Permutations avoiding 4321 and 3241 have an algebraic generating function

David Callan
Department of Statistics, University of Wisconsin-Madison
1300 University Avenue, Madison, WI 53706-1532
callan@stat.wisc.edu

June 12, 2013

Abstract

We show that permutations avoiding both of the (classical) patterns 4321 and 3241 have the algebraic generating function conjectured by Vladimir Kruchinin.

1 Introduction

This paper is a companion to [1], which established the algebraic generating function for \{1243, 2134\}-avoiding permutations conjectured by Vaclav Kotesovec [2]. In similar vein, Vladimir Kruchinin [3] has conjectured the generating function

$$
\frac{1}{1-x C(x C(x))}
$$

for $\{4321,3241\}$-avoiding permutations, where $C(x):=\frac{1-\sqrt{1-4 x}}{2 x}$ denotes the generating function for the Catalan numbers.

We will show that $\{4321,3241\}$-avoiders do indeed have this generating function. First, we use the combinatorial interpretation of the Invert transform to reduce the problem to counting indecomposable $\{4321,3241\}$-avoiders. Then we exhibit a bijective mapping from the set of indecomposable $\{4321,3241\}$-avoiders of length n to the union of Cartesian products $\bigcup_{k=0}^{n-2} \mathcal{I}_{n-k}(321) \times \mathcal{C}_{k, n-k-2}$, where $\mathcal{I}_{r}(321)$ is the set of indecomposable 321-avoiding permutations of length r and $\mathcal{C}_{k, r}$ is the set of integer sequences $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ satisfying $1 \leq a_{1} \leq r+1$ and $1 \leq a_{i} \leq a_{i-1}+1$ for $i \geq 2$. The counting sequences for the sets \mathcal{I}_{r} and $\mathcal{C}_{k, r}$ are known, and the result follows readily.

Section 2 recalls the notion of indecomposability and the application of the Invert transform to indecomposable permutations. Section 3 reviews nonnegative lattice paths and integer sequences whose successive entries increase by at most 1 , that is, elements of $\mathcal{C}_{k, r}$. Section 4 defines some notions relevant for our bijection. Section 5 presents the main bijection and Section 6 explains why it works. Section 7 ties everything together.

2 Indecomposability and the Invert transform

A standard permutation is one on an initial segment of the positive integers and to standardize a permutation on a set of positive integers means to replace its smallest entry by 1 , next smallest by 2 and so on, thereby obtaining a standard permutation. In the context of pattern avoidance, we consider standard permutations written in one-line form (that is, as lists). When a standard permutation is written in two-line form, it may be possible to insert some vertical bars to obtain subpermutations, not necessarily standard, as in $\left(\begin{array}{lll|llll}1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 1 & 2 & 6 & 5 & 4 & 7\end{array}\right)$. After inserting the largest possible number (0 or more) of such bars, as in $\left(\begin{array}{lll|lll|l}1 & 2 & 3 & 4 & 5 & 5 & 6 \\ 3 & 1 & 2 & 6 & 7 & 7 & 7\end{array}\right)$, we obtain the components of the permutation, here $312,654,7$. A permutation is indecomposable if it has exactly one component. (Thus the permutation 1 is indecomposable but the empty permutation is not.)

Let $F(x)=1+x+2 x^{2}+6 x^{3} \cdots$ denote the generating function for $\{4321,3241\}$ avoiders and $G(x)=x+x^{2}+3 x^{3}$ the generating function for indecomposable $\{4321,3241\}$ avoiders. Clearly, a permutation avoids $\{4321,3241\}$ if and only if each of its components does so. Hence, the combinatorial interpretation of the Invert transform (see [1] for example) implies that

$$
F(x)=\frac{1}{1-G(x)}
$$

and our problem is reduced to showing that $G(x)=x C(x C(x))$.

3 Nonnegative lattice paths

It is well known that the "ballot number" $C_{n, m}:=\frac{m+1}{2 n+m+1}\left(\begin{array}{c}2 n+m+1\end{array}\right)$ (with $C_{n,-1}:=1$ if $n=0$ and $:=0$ if $n \geq 1$) counts nonnegative paths of $n+m$ upsteps $U=(1,1)$ and n downsteps $D=(1,-1)$, where nonnegative means the path never dips below ground level, the horizontal line through its initial vertex (see, e.g., [6]). A nonnegative path of n upsteps and n downsteps is a Dyck path and its size is n. A nonempty Dyck path is indecomposable if its only return to ground level is at the end. The returns to ground level split a Dyck path into its (indecomposable) components. The number of indecomposable Dyck paths of size n is C_{n-1} (delete the first and last steps to obtain a one-size-smaller Dyck path).

Proposition 1. [4] The number of indecomposable 321-avoiding permutations on $[n]$ is C_{n-1}.

Proof. One method is to observe that Krattenthaler's bijection [5] from 321-avoiding permutations on $[n]$ to Dyck paths of size n preserves components in the obvious sense
and so sends indecomposable permutations to indecomposable paths.
Given a nonnegative path, successively delete the first peak $(U D)$ recording its height above ground level until no peaks remain, as in Figure 1 (heights prepended to existing list).

Figure 1
The path on the left produces the list of heights 3442 and this is a map from nonnegative paths of $n+m U \mathrm{~s}$ and $n D \mathrm{~s}$ to $\mathcal{C}_{n, m}$.

To reverse the map, suppose given $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in \mathcal{C}_{n, m}$. Start with a path of $m U \mathrm{~s}$. Then successively insert a peak at height a_{i} into the initial ascent of the current path so that its top vertex is at height $a_{i}, 1 \leq i \leq n$. This produces a path whose first peak is at height a_{i} and the growth condition $a_{i+1} \leq a_{i}+1$ is just what is needed to enable the next step. So the map is a bijection and we have

Proposition 2. [4] $\left|\mathcal{C}_{n, m}\right|=C_{n, m}$.
The preceding construction will be mirrored in Section 6 below when we insert a "peak" entry into a permutation so that if it has "height" h, then there are $h+1$ possibilities for the next insertion.

4 Some preliminary definitions

By (slight) abuse of language, to delete an entry $y \in[n]$ from a permutation p on $[n]$ means to erase y and then subtract 1 from each entry $>y ; p \backslash\{y\}$ denotes the resulting permutation. The non- y entries of p correspond in an obvious way to the entries of $p \backslash\{y\}$. Conversely, to insert y in position i means to increment by 1 each entry $\geq y$ and then place y in position i; we use $p \oplus_{i} y$ to denote the result. Thus, for $p=3142, i=4, y=$ 2, $p \oplus_{i} y=41523$. Again, the entries of p correspond naturally to the non- y entries of $p \oplus_{i} y$. The adjective/noun LRMax is short for left-to-right maximum in a permutation.

Henceforth, for brevity, we use the unadorned term "avoider" to mean

 an indecomposable $\{3241,4321\}$-avoider.A key-2 entry in an avoider is an entry that serves as the " 2 " in either a 321 pattern
or a 4312 pattern. For example, the key-2 entries in 6174235 are 4 and 3. Clearly, an avoider with no key-2 entries is a 321-avoider. The term key-2 is mnemonic but somewhat ungainly and to add a little color, we will refer to a key-2 entry as a blue entry.

Figure 2
The peak blue entry in an avoider that contains (one or more) 321 patterns is the larger of the last " 1 " of a 321 and its (immediate) predecessor. The terminology is justified because the peak blue is indeed a blue: suppose a is the last " 1 " of a 321 in an avoider, say the last " 1 " of $c b a$, and y is the predecessor of a. If $y<a$, then a is the " 2 " of the 4312 pattern cbya. If $y>a$, then $y=b$ or $y \neq b$. In the former case, y is the " 2 " of the 321 pattern $c b a$; in the latter case, $y<c$ (else cbya is a proscribed 3241) and so y is the " 2 " of the 321 pattern cya. See Figure 2 for some examples of avoiders with blue entries so colored and peak blue entry highlighted.

We let $\mathcal{I}_{n}(3241,4321)$ denote the set of avoiders (indecomposable $\{3241,4321\}$-avoiding permutations) of length n, and similarly $\mathcal{I}_{n}(321)$ is the set of indecomposable 321-avoiding permutations. Set $\mathcal{I}_{n, k}(3241,4321)=\left\{p \in \mathcal{I}_{n}(3241,4321): p\right.$ has k blue entries $\}$.

5 The bijection

Theorem 3. For $0 \leq k \leq n-2$, there is a bijection

$$
\mathcal{I}_{n, k}(3241,4321) \longrightarrow \mathcal{I}_{n-k}(321) \times \mathcal{C}_{k, n-k-2}
$$

Here is its description. Suppose given $p \in \mathcal{I}_{n, k}(3241,4321)$. If $k=0$, then p is already 321-avoiding and (p, ϵ) is the image pair, where ϵ denotes the empty list. If $k \geq 1$, the idea is to successively delete the (current) peak blue entry recording, in the same right to left fashion as in Figure 1, its "height", appropriately defined, until a 321-avoider q is obtained. Then the image pair is (q, L), where L is the list of heights. The trick is to find the correct definition of height, and it's a doozy.

To this end, associate to each 321-containing permutation p a triple $a<b<c$, all integers except that c may be infinite: a is the last " 1 " of a 321 in p, b is the rightmost
entry to the left of a that exceeds a, and c is the first non-LRMax entry after a (with $c:=\infty$ if there is no such LRMax). Thus, for $p=321$, we have $(a, b, c)=(1,2, \infty)$ and for $p=4631275$, we have $(a, b, c)=(2,3,5)$.

Proposition 4. If p is a 321-containing avoider with associated triple (a, b, c), then there is an entry w in p such that wba is a 321 pattern in p.

Proof. Since a is the " 1 " of a 321, there is a sublist vua in p with $v>u>a$. By definition of b, u must lie weakly to the left of b and so $v \neq b$. If $v>b$, take $w=v$. Otherwise, v and u must both be $<b$ and vuba is a forbidden 3241 pattern.

Corollary 5. If p is a 321-containing avoider with associated triple (a, b, c) and c is finite, then $c>b$.

Proof. If not, $w b c$ would be a 321 , violating the definition of a as the last " 1 " of a 321 .
For reasons to become clear, we call the disjoint union $[a+1, b+1] \cup[c+1, n]$ the peak-insertion set for p where $[c+1, n]=\emptyset$ if $c=\infty$. Furthermore, for a 321-avoiding permutation on $[n]$, set $c=1$ and define its peak-insertion set to be $[c+1, n]=[2, n]$ (the a and b evaporate in this case).

Next, we arrange the peak-insertion set of an avoider p into a suitably ordered list, called the peak-insertion list of p. Taken left to right, the LRMax entries $>c$ of p form a list A and the non-LRMax entries $\geq c$ form a list B. Thus $A \cup B=[c, n]$. Obviously, A is an increasing list, and so is B for otherwise, in the 321 -containing case, a would not be the last " 1 " of a 321 , and in the 321 -avoiding case, a 321 would actually be present. Split A into maximal runs of consecutive integers $A_{1}, A_{2}, \ldots, A_{t}$. Likewise, split B into maximal runs of consecutive integers but this time written as $b_{1} B_{1}, b_{2} B_{2}, \ldots, b_{t} B_{t}$, where b_{i} is the first entry of the i-th run and B_{i} may be empty. There is the same number of runs in A as in B because (i) the smallest run contains $b_{1}=c$ and comes from B since c is not a LRMax, (ii) thereafter the runs alternate between A and B, and (iii) the largest run contains n, a LRMax, and so comes from A.

The peak-insertion list of p is now defined to be the peak-insertion set of p listed in the following order (L^{r} denotes the reversal of the list L):

$$
A_{t} B_{t}^{r} A_{t-1} b_{t} B_{t-1}^{r} A_{t-2} b_{t-1} B_{t-2}^{r} \cdots A_{1} b_{2} B_{1}^{r} b \overline{b-1} \overline{b-2} \ldots \overline{a+2} \overline{a+1} \overline{b+1}
$$

where the terminal segment starting at b is omitted if p is 321-avoiding. Note that $b_{1}=c$ is missing and the list consists of $[a+1, b+1] \cup[c+1, n] \quad$ (or $[c+1, n]$ in the 321-avoiding case), as it should.

For example, for the avoider shown in matrix form in Figure 3, we have $(a, b, c)=$ $(4,7,10)$ and runs in A and B as follows.

i	$=$	1	2	3
A_{i}	$=$	131415	1718	22232425
$b_{i} \mid B_{i}$	$=$	$10 \mid 1112$	$16 \mid \epsilon$	$19 \mid 2021$

Here, $t=3$ and the ordering in the peak-insertion list is

$$
5
$$

We can now define the height of the peak blue entry y in a 321-containing avoider p : it is the position of y in the peak-insertion list of $p \backslash\{y\}$. (We will see later that y must be in the peak-insertion set of $p \backslash\{y\}$.)

There is a graphical way to visualize the ordering in the peak-insertion list. As illustrated in Figure 3, for each y in the peak-insertion set $[a+1, b+1] \cup[c+1, n]$ of p, insert a bullet at vertex $(x-1, y-1)$ in the matrix diagram of p where the abscissa x is determined as follows. For $y>c$, insert the bullet as far right as possible so that the region below and to the right of the bullet is nonempty. For $y \in[a+1, b+1]$, let i denote the position of a in p. Then, for $y \in[a+1, b], x=i+1$, and for $y=b+1, x=i$. If

Figure 4
the bullets are arranged in order of distance from the vertical line $x=n$ and, for bullets at the same distance from $x=n$, in order of distance from the horizontal line $y=c$ or $y=n$ if $c=\infty$ (heavy line in Figure 3), then their y 's form the peak-insertion list.

The mapping is illustrated in Figure 4, which shows that $2735164 \rightarrow(231,2312)$.

6 Why it works

We need to establish several facts to show the map does all it claims to and is invertible.
Proposition 6. Suppose y is the peak blue entry of a 321-containing avoider p. Then (i) $p \backslash\{y\}$ is again an avoider, (ii) the blue entries of p other than y become the blue entries of $p \backslash\{y\}$, and (iii) y is in the peak-insertion set of $p \backslash\{y\}$.

Proof. (i) $p \backslash\{y\}$ inherits the $\{4321,3241\}$-avoiding property from p. If $p \backslash\{y\}$ was decomposable then the entries other than y in the 321 or 4312 pattern containing y in p would correspond to entries in the same component of $p \backslash\{y\}$. But then p would also be decomposable, obviously in the 321 case, and because the " 1 " and " 2 " can be chosen adjacent in the 4312 case. (ii) No new blue entry can be introduced and no non-peak blue entry is lost because if the deleted entry y is the " 1 " of a 321 , then the " 2 ", a blue entry in p, is still the " 2 " of a 321 in $p \backslash\{y\}$ since the predecessor of y in p is $<y$ and so serves as a " 1 " in place of y. Also, the peak blue entry cannot possibly be the " 4 ", " 3 ", or " 1 " of a 4312 , so no blue entry in p that is the " 2 " of a 4312 loses its blue status in $p \backslash\{y\}$.
(iii) This will be proved in contrapositive form in Proposition 9 below.

Lemma 7. Suppose p is a 321-containing avoider with associated triple (a, b, c).
(i) If c is finite, then all entries after a in p are $\geq c$.
(ii) If $c=\infty$ or c is finite and $c>b+1$, then $b+1$ lies to the left of b in p.
(iii) If $c=\infty$, then a is the last entry of p.
(iv) Suppose $z>b$ is an entry of p. Then z is a LRMax in p provided z lies to the left of c in p in case c is finite.

Proof. (i) All entries after c are $>c$ else a would not be the last " 1 " of a 321 . If the assertion fails, take y to be the rightmost offending entry in p. Clearly, y lies between a and c in p and $a<y<c$ and region Q in the schematic of Figure 5 is empty because y is the rightmost offender.

Figure 5
Also, P is empty since y is a LRMax (by definition of c), R is empty else a is the " 2 " of a 321 , and S is empty else c is the " 2 " of a 321 . These empty regions force y to be a fixed point and p to be decomposable.
(ii) First, $b+1$ cannot lie between b and a in p by definition of b. If $c=\infty$, we are done by part (i). So suppose c is finite. The entry $w>b$ whose existence is guaranteed by Prop. 4 implies that $b+1$ is not a LRMax, violating the definition of c if $b+1$ lies between a and c. If $b+1$ lies to the right of c, then $c \overline{b+1}$ is the " 21 " of a 321 (since c is not a LRMax), contradicting the assumption that a is the last " 1 " of a 321 .
(iii) If not, then all entries after a would be LRMax entries, and the last entry would be n, violating indecomposability.
(iv) Suppose $z>b$ is an offender. If $c=\infty, z$ lies to the left of b by part (iii) and the definition of b. If c is finite, z lies to the left of a by definition of c, and so lies to the left of b by definition of b. In either case, z is a non-LRMax lying to the left of b. Then $z b a$ is the "321" of a forbidden 4321.

Proposition 8. For each y in the peak-insertion set of an avoider p on $[n]$, there is exactly one position i such that $q:=p \oplus_{i} y$ (insertion of y at position i) satisfies (i) q is an avoider, (ii) the peak blue entry of q is y, and (iii) q has just one more blue entry than p. Also, for y not in the peak-insertion set of p, there is no such i.

Proof. First, suppose $y \in[c+1, n]$. Let z be the rightmost entry of p that is $<y$. Insert y immediately to the left of z. Suppose p has the matrix form depicted schematically in Figure 6 where the bullet represents the inserted entry and z its successor.

Figure 6

Then S is empty (contains no entries) by definition of y. If P were also empty, p would be decomposable. Thus y is the " 2 " of a 321 , making y blue in $p \oplus y$ and, clearly, it is the peak blue entry. On the other hand, if y is inserted to the right of z it will not be blue, and if inserted to the left of z but not adjacent to c, it may be blue but will not be the peak blue.

Now suppose $y \in[a+1, b+1]$. If $y=b+1$, insert y just before a (y will be the " 2 " of a 321), and if $y \in[a+1, b]$, insert y just after a (y will be the " 2 " of a 4312). Similar considerations show that, for this insertion point, y will be the peak blue entry in $p \oplus y$ and the only new blue entry. Also no other insertion point will do.

As for the last assertion, if p is 321 -avoiding, the peak-insertion set is $[2, n]$ and 1 cannot be a blue entry in $p \oplus 1$ because, by definition, blue entries exceed 1 . Now suppose p is 321-containing with associated a, b, c. If $y \leq a$ is inserted to the left of a, it cannot be the larger of the last " 1 " of a 321 and its predecessor in $p \oplus y$; if inserted to the right of a, a descending quadruple is present in $p \oplus y$. Next, suppose $y \in[b+2, c](y \geq b+2$ in case $c=\infty$). If y is inserted to the left of a, then it is not the larger of a and the predecessor of a unless it actually is the predecessor of a, but in that case $\overline{b+1} b y a$ is a forbidden 3241 by Lemma 7 (ii); if y is inserted between a and c in case c is finite or after a in case $c=\infty, y$ cannot be the " 1 " of a 321 in $p \oplus y$ by Lemma 7 (iv) and so y is certainly not the larger of the last " 1 " of a 321 and its predecessor in $p \oplus y$; if y is inserted after c, then it is the last " 1 " of a 321 in $p \oplus y$, but is not larger than its predecessor and so is not peak.

Proposition 9. For an avoider p, as y ranges from left to right over the peak-insertion list of p, the length of the peak-insertion list of $p \oplus_{i_{y}} y$ ranges from left to right over the interval $2,3, \ldots, r+1$, where r denotes the length of the peak-insertion list of p and i_{y} is the i of the preceding Proposition.

Proof. Recall that every avoider p is associated with an (a, b, c) triple if it is 321-containing and with a singleton $c=1$ otherwise, and the peak-insertion set for p is $[a+1, b+1] \cup$ $[c+1, n]$ with the first interval absent if p is 321 -avoiding and the second interval absent if $c=\infty$. We need to determine the triples, denoted $\left(a_{y}, b_{y}, c_{y}\right)$, for each $p \oplus_{i_{y}} y$ with y in the peak-insertion list of p. In the peak-insertion list of p, the entries $>c$ all occur before the entries $<c$. Split the entries $>c$ into segments consisting of increasing runs as illustrated


```
avoider with \((a, b, c)=(4,7,10)\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Y & = & 22 & 23 & 24 & 25 & 21 & 20 & 17 & 18 & 19 & 13 & 14 & 15 & 16 & 12 & 11 & & 7 & 6 & 5 & 8 \\
\hline a & = & 21 & 21 & 21 & 21 & 20 & 19 & 16 & 16 & 16 & 12 & 12 & 12 & 12 & 11 & 10 & & 7 & 6 & 5 & 4 \\
\hline b & - & 22 & 23 & 24 & 25 & 21 & 20 & 17 & 18 & 19 & 13 & 14 & 15 & 16 & 12 & 11 & & 8 & 8 & 8 & 8 \\
\hline C & = & \(\infty\) & \(\infty\) & \(\infty\) & \(\infty\) & 22 & 21 & 20 & 20 & 20 & 17 & 17 & 17 & 17 & 13 & 12 & & 11 & 11 & 11 & 11 \\
\hline SPS & \(=\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & & 17 & 18 & 19 & 20 \\
\hline
\end{tabular}
                        Figure 7
```

in Figure 7 for an avoider on $[n]=[25]$ with $(a, b, c)=(4,7,10)$ and peak-insertion set $[a+1, b+1] \cup[c+1, n]=[5,8] \cup[11,25]$. Then for $y>c$ in the peak-insertion list of p, the a_{y}, b_{y} and c_{y} of $p \oplus_{i_{y}} y$ are as follows: (i) a_{y} is one less than the smallest entry in the segment containing y, (ii) $b_{y}=y$, and (iii) c_{y} is one more than the largest entry in the segment containing y (or ∞ if this largest entry is n). For $y<c$ in the peak-insertion list of p, the b_{y} is $b+1$, the c_{y} is $c+1$, while $a_{y}=y$ for $y \in[a+1, b]$ and $a_{y}=a$ for $y=b$.

We leave the reader to verify the truth of these assertions with the visual aid that each pair $\left(i_{y}, y\right)$ is shown as a bullet at vertex $\left(i_{y}-1, y-1\right)$ in Figure 7. So, "expanding" the $\left(i_{y}, y\right)$ bullet into a cell containing the entry y gives the matrix diagram of $p \oplus_{i_{y}} y$.

It is now clear that the size of the peak-insertion set (SPS in Figure 7) starts at 2 and increases by 1 thereafter as y ranges across the peak-insertion list of p.

7 Putting it all together

From Propositions 1 and 2 and the preceding bijection, we find that the number u_{n} of indecomposable $\{4321,3241\}$-avoiding permutations of length n is given by $u_{0}=0, u_{1}=1$ and, for $n \geq 2$,

$$
\begin{aligned}
u_{n} & =\sum_{k=0}^{n-2} C_{n-1-k} C_{k, n-2-k} \\
& =\sum_{k=0}^{n-2} \frac{n-1-k}{n-1+k}\binom{n-1+k}{k} C_{n-1-k}
\end{aligned}
$$

This is sequence A127632 in OEIS [7] with generating function

$$
\sum_{n \geq 0} u_{n} x^{n}=x C(x C(x))
$$

where $C(x)$ is the generating function for the Catalan numbers, and by Section 2, the claimed generating function for $\{4321,3241\}$-avoiding permutations follows. The counting sequence for $\{4321,3241\}$-avoiders can be succinctly described as the Invert transform of the Catalan transform of the Catalan numbers.

The bijection presented above works but is hardly intuitive. Is there a better proof?

References

[1] David Callan, The number of $\{1243,2134\}$-avoiding permutations, preprint, http://front.math.ucdavis.edu/1303.3857, 2013.
[2] Vaclav Kotesovec, comment in Formula section of sequence A164651 in The On-Line Encyclopedia of Integer Sequences.
[3] Vladimir Kruchinin, comment in Formula section of sequence A165543 in The OnLine Encyclopedia of Integer Sequences.
[4] Richard P. Stanley, Catalan addendum (version of 25 May 2013), item (t^{6}). The current version is available online at http://www-math.mit.edu/~rstan/ec/.
[5] Christian Krattenthaler, Permutations with restricted patterns and Dyck paths, Advances in Applied Mathematics, Vol. 27, 2001, no. 2-3, 510-530, available at http://www.mat.univie.ac.at/~kratt/artikel/catperm.html
[6] David Callan, A combinatorial interpretation of the Catalan transform of the Catalan numbers, preprint, http://front.math.ucdavis.edu/1111.0996, 2011.
[7] The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org, 2013.

