
COUNTING GENUS ONE PARTITIONS AND PERMUTATIONS

ROBERT CORI AND GÁBOR HETYEI

Abstract. We prove the conjecture by M. Yip stating that counting genus one parti-
tions by the number of their elements and parts yields, up to a shift of indices, the same
array of numbers as counting genus one rooted hypermonopoles. Our proof involves
representing each genus one permutation by a four-colored noncrossing partition. This
representation may be selected in a unique way for permutations containing no trivial
cycles. The conclusion follows from a general generating function formula that holds
for any class of permutations that is closed under the removal and reinsertion of trivial
cycles. Our method also provides a new way to count rooted hypermonopoles of genus
one, and puts the spotlight on a class of genus one permutations that is invariant under
an obvious extension of the Kreweras duality map to genus one permutations.

Introduction

Noncrossing partitions, first defined in G. Kreweras’ seminal paper [11], have a vast
literature in areas ranging from probability theory through polyhedral geometry to the
study of Coxeter groups. Noncrossing partitions on a given number of elements are
counted by the Catalan numbers, if we also fix the number of parts, the answer to the
resulting counting problem is given by the Narayana numbers.

A natural generalization of the problem of counting noncrossing partitions is to count
partitions of a given genus. The genus of a partition may be defined in terms of a
topological representation (see [1] or [21] for example), but there exists also a purely
combinatorial definition of the genus of a hypermap (thought of as a pair of permuta-
tions, generating a transitive permutation group) that can be specialized first to hyper-
monopoles, or permutations (that is, hypermaps whose first component is the circular
permutation (1, 2, . . . , n)) and then to partitions (that, is permutations whose cycles
may be written as lists whose elements are in increasing order). Counting partitions of a
given genus seems surprisingly hard, especially considering the fact that, for the closely
related hypermonopoles, a general machinery was built by S. Cautis and D. M. Jack-
son [1] and explicit formulas were given by A. Goupil and G. Schaeffer [7]. It should be
noted that for genus zero, i.e., noncrossing partitions, the notions of a hypermonopole
(in our language: permutation) and of a partition coincide (see [5, Theorem 1]). Thus
it seems hard to believe that the two notions would not only diverge but also give rise
to counting problems of different difficulty in higher genus. Asymptotic estimates for
the numbers of noncrossing partitions on various surfaces may found in [14].

Concerning partitions of a fixed genus, a great deal of numerical evidence was col-
lected in M. Yip’s Master’s thesis, who made the following conjecture [21, Conjecture
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3.15]: the number of genus 1 partitions on n elements and k parts is the same as the
number of genus one permutations of n−1 elements having k−1 cycles. In this paper we
prove this conjecture and provide further insight into the structure of genus 1 partitions
and permutations by representing them as four-colored noncrossing partitions.

Our paper is structured as follows. After reviewing some basic terminology and
results on the genus of partitions and permutations in Section 1, in Section 2 we develop
a theory of representing every permutation of genus 1 by a four-colored noncrossing
partition. The four colors form consecutive arcs in the circular order and prescribe a
relabeling that results in a permutation of genus at most one. The construction is not
unique, but we show that every permutation of genus 1 may be represented in such a
way. Moreover, as we show it in Section 3, if the permutation of genus 1 is reduced in the
sense that it contains no cycle consisting of consecutive elements in the circular order (we
call these trivial cycles) then we may select a unique four-colored noncrossing partition
representation of our permutation which we call the canonical representation. This
unicity enables us to count reduced permutations and partitions of genus 1 in Section 4.
We only need to account for the possibility of having trivial cycles. In Section 5 we
show how to do this, at the level of ordinary generating functions, for any class of
permutations that is closed under the removal and reinsertion of trivial cycles. Since
genus one permutations and partitions form such classes, we may combine the formula
stated in Theorem 5.3 with the generating function formulas stated in Section 4 and
obtain the generating function formulas counting genus 1 permutations and partitions
with given number of permuted elements and cycles. Since the resulting formulas stated
in Theorems 6.1 and 6.5 differ only by a factor of xy, the validity of M. Yip’s conjecture
is at this point verified. In Section 7 we show how to extract the coefficients from
our generating functions to find the number of partitions of genus 1. It should be
noted, that our paper thus also provides a new method to count permutations of genus
1, whose number was first found by A. Goupil and G. Schaeffer [7]. The generalized
formula stated in Section 7 links the problem of counting genus 1 permutations and
partitions to the problem of counting type B noncrossing partitions, convex polyominos
and Jacobi configurations (at least numerically). The explanation of these connections,
together with ideas of possible simplifications and further questions, are collected in the
concluding Section 8.

1. On the genus of permutations and partitions

1.1. Hypermaps and permutations. Since the sixties combinatorialists considered
permutations as a useful tool for representing graphs embedded in a topological surface.
One of the main objects in this representation is the notion of a hypermap.

A hypermap is a pair of permutations (σ, α) on a set of points {1, 2, . . . , n}, such
that the group they generate is transitive, meaning that the graph with vertex set
{1, 2, . . . , n} and edge set {i, α(i)}, {i, σ(i)} is connected.

It was proved (in [10]) that the number g(σ, α) associated to a hypermap and defined
by:

n+ 2− 2g(σ, α) = z(σ) + z(α) + z(α−1σ), (1.1)

where z(α) denotes the number of cycles of the permutation α, is a non-negative integer.
It is called the genus of the hypermap.
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Taking for σ the circular permutation ζn such that for all i, ζn(i) = i + 1 (where
n+ 1 means 1) allows to define the genus of a permutation α ∈ Sym (n) as that of the
hypermap (ζn, α). Notice that the pair (ζn, α) generates a transitive group for any α
since z(ζn) = 1; so that we may use the following definition:

Definition 1.1. The genus of a permutation α is the non-negative integer g(α) given
by:

n+ 1− 2g(α) = z(α) + z(α−1ζn).

Notice that hypermaps of the form (ζn, α) are often called hypermonopoles (for in-
stance in [1] or [21]). A different definition of the genus was given in [4], where the
genus h(α) of the permutation α is defined as the genus of the hypermap (ζn, α

−1ζnα).
In this definition a permutation is of genus 0 if and only if it is a power of ζn; in
ours permutations of genus 0 correspond to noncrossing partitions, a central object in
combinatorics.

1.2. Partitions of the set {1, 2, . . . , n}. To a partition P = (Pi)i=1,k of the set
{1, 2, . . . n} is associated the permutation αP which has k cycles, each one correspond-
ing to one of the Pi written with the elements in increasing order. This allows to define
the genus of the partition P as that of the permutation αP .

It was shown in [5, Theorem 1] that a permutation α is of genus 0, if and only if
there exists a noncrossing partition P such that α = αP .

A noncrossing partition may be drawn as a circle on which we put the points
1, 2, . . . , n in clockwise order and parts of size p > 2 are represented with p-gons in-
scribed in the circle, parts of size 2 by segments, and parts of size 1 by isolated points.

The partition P = ({1, 5, 7, 8}, {2, 4}, {3}, {6}) is represented in Figure 1 below.

7

24

5

6 8

1

3

Figure 1. The noncrossing partition P

1.3. The genus and the cycle structure. Since the genus of a permutation α is a
function of z(α), the number of its cycles, in the sequel we will consider permutations
as products of their cycles, study their structure, and the effect of minor changes on
the cycle structure. In particular, we will be interested in the change of the genus when
we compose a permutation with a single transposition. A transposition τ ∈ Sym (n),
exchanging the two points i, j, will be denoted by τ = (i, j). It has n−2 cycles of length
1 and one of length 2, hence z(τ) = n − 1. Note that we compose permutations right
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to left, i.e., we define the product αβ of two permutations as the permutation which
sends i into α(β(i)).

We will often use the following Lemma:

Lemma 1.2. The number of cycles of the products τα and ατ of a permutation α and
a transposition τ = (i, j) differs from the number of cycles of α by 1. The sign of the
change depends on whether i and j belong to the same cycle of α or not. We have

z(τα) = z(ατ) =

{
z(α) + 1 if i and j belong to the same cycle of α;
z(α)− 1 if i and j belong to different cycles of α.

Definition 1.3. Two cycles in a permutation α are crossing if there exists two elements
a, a′ in one of them and b, b′ in the other such that a < b < a′ < b′.

Observe that if such elements exist they may be taken such that a′ = α(a) and
b′ = α(b).

An element i of 1, 2, . . . , n is a back point of the permutation α if α(i) < i and α(i)
is not the smallest element in its cycle (i. e. there exist k > 1 such that αk(i) < α(i)).

Definition 1.4. A twisted cycle in a permutation α is a cycle (b1, b2, . . . , bp) containing
a back point.

The genus of a permutation may be determined by counting back points as the
following variant of [2, Lemma 5] shows.

Lemma 1.5. For any permutation α ∈ Sym (n), the sum of the number of back points
of the permutation α and the number of those of α−1ζn is equal to 2g(α).

Proof. As usual, for a permutation α ∈ Sym (n), let EXC(α) denote the set of excedances
of α, i.e., the set of elements i such that α(i) > i. The number of back points of α is
then n− |EXC(α)| − z(α). After replacing 2g(α) with its expression in Definition 1.1,
our lemma is equivalent to

|EXC(α)|+ |EXC(α−1ζn)| = n− 1.

To prove this equation observe first that, for all i satisfying i 6= α−1(1), the relation
i ∈ EXC(α) is equivalent to α(i) − 1 6∈ EXC(α−1ζn). Thus the number of excedances
of α in the set {α−1(2), . . . , α−1(n)} plus the number of excedances of α−1ζn in the
set {1, . . . , n − 1} is n − 1. Finally α−1(1) is not an excedance of α and n is not an
excedance of any permutation in Sym (n). �

Notice that a permutation is associated to a partition if and only if it contains no
twisted cycle, moreover the partition and the associated permutation are of genus 0 if
and only if there are no crossing cycles. Noncrossing partitions were extensively studied
(see for instance [15]).

2. Genus one permutations and four-colored noncrossing partitions

We define a four-coloring of a noncrossing partition of the set {1, 2, . . . , n} as a
partitioning of the n points on the circle into four arcs denoted A, B, C, D in clockwise
order where A is the arc containing the point 1 and in which C is only arc allowed to
contain no point. We will denote by γ = (A,B,C,D) such a 4-coloring. Equivalently a
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four-coloring may be defined by 4 integers defining the numberings of the points in the
four arcs. These are 1 ≤ i < j ≤ k < ` ≤ n, giving

A = {`+ 1, . . . , n, 1, . . . , i}, B = {i+ 1, . . . , j},
C = {j + 1, . . . , k}, D = {k + 1, . . . , `}, (2.1)

where C is empty when j = k. In this notation, A = {1, . . . , i} holds when ` = n.

Definition 2.1. We call the sequence (i, j, k, `), marking the right endpoints of the
color sets in (2.1), a sequence of coloring points of the partition P .

To any four-colored noncrossing partition (P, γ) (where γ = (A,B,C,D) ) we asso-
ciate a permutation α = Φ(P, γ) in which cycles are obtained from the parts of P by
renumbering the points in the following way:

We leave the numbering of the points in A unchanged and we continue labeling in
such a way that the elements of A are followed by the points in D, then by the points
in C, and finally by the points in B. Within each color set, points are numbered in
clockwise order. Thus the elements of A are numbered with `+ 1, `+ 2, . . . , n, 1, 2, . . . i,
the elements of D are numbered from i+ 1 to i+ `−k, the elements of C are numbered
from i+ `− k + 1 to i+ `− j an the elements of B are numbered from i+ `− j + 1 to
`. After introducing

a = i, b = i+ `− k, c = i+ `− j, and d = `, (2.2)

we obtain that the color sets, in terms of the relabeled elements, are given by

A =

{
{1, 2, . . . a, d+ 1, . . . , n} if d 6= n,
{1, 2, . . . , a} otherwise;

B = {c+ 1, c+ 2, . . . , d}; D = {a+ 1, a+ 2, . . . , b};

C =

{
{b+ 1, b+ 2, . . . , c} if c 6= b,
∅ otherwise.

(2.3)

Let us also note for future reference that the linear map taking (i, j, k, `) into (a, b, c, d)
is its own inverse, i.e., we have

i = a, j = a+ d− c, k = a+ d− b and ` = d. (2.4)

Once the points are renumbered, each cycle of α is obtained from a part Pq =
{x1, x2, . . . xp} of P by writing the numbering of the corresponding points x1, x2, . . . xp,
where the xi’s are in clockwise order.

For the example shown in Figure 2 we obtain the following permutation of genus 1:

α = Φ(P, γ) = (1, 4, 3, 8)(2, 7)(5)(6)

In the sequel it will be convenient to say that a point p has color X for X = A,B,C,D
if p ∈ X, a part Pq will be unicolored, bicolored, three-colored or four-colored depending
on the number of different colors its points have.

Remark 2.2. A unicolored part of a noncrossing partition P gives rise to a cycle in
Φ(P, γ) which does not cross any other cycle and is not twisted. A bicolored part with
points in two different colors X and Y is not twisted but it crosses any cycle coming
from a part that has points of color X as well as at least one point whose color is neither
X nor Y . A bicolored part with points of color X and Y does not cross a any part
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Figure 2. A four-coloring of P and the induced renumbering of points

that is contained in or disjoint from X ∪ Y . A three or four-colored part gives rise to
a twisted cycle.

The main point in this section is the following characterization:

Theorem 2.3. If (P, γ) is a four-colored noncrossing partition then Φ(P, γ) is a permu-
tation of genus 0 or 1. It is of genus 1 if and only if at least one of these two conditions
is satisfied:

(1) There exists a part Pq which is three or four-colored.
(2) There exists two parts Pq, Pr which are two colored and share a common color,

more precisely there are three different colors X, Y, Z such that

Pq ∩X 6= ∅, Pq ∩ Y 6= ∅, Pq ⊆ X ∪ Y and Pr ∩X 6= ∅, Pr ∩Z 6= ∅, Pr ⊆ X ∪Z.
Proof. Let i, j, k, ` define the four-coloring γ and let β be the permutation associated
to the partition P , set α = Φ(P, γ). The renumbering of the points around the circle
may be considered in two ways:

The first way is conjugation. Consider the permutation φ that takes each i into its
new label after the renumbering operation. We then have α = φβφ−1. Note that φ is
given by the coloring points (i, j, k, `) via the formula

φ(x) =


x if x ∈ A;

x+ `− j if x ∈ B;
x+ i+ `− j − k if x ∈ C;

x+ i− k if x ∈ D.

(2.5)

Although this formula is unimportant for this proof, we will have good use of it later
in the proof of the converse of our present statement. Now let θ = φζnφ

−1, since
conjugation does not change the number of cycles we have:

g(ζn, β) = g(θ, α) = 0. (2.6)
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Since θ has only one cycle, just like ζn, the above equation, together with formula (1.1)
yields

n+ 1− z(α) = z(α−1θ). (2.7)

The second way is multiplication by transpositions. It is easy to check that

θ = (1, 2, . . . , a, c+ 1, . . . , d, b+ 1, . . . , c, a+ 1, . . . , b, d+ 1, . . . , n), (2.8)

where (a, b, c, d) is given by (2.2), hence θ = ζn(a, c)(b, d). We are now able to compute
the genus of the permutation α. By Definition 1.1 we have

2g(α) = n+ 1− z(α) + z(α−1ζn).

Using (2.7) we may rewrite the last equation as

2g(α) = z(α−1θ)− z(α−1ζn).

But since α−1θ is obtained from α−1ζn by multiplying by two transpositions, by Lemma
1.2, the difference of their number of cycles is 0, 2 or −2. Since the genus is a non-
negative integer we have that g(α) is 0 or 1. If any of the conditions given above are
satisfied then α has a twisted cycle or two crossing cycles hence it cannot be of genus
0, ending the proof, if none of them is satisfied then α has no twisted cycle and no two
crossing cycles, it is then of genus 0 (a permutation of a noncrossing partition). �

To state a converse of Theorem 2.3 we introduce the following notion:

Definition 2.4. Let α be a permutation of genus 1. We say that the sequence of integers
(a, b, c, d) is a sequence of separating points for α if the permutation θ = ζn(a, c)(b, d)
is such that the genus of the hypermap (θ, α) is zero and

a < b ≤ c < d. (2.9)

Notice that (2.9) implies that θ is a circular permutation. Equations (2.6) and (2.8)
have the following consequence.

Remark 2.5. If a permutation α of genus 1 is represented as α = Φ(P, γ) by a four-
colored noncrossing partition (P, γ) then the sequence of coloring points (i, j, k, `) gives
rise to the sequence of separating points (a, b, c, d) given by (2.2).

Proposition 2.6. Let α be a permutation of genus 1 on n elements that has a sequence
of separating points (a, b, c, d). Then there is a noncrossing partition P and a four-
coloring γ = (A,B,C,D) representing α as α = Φ(P, γ) whose sequence of coloring
points (i, j, k, `) is obtained from (a, b, c, d) via (2.4).

Proof. Since θ = ζn(a, c)(b, d) is circular, there is a permutation φ satisfying φζnφ
−1 = θ.

We make this map φ unique by requiring φ(1) = 1. It is easy to verify that φ is given
by (2.5) for the sequence (i, j, k, l) given by (2.4). The permutation β = φ−1αφ satisfies

g(ζn, β) = g(φ−1θφ, φ−1αφ) = g(θ, α) = 0,

hence β determines a noncrossing partition P . As a consequence of (2.1) and (2.5), the
four-coloring γ associated to (i, j, k, `) satisfies α = Φ(P, γ). �

Definition 2.7. We call the representation described in Proposition 2.6 the four-
colored noncrossing partition representation induced by the sequence of separating
points (a, b, c, d).
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Now we are ready to state the converse of Theorem 2.3.

Theorem 2.8. For any permutation α of genus 1, there exists a noncrossing partition
P and a four-coloring γ such that α = Φ(P, γ).

Proof. By Proposition 2.6 it suffices to show that every permutation of genus 1 has a
sequence (a, b, c, d) of separating points. Let α be a permutation of genus 1, then the
permutation α′ = α−1ζn is also of genus 1, thus α′ has two crossing cycles or a twisted
cycle or both.

(1) If α′ has two crossing cycles then one of these cycle contains two points a, c and
the other one two points b, d such that a < b < c < d.

By (2.9), θ = ζn(a, c)(b, d) is circular. Moreover α−1θ is obtained from α−1ζn
by multiplying it by two transpositions exchanging elements belonging to the
same cycle, hence z(α−1θ) = z(α−1ζn) + 2. By the definition of the genus, since
z(θ) = z(ζn), we get g(θ, α) = g(α)− 1 = 0.

(2) If α′ has a twisted cycle, this can be written (a, x1, · · · , xp, d, b, y1, · · · yq), where
a is the smallest element of the cycle and d > b, giving a < b < d. Consider
the two transpositions (a, b) and (b, d) It easy to check that the product θ =
ζn(a, b)(b, d) is equal to: (1, 2, · · · a, b+1, · · · d, a+1, · · · b, d+1, · · ·n). Moreover,
the permutation α′(a, b)(b, d) has the same cycles as α′ except the one containing
a, b, d which is broken into three cycles:

(a, y1, · · · yq) (b) (d, x1, · · · , xp),
showing that again

z(α−1θ) = z(α−1ζn) + 2

and g(θ, α) = g(ζn, α)− 1 = 0 hold.

We obtained that, in the first case (a, b, c, d), and in the second case (a, b, b, d), is a
sequence of separating points for α. �

It is easy to detect in a four-colored noncrossing partition representation of a permu-
tation of genus 1 whether it is a partition, or whether it has twisted cycles, as we will
see in the following observations.

Corollary 2.9. A permutation α of genus 1 is a partition if and only if it may be
represented by a four-colored noncrossing partition (Q, γ) that has no three or four-
colored part and has at least two two-colored parts.

Indeed, a three or four-colored part would give rise to a twisted cycle which partition
can not have. Without twisted cycles, a permutation of genus 1 must have a pair of
crossing cycles which can only be represented by two-colored parts. To state our next
observation, we introduce the notion of simply and doubly twisted cycles.

Remark 2.10. For future reference we also note that every genus 1 partition α ∈ Sym (n)
has a three-colored non-crossing partition representation, that is, a four-colored repre-
sentation with C = ∅. Indeed, since α does not have any back point, by Lemma 1.5,
α−1ζn must have two back points. We may use the construction presented in the second
case of the proof of Theorem 2.8 to construct a three-colored noncrossing partition. A
variant of this observation was also made in [21, p. 63].
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Definition 2.11. A cycle of α is simply twisted if contains exactly one back point and
it is doubly twisted if it has two back points.

Remark 2.12. In a four-colored noncrossing partition representation of a permutation
of genus 1, three colored parts correspond to simply twisted cycles and four-colored
parts correspond to doubly twisted cycles.

Proposition 2.13. In a permutation α of genus 1, all cycles are either not twisted or
simply or doubly twisted. Moreover, exactly one of the following assertions is satisfied:

(1) α has no twisted cycle, hence it corresponds to a partition;
(2) α has a unique simply twisted cycle;
(3) α has a unique doubly twisted cycle;
(4) α has two simply twisted cycles.

There is an example of a permutation of genus 1 of each of the above four types.

A

C

D

1

n

B

A
C

D

1

n

B

A

C

D

1

n

B

A
C

D

1

n

B

Figure 3. The four types of genus 1 permutations

Proof. By Lemma 1.5, a permutation of genus 1 may have at most two back points.
If α has no back points then it is a partition. If it has one back point then it has a
unique simply twisted cycle. If it has two back points, then these are either on the
same (doubly twisted) cycle, or on two separate (simply twisted cycle). An example
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of a permutation of each type is sketched using a four-colored noncrossing partition
representation in Figure 3. �

3. Reduced permutations and partitions

Definition 3.1. A trivial cycle in a permutation is a cycle consisting of consecutive
points on the circle, i. e. a cycle Ci = (i, i+ 1, . . . , i+ p) where sums are taken modulo
n. A permutation is reduced if it contains no trivial cycle.

Lemma 3.2. Let θ and α be two permutations in Sym (n) such that θ is circular and
g(θ, α) = 0. If an integer x satisfies

α(x) = θk(x) for 1 < k < n

then there exists a cycle of α consisting of consecutive points in the sequence

θ(x), θ2(x), . . . , θk−1(x)

Proof. Use conjugation by a permutation φ such that φθφ−1 = ζn. Then the statement
follows by repeated use of the following, trivial observation: if a noncrossing partition
contains a part a1 < a2 < · · · < ap such that one of the ai’s satisfies ai+1 > ai + 1 then
there is another part contained in the set {ai + 1, ai + 2, . . . , ai+1 − 1}. Applying the
same observation repeatedly, we end up with a part consisting of consecutive integers
greater than ai and less than ai+1. �

As a consequence of Lemma 3.2, a permutation α of genus 1 is reduced if and only if
each of its cycles either crosses another one or it is twisted. Indeed, by Remark 2.2, a
cycle that does not cross any other cycle and is not twisted corresponds to a unicolored
part in a four-colored noncrossing partition representing α and, by Lemma 3.2, the same
color set contains a part consisting of consecutive points, which represents a trivial cycle.
Thus the representation of a reduced α can not have unicolored parts.

We now define for a reduced permutation α of genus 1 a canonical sequence of separat-
ing points and the canonical representation of it as a four-colored noncrossing partition.

Definition 3.3. Let α be a reduced permutation of genus 1. The canonical sequence of
separating points (a, b, c, d) of α is defined as follows:

(1) a is the smallest integer such that α(a) 6= a+ 1;
(2) b is the smallest integer satisfying b > a and such that either α(b) > α(a) or

α(b) ≤ a holds;
(3) c = α(a)− 1;
(4) d = n if α(b) = 1 and d = α(b)− 1 otherwise.

We call the four-colored noncrossing partition representation induced by the canonical
sequence of separating points the canonical representation of α.

In the proof of Proposition 3.5 below we will show that the canonical sequence of
separating points exists, it is unique, and it is indeed a sequence of separating points,
giving rise to a four-colored noncrossing partition representation. Our proof relies on
the following lemma.
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Lemma 3.4. Let α be a permutation of Sym (n) such that for some a satisfying a+1 <
α(a), the set X1 = {a+ 1, a+ 2, . . . , α(a)−1} is a union of cycles of α. Then α may be
split into two permutations α1 acting on X1 and α2 acting on X2 = {1, 2, . . . , n} \X1

such that
g(α) = g(α1) + g(α2)

Proof. Let n1 be the number of elements of X1 and n2 be that of X2. Consider the
transposition τ exchanging a and c = α(a)−1, then ζnτ has two cycles of lengths n1 and
n2 respectively, permuting the elements of X1 and X2 respectively. Since α−1ζn(c) = a,
we have:

z(α−1ζnτ) = z(α−1ζn) + 1

Moreover

z(α) = z(α1) + z(α2) and z(α−1ζnτ) = z(α−11 ζn1) + z(α−12 ζn2)

where ζn1 = (a + 1, a + 2, . . . , α(a) − 1) and ζn2 is the analogous circular permutation
on X2. Computing the genus of α1 and α2 we get:

2g(α1) = n1 − z(α1)− z(α−11 ζn1)− 1 and 2g(α2) = n2 − z(α2)− z(α−12 ζn2)− 1

Adding the two equations and using the preceding relations we get:

2(g(α1)) + g(α2)) = n1 + n2 − z(α)− z(α−1ζnτ)− 2

Since n1 + n2 = n and z(α−1ζnτ) = z(α−1ζn) + 1 we obtain the expected relation
between the genuses of α, α1, α2. �

Proposition 3.5. Every reduced permutation of genus 1 of n elements has a unique
canonical sequence (a, b, c, d) of separating points, that induces a four-colored noncross-
ing partition representation.

Proof. It is easy to see that an element a as defined above exists since if α(i) = i + 1
for all i < n then α is of genus 0. An element b > a such that α(b) > α(a) or
α(b) ≤ a exists also since there is at least an element j > a such that α(j) = 1. The
minimality requirement stated in conditions (1) and (2) guarantees the uniqueness of a
and b. Afterward, c and d are given by modulo n subtractions that can be performed in
exactly one way. It remains to show that (a, b, c, d) is a sequence of separating points.
To show that a < b ≤ c < d holds, notice that if for all i such that a < i < α(a)
we have α(i) < α(a) then one of α1 or α2 given in Lemma 3.4 will have genus 0 and
hence contain a trivial cycle, contradicting the fact that α is reduced. To show that
g(ζn(a, c)(b, d), α) = 0, observe first that a = α−1ζn(c) and c belong to the same cycle
of α−1ζn, similarly b = α−1ζn(d) and d belong to the same cycle of α−1ζn. Moreover,
by a = α−1ζn(c), the cycle decomposition of α−1ζn(a, c) is obtained by deleting a
from the cycle of α−1ζn containing it and turning it into a fixed point. Thus b and
d are also on the same cycle of α−1ζn(a, c). Using Lemma 1.2 twice we obtain that
z(α−1ζn(a, c)(b, d)) = z(α−1ζn) + 2. �

Proposition 3.6. Let α = Φ(β, γ) be the representation of the reduced permutation
α of genus 1 induced by its canonical sequence of separating points (a, b, c, d). This
representation has the following properties:

(1) a < b ≤ c < d and α(a) ≡ c+ 1, α(b) ≡ d+ 1 mod n.



12 ROBERT CORI AND GÁBOR HETYEI

(2) If x and α(x) are in the same subset A,B,C, or D then α(x) ≡ x+ 1(mod n).
(3) There is no cycle of α containing elements in both A and D except the one

containing b and d+ 1.
(4) There is no cycle of α containing elements in both B and D except if this cycle

is twisted and contains b ∈ D, d+ 1 ∈ A and an element x ∈ B.

Proof. (1) is a direct consequence of Definition 3.3 and Proposition 3.5.

(2) Comes from the fact that if x and α(x) are in the same color class X, and
α(x) 6≡ x+1 then, by Lemma 3.2, there is a trivial cycle of β which contains consecutive
points in X, giving rise to a trivial cycle of α thus contradicting the fact that the
permutation α is reduced.

To prove (3) observe that if there is a cycle bicolored by A and D then there is an
element x of this cycle such that x ∈ D and α(x) in A. But all elements in D are less
than or equal to b, so that x 6= b would contradict the fact that b was chosen as the
smallest such that α(b) ∈ A ∪B.

For (4), if there is a cycle containing elements in B and D this implies that there is
an element x in D such that α(x) ∈ A ∪ B. As above x = b. And the cycle contains
elements in A,B,D hence it is twisted. �

Proposition 3.7. Let α be a reduced permutation of genus 1, represented as α = Φ(β, γ)
by a four-colored noncrossing partition. If this representation satisfies the properties
stated in Proposition 3.6 then it is the representation induced by the canonical sequence
of separating points.

Proof. Let (A,B,C,D) denote the sequence of color sets of the coloring induced by the
canonical sequence (a, b, c, d) of separating points via (2.3). Suppose that there exists
another representation induced by the the sequence of separating points (a′, b′, c′, d′)
satisfying the properties stated in in Proposition 3.6, and let (A′, B′, C ′, D′) denote the
the sequence of sets of colors in the induced coloring. Then a = a′ since both are the
smallest x such that α(x) 6= x+ 1, this gives also c = c′ = α(a)− 1. Observe next that
b ≤ b′ since α(b′) ≡ d′ + 1 mod n satisfies α(b′) = 1 or α(b′) > α(a), thus it is not in
the interval [a + 1, α(a)] and b is the smallest integer with this property. It suffices to
show that b can not be strictly less than b′, afterward d = d′ follows from the fact that
both are congruent to α(b)− 1 modulo n.

Assume, by way of contradiction, that b < b′. As a consequence of a < b < b′, we
must have b ∈ D′ since all the elements in B′ and C ′ are greater than b′ and those in
A′∩ [1, b′] are less than a hence satisfy α(x) = x+1. By property (3) in Proposition 3.6
we can not have α(b) ∈ D′ and by property (4) we can not have α(b) ∈ A′ either. If
α(b) ∈ D′ then, by property (2), we must have d + 1 = α(b) = b + 1, in contradiction
with b < d. Finally, if α(b) ∈ C ′ = [b′+1, c′] ⊆ [a′+1, α(a′)−1] then α(b) is not outside
the interval [a+ 1, α(a)], in contradiction with the definition of a canonical sequence of
separating points. �

Corollary 3.8. The canonical four-colored noncrossing partition representation of a re-
duced permutation α of genus 1 may be equivalently defined by requiring that the sequence
of separating points inducing it must satisfy the four conditions of Proposition 3.6.
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4. Counting reduced partitions and permutations

4.1. Counting reduced partitions of genus 1.

Lemma 4.1. A reduced partition of genus 1 having k parts is determined by a subset
of 2k integers in {1, 2, . . . , n} and a sequence of four non-negative integers whose sum
is k − 2.

b

A

D

C
a

B

Figure 4. A reduced partition

Proof. By Corollary 2.9 and as a consequence of Lemma 3.2, in the canonical represen-
tation of a reduced partition each part is bicolored and contains exactly two points xi
and yi such that α(xi) 6= xi + 1 and α(yi) 6= yi + 1. There is exactly one part bicolored
by A and B that contains a, c + 1 and exactly one part bicolored A,D that contains
b, d + 1. There is no other part bicolored by A,D and there is no part bicolored by
D,B. The partition is determined by the elements xi, yi and by the numbers of the
parts bicolored by (A,B), (A,C), (B,C), or (C,D), respectively, see Figure 4.

�

Theorem 4.2. The number r0(n, k) of reduced partitions of genus 1, of the set {1, . . . , n},
having k blocks is

r0(n, k) =

(
n

2k

)(
k + 1

3

)
.

Moreover, the ordinary generating function of these partitions is given by

R0(x, y) =
∑
n,k≥0

r0(n, k)xnyk =
y2x4(1− x)3

((1− x)2 − yx2)4
. (4.1)

Proof. To obtain the first part, observe that there are
(
n
2k

)
ways to select the 2k integers

and that the number k−2 may be written in
(
k+1
3

)
ways as the sum of four non-negative

integers.
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To obtain a formula for the generating function, we will use the following variant of
the binomial series formula for (1− u)−m−1:

∞∑
n=m

(
n

m

)
un =

um

(1− u)m+1
holds for all m ∈ N. (4.2)

Using this formula first for u = x and m = 2k we obtain

R0(x, y) =
∑
k≥2

(
k + 1

3

)
yk
∑
n≥2k

(
n

2k

)
xn =

∑
k≥2

(
k + 1

3

)
yk

x2k

(1− x)2k+1

=
(1− x)

yx2

∑
k≥2

(
k + 1

3

)(
yx2

(1− x)2

)k+1

.

(The last part is a product of formal Laurent series.) Substituting now u = yx2/(1−x)2

and m = 3 into (4.2) yields

R0(x, y) =
(1− x)

yx2
·

(
yx2

(1−x)2

)2
(

1− yx2

(1−x)2

)4 .
Simplifying by the factors of (1− x) yields the stated formula. �

Substituting y = 1 in (4.1) allows us to find the ordinary generating function of all
reduced genus one partitions of a given size, regardless of the number of blocks.

Corollary 4.3. Let r0(n) be the number of all reduced genus 1 partitions on {1, . . . , n}.
Then the generating function R0(x) =

∑
n≥4 r0(n)xn is given by

R0(x) = x4
(1− x)3

(1− 2x)4
.

As a consequence, the ordinary generating function of the sequence r0(4), r0(5), . . . is
(1− x)3/(1− 2x)4. This sequence is listed as sequence A049612 in the Encyclopedia of
Integer Sequences [13]. It is noted in [13] that the same numbers appear as the third
row of the array given as sequence A049600. Essentially the same array is called the

array of asymmetric Delannoy numbers d̃m,n in [8] where they are defined as the number
of lattice paths from (0, 0) to (m,n + 1) having steps (x, y) ∈ N× P. (Here P denotes
the set of positive integers.) Using [8, Lemma 3.2], it is easy to show the following
formula:

r0(n) = d̃3,n−4 = 2n−4 + 3

(
n− 4

1

)
2n−5 + 3

(
n− 4

2

)
2n−6 +

(
n− 4

3

)
2n−7. (4.3)

4.2. Counting reduced permutations of genus 1.

Theorem 4.4. The number of reduced permutations of genus 1 of Sym (n) with k cycles
is equal to:

r∗(n, k) =

(
n+ 2

2k + 2

)(
k + 1

3

)
+

(
n+ 1

2k + 2

)(
k + 1

2

)
.
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More precisely, for j = 0, 1, 2, the number rj(n, k) of reduced permutations of genus 1
of Sym (n) with j back points and k cycles is given by the following formulas:

r0(n, k) =

(
n

2k

)(
k + 1

3

)
, r2(n, k) =

(
n

2k + 2

)(
k + 2

3

)
and

r1(n, k) =

(
n

2k + 1

)((
k + 2

3

)
+

(
k + 1

3

))
.

Proof. We count the four types of permutations listed in Proposition 2.13, in similar
manner as we counted the partitions of genus 1.

(1) The reduced permutations with no twisted cycles. These correspond to the
partitions, their number is given in Theorem 4.2.

(2) The reduced permutations with two back points. These may belong to the same
doubly twisted cycle, or on two separate simply twisted cycles. Let us count
first the permutations with one doubly twisted cycle.

b

A

D

C
a

B

Figure 5. Reduced permutation with one doubly twisted cycle

The general shape of such a permutation is represented in Figure 5. Note that
the number of points i such that α(i) 6= i+1 is 4 for the doubly twisted cycle and
2 for each of the k−1 non-twisted cycles, giving a total number of 2k+2 cycles.
Moreover knowing these points the permutation is completely determined by
the number of bicolored cycles having points in (A,B), (B,C)(C,D) so that
a sequence of three non-negative integers with sum equal to k − 1. Since the
number of such sequences is

(
k+1
2

)
, the number of such permutations is:(

n

2k + 2

)(
k + 1

2

)
.

Next we count the reduced permutations with two simply twisted cycles. The
general shape of such a permutation is represented in Figure 6. Note that the
number of points i such that α(i) 6= i + 1 is 3 for each of the two simply
twisted cycles and 2 for each of the k − 2 non twisted cycles giving a total
number of 2k + 2 such points. Moreover, if we know these points then the
permutation is completely determined by the number of bicolored cycles having
points in (A,B), (B,C)(A,C), (C,D) so that a sequence of four non-negative
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b

A

D

C
a

B

Figure 6. Reduced permutation with two simply twisted cycles

integers with sum equal to k − 2. Since the number of such sequences is
(
k+1
3

)
the number of such permutations is:(

n

2k + 2

)(
k + 1

3

)
.

We obtained that the number of all reduced permutations with two back points
is

r2(n, k) =

(
n

2k + 2

)(
k + 1

2

)
+

(
n

2k + 2

)(
k + 1

3

)
,

and the stated equality follows from Pascal’s formula.
(3) The reduced permutations with only one simply twisted cycle.

B

D

C

A

B

D

C

A

B

C

A
D

Figure 7. Three reduced permutations with one simply twisted cycle
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The general shape of such a permutation is represented in Figure 7. There
are three different cases depending on whether the twisted cycle is colored by
A,B,C, or A,C,D or A,B,D. Note that the number of points i such that
α(i) 6= i + 1 is 3 for the simply twisted cycle and 2 for each of the the k − 1
non-twisted cycles, giving a total number of 2k+ 1 such points. Moreover, if we
know these points then the permutation is completely determined by the number
of bicolored cycles having points in (A,B), (B,C)(A,C), (C,D) in the two first
situations so that a sequence of four non-negative integers with sum equal to
k− 2, is necessary since in the first case there is one cycle colored (A,D) and in
the second one a cycle colored A,B. In the third situation there are no cycles
with elements colored A,C so that there only 3 non-negative integers need to
be known. So that the number of such sequences is

(
k+1
3

)
in the first two cases

and
(
k+1
2

)
in the third one. in the and the number of such permutations is:

r1(n, k) =

(
n

2k + 1

)(
2

(
k + 1

3

)
+

(
k + 1

2

))
The stated equality follows by Pascal’s formula.

Finally, adding the equations for the rj(n, k) yields

r∗(n, k) =

(
n

2k

)(
k + 1

3

)
+

(
n

2k + 1

)((
k + 2

3

)
+

(
k + 1

3

))
+

(
n

2k + 2

)(
k + 2

3

)
.

Using Pascal’s formula two more times yields the stated result. �

Proposition 4.5. The ordinary generating function for the reduced permutations of
genus 1, counting the number of points and cycles, is given by:

R∗(x, y) =
yx3(1− x)2(1− x+ xy)

((1− x)2 − yx2)4
.

More precisely, for j = 0, 1, 2, the ordinary generating function for the reduced permu-
tations of genus 1 with j back points, counting the number of points and cycles, is given
by:

R0(x, y) =
y2x4(1− x)3

((1− x)2 − yx2)4
, R2(x, y) =

yx4(1− x)3

((1− x)2 − yx2)4
and

R1(x, y) =
yx3(1− x)2((1− x)2 + yx2)

((1− x)2 − yx2)4
.

Proof. We derive our formulas from the expressions for the numbers rj(n, k) stated in
Theorem 4.4. The formula for R0(x, y) was shown in the proof of Theorem 4.2. Com-
paring the expressions for r0(n, k) and r2(n, k) yields r2(n, k) = r0(n, k + 1), implying
yR2(x, y) = R0(x, y). We are left to show the formula for R1(x, y), the formula for
R∗(x, y) may then be obtained by taking the sum of the equations for Rj(x, y) where
j = 0, 1, 2.

We may derive the formula for R1(x, y) in a way that is completely analogous to the
computation R0(x, y) given in the proof of Theorem 4.2, using (4.2) several times, as
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outlined below:

R1(x, y) =
∑
k≥1

((
k + 2

3

)
+

(
k + 1

3

))
yk

∑
n≥2k+1

(
n

2k + 1

)
xn

=
∑
k≥1

((
k + 2

3

)
+

(
k + 1

3

))
yk

x2k+1

(1− x)2k+2

=
(1− x)2

y2x3

∑
k≥1

(
k + 2

3

)(
yx2

(1− x)2

)k+2

+
1

yx

∑
k≥2

(
k + 1

3

)(
yx2

(1− x)2

)k+1

=

(
(1− x)2

y2x3
+

1

yx

)
·

(
yx2

(1−x)2

)3
(

1− yx2

(1−x)2

)4 .
Simplifying by the factors of (1− x) yields the stated formula. �

5. Reducing permutations and reinserting trivial cycles

To count all partitions and permutations of genus 1 we first count the reduced ob-
jects in each class, and then count all objects obtained by inserting trivial cycles (see
Definition 3.1) in all possible ways. In this section we describe in general how such a
counting process may be performed.

Definition 5.1. A trivial reduction π′ of a permutation π of {1, 2, . . . , n} is a permu-
tation obtained from π by removing a trivial cycle (i, i + 1, . . . , j) and decreasing all
k ∈ {j + 1, j + 1, . . . , n} by j −min(0, i− 1) in the cycle decomposition of π.

Note that a trivial cycle may contain n, followed by 1, in the case when i > j, and
that a trivial cycle may also consist of a single fixed point when i = j. Clearly π′ is
a permutation of {1, . . . , n′} for n′ = n − |{i, i + 1, . . . , j}| and has the same genus
(if we replace ζn with ζn′). Conversely we will say that π is a trivial extension (or an
extension) of π′. For example, a trivial reduction of (1, 6)(2, 3, 4)(5, 7) is (1, 3)(2, 4).
Clearly a permutation is reduced exactly when it has no trivial reduction. In order
to avoid having to treat permutations of genus zero differently, we postulate that the
empty permutation is a reduced permutation of the empty set.

Proposition 5.2. For any permutation π of positive genus there is a unique reduced
permutation π′ that may be obtained by performing a sequence of reductions on π. If
π has genus zero then this reduced permutation is the empty permutation on the empty
set.

Proof. There is at least one reduced permutation that we may reach by performing
reductions until no reduction is possible. We only need to prove the uniqueness of the
resulting permutation.

Let us call a cycle (i1, . . . , ik) of π removable if it has the following properties:

(1) the cyclic order of the elements (i1, . . . , ik) is the restriction of the cyclic order
ζ to the set {i1, . . . , ik};

(2) no other cycle of π crosses (i1, . . . , ik);



COUNTING GENUS ONE PARTITIONS AND PERMUTATIONS 19

(3) the cycles whose elements belong to one of the arcs [i1, i2], [i2, i3], . . . , or [ik−1, ik]
are not twisted;

(4) no cycle whose elements belong to one of the arcs [i1, i2], [i2, i3], . . . , or [ik−1, ik]
crosses any other cycle of π.

We claim that a cycle of π gets removed in any and every reduction process that leads to
a reduced permutation, exactly when π is removable. On the one hand it is easy to see
directly that any cycle that gets removed in the reduction process must be removable:
assume after a certain number of reductions, the cycle (i1, . . . , ik) becomes the trivial
cycle (i, i + 1, . . . , j) where i1 corresponds to i1. Applying a reduction or an extension
does not change the fact whether a cycle, present in both permutation is obtained by
the restricting the cyclic order of all elements, this proves property (1). Neither the
previously removed cycles, nor the cycles surviving after the removal of (i1, . . . , ik) can
cross (i1, . . . , ik). The last two properties follow from the fact that the cycles whose
elements belong to one of the arcs [i1, i2], [i2, i3], . . . , or [ik−1, ik] all become trivial
cycles in the reduction process.

On the other hand, it is easy to show by induction on the number of cycles located
on the arcs [i1, i2], [i2, i3], . . . , [ik−1, ik] of a removable cycle that every removable cycle
ends up being removed in the reduction process. The basis of this induction is that a
removable cycle containing no other cycles on its arcs is trivial. Any other removable
cycle becomes trivial after the removal of all cycles contained on the arcs [i1, i2], [i2, i3],
. . . , [ik−1, ik]: these cycles are easily seen to be removable due to properties (3) and
(4) and, if we list the elements of each such cycle (j1, . . . , jl) in the order they appear
on the respective arc [is, is+1], then the set of cycles contained on the arcs [j1, j2], . . . ,
[jl−1, jl] is a proper subset of the cycles contained on the arc [is, is+1]. The induction
hypothesis thus becomes applicable.

We found that the exact same cycles get removed in every reduction process that
yields a reduced permutation, even if the order of the reduction steps may vary. After
each reduction step, the surviving elements get relabeled, and the new label depends
on the actual reduction step. However, it is easy to find the final label of each element i
located in a cycle that “survives” the entire reduction process: i gets decreased exactly
by the number of all elements of {1, . . . , i− 1} that belong to a removable cycle.

Clearly a permutation has genus zero exactly when all of its cycles are removable. �

As a consequence of Proposition 5.2, if a class of permutations is closed under reduc-
tions and extensions then we are able to describe this class reasonably well by describing
the reduced permutations in the class. Examples of such permutation classes include:

– the class of all partitions;
– the class of all permutations of a given genus;
– the class of all partitions of a given genus.

The main result of this section shows that knowing the reduced permutations allows not
only to describe but also to count the permutation in the class closed under reductions
and extensions that they generate. To state our main result we will need to use the
generating function

D(x, y) =
1− x− xy −

√
(x+ xy − 1)2 − 4x2y

2 · x
+ 1 (5.1)
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of noncrossing partitions. This function is the formal power series solution of the
quadratic equation

D(x, y) = 1 + xy ·D(x, y) + x · (D(x, y)− 1)D(x, y), (5.2)

whose other solution is only a formal Laurent series. As it is well-known [13, sequence
A001263], [xnyk]D(x, y) is the number of noncrossing partitions of the set {1, . . . , n}
having k parts. Note that we deviate from the usual conventions by defining the con-
stant term to be 1, i.e. we consider that there is one noncrossing partition on the empty
set and it has zero blocks. Our main result is the following.

Theorem 5.3. Consider a class C of permutations that is closed under trivial reductions
and extensions. Let p(n, k) and r(n, k) respectively be the number of all, respectively
all reduced permutations of {1, . . . , n} in the class having k cycles. Then the gener-
ating functions P (x, y) =

∑
n,k p(n, k)xnyk and R(x, y) =

∑
n,k r(n, k)xnyk satisfy the

equation

P (x, y) = R(x ·D(x, y), y) ·

(
1 + x ·

∂
∂x
D(x, y)

D(x, y)

)
.

Here D(x, y) is the generating function of noncrossing partitions given in (5.1).

Proof. Consider an arbitrary permutation π of {1, . . . , n} in the class having k cycles.
We distinguish two cases, and describe the generating function of the permutations
belonging to each case. The term “removable cycle” we use here is the one that was
defined in the proof of Proposition 5.2.

Case 1 The element 1 does not belong to a removable cycle. After reducing the per-
mutation to the reduced permutation π′, we obtain a reduced permutation on the set
{1, . . . , n1} having k1 blocks for some n1 ≤ n and k1 ≤ k. The cycles of π permutation
that were removed have n − n1 elements, and they form n1 noncrossing partitions on
the arcs created by the elements appearing in π′. They also have k − k1 blocks. Thus
there are exactly [xn−n1yk−k1 ]D(x, y)n1 permutations that may be reduced to the same
reduced partition. The number of permutations counted in this case is∑

n1≥4

∑
k1≥2

r(n1, k1)[x
n−n1yk−k1 ]D(x, y)n1

Using the fact that, for any formal power series f(x, y), [xn−n1yk−k1 ]f(x, y) is the same
as [xnyk]xn1yk1f(x), y, we see that the above sum is exactly the coefficient of xnyk in
R(x ·D(x, y), y).

Case 2 The element 1 belongs to a removable cycle. Let j + 1, respectively i − 1 be
the smallest, respectively largest element that does not belong to a removable cycle.
The arc {i, i+ 1, . . . , n, 1, . . . , j} is then a union of elements of removable cycles. (Here
we allow i − 1 = n, then i = 1 and n does not belong to the arc). Let us denote the
number of elements of this arc by n2 and assume that the noncrossing partition formed
by the removable cycles whose elements belong to this arc has k2 blocks. As in the
previous case, let n1 be the number of elements belonging to not removable cycles, and
assume that there are k1 not removable cycles. There are r(n1, k1) ways to select the
reduced permutation, [xn2yk2 ]D(x, y) ways to select the noncrossing partition on the
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arc {i, i+ 1, . . . , n, 1, . . . , j} containing 1, and n2 ways to select the position of 1 in its
arc. We need to fill in the remaining n−n1−n2 elements of removable cycles and group
them into noncrossing partitions on the n1 − 1 other arcs created by the n1 elements
of not removable cycles. We also need to make sure that the number of these other
removable cycles is k − k1 − k2. The number of permutations counted in this case is∑

n1≥4

∑
k1≥2

∑
n2≥1

∑
k2≥1

r(n1, k1)
(
n2[x

n2yk2 ]D(x, y)
)
·
(
[xn−n1−n2yk−k1−k2 ]D(x, y)n1−1

)
.

Note that n2[x
n2yk2 ]D(x, y) in the above sum is the coefficient of xn2yk2 in x · ∂

∂x
D(x, y).

Using the same observation as at the end of the previous case, we obtain that the
number of partitions counted in this case is

[xnyk]

(
R(x ·D(x, y), y) · x ·

∂
∂x
D(x, y)

D(x, y)

)
.

�

We conclude this section with rewriting the factor 1+x· ∂
∂x
D(x, y)/D(x, y), appearing

in Theorem 5.3, in an equivalent form.

Proposition 5.4.

1 + x ·
∂
∂x
D(x, y)

D(x, y)
=

1− xD(x, y)√
(x+ xy − 1)2 − 4x2y

.

Proof. We may rewrite (5.2) as

x ·D(x, y)2 + (xy − 1− x)D(x, y) + 1 = 0.

Taking the partial derivative with respect to x on both sides we obtain

D(x, y)2 − 2xD(x, y)
∂

∂x
D(x, y)− (1− y)D(x, y)− (1 + x− xy)

∂

∂x
D(x, y) = 0.

Using this equation we may express ∂
∂x
D(x, y) as follows:

∂

∂x
D(x, y) =

D(x, y)(D(x, y) + y − 1)

1 + x− xy − 2xD(x, y)
. (5.3)

This equation directly implies

1 +
x ∂
∂x
D(x, y)

D(x, y)
=

1− xD(x, y)

1 + x− xy − 2xD(x, y)
. (5.4)

Finally, as a direct consequence of (5.1) we have

1 + x− xy − 2xD(x, y) =
√

(x+ xy − 1)2 − 4x2y. (5.5)

Combining (5.4) and (5.5) yields the stated equality. �

Corollary 5.5. The formula stated in Theorem 5.3 is equivalent to stating

P (x, y) = R(x ·D(x, y), y) · 1− xD(x, y)√
(x+ xy − 1)2 − 4x2y

.
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Remark 5.6. The numbers

J(n, k) = [xnyk]

(
x ·

∂
∂x
D(x, y)

D(x, y)

)
are tabulated as entry A103371 in [13]. It is stated in the work of A. Laradji and A.
Umar [12, Corollary 3.10] referenced therein, that

J(n, k) =

(
n

k

)(
n− 1

k − 1

)
.

6. Counting all partitions and permutations of genus one

In this section we find the ordinary generating function for the numbers p0(n, k) of
all partitions of genus one the set {1, . . . , n}, having k parts, and prove an analogous
result for permutations of genus 1. Our main result is the following.

Theorem 6.1. Let the number p0(n, k) of all partitions of {1, . . . , n} of genus one
having k parts. Then the generating function

P0(x, y) =
∑
n≥4

∑
k≥2

p0(n, k)xnyk

is given by the equation

P0(x, y) =
x4y2

(1− 2(1 + y)x+ x2(1− y)2)5/2
.

We will see in Section 7 that Theorem 6.1 is equivalent to an explicit formula (7.2) for
the numbers p0(n, k), originally conjectured by M. Yip [21, Conjecture 3.15]. We will
prove Theorem 6.1 by combining Theorem 5.3 with the formula (4.1) for the generating
function R0(x, y) of reduced partitions of genus one. We use the equivalent form of
Theorem 5.3 stated in Corollary 5.5 and use Propositions 6.2 below to simplify R0(x ·
D(x, y), y). Theorem 6.1 thus follows from Theorem 5.3, by multiplying the formulas
given in Propositions 5.4 and 6.2.

Proposition 6.2. The generating function R0(x, y) of reduced partitions of genus one
satisfies the equality

R0(x ·D(x, y), y) =
x4y2

(1− xD(x, y))((x+ xy − 1)2 − 4x2y)2
.

Proof. We will use D as a shorthand for D(x, y). Using (4.1) we may write

R0(x ·D, y) =
y2x4D4(1− xD)3

((1− xD)2 − yx2D2)4
(6.1)

An equivalent form of (5.2) is

xyD = (D − 1)(1− xD), (6.2)

which may be used to eliminate the variable y in the denominator on the right hand
side of (6.1). Thus we obtain

R0(x ·D, y) =
y2x4D4(1− xD)3

((1− xD)2 − (D − 1)(1− xD)xD)4
=

y2x4D4(1− xD)3

((1− xD)(1− xD2))4
.
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Simplifying by the factors of (1− xD) yields

R0(x ·D, y) =
y2x4D

(1− xD)
·
(

D

1− xD2

)4

.

We are left to show that the second factor is ((x+ xy− 1)2− 4x2y)−2. By (5.5), this is
equivalent to showing

1 + x− xy − 2xD =
1− xD2

D
which is a rearranged version of (5.2). �

Substituting y = 1 into the formula given in Theorem 6.1 has the following conse-
quence.

Corollary 6.3. The number of p0(n) all partitions of {1, . . . , n} of genus one has the
ordinary generating function

∞∑
n=4

p0(n)xn =
x4

(1− 4x)5/2
.

The coefficient of xn in the above formula is easily extracted:

Corollary 6.4. The number of all genus one partitions on {1, . . . , n} is

p0(n) =

(
−5/2

n− 4

)
(−1)n−44n−4 =

(2n− 5)!

6 · (n− 4)!(n− 3)!
.

The sequence p0(4), p0(5), . . . is listed as sequence A002802 in [13] and referred to
(essentially) as the number of permutations of genus one. See also [20, formula (13)].
Now we see that partitions of genus one are counted by the same sequence, shifted by
one.

Next we follow an analogous procedure to count all permutations of genus 1.

Theorem 6.5. Let p∗(n, k) be the number of all permutations in Sym (n) of genus one
having k cycles. Then the generating function P∗(x, y) =

∑
n,k p∗(n, k)xnyk is given by

the equation

P∗(x, y) =
x3y

(1− 2(1 + y)x+ x2(1− y)2)5/2
.

More precisely, for j = 0, 1, 2, let pj(n, k) be the number of all permutations in Sym (n)
of genus one having k cycles and j back points. Then the generating functions Pj(x, y) =∑

n,k pj(n, k)xnyk are given by the formulas

P0(x, y) =
x4y2

(1− 2(1 + y)x+ x2(1− y)2)5/2
,

P2(x, y) =
x4y

(1− 2(1 + y)x+ x2(1− y)2)5/2
and

P1(x, y) =
x3y(1− xy − x)

(1− 2(1 + y)x+ x2(1− y)2)5/2
.
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The formula for P0(x, y) was shown in Theorem 6.1 above. As noted in the proof of
Proposition 4.5, the generating function R2(x, y) differs from R0(x, y) only by a factor
of y. After reproducing the same calculation to obtain P2(x, y) from R2(x, y), we find
that P0(x, y) = yP2(x, y). Therefore, to prove Theorem 6.5 above, it suffices to show
the formula for P1(x, y), the equation for P∗(x, y) will then arise as the sum of the
equations for the Pj(x, y).

Similarly to the proof of Theorem 6.1, we may show this formula by combining
Corollary 5.5 with the formula for R1(x, y) given in Proposition 4.5. We may use
Propositions 6.6 below to simplify R1(x ·D(x, y), y).

Proposition 6.6. The generating function R1(x, y) of reduced permutations of genus
1 having one back point satisfies the equality

R1(x ·D(x, y), y) =
x3y(1− xy − x)

(1− xD(x, y))((x+ xy − 1)2 − 4x2y)2
.

Proof. We will use D as a shorthand for D(x, y). Using Proposition 4.5 we may write

R1(x ·D, y) =
yx3D3(1− xD)2((1− xD)2 + yx2D2)

((1− xD)2 − yx2D2)4

Just like in the proof of Proposition 6.2 we may use (6.2) to eliminate the variable y in
the denominator and get

R1(x ·D, y) =
yx3D3(1− xD)2((1− xD)2 + yx2D2)

((1− xD)(1− xD2))4
=
yx3D3((1− xD)2 + yx2D2)

(1− xD)2(1− xD2)4
.

We use (6.2) again to rewrite the factor ((1− xD)2 + yx2D2) in the numerator and get

R1(x ·D, y) =
yx3D3(1− 2xD + xD2)

(1− xD)(1− xD2)4
=
yx3(1− 2xD + xD2)

(1− xD)D
·
(

D

(1− xD2)

)4

We have seen at the end of the proof of Proposition 6.2 that the last factor is (x +
xy−1)2−4x2y)−2. Taking this fact into account, comparing the last equation with the
proposed statement, we only need to show the following equality:

1− 2xD + xD2

D
= 1− xy − x.

This last equation is a rearranged version of (5.2). �

7. Extracting the coefficients from our generating functions

In this section we will show how to extract the coefficients from our generating func-
tions to obtain explicit formulas for the numbers of genus 1 partitions and permutations.
Our main tool is a generalization of the following equation.

x4y2

(1− 2(1 + y)x+ x2(1− y)2)5/2
=
∑
n≥4

1

6

(
n

2

)
xn

n−2∑
k=2

(
n− 2

k

)(
n− 2

k − 2

)
yk. (7.1)

According to this equation, M. Yip’s conjecture [21, Conjecture 3.15], stating

p0(n, k) =
1

6

(
n

2

)(
n− 2

k

)(
n− 2

k − 2

)
. (7.2)
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is equivalent to our Theorem 6.1 and thus true. Since, by Theorem 6.5, the generating
function of genus one permutations only differs by a factor of xy, we also obtain a new
way to count these objects, thus providing a new proof of the result first stated by A.
Goupil and G. Schaeffer [7].

After dividing both sides by x4y2 and shifting n and k down by two, we obtain the
following equivalent form of equation (7.1).

1

(1− 2(1 + y)x+ x2(1− y)2)5/2
=
∑
n≥2

1

6

(
n+ 2

2

)
xn−2

n−2∑
k=0

(
n

k + 2

)(
n

k

)
yk. (7.3)

This equation is the special case (when m = 2) of Equation (7.4) below, that holds for
all m ∈ N.

1

(1− 2(1 + y)x+ x2(1− y)2)(2m+1)/2
=
∑
n≥m

∑
k≥0

(
n+m
m

)(
n
k

)(
n

m+k

)(
2m
m

) xn−myk. (7.4)

Equation (7.4) may be obtained from [6, Equation (2)], after substituting α = (2m+1)/2
and replacing each appearance of y with xy in that formula (on the right hand side, one
also needs to replace the summation indices i, and j respectively, with n−m− k and
k, respectively). As pointed out by Strehl [17, p. 180] (see also [6, p. 64]), [6, Equation
(2)] is a consequence of classical results in the theory of special functions.

Remark 7.1. Equation (7.4) may also be derived directly from classical results as follows.
Take themth derivative with respect to u of the generating function

∑
n≥0 Ln(u)tn of the

Legendre polynomials (given in [3, Ch. V, (2.34)]), multiply both sides by 2m/(tmm!),
use [19, (4.21.2)] to express Ln(u), substitute u = (1 + y)/(1− y) and t = x(1− y), and
use the Chu-Vandermonde identity.

We conclude this section with providing explicit formulas for the number of all per-
mutations of genus 1, with a given numbers of points, cycles, and back points.

Theorem 7.2. The number of all permutations of genus 1 of Sym (n) with k cycles is
equal to:

p∗(n, k) =
1

6

(
n+ 1

2

)(
n− 1

k + 1

)(
n− 1

k − 1

)
More precisely, for j = 0, 1, 2, the number pj(n, k) of permutations of genus 1 of Sym (n)
with j back points and k cycles is given by the following formulas:

p0(n, k) =
1

6

(
n

2

)(
n− 2

k

)(
n− 2

k − 2

)
, p2(n, k) =

1

6

(
n

2

)(
n− 2

k + 1

)(
n− 2

k − 1

)
and

p1(n, k) =
1

3

(
n

2

)(
n− 2

k

)(
n− 2

k − 1

)
.

Proof. The formulas for p0(n, k), p2(n, k) and p∗(n, k) are all direct consequences of
Theorems 6.5 and Equation (7.4). Using the same results to find p1(n, k) amounts to
using the obvious equality

p1(n, k) = p∗(n, k)− (p0(n, k) + p2(n, k)),
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which is equivalent to showing that the sum of the stated values of the pj(n, k) gives
the stated value of p∗(n, k). For that purpose note that

p0(n, k) +
p1(n, k)

2
=

1

6

(
n

2

)(
n− 2

k

)((
n− 2

k − 2

)
+

(
n− 2

k − 1

))
,

which, by Pascal’s formula, gives

p0(n, k) +
p1(n, k)

2
=

1

6

(
n

2

)(
n− 2

k

)(
n− 1

k − 1

)
=

n

12
(k + 1)

(
n− 1

k + 1

)(
n− 1

k − 1

)
. (7.5)

A similar use of Pascal’s formula yields

p2(n, k) +
p1(n, k)

2
=

1

6

(
n

2

)(
n− 2

k − 1

)(
n− 1

k + 1

)
=

n

12
(n− k)

(
n− 1

k − 1

)(
n− 1

k + 1

)
. (7.6)

The sum of (7.5) and (7.6) is

2∑
j=0

pj(n, k) =
n(n+ 1)

12

(
n− 1

k − 1

)(
n− 1

k + 1

)
,

as required. �

8. Concluding remarks

Our four-colored noncrossing partition representation of permutations of genus 1 is
reminiscent of the use of three types of crossing hyperedges in the hypermonopole di-
agram representing a genus 1 partition in M. Yip’s Master’s thesis [21]. This analogy
becomes even more explicit at the light of Remark 2.10 stating that, for partitions of
genus 1, three colors suffice. Whereas the hypermonopole diagrams are of topological
nature (parts are represented with “curvy lines”) our representation is combinatorial
(parts may be represented with polygons). By better understanding the relation be-
tween the two models, perhaps it is possible to show that every genus one partition
has a hypermonopole diagram on a torus in such a way that boundaries of hyperedges
are finite unions of “straight” (circular) arcs. In either case, non-uniqueness of the
representation makes direct counting difficult.

Lemma 1.5 establishes a relationship between α and α−1ζn. It is worth noting that,
in the case when g(α) = 0, the permutation α−1ζn is the permutation representing the
Kreweras dual of the noncrossing partition represented by α. G. Kreweras [11] used
this correspondence to show that the lattice of noncrossing partitions is self-dual. M.
Yip has shown that the poset of genus 1 partitions is rank-symmetric [21, Proposition
4.5], but not self dual [21, Proposition 4.6] for n ≥ 6. Lemma 1.5 suggests that maybe
true duality could be found between genus 1 partitions and permutations with 2 back
points, after defining the proper partial order on the set of all genus 1 permutations. In
this setting, permutations with exactly one back point would form a self-dual subset.
Their number p1(n, k), given in Theorem 7.2, may be rewritten as

p1(n, k) =

(
n

3

)
N(n− 2, k − 1),

where N(n − 2, k − 1) is a Narayana number. It is a tantalizing thought that this
simple formula could have a very simple proof. If this is the case, then the formulas for
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p0(n, k) and p1(n, k) could be easily derived, using Lemma 1.5 and Yip’s rank-symmetry
result [21, Proposition 4.5] to establish p2(n, k) = p0(n, k + 1), and then the formula
for p∗(n, k) already stated by A. Goupil and Shaeffer [7] to complete a setting in which
the formula for p0(n, k) may be shown by induction on k. A “numerically equivalent”
conjecture (albeit for sets of partitions) was stated by M. Yip [21, Conjecture 4.10].

Equation (7.4) naturally inspires the question: what other combinatorial objects are
counted by the coefficients of xnyk in the Taylor series of

(1− 2(1 + y)x+ x2(1− y)2)−(2m+1)/2,

when m is some other nonnegative integer. For m = 0, we obtain

1

(1− 2(1 + y)x+ x2(1− y)2)1)/2
=
∑
n≥m

∑
k≥0

(
n

k

)2

xnyk.

These coefficients are listed as sequence A008459 in [13]. Among others, they count
the type B noncrossing partitions of rank k of an n-element set. In [16], R. Simion
constructed a simplicial polytope in each dimension whose h vector entries are the
squares of the binomial coefficients. The number of j-element faces of the n-dimensional
polytope is fj−1 =

(
n+j
j

)
. Another class of simplicial polytopes with the same face

numbers was defined in [9] as the class of all simplicial polytopes arising by taking any
pulling triangulation of the boundary complex of the Legendrotope. The Legendrotope
is combinatorially equivalent to the intersection of a standard crosspolytope with any
hyperplane passing through its center that does not contain any of its vertices. For all
these polytopes the polynomial

F (u) =
n∑

j=0

fj−1

(
u− 1

2

)j

is a Legendre polynomial, and the squares of the binomial coefficients are their h-vector
entries. For higher values of m, taking the mth derivative of F (u) (see Remark 7.1)
corresponds to summing over the links of all (m−1) dimensional faces. It is not evident
from this interpretation why we should get integer entries, even after dividing by

(
2m
m

)
,

and it seems an interesting question to see whether for the type B associahedron or for
some very regular triangulation of the Legendrotope, symmetry reasons would explain
the integrality. For m = 1, I. Gessel has shown [6] that the coefficients count convex
polyominoes. Finally, for general m, the coefficients have a combinatorial interpretation
in the work of V. Strehl [18] on Jacobi configurations. Even though V. Strehl uses
exponential generating functions, the use of the same coefficients becomes apparent by
comparing his summation formula on page 303 with [6, Equation (2)]. It seems worth
exploring whether deeper connections exist between the above listed models.
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Labri, Université Bordeaux 1, 33405 Talence Cedex, France.
WWW: http://www.labri.fr/perso/cori/.

Department of Mathematics and Statistics, UNC-Charlotte, Charlotte NC 28223-
0001. WWW: http://www.math.uncc.edu/~ghetyei/.

http://oeis.org
http://hdl.handle.net/10012/2933
http://www.labri.fr/perso/cori/
http://www.math.uncc.edu/~ghetyei/

	Introduction
	1. On the genus of permutations and partitions
	1.1. Hypermaps and permutations
	1.2. Partitions of the set {1,2, …, n}
	1.3. The genus and the cycle structure

	2. Genus one permutations and four-colored noncrossing partitions
	3. Reduced permutations and partitions
	4. Counting reduced partitions and permutations
	4.1. Counting reduced partitions of genus 1
	4.2. Counting reduced permutations of genus 1

	5. Reducing permutations and reinserting trivial cycles
	6. Counting all partitions and permutations of genus one
	7. Extracting the coefficients from our generating functions
	8. Concluding remarks
	Acknowledgments
	References

