Carries, shuffling, and an amazing matrix, Amer. Math. Monthly, 116 (2009) 780-803.
[3] P. Diaconis, J. Fulman, Carries, shuffling, and symmetric functions, Adv. App. Math., 43 (2009) 176-196.
[4] W. Feller, An Introduction to Probability Theory and its Applications, volume II, 2nd edition, John Wiley \& Sons, Inc., New York-London-Sydney 1971.
[5] J. Holte, Carries, combinatorics, and an amazing matrix, Amer. Math. Monthly, 104 (1997) 138-149.
[6] P. A. MacMahon, The divisors of numbers, Proc. London Math. Soc., 19 (1921) 305-340.
[7] J.-C. Novelli, J.-Y. Thibon, Noncommutative symmetric functions and an amazing matrix, Adv. App. Math., 48 (2012) 528-534.
[8] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A060187.

[^0]: ${ }^{1}$ Department of Mathematics, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan. e-mail : fumihiko@math.gakushuin.ac.jp
 ${ }^{2}$ Department of Computer Science, Tsuda Colledge, Tokyo, Japan. e-mail : sadahiro@tsuda.ac.jp

