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Blocks in cycles and k-commuting permutations

Rutilo Moreno and Luis Manuel Rivera

Abstract

Let k be a nonnegative integer, and let α and β be two permutations of n symbols.
We say that α and β k-commute if H(αβ, βα) = k, where H denotes the Hamming
metric between permutations. In this paper, we consider the problem of finding the
permutations that k-commute with a given permutation. Our main result is a char-
acterization of permutations that k-commute with a given permutation β in terms of
blocks in cycles in the decomposition of β as a product of disjoint cycles. Using this
characterization, we provide formulas for the number of permutations that k-commute
with a transposition, a fixed-point free involution and an n-cycle, for any k. Also, we
determine the number of permutations that k-commute with any given permutation,
for k ≤ 4.
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1 Introduction

The symmetric group as a metric space has been studied with different metrics and for
different purposes, see, for example, [9, 10, 12, 31], and the metric that seems to be more
used is the Hamming metric. This metric was introduced in 1950 by R. W. Hamming [25]
for the case of binary strings and in connection with digital communications. For the case of
permutations it was used in an implicit way by H. K. Farahat [12] who studied the symmetries
of the metric space (Sn, H), where Sn denotes the symmetric group on [n] := {1, . . . , n} and
H the Hamming metric between permutations. Also, D. Gorenstein, R. Sandler and W.
H. Mills [20] studied a problem about permutations that almost commute, in the sense of
normalized Hamming metric. Other problems studied in this metric space are the packing
and covering problem (see, e.g., [29]), and also permutation codes (see, e.g., [4]) which have
turned out to be useful in applications to power line communications (see, e.g. [7]).

Our interest in the symmetric group as a metric space, with the Hamming metric, arose
from the study of sofic groups, a class of groups of growing interest (see, e.g., [5, 28]) that
was first defined by M. Gromov [21] as a common generalization of residually finite groups
and of amenable groups. To the best of the author’s knowledge it is an open question to
determine if all groups are sofic. The following, Theorem 3.5 in [28], shows the importance
of the Hamming metric H on the symmetric group. Let Hn(α, β) = H(α, β)/n, for every
α, β ∈ Sn.

Theorem 1.1. A group G is sofic if and only if for evey finite F ⊆ G and for each ε > 0,
there exist a natural n and a mapping θ : F → Sn so that

1. if g, h, gh ∈ F , then Hn (θ(g)θ(h), θ(gh)) < ε,

2. if the identity e of G belongs to F then Hn(θ(e), id) ≤ ε, and

3. for all distinct g, h ∈ F , Hn(θ(g), θ(h)) ≥ 1/4.

As θ is not necessarily a group homomorphism between G and Sn then permutations
θ(gh) and θ(g)θ(h) can be different, and condition (1) in previous theorem ask for a “small”
difference between them. Motivated by this, L. Glebsky and the second author defined
the concept of stability of a system of equations in permutations [18, Def. 1]. For the
convenience of the reader, we remember here some of these definitions. Let w(x1, . . . , xk) =

xε1
i1
xε2
i2
. . . xεl

il
, u(x1, . . . , xk) = x

ε′1
j1
x
ε′2
j2
. . . x

ε′
l

jm
be expressions using xh ∈ {x1, . . . , xk} and εi =

±1, ε′j = ±1 (we may think that w, u are words in {x1, x
−1
1 , . . . , xk, x

−1
k }). We say that

permutations α1, . . . , αk are an ǫ-solution of equation w(x1, . . . , xk) = u(x1, . . . , xk), if and
only if Hn(w(α1, . . . , αk), u(α1, . . . , αk)) ≤ ǫ. We say that permutations α1, . . . , αk are an
ǫ-solution of a system of equations

wi(x1, . . . , xk) = ui(x1, . . . , xk), i = 1, . . . , r (1)

if and only if α1, . . . , αk are an ǫ-solution for each equation of the system. The system
of equations (1) is called stable in permutations if and only if there exists δǫ, lim

ǫ→0
δǫ = 0,

such that for any ǫ-solution α1, . . . , αk ∈ Sn of system (1), there exists an exact solution
α̃1, . . . , α̃k ∈ Sn of (1) such that Hn(αi, α̃i) ≤ δǫ for i = 1, . . . , k.
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Glebsky et. al., [18] showed that the stability in permutations of system (1) is related
with the properties of the finitely presented group

G = 〈x1, . . . , xk | wi(x1, . . . , xk) = ui(x1, . . . , xk), i = 1, . . . , r〉. (2)

They proved that if G is finite then system (1) is stable in permutations, and if G is sofic but
not residually finite then system (1) is unstable in permutations. One question that remains
open is to determine if for any finitely presented residually finite group G, with presentation
(2), system (1) is stable or not in permutations. As the group G = 〈x, y | xy = yx〉 is an
example of a residually finite group we are interested in the following:

Problem 1.2. To determine if equation xy = yx is or not stable in permutations.

In an informal way, this problem can be expressed as the following “almost” implies
“near” type problem (see, e.g., [1] for more problems of this type): is it true that any pair of
almost commuting permutations is closed to a commuting pair of permutations? A problem,
which is closely related to problem 1.2 was studied by D. Gorenstein, et al., [20].

The analogous problem about the stability of xy = yx in matrices is a classical problem
in linear algebra and operator theory, and has been widely studied for the cases when the
distance between matrices are: the operator norm (see, e.g., [16, 22, 26, 27, 36]), the Schatten
norm (see, e.g., [15]), and for the normalized Hilbert-Schmidt distance (see, e.g., [14, 17, 23,
24]). On the other hand, the case of rank distance is poorly studied and little understood
(see, e.g., [19, Sec. 2.3]).

In order to get insight and to develop tools towards a solution of Problem 1.2, we begin
the study of the following problems: let α and β be two permutations, we say that α and β
k-commute if H(αβ, βα) = k.

Problem 1.3. For given β ∈ Sn, to characterize the permutations α that k-commute with
β.

Problem 1.4. To compute the number c(k, β) of permutations that k-commute with β, where
β is any permutation and k any nonnegative integer.

Our main result about Problem 1.3 is a characterization of permutations α that k-
commute with a given permutation β. This characterization is given in terms of blocks
formed by strings of consecutive points in the cycles of the decomposition of β as a product
of disjoint cycles. With respect to Problem 1.4, using our characterization we were able
to find explicit formulas for c(k, β), for any β and k ≤ 4. The study of this small cases
sheds light of how difficult it can be the problem of computing c(k, β) in its generality.
So we worked with several specific types of permutations. We have found some relations
between c(k, β) and the following integer sequences in OEIS [33]: A208529, A208528 and
A098916 when β is a transposition, A000757 when β is an n-cycle, and A053871 when β is a
fixed-point free involution. The relationship between the number c(k, β) with some integers
sequences in OEIS have provided another motivation for the authors to studied permutations
that k-commute using the Hamming metric. The interested reader in a similar problem but
with strings is referred to the work of J. Shallit [32].
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The outline of the paper is as it follows. In Section 2 we give some of the definitions
and notation used throughout the paper. In Section 3 we present our characterization of
permutations that k-commute with a given permutation β. This characterization is given in
terms of blocks in cycles in the decomposition of β as a product of disjoint cycles. In Section 4
we present a formula and a bivariate generating function for the number of permutations
that k-commute with any n-cycle. Also we present a result about the proportion of even
permutations that k-commute with β. In Section 5 we obtain explicit formulas for the number
c(k, β) when β is any permutation and k = 3, 4. In Section 6 we obtain some formulas for
the cases when β is a transposition and a fixed-point free involution.

2 Definitions and notation

We first give some definitions and notation used throughout the work. The elements in [n]
are called points and the elements in Sn are called permutations or n-permutations. For any
permutation π ∈ Sn, we write π = p1p2 . . . pn for its one-line notation, i.e., π(i) = pi for
every i ∈ [n]. We compute the product αβ of permutations α and β by first applying β and
then α. A permutation π ∈ Sn is called a cycle of length m (or m-cycle), and it is denoted
by π = (a1a2 . . . am), if π(ai) = ai+1, for 1 ≤ i < m, π(am) = a1 and π(a) = a for every
a ∈ [n] \ {a1, . . . , am}. It is a known fact that any permutation can be written in essentially
one way as a product of disjoint cycles (called its cycle decomposition, see, e.g., [11, Sec.
1.3, p. 29]). In this paper, we will denote a cycle in the disjoint cycle decomposition of π
by πj , i.e., π with a subindex j ∈ [n] that not necessarily means its length, and we will say
that π has cycle πj or that πj is a cycle of π. If πj = (a1 . . . am) is a cycle of π we define
set(πj) := {a1, . . . , am}, and we say that a is a point in cycle πj if a ∈ set(πj). The cycle
type of a permutation β is a vector (c1, . . . , cn) that indicates that β has exactly ci cycles of
length i in its cycle decomposition. The Hamming metric, H(α, β), between permutations
α and β is defined as H(α, β) = |{a ∈ [n] : α(a) 6= β(a)}|. It is well-known (see, e.g., [9])
that this metric is bi-invariant, that not two permutations have Hamming metric equal to
1, and also, that H(α, β) = 2 if and only if αβ−1 is a transposition. We say that a ∈ [n]
is a good commuting point (resp. bad commuting point) of α and β if αβ(a) = βα(a) (resp.
αβ(a) 6= βα(a)). Usually, we abbreviate good commuting points (resp. bad commuting
points) with g.c.p. (resp. b.c.p.). In this work, we use the convention m mod m = m for
any positive integer m.

2.1 Blocks in cycles

Let π ∈ Sn, a blockA in a cycle πj = (a1a2 . . . am) of π is a nonempty string A = aiai+1 . . . ai+l,
where l ≤ m, of consecutive elements in πj, where the sums on the subindex are taken modulo
m. This definition is different from the given in [20], our way of defining a block in a cycle is
similar to the definition of block when permutation is written in one-line-notation (see, e.g.,
([3, 6]). The length of a block A is the number of elements in the block, and is denoted by
|A|. If we have the block A = a1 . . . al, the elements a1 and al are called the first and the last
elements of the block, respectively. A proper block (resp. improper block) of an m-cycle is a
block of length l < m (resp. l = m). Two blocks A and B are said to be disjoint if they do
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not have points in common. The product AB of two disjoint blocks, A and B, not necessarily
from the same cycle, is defined by concatenation of strings (this product is not necessarily a
block in a cycle of β). If πj is a cycle, we sometimes write πj = (A1 . . . Ak) to mean that one
of the m cyclic equivalent ways to write τ is equal (as a block) to A1 . . . Ak. A block partition
of a cycle πj is a set {A1, . . . , Al} of pairwise disjoint blocks such that there exist a product
Ai1 . . . Ail of these blocks such that πj = (Ai1 . . . Ail). If P = J1J2 . . . Jk is a block product
of k pairwise disjoint blocks (not necessarily from the same cycle) and α is a permutation in
Sk, the block permutation φα induced by α and P is defined as φα(P ) = Jα(1)Jα(2) . . . Jα(k).

Example 2.1. Let π = π1π2 ∈ S9 with π1 = (1234), π2 = (56789). An improper block in
π1 is 2341 and a proper block is A = 12. The blocks B1 = 567, B2 = 8, B3 = 9 are a block
partition of π2. The product B1B2 is a block in π2 and AB2 = 128 is not a block in any
cycle of π. Let α = (321) ∈ S3. The block permutation φα(B1B2B3) is B3B1B2 = 95678.

Let α, β ∈ Sn and βj = (b1 . . . bm) a cycle of β. It is well known (see, e.g., [11, Prop. 10,
p. 125]) that αβjα

−1 = (α(b1) . . . α(bm)), i.e., αβjα
−1 is also an m-cycle, not necessarily of

β. Sometimes we write α|set(βj), the restriction of α to set(βj), as

α|set(βj) =

(
b1 b2 . . . bm

α(b1) α(b2) . . . α(bm)

)

. (3)

If α|set(βj) is written as in (3), we will write

α|set(βj),k =

(
B1B2 . . . Bk

J1J2 . . . Jk

)

,

to mean that if B1 . . . Bk = b1 . . . bm, then J1, . . . , Jk are blocks in cycles of β, with J1 . . . Jk =
α(b1)α(b2) . . . α(bm), and |Bi| = |Ji|, for 1 ≤ i ≤ k (notice that there are m possibilities for
the first point b1 in the first row). We refer to this notation as the block notation (with
respect to β) of α|set(βj). If not required the subindex k in α|set(βj),k it will be omitted.

Example 2.2. Let α, β ∈ S6 with α = (1 3 4)(2 5 6) and β = (1 2 4 5)(3 6). If βj = (1 2 4 5),
two ways to express α|set(βj) in block notation are

α|set(βj),3 =

(
1 2 4 5
3 5 1 6

)

, α|set(βj),4 =

(
1 2 4 5
3 5 1 6

)

,

where the vertical lines denotes the limits of the blocks.

3 Permutations that k-commute with a cycle of a per-

mutation

In this section we show the relation between blocks in cycles of β and the permutations α
that k-commutes with β. First we prove the following.

Proposition 3.1. Let β be any permutation of cycle type (c1, . . . , cn). Then c(0, β) =
∏n

i=1 i
cici!, and c(1, β) = c(2, β) = 0.
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Proof. When k = 0, c(0, β) is the size of the centralizer of β. As no two permutations have
Hamming metric equal to 1 then c(1, β) = 0. Now we show case k = 2. It is easy to see
that H(π, τ) = 2 if and only if πτ−1 is a transposition. If H(αβ, βα) = 2 then αβα−1β−1

should be a transposition, but this lead to a contradiction because αβα−1β−1 is an even
permutation.

If two permutations α and β commute, then αβα−1 = β, and we can think that “α
rearranges the cycles of β”. We will say that α transforms the cycle βj of β into the cycle
αβjα

−1 if αβjα
−1 is also a cycle in the cycle decomposition of β. Let B = b1 . . . bl be a

block in βj, we say that α commutes with β on the block B if αβ(bi) = βα(bi), for every
i = 1, . . . , l, and that commutes (resp. do not commute) with β on βj, or simply (by abusing
of notation) that α commutes (resp. do not commute) with βj , if αβ(b) = βα(b) for every
b ∈ set(βj) (resp. αβ(b) 6= βα(b) for some b ∈ set(βj)). The following remark is implicitly
used in some of the proofs in this article.

Remark 3.2. Let α, β ∈ Sn and {a1, . . . , al} ⊆ [n]. If α(a1) . . . α(al) is a block in a cycle of
β then, by definition of block, it follows that β(α(ai)) = α(ai+1), 1 ≤ i ≤ l − 1.

The following result is the key to relate commutation and blocks in cycles.

Proposition 3.3. Let α, β ∈ Sn. Let ℓ,m be integers, 1 ≤ ℓ < m ≤ n. Let βj = (b1 . . . bm)
be a cycle of β. If α commutes with β on the block b1 . . . bℓ, then α(b1) . . . α(bℓ)α(bℓ+1) is a
block in a cycle of β.

Proof. It is enough to prove that α(bi) = βi−1(α(b1)), for i = 1, . . . , ℓ + 1. The proof is
by induction on i ≤ ℓ + 1. The base case i = 1 is trivial. Assume as inductive hypothesis
that the statement is true for every k < ℓ + 1. As α and β commute on bk, we have that
α(bk+1) = α(β(bk)) = β(α(bk)) = β(βk−1(α(b1))) = βk(α(b1)).

We have the following result.

Proposition 3.4. Let βj be an m-cycle of β. Then α commutes with β on βj if and only if
α transforms βj into an m-cycle of β.

Proof. If α commutes with β on βj = (b1 . . . bm) then from Proposition 3.3 it follows that
α(b1) . . . α(bm−1)α(bm) is a block in a cycle of β. Now, as β(α(bm)) = α(β(bm)) = α(b1) then
α(b1) . . . α(bm−1)α(bm) is an improper block in an m-cycle, say βl, of β, i.e., α transforms
βj into βl. Conversely, if α transform βj into an m-cycle, say βl, of β then βl = αβjα

−1

that is equal to (α(b1) . . . α(bm)). Then α(b1) . . . α(bm) is a block in a cycle of β which
implies (see Remark 3.2) that β(α(bi)) = α(bi+1 mod m). As also α(bi+1 mod m) = α(β(bi))
then β(α(bi)) = α(β(bi)), for every i ∈ {1, . . . , m}.
Corollary 3.5. Let α, β ∈ Sn. Then α and β commute if and only if α transforms all the
cycles of β into cycles of β.

Remark 3.6. Using block notation, Proposition 3.4 can be rewritten as follows: a permu-
tation α commutes with β on βj = (B) if and only if

α|set(βj),1 =

(
B
B′

)

,

where βl = (B′) is a cycle of β.
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Let βi be a cycle of β. We say that α (ki, β)-commutes with βi if there exists exactly ki
points in βi on which α and β do not commute.

Remark 3.7. Let β be a permutation. Then α k-commutes with β if and only if there exists
h cycles, say β1, . . . , βh, of β such that for every 1 ≤ i ≤ h, α (ki, β)-commutes with βi,
ki ≥ 1, where k1 + · · ·+ kh = k and α commutes with β on every cycle not in {β1, . . . , βh}.

Now we present one of our main results.

Theorem 3.8. Let βj be an m-cycle of β and k ≥ 1. Then α (k, β)-commutes with βj if
and only if αβjα

−1 = (P1 . . . Pk), where the blocks P1, . . . , Pk satisfy the following

1. if k = 1 then P1 is a proper block in a cycle of β,

2. if k > 1 then P1, . . . , Pk are k pairwise disjoint blocks, from one or more cycles of β,
such that for any i ∈ [k], the string PiPi+1 mod k is not a block in any cycle of β.

Proof. (1) (⇐): Suppose that αβjα
−1 = (P1) and without lost of generality we can take

βj = (b1 . . . bm) such that P1 = α(b1) . . . α(bm). As, by hypothesis, P1 is a proper block in a
cycle of β then β(α(bi)) = α(bi+1), for i = 1, . . . , m−1 (Remark 3.2). As α(bi+1) = α(β(bi)),
we have that α and β commute on bi, for every 1 ≤ i ≤ m−1. Now we prove that β(α(bm)) 6=
α(β(bm)) by contradiction. Suppose that β(α(bm)) = α(β(bm)), then β(α(bm)) = α(b1) which
implies that P1 is an improper block in a cycle of β, a contradiction.

(⇒): Without lost of generality we can assume that α commutes with β on block
b1 . . . bm−1 of βj = (b1 . . . bm−1bm) and that does not commute on bm. By Proposition 3.3,
α(b1) . . . α(bm−1)α(bm) is a block in a cycle of β and is a proper block due to Proposition 3.4
(see also Remark 3.6).

(2) (⇐): Suppose that αβjα
−1 = (P1 . . . Pk), where every Pi = pi1pi2 . . . piℓi is a block in

a cycle of β and that for every i ∈ [k], PiPi+1 is not a block in any cycle of β. Without lost
of generality we assume that βj = (b11 . . . b1ℓ1b21 . . . b2ℓ2 . . . bk1 . . . bkℓk) such that α(bir) = pir,
for every i ∈ [k] and 1 ≤ r ≤ ℓi.

As Pi is a block in a cycle of β then β(pir) = pi(r+1), for every 1 ≤ r < ℓi (Remark 3.2),
then we have for one side that pi(r+1) = β(pir) = β

(
α(bir)

)
and for the other side pi(r+1) =

α(bi(r+1)) = α
(
β(bir)

)
and hence α and β commute on bir, for every 1 ≤ r < ℓi. Now we

prove that β
(
α(biℓi)

)
6= α

(
β(biℓi)

)
by contradiction. Suppose that β

(
α(biℓi)

)
= α

(
β(biℓi)

)
, as

β(piℓi) = β
(
α(biℓi)

)
, then β(piℓi) = α

(
β(biℓi)

)
= α(b(i+1 mod k)1) = p(i+1 mod k)1, which implies

that PiPi+1 mod k is a block in a cycle of β, a contradiction.
(⇒): If α does not commute with β on exactly k points in βj we write βj = (B1 . . . Bk),

where for every block Bi = bi1bi2 . . . biℓi, α and β commute on bij , for 1 ≤ j < ℓi, and does
not commute on biℓi . By Proposition 3.3 we have that Pi := α(bi1)α(bi2) . . . α(biℓi) is a block
in a cycle of β. Now suppose that for some i, PiPi+1 mod k is a block in any cycle of β, then
β
(
α(biℓi)

)
= α(b(i+1 mod k)1) = α

(
β(biℓi)

)
, contradicting the assumption that α and β do not

commute on biℓi .
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Remark 3.9. α|set(βj),k in previous proposition, can be written as

α|set(βj),k =

(
B1 . . . Bk

P1 . . . Pk

)

,

with βj = (B1 . . . Bk), αβjα
−1 = (P1 . . . Pk), where for every 1 ≤ i ≤ k, |Bi| = |Pi| = ℓi,

Pi = pi1pi2 . . . piℓi, Bi = bi1bi2 . . . biℓi , i.e., α(bir) = pir, 1 ≤ r ≤ ℓi, and where α and β
commute on bi1bi2 . . . bi(ℓi−1) and do not commute on biℓi = α−1(piℓi) (the last point of Bi).

Using Theorem 3.8 we can characterize permutations that k-commute with β in terms of
blocks in cycles of β as follows.

Corollary 3.10. Let α, β ∈ Sn. Then α k-commutes with β if and only if there exist h
cycles of β, say β1, . . . , βh, such that α commutes with β on each cycle not in {β1, . . . , βh}
and for every i ∈ {1, . . . , h}, αβiα

−1 = (P
(i)
1 . . . P

(i)
ki
), with ki ≥ 1, k = k1 + · · · + kh, and

where the blocks P
(i)
1 , . . . , P

(i)
ki

satisfy the following

1. if ki = 1 then P
(i)
1 is a proper block in a cycle of β,

2. if ki > 1 then P
(i)
1 , . . . , P

(i)
ki

are ki pairwise disjoint blocks, from one or more cycles of

β, such that for any r ∈ [ki], P
(i)
r P

(i)
r+1 mod ki

is not a block in any cycle of β,

3. {P (1)
1 , . . . , P

(1)
k1

, . . . , P
(h)
1 , . . . , P

(h)
kh

} is a set of pairwise disjoints blocks from one or more
cycles of β.

Example 3.11. Let α, β ∈ S7, with β = (1 2 4 5 3)(7 6) and α = (2 7)(3 6 4 5). By direct
calculations we can check that α (4, β)-commutes with β1 = (1 2 4 5 3) (the b.c.p. are 1, 2, 3
and 5) and (1, β)-commutes with β2 = (7 6) (the b.c.p. is 6). In block notation α|set(β1) and
α|set(β2) can be expressed as

α|set(β1),4 =

(
1 2 4 5 3
1 7 5 3 6

)

, α|set(β2),1 =

(
7 6
2 4

)

.

As a first application of Theorem 3.8 we present the following generalization of Lemma
2(b) in [20] where it was proved only for the case when β is a product of m disjoint l-cycles.

Proposition 3.12. Let β be any n-permutation whose maximum cycle length in its cycle
decomposition is m. If α commutes with β on m − 1 points in an m-cycle βj of β then α
commutes with β on βj.

Proof. Suppose that α and β do not commute on the remaining point in βj . By part (1) of
Theorem 3.8, αβjα

−1 = (P ), where P is a proper block in an l-cycle of β, i.e., l > m, but
this is a contradiction because m is the maximum cycle length of cycles in β.

The following proposition will be useful in the proofs of some of our results.
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Proposition 3.13. Let α and β be two permutations that k-commute, k > 0. Suppose
that α does not commute with β on the cycles β1, . . . , βr, of lengths l1, . . . lr, respectively,
and that commutes with the rest of the cycles of β (if any). Then there exists exactly r
cycles, say β ′

1, . . . , β
′
r, of lengths l1, . . . lr, respectively, such that α (set(β1) ∪ · · · ∪ set(βr)) =

set(β ′
1)∪ · · · ∪ set(β ′

r). Even more, suppose that α does not commute with exactly hi i-cycles
of β and that commutes with the rest of the i-cycles of β (if any). Then there exists exactly
hi i-cycles of β such that each of them contains at least one point that is the image under α
of one b.c.p. of α and β.

Proof. Let βr+1, . . . , βs the rest of cycles of β of lengths lr+1, . . . ls, respectively. As α com-
mutes with β on every one of this cycles then α transforms each βt into an lt-cycle β ′

t, for
r+1 ≤ t ≤ s and then there exists β ′

r+1, . . . , β
′
s cycles of β of lengths lr+1, . . . , ls, respectively

such that α (set(βr+1) ∪ · · · ∪ set(βs)) = set(β ′
r+1) ∪ · · · ∪ set(β ′

s) and the result of the first
part of the proposition follows because α is a bijection. The previous argument also implies
that if α does not commute with exactly hi i-cycles of β and that commutes with the rest of
the i-cycles of β (if any) then there exists exactly hi i-cycles of β, say β ′′

1 , . . . , β
′′
hi
, such that

β ′′
t 6= αβjα

−1 for any cycle βj of β. The following claim completes the proof of the second
part

Claim 3.14. If all the points in an i-cycle βj′ of β are images under α of g.c.p., then
βj′ = αβjα

−1 for some i-cycle βj of β.

Proof. We first prove that if all the points in the i-cycle βj′ are images under α of β of g.c.p.
of α and β then these g.c.p. belong to exactly one l-cycle βj = (b1 . . . bl). If βj′ contains the
images under α of g.c.p. in different cycles of β, then βj′ contains the string α(x)α(y) with
x and y in different cycles of β, i.e., β(x) 6= y, but this implies that x is a b.c.p. because
α(β(x)) 6= α(y) = β(α(x)). Now we show that l ≤ i. Suppose that l > i then, and without
lost of generality, we have that β ′

j = (α(b1) . . . α(bi)), i.e., β
′
j(α(bt)) = α(bt+1 mod i), for every

t (if β ′
j(α(bt)) 6= α(bt+1 mod i) for some t then bt will be a b.c.p.). But this implies that bi is

a b.c.p. because β(α(bi)) = α(b1) 6= α(bi+1) = α(β(bi)), which is a contradiction. Therefore
l ≤ i, and this will implies that l = i (by using a similar argument as the previous one), i.e.
βj′ = αβjα

−1.

3.1 Permutations that (k, β)-commute with a cycle of β

Let k ≥ 3 be a positive integer. Let α be any permutation that k-commutes with β and
that (k, β)-commutes with an m-cycle, say βj, of β, i.e., all the b.c.p. of α and β are in βj .
From Proposition 3.13 it follows that there exist exactly one m-cycle, say βj′, of β such that
set(βj′) = α(set(βj)). Using this fact we present a procedure (Algorithm 1) that allows us to
obtain any such permutation α. First we give some definitions. The canonical cycle notation
of a permutation π is defined as follows: first, write the largest element of each cycle, and
then arrange the cycles in increasing order of their first elements. Let π be a permutation
written in its canonical cycle notation, the transition function of π from canonical cycle
notation to one-line notation is the map Ψ : Sn → Sn that sends π to the permutation Ψ(π)
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written in one-line notation that is obtained from π by omitting all the parentheses. This
map is a bijection (see, e.g., [2, p. 96]).

Example 3.15. Let π ∈ S7 be (431)(65)(72) (π is written in its canonical cycle notation).
Then Ψ(π) = 4316572.

Algorithm 1.

Step 1. Choose m-cycles βj and βj′ of β (with the possibility that βj′ = βj), and with
m ≥ k.

Step 2 Choose a subset of k points of set(βj′). Let P = p1p2 . . . pm be any improper block
of βj′ such that pm is one of the selected points. Let ph1, ph2, . . . , phk

= pm the k
selected points whit h1 < · · · < hk. Now partition the improper block P into k blocks,
P1, P2, . . . , Pk, as follows

p1 . . . ph1
︸ ︷︷ ︸

P1

ph1+1 . . . ph2
︸ ︷︷ ︸

P2

. . . phk−1+1 . . . phk
︸ ︷︷ ︸

Pk

,

i.e., P = P1P2 . . . Pk, and where phr
is the last point of Pr, 1 ≤ r ≤ k.

Step 3 Choose any k-cycle τ of [k] = {1, . . . , k} with τ(a) 6= a+1 mod k, for every a ∈ [k],
and make the block permutation

P ′ := PΨ(τ)(1)PΨ(τ)(2) . . . PΨ(τ)(k) = Pi1Pi2 . . . Pik ,

where Ψ(τ) is the transition function of the canonical cycle notation of τ to one-line
notation (notice that τ in its canonical cycle notation is equal to (i1 . . . ik)).

Step 4 Construct α|set(βj) : set(βj) → set(βj′) in block notation as it follows:

α|set(βj),k =

(
B1 B2 . . . Bk

Pi1 Pi2 . . . Pik

)

.

where βj = (B1 . . . Bk) and |Br| = |Pir |, 1 ≤ r ≤ k.

Step 5. Construct α|[n]\set(βj) : [n] \ set(βj) → [n] \ set(βj′) as any bijection that commutes
with β|[n]\set(βj) : [n] \ set(βj) → [n] \ set(βj′).

Notice that Step 5 is possible because α can be constructed in such a way that it trans-
forms the cm − 1 m-cycles of β different than βj (if any) into the cm − 1 m-cycles of β
different than βj′ (if any), and that transforms the l-cycles of β (if any), with l 6= m, into
l-cycles of β (if any). The following two propositions shows that Algorithm 1 produces all
the permutation α with the desired properties.

Proposition 3.16. Permutation α constructed with Algorithm 1 does not commute with β
on all points in A := α−1({ph1, . . . , phk

}) and commutes with β on all points in [n] \ A.
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Proof. Let βj and βj′ be the cycles of β selected in Step 1 of Algorithm 1, and {ph1, . . . , phk
}

the subset of set(βj′) selected in Step 2. By the way in which α is constructed of in Step
3 and 4, αβjα

−1 has Pi1Pi2 . . . Pik as an improper block, where PirPir+1 mod k
, 1 ≤ r ≤ k, is

not a block in any cycle of β (by Step 3, ir+1 mod k − ir mod k 6= 1). From Theorem 3.8, we
have that α does not commute with β on exactly k points in set(βj). Even more, in the
proof of Theorem 3.8 was showed that α and β do not commute on α−1(phr

), 1 ≤ r ≤ k (see
Remark 3.9). Finally, by the construction of α in Step 5, α and β commute on all points in
[n] \ set(βj).

Proposition 3.17. Let k ≥ 3. Any permutation α that k-commutes with β and such that
all the b.c.p. of α and β are in one cycle of β can be obtained with Algorithm 1.

Proof. Let α be any permutation that k-commutes with β and such that all the b.c.p. are in
exactly one m-cycle, say βj , of β. From Proposition 3.13 it follows that there exists exactly
one m-cycle, say βj′, of β such that α(set(βj)) = set(βj′). By Theorem 3.8, we have that
αβjα

−1 = (P1 . . . Pk), where P1, . . . , Pk are k pairwise disjoint blocks in βj′ and PrPr+1 mod k

is not a block in any cycle of β, 1 ≤ r ≤ k. As α(set(βj)) = set(βj′), we have that P1 . . . Pk is
a block permutation of B′ = Pi1 . . . Pik , where βj′ = (B′). Now, rename the blocks Pis as B

′
s

to obtain B′ = B′
1 . . . B

′
k. In this way, αβjα

−1 = (B′
l1
. . . B′

lk
) with lr+1 mod k − lr mod k 6= 1,

1 ≤ r ≤ k. Indeed, if lr+1 mod k − lr mod k = 1 for some r ∈ {1, . . . , k}, then B′
lr
B′

lr+1 mod k

will be a block in βj′, and hence the number of b.c.p. of α and β will be less than k, which
is a contradiction.

As αβjα
−1 = (B′

l1
. . . B′

lk
) = (B′

l2
. . . B′

l1
) = · · · = (B′

lk
. . . B′

lk−1
), we can assume without

lost of generality that l1 = k (from these k expressions, choose the one that begins with
block B′

k). Then α|set(βj) can be written as

α|set(βj),k =

(
B1 . . . Bk

B′
l1

. . . B′
lk

)

,

where βj = (B1 . . . Bk), and |Bi| = |B′
hi
|, 1 ≤ i ≤ k.

Now, we consider l1l2 . . . lk as a permutation, named π, of {1, . . . , k} in one-line notation.
As l1 (that is equal to k) is the greatest element in {l1, . . . , lk}, then τ := Ψ−1(π) = (l1 . . . lk),
where Ψ is the transition function of the canonical cycle notation to one-line notation. Notice
that τ is a k-cycle in Sk such that τ(a) 6= a + 1, for any a ∈ [k]. Thus we conclude that
α|set(βj) can be obtained by Steps 1 to 4 of Algorithm 1. Now as α commutes with β on all
different cycles from βj, α|[n]\set(βj) can be obtained with Step 5 of Algorithm 1.

4 On the number c(k, β)

In this section we present some results about the number c(k, β). First we show that for any
nonnegative integer k and any β ∈ Sn, the number c(k, β) is invariant under conjugation.
Let C(k, β) = {α ∈ Sn : H(αβ, βα) = k} (so that c(k, β) = |C(k, β)|)

Proposition 4.1. Let β ∈ Sn. Then c(k, τβτ−1) = c(k, β) for any τ ∈ Sn.
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Proof. (Sketch) For τ ∈ Sn, let τC(k, β)τ−1 := {τατ−1 : α ∈ C(k, β)}. By the bi-invariance
of the Hamming metric is straightforward to show that C(k, τβτ−1) = τC(k, β)τ−1. Now,
it is easy to check that the function φ : C(k, β) → τC(k, β)τ−1 given by σ 7→ τστ−1 is a
bijection, so we have that |C(k, β)| = |τC(k, β)τ−1| = |C(k, τβτ−1)|.

Remark 4.2. If β and β ′ are conjugate permutations it is not always true that C(k, β) =
C(k, β ′). For example, let β = (12345) ∈ S5 and β ′ = (23145). If α = (14)(25) then
H(αβ, βα) = 3 and H(αβ ′, β ′α) = 5, which implies that C(3, β) 6= C(3, β ′).

The following result shows that c(k, β) is a multiple of |CSn
(β)|.

Proposition 4.3. Let β ∈ Sn. Suppose that C(k, β) is a non-empty set. Then

C(k, β) =
⋃

α∈C(k,β)

CSn
(β)α.

Proof. The inclusion C(k, β) ⊆ ⋃α∈C(k,β)CSn
(β)α is clear. Now, let ρ ∈ ⋃α∈C(k,β)CSn

(β)α,

then ρ = τα for some τ ∈ CSn
(β) and some α ∈ C(k, β). So we have that H(ρβ, βρ) =

H(ταβ, βτα) = H(ταβ, τβα) = H(αβ, βα) = k, and then ρ ∈ C(k, β).

Corollary 4.4. Let β ∈ Sn and let k be any non-negative integer. Then c(k, β) is a multiple
of |CSn

(β)|.

4.1 Number of even permutations in C(k, β)

One interesting application of Proposition 4.3 is that for β of some special cycle type we
can find the proportion of even permutations in C(k, β). We say that a permutation is a
cdoi-permutation if its cycle type consist of distinct odd integers. We need the following
propositions.

Proposition 4.5. [11, exercise 21, p. 131.] The permutation σ ∈ Sn does not commute with
any odd permutation if and only if the cycle type of σ consist of distinct odd integers.

Proposition 4.6. [30, exercise 3.22, p. 51.] If G ≤ Sn contains an odd permutation, then
|G| is even, and exactly half of the elements in G are odd permutations.

We are ready to prove the following.

Proposition 4.7. Let β ∈ Sn be a permutation that is not a cdoi-permutation. Then exactly
one half of the permutations in C(k, β) are odd.

Proof. As the cycle type of β does not consist only of distinct odd integers, then from
Proposition 4.5 it follows that β commutes with an odd permutation, i.e., CSn

(β) contains
at least one odd permutation. By Proposition 4.6 we have that exactly one half of the
elements in CSn

(β) are odd permutations. Then, for any α in C(k, β), the number of odd
permutations in CSn

(β)α remains one half. Finally, as C(k, β) =
⋃

α∈C(k,β)CSn
(β)α (by

Proposition 4.3), we have that exactly one half permutations in C(k, β) are odd.

Corollary 4.8. If β is not a cdoi-permutation then c(k, β) is even.

Question 4.9. Let β be a cdoi-permutation, what is the number of even permutations that
k-commute with β?
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4.2 On the number c(λk(1), β)

We use the following notation: Let λk = [k1, . . . , kh] denotes an integer partition of k, with
ki ≥ 1. If λk = [k1, . . . , kh] is an integer partition of k, we use C(λk, β), or C([k1, . . . , kh], β),
to denote the set of permutations that k-commutes with β such that for every α ∈ C([k1, . . . , kh], β)
there exists exactly h cycles, says β1, . . . , βh, in the cycle decomposition of β, where α (k1, β)-
commutes with β1, (k2, β)-commutes with β2, . . . , (kh, β)-commutes with βh. We will use
c(λk, β) or c([k1, . . . , kh], β) to denote the cardinality of C(λk, β). We will use the notation
c(λk(1), β) and c(λk(k), β) instead of c([k1], β) and c([1, . . . , 1], β), respectively.

Example 4.10. Let α, β ∈ S14, with β = (1 2)(3 4 5)(6 7 8)(9 10 11 12)(13 14) and
α = (1 3 9 6)(2 4 10 7)(5 11 8). We have that α 6-commutes with β in the following way:
α (1, β)-commutes with (1 2), (1, β)-commutes with (3 4 5), (2, β)-commutes with (6 7 8),
(2, β)-commutes with (9 10 11 12) and commutes with β on (13 14).

Remark 4.11. We are considering unordered partitions, for example [2, 2, 1] = [2, 1, 2].

Let L(β) denotes the set of cycle lengths in the cycle decomposition of β including 1-
cycles. Let Cl(β) be the set of all l-cycles in the cycle decomposition of β. Let S(β) be a
subset of the set of all the cycles in β. Suppose that we want to construct a permutation
α that will not commute with β on all the cycles in S(β) (for every cycle βj ∈ S(β), α and
β will not commute on at least one point in βj) and that commutes on every point of the
remaining (if any) cycles of β. Let LS be the set of lengths of cycles in S(β) and let Sl be the
set of all cycles of length l in S(β). From Proposition 3.13 it follows that we can construct
α by obtaining two bijections α|R : R → R′ and α|R : R → R′, where R =

⋃

βj∈S(β)
set(βj),

R = [n] \R, with the following steps (R′ and R′ are defined in Step 2 below).

Algorithm 2.

Step 1 For every l ∈ LS , select a subset S ′
l(β) ⊆ Cl(β) of cardinality hl := |Sl(β)| and obtain

S ′(β) :=
⋃

l∈LS
S ′
l(β) (the cycles in S ′(β) will contain the images under α of points in

cycles in S(β).

Step 2 Construct a bijection α|R : R → R′, where R′ =
⋃

βj∈S′(β) set(βj), in such a way that

α|R and β|R will not commute on the desired points.

Step 3 Construct a bijection α|R : R → R′, where R′ = [n]\R′, as any bijection that commutes
with β|R.

The construction in Step 3 can be done as follows: for every l ∈ LS (resp. l 6∈ LS),
construct α|R in such a way that α transforms cycles in Cl(β)\Sl(β) into cycles in Cl(β)\S ′

l(β)
(resp. that transforms cycles in Cl(β) into cycles in Cl(β)). The more difficult part is to obtain
all bijections α|R in Step 2. Let r0 denotes the number of ways to construct α|R in Step 2
of Algorithm 2. The following technical proposition will be useful to simplify some of the
calculations in some of the enumerative results in this paper (and also shows that the main
enumerative problem is to find r0).
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Proposition 4.12. Let H = {ℓ1, . . . , ℓi} be a subset of L(β). The number of permutations
α that does not commute with β on exactly hℓ1 ℓ1-cycles of β, hℓ2 ℓ2-cycles of β, . . . , hℓi

ℓi-cycles of β and that commutes with the rest of cycles of β is equal to

r0|CSn
(β)|

∏

ℓ∈H

1

hℓ!ℓhℓ

(
cℓ
hℓ

)

.

Proof. We will count the number of ways to select the set S(β) of all cycles of β where α and
β will not commute and the set S ′(β) in Step 1 of Algorithm 2. Let cℓ denotes the number
of ℓ-cycles in the cycle decomposition of β. For every ℓ ∈ H , there are

(
cℓ
hℓ

)
ways to select

the ℓ-cycles that will belong to S(β) and
(
cℓ
hℓ

)
ways to select the ℓ-cycles that will belong to

S ′(β). Now we enumerate all bijections α|R that can be obtained as in Step 3 of Algorithm 2.
Once we have selected S(β) and S ′(β), for every l ∈ H , there are (cℓ − hℓ)!l

cℓ−hℓ ways to
make that α transforms the cℓ − hℓ cycles of length ℓ of β not belonging to S(β) into the
cℓ−hℓ cycles of length ℓ of β not belonging to S ′(β). For l 6∈ H , there are |CSn

(β)|
∏

l∈H
1

lcℓcℓ!

ways to make that α transforms the cℓ ℓ-cycles of β into cℓ ℓ-cycles of β. Then we have that
the number of permutations α that satisfies the desired conditions is equal to

r0
∏

l∈H

(
cℓ
hℓ

)2∏

l∈H

(cℓ − hℓ)!l
cℓ−hℓ

(

|CSn
(β)|

∏

l∈H

1

lcℓcℓ!

)

= r0|CSn
(β)|

∏

l∈H

1

hℓ!lhℓ

(
cℓ
hℓ

)

.

Let f(k) be the number of cyclic permutations (k-cycles) of {1, . . . , k} with no i 7→
i+ 1 mod k (see, e.g., [35, exercise 8, p. 88] or sequence A000757 in OEIS [33]).

Theorem 4.13. Let β ∈ Sn be of type (c1, . . . , cn). Let k be an integer, 3 ≤ k ≤ n. Then

c(λk(1), β) = |CSn
(β)|

n∑

ℓ≥k

cℓ

(
ℓ

k

)

f(k).

Proof. As all the b.c.p. of α and β are in one ℓ-cycle βj = (b1 b2 . . . bℓ) of β, then the images
under α of the b.c.p are in exactly one ℓ-cycle βj′ = (b′1 b

′
2 . . . b′ℓ) of β (by Proposition 3.13).

There are ℓ
(
ℓ

k

)
f(k) ways to construct a bijection α|set(βj) : set(βj) → set(βj′) with steps 2

to 4 in Algorithm 1. Indeed, there are
(
ℓ

k

)
ways to choose the subset in Step 2; there are

f(k) ways to select the permutation τ in Step 3, and there are ℓ ways to select the first
point in block B1 . . . Bk in Step 4. By using Proposition 4.12 (with H = {ℓ}, hℓ = 1 and
r0 = ℓ

(
ℓ

k

)
f(k)) and after summing over all possible lengths ℓ ≥ k of cycles of β we have

c(λk(1), β) =
n∑

ℓ≥k

ℓ

(
ℓ

k

)

f(k)
1

ℓ
cℓ|CSn

(β)| = |CSn
(β)|

n∑

ℓ≥k

cℓ

(
ℓ

k

)

f(k).

Let T (k, n) denote the number of permutations that k-commute with an n-cycle.
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Corollary 4.14. Let n be a positive integer and k and integer with 0 ≤ k ≤ n. Then

T (k, n) = n

(
n

k

)

f(k).

The number T (k, n) is now sequence A233440 in [33]. With this corollary we can obtain
in an easy way the binomial transform of sequence A000757. Let A = {f(0), f(1), . . .} be
sequence A000757, and let B = {b0, b1, . . . } be the binomial transform of A. In [34] bn is
defined as

∑n

k=0

(
n

k

)
f(k) that is equal to

∑n

k=0 T (k, n)/n by Corollary 4.14. Then we have
that bn = (n − 1)! because

∑n

k=0 T (k, n) = n!. No we present the following limit property
for T (k, n).

Proposition 4.15. Let n be a positive integer and m be a fixed nonnegative integer with
m 6= n. Then

lim
n→∞

T (n−m, n)

n!
=

e−1

m!
.

Proof.

T (n−m,n)/n! = n

(
n

n−m

)

f(n−m)/n!

=
n

m!(n−m)!
f(n−m)

=
n

m!

f(n−m)

(n−m)(n−m− 1)!

=
f(n−m)

m!(n−m− 1)!
+

mf(n−m)

m!(n−m)(n−m− 1)!
.

And the result follows by using that limk→∞ f(k)/(k−1)! = e−1 ([35, exercise 8-e, p. 88]).

If m = 0 we have limn→∞
T (n, n)

n!
= e−1. Now we present a bivariate generating function

for T (k, n).

Theorem 4.16. Let n, k be positive integers with k ≤ n. Then

∑

n,k

T (k, n)
zn

n!
uk = zez(1−u)

((
1− log(1− zu)

)(
1− u

)
+

u

1− zu

)

Proof. Let g〈k〉(z) =
∑

n gn,k
zn

n!
denotes the vertical generating function (exponential case) of

the sequence {gn,k}. Let cn,k = T (k, n)/n =
(
n

k

)
f(k). From Example III. 1, in [13, p. 155],

and by using the fact that function f(k) is independent of n we have

c〈k〉(z) =
∑

n

(
n

k

)

f(k)
zn

n!
= f(k)

ezzk

k!

Now, by using Rule (2’) in [37, p. 41] we obtain

∑

n

n

(
n

k

)

f(k)
zn

n!
= f(k)z

(ezzk

k!
+

ezzkk

zk!

)
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Now

P (z, u) :=
∑

k,n

n

(
n

k

)

f(k)
zn

n!
uk

=
∑

k

(∑

n

n

(
n

k

)

f(k)
zn

n!

)

uk

=
∑

k

f(k)z
(ezzk

k!
+

ezzkk

zk!

)

uk

=
∑

k

f(k)z
(ezzk

k!

)

uk +
∑

k

f(k)z
ezzkk

zk!
uk

= zez
∑

k

f(k)
zkuk

k!
+ ez

∑

k

kf(k)
zkuk

k!
.

It is known that
∑

k≥0 f(k)
xk

k!
= e−x(1− log(1− x)) (see, e.g., [35, exercise 8, p. 88]), then

zez
∑

k

f(k)
zkuk

k!
= zez(e−zu(1− log(1− zu)).

Now, we apply Rule (2’) in [37] to the second term of P (z, u) to obtain

ez
∑

k

kf(k)
zkuk

k!
= ez(zu)e−zu

( 1

1− zu
− (1− log(1− zu))

)

,

and the result follows after some algebraic manipulations.

4.3 On the number c(λk(k), β)

In some cases, the number c(λk, β) can be zero as shows the following

Proposition 4.17. Let β ∈ Sn and k be a positive integer. Then c(λk(k), β) = 0.

This result is a direct consequence of the following.

Proposition 4.18. Let α, β ∈ Sn. If one cycle of β has exactly one b.c.p. of α and β, then
there exist a cycle of β that contains at least two b.c.p. of α and β.

Proof. The proof is by induction on the length l of the cycle β1 of β which contains exactly
one b.c.p of α and β. First we prove the case l = 1. By hypothesis, β has a fixed point that
is a b.c.p. of α and β and then, by Proposition 3.13, there exists one fixed point, say x′, of β
whose preimage under α, α−1(x′), is a b.c.p. From Proposition 3.4 it follows that α−1(x′) is
a point in a cycle βj of β of length greater than one. Then βj = (α−1(x′)B) with B a block
of length |B| ≥ 1. Therefore, αβjα

−1 =
(
x′B′

)
, and, by Theorem 3.8, βj has at least two

b.c.p. of α and β.
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Now we prove the case l > 1. Let β1 = (d1 . . . dl) be a cycle of β with exactly one b.c.p.
of α and β, that without lost of generality we can suppose that is dl. Assume by induction
that the statement of the proposition is true for r-cycles of β which contains exactly one
b.c.p of α and β with r < l (notice that in general, it could be the case that no such cycles
in β exist).

Let set(Cl(β)) =
⋃

βj∈Cl(β)
set(βj). Let cl denote the number of l-cycles of β. By The-

orem 3.8 we have that αβ1α
−1 = (D) where D = α(d1) . . . α(dl) is a proper block in an

s-cycle of β, with s > l, which implies that α−1
(
set(Cl(β))

)
6= set(Cl(β)). Then, there exist

at least one l-cycle β2 = (a1 . . . al) of β (with the possibility that β2 = β1) which contains
at least one point, says a1, which has its preimage under α in one m-cycle, say β3, of length
different than l. Let r be an integer between 1 and l such that α−1(a1) . . . α

−1(ar) is a
block b1 . . . br in β3 = (b1 . . . bm) of β, with bi = α−1(ai), for 1 ≤ i ≤ r, and such that
α−1(a1) . . . α

−1(ar)α
−1(ar+1 mod l) is not a block in β3. We have the following cases:

Case I. If m > r, then β3 has at least two b.c.p. of α and β (by Theorem 3.8).
Case II. If m = r then r < l (because m 6= l and 1 ≤ r ≤ l) and αβ3α

−1 = (a1 . . . am). As
a1 . . . am is a proper block in β2 then β3 has exactly one b.c.p. of α and β (by Theorem 3.8).
And it follows from the inductive hypothesis that β has a cycle with at least two b.c.p. of α
and β.

5 The number c(k, β) for k = 3, 4

In this section we present formulas for the number c(k, β), when β is any permutation of
cycle type (c1, . . . , cn) and k = 3, 4.

Theorem 5.1. Let β be any n-permutation of type (c1, . . . , cn). Then

c(3, β) =

(
n∑

ℓ≥3

cℓ

(
ℓ

3

)

+
∑

1≤ℓ<m≤n

ℓmcℓcm

)

|CSn
(β)|.

Proof. By Proposition 4.17 we have that c(λ3(3) , β) = 0. Then c(3, β) = c(λ3(1) , β) +
c([2, 1], β). The case c(λ3(1) , β) follows from Lemma 4.13. In order to obtain c([2, 1], β), we
construct all permutations α that 3-commute with β and such that β has a unique ℓ-cycle
(resp. m-cycle), say β1 (resp. β2), where α (1, β)-commutes with β1 (resp. (2, β)-commutes
with β2). By Proposition 3.13 there exist exactly one ℓ-cycle β ′

1 and exactly one m-cycle β ′
2

such that α (set(β1) ∪ set(β2)) = set(β ′
1) ∪ set(β ′

2). From Theorem 3.8 we have that

α|set(β1)∪set(β2) =

(
A1

X1

)(
B1 B2

X2 X3

)

, (4)

where

a) β1 = (A1), β2 = (B1B2), and X1, X2, X3 are blocks in β ′
1 and β ′

2.

b) The strings X2X3 and X3X2 are not blocks in any cycle of β, and X1 is a block in a
cycle of length greater that A1, i.e., X1 is not a block in β ′

1.
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c) The set of all points in X1, X2, X3 should be equal to set(β ′
1) ∪ set(β ′

2).

From conditions a) to c) above we have that X2 and X3 belongs to different cycles. Without
lost of generality we can assume that β ′

1 = (X2) and that β ′
2 = (X1X3). Now we count the

number of ways to construct α|set(β1)∪set(β2) using notation (4). There are ℓ ways to select the
first point of block A1 and there are m ways to select the first point of block B1B2. There
are ℓ ways to select the first point of block X2 and there are m ways to select the first point
of block X1 (after this selection the first point of block X3 is uniquely determined). Now by
Proposition 4.12 (with H = {ℓ,m}, hℓ = 1, hm = 1, r0 = (ℓm)2) we have ℓmcℓcm|CSn

(β)| for
this ℓ and m. The result is obtained after we sum over all possible values of ℓ and m.

Theorem 5.2. Let β be any permutation of cycle type (c1, . . . , cn). Then

c(4, β) = c(λ4(1) , β) + c([3, 1], β) + c([2, 2], β) + c([2, 1, 1], β),

where

c(λ4(1) , β) = |CSn
(β)|

∑

i≥4

ci

(
i

4

)

;

c([3, 1], β) = |CSn
(β)|

∑

i≥1,j≥i+2

ij(j − i− 1)cicj ;

c([2, 2], β) = |CSn
(β)|

(∑

i≥2

i

(
i

2

)(
ci
2

)

+
∑

j>i≥2

i(i− 1)jcicj

)

;

c([2, 1, 1], β) = |CSn
(β)|

(∑

i≥1

i3c2i

(
ci
2

)

+
∑

j>i≥1

ij(i+ j)cicjci+j

)

.

Proof. From Proposition 4.17 it follows that c(λ4(4), β) = 0 and c(λ4(1) , β) is obtained by
Theorem 4.13. We divide the rest of the proof into three parts.

Part A: The number c([2, 1, 1], β)
Let l1, l2, l3 denote the lengths of the cycles β1, β2, β3 of β, respectively, that contains

exactly two b.c.p. of α and β, exactly one b.c.p., and exactly one b.c.p., respectively. By
Proposition 3.13 β has exactly three cycles, say β ′

1, β
′
2, β

′
3, with |β ′

i| = |βi|, for i = 1, 2, 3,
such that α (set(β1) ∪ set(β2) ∪ set(β3)) = set(β ′

1) ∪ set(β ′
2) ∪ set(β ′

3). From Theorem 3.8 we
have

α|set(β1)∪set(β2)∪set(β3) =

(
A1 A2

X1 X2

)(
B
X3

)(
C
X4

)

, (5)

where

a) β1 = (A1A2), β2 = (B), β3 = (C), and the blocks X1, X2, X3, X4 came from β ′
1, β

′
2 and

β ′
3 (not necessarily in this order),

b) The strings X1X2 and X2X1 are not blocks in any cycle of β and the cycle that contains
X3 (resp. X4) is of length grater that l2 (resp. l3).

c) The set of all points in X1, X2, X3, X4 should be equal to set(β ′
1) ∪ set(β ′

2) ∪ set(β ′
3).
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From conditions a) to c) above follows that the blocks X3 and X4 are blocks in β ′
1 (which

implies that l1 = l2+l3) and thatX1 andX2 are improper blocks in β ′
2 and β ′

3 (not necessarily
in this order). We have two cases:

Claim 5.3. 1. If l2 = l3 then the number of permutations in C([2, 1, 1], β) satisfying this
extra condition is

|CSn
(β)|

∑

l2≥1

l2
3c2l2

(
cl2
2

)

.

2. If l2 6= l3 then the number of permutations in C([2, 1, 1], β) satisfying this extra condi-
tion is

|CSn
(β)|

∑

l3>l2≥1

(l2 + l3)l2l3cl2+l3cl2cl3,

where we are assuming, without lost of generality, that l3 > l2.

Proof. 1). As |β ′
2| = |β ′

3| then it follows that l1 = 2l2. Now we count all bijections using
matrix notation 5. There are l1, l2, and l2 ways to select the points that will be the first
points of the blocks A1A2, B, C, respectively. There are l2 and l2 ways to select the first
element of the block X1 and X2, respectively. There are l1 ways to select the first point of
the block X3. Once the first point of X3 is selected the first point of the block X4 is uniquely
determined. From Proposition 4.12 (with H = {l1, l2}, hl1 = 1, hl2 = 2, r0 = l21l

4
2) we have

that the number of permutations α that satisfies the desired conditions is l32c2l2
(
cl2
2

)
|CSn

(β)|.
Finally, the result follows by summing over all possible lengths of cycles β1, β2, β3 Proof of
2). l2 6= l3. Without lost of generality we can assume that l3 > l2. The enumeration of
all bijections as in equation 5 is similar to the previous case. Then, from Proposition 4.12
(with H = {l1, l2, l3}, hli = 1, for every i, and r0 = l21l

2
2l

2
3) we have that the desired number

is (l2 + l3)l2l3cl2+l3cl2cl3 |CSn
(β)| and the result follows by summing over all possible lengths

of cycles β1, β2, β3.

Part B: The number c([2, 2], β)
Let β1 and β2 the cycles of β of lengths l1, l2, respectively, that will contains 2 b.c.p of

α and β every one. By Proposition 3.13, there exist exactly two cycles β ′
1 and β ′

2 such that
α(set(β1) ∪ set(β2)) = set(β ′

1) ∪ set(β ′
2), with |β ′

1| = |β1| and |β ′
2| = |β2|. By Theorem 3.8)

we have that

α|set(β1)∪set(β2) =

(
A1 A2

X1 X2

)(
B1 B2

X3 X4

)

, (6)

where

a) β1 = (A1A2), β2 = (B1B2), and X1, X2, X3, X4 are blocks in β ′
1 and β ′

2.

b) The strings X1X2 (resp. X3X4) and X2X1 (resp. X4X3) are not blocks in any cycle of
β.

c) The set of all points in X1, X2, X3, X4 should be equal to set(β ′
1) ∪ set(β ′

2) ∪ set(β ′
3).

From points a) to c) above we have that X1 and X2 (resp. X3 and X4) belongs to different
cycles. Without lost of generality we can assume that β ′

1 = (X1X3) and that β ′
2 = (X2X4).
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Claim 5.4. 1. If l1 = l2, then the number c([2, 2], β) with this extra condition is

|CSn
(β)|

∑

l1≥2

l1

(
l1
2

)(
cl1
2

)

.

2. If l1 6= l2, then the number c([2, 2], β) with this extra condition is

|CSn
(β)|

∑

l2>l1≥2

l1(l1 − 1)l2cl1cl2 .

Proof of Claim 5.4. (1) l1 = l2: We count all possible bijections α|set(β1)∪set(β2). There are l1
and l1 ways to select the first point of block A1A2 and B1B2, respectively. There are l1 ways
to select the point that will be the first point of X1 and l1−1 ways to select the first point of
X3. After that, the lengths of blocks A1 and B1 are unique determined (and hence also the
lengths of blocks A2 and B2). There are l1 ways to select the first point of X2 and the first
point of X4 is uniquely determined. Then from Proposition 4.12 (with H = {l1}, hl1 = 2 and
r0 = l41(l1−1)) it follows that the number of permutations α satisfying the desired conditions
is l1

(
cl1
2

)(
l1
2

)
|CSn

(β)|. Finally, the result follows by summing over all possible values of l1.
(2) l1 6= l2: without lost of generality we can assume that l2 > l1. Notice that l1 ≥ 2.

We make the enumeration of all possible bijections α|set(β1)∪set(β2). There are l1, l2 ways to
select the first points of A1A2 and B1B2, respectively. There are l1 ways to select the point
that will be the first point of block X1 and l1 − 1 ways to select the first point of block
X3. After that, the lengths of the blocks X2 and X4 are uniquely determined, so that it
is enough to select the first point of block X2 (in l2 ways). From Proposition 4.12 (with
H = {l1, l2}, hl1 = hl2 = 1 and r0 = l21(l1 − 1)l22) we have that the number of permutations
with the desired characteristics is l1(l1− 1)l2cl1cl2 |CSn

(β)|. The result follows after summing
over all possible values of the cycle lengths.

Part C:

c([3, 1], β) = |CSn
(β)|

∑

i≥1,j≥i+2

ij(j − i− 1)cicj.

Let α be any permutation that 4-commutes with β and such that (3, β)-commutes with
an l1-cycle, say β1, of β and that (1, β)-commutes with an l2-cycle, say β2, of β. By
Proposition 3.13, there exist exactly two cycles β ′

1 and β ′
2 such that α(set(β1) ∪ set(β2)) =

set(β ′
1) ∪ set(β ′

2), with |β ′
1| = |β1| and |β ′

2| = |β2|. From Theorem 3.8, and without lost of
generality, we have

α|set(β1)∪set(β2) =

(
A1 A2 A3

X1 X2 X3

)(
B
Y

)

, (7)

where β1 = (A1A2A3), β2 = (B), Y is a block in β ′
1 (because |Y | = l2) and X1, X2, X3

are blocks in β ′
1 and β ′

2 such that XiXi+1 is not a block in any cycle of β. Without lost
of generality we can assume that β ′

1 = (Y X1X3) which implies that β ′
2 = (X2). Notice

that l1 ≥ l2 + 2. Now we make the enumeration of all possible bijections in equation 7.
There are l1, l2 ways to select the points that will be the first points of blocks A1A2A3

and B, respectively. There are l1 ways to select the point that will be the first point of
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Y . After that, the first point of X1 is uniquely determined (because |Y | = |B|). There
are l1 − l2 − 1 ways to select the first point for the block X3. There are l2 ways to select
the first point of the block X2. Then by Proposition 4.12 we have that the desired number
is l1l2(l1 − l2 − 1)cl1cl2 |CSn

(β)|. Finally we obtain our result by summing over all possible
lengths.

With this last case the proof of theorem is completed.

6 Fixed-point free involutions

In this section we show formulas for c(k, β) when β is a transposition and also when it is a
fixed-point free involution. First we prove the following proposition. Let fix(β) denotes the
set of fixed points of β and supp(β) = [n] \ fix(β).

Proposition 6.1. Let α, β ∈ Sn and let H(αβ, βα) = k, then 0 ≤ k ≤ 2|supp(β)|.

Proof. If α and β commute then k = 0. If β does not have fixed points then |supp(β)| =
n and k < 2|supp(β)|. Now, let x ∈ fix(β). If βα(x) 6= αβ(x) then α(x) ∈ supp(β)
(Theorem 3.8). Thus, α does not commute with β on at most |supp(β)| fixed points of β
and then k ≤ 2|supp(β)|.

The following proposition is a consequence of Proposition 3.1, Theorem 5.1, Theorem 5.2
and Proposition 6.1.

Proposition 6.2. Let β ∈ Sn be any transposition. Then

1. c(0, β) = 2(n− 2)!, n > 1.

2. c(3, β) = 4(n− 2)(n− 2)!, n > 1.

3. c(4, β) = (n− 2)(n− 3)(n− 2)!, n > 2.

4. c(k, β) = 0, for 5 ≤ k ≤ n.

We have noted that formulas (1), (2) and (3) in previous proposition coincide with the
number of permutations of n > 1 having exactly 2, 3 and 4 points, respectively, on the
boundary of their bounding square [8] (A208529, A208528 and A098916 in [33], respectively).

Now we give a formula for c(k, β) when β is any fixed-point free involution. Let a(n) be
the “number of derarenged matchings of 2n people with partners (of either sex) other than
their spouse” (taken from the Comments for A053871 in [33]).

Theorem 6.3. Let β ∈ S2m be a fixed-point free involution, m ≥ 2. Then

1. c(k, β) = 0, for k and odd integer,

2. c(k, β) = 2mm!
(
m

j

)
a(j), for k = 2j, j = 0, 1, 2, . . .
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Proof. From Proposition 3.12 we have that if α does not commute on one point in cycle βi

of β then α does not commute on the two points in βi, then if k is odd we obtain the desired
result. Now we will obtain all the permutations α that k-commutes with β and that do not
commute on j 2-cycles, β1, β2, . . . , βj , of β. By Proposition 3.13 there exists exactly j 2-
cycles, β ′

1, β
′
2, . . . , β

′
j of β such that α(

⋃j

i=1 set(βi)) =
⋃j

i=1 set(β
′
i). We construct α|⋃j

i=1 set(βi)

as follows: First put

α′|⋃j
i=1 set(bi)

=

(
B1

Bi′1

)(
B2

Bi′2

)

. . .

(
Bj

Bi′j

)

,

where Bi is an improper block of the cycle βi and B′
i is an improper block of β ′

i, for every i,
and where Bi′1

Bi′2
. . . Bi′j

is any block permutation of the j improper blocks of β ′
1, . . . , β

′
k (there

are j! such permutations). Until this step α′|⋃j
i=1 set(bi)

is a permutation that commutes with

β on the cycles β1, . . . , βn. Now we can see every block B′
i as a partner B

′
i = xy, and we finish

the construction of α|⋃j
i=1 set(bi)

by re-paired the elements in the blocks Bi′1
, Bi′2

, . . . , Bi′j
in

such a way that no point is with its original partner, this can be made in a(j) ways. As there
are 2j ways to select the first element in the blocks B1, . . . , Bj , we have that r0 = 2jj!a(j).
Finally, by Proposition 4.12 (with ℓ = 2, cℓ = m, hℓ = j and |CSn

(β)| = 2mm!) we obtain

2jj!a(j)

(
m

j

)2
(m− j)!

2jm!
2mm! = 2mm!

(
m

j

)

a(j).

Theorem 6.4. Let β ∈ S2m be a fixed-point free involution. Then

∑

m,j≥0

c(2j, β)
zm

m!

uj

j!
=

(

(1− 2 z)

√

1− 4
zu

1− 2 z
exp

(
2zu

1− 2 z

))−1

.

Proof. (Sketch) We use the well-known EGF for a(n) (A053871 in [33])

∑

n≥0

a(n)
xn

n!
=
(
exp(x)

√
1− 2x

)−1
,

and the result follows by using standard techniques of bivariate generating functions similarly
as in the proof of Theorem 4.16.

7 Final comments

As we have seen in previous sections, the problem of computing in an exact way the number
c(k, β) can be a difficult task. This is because we have that the number of cases can be
equal to the number of partitions [k1, . . . , kh] of k, with ki ≥ 1. Even more, once we have
selected a partition of k, it can be difficult to compute in exact way all the permutations
with the desired properties. For example, if we have that β has at least two cycles β1 and β2

of lengths l and m, respectively, and we look for all the permutations that k-commute with
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β and that (k1, β)-commutes with β1 and that (k2, β)-commutes with β2 then α|set(β1)∪set(β2)

must look like

α|set(β1)∪set(β2) =

(
A1 . . . Ak1

X ′
1 . . . X ′

k1

)(
B1 . . . Bk2

Y ′
1 . . . Y ′

k2

)

,

where we can have many possibilities for the selection of blocks X ′
1, . . . , X

′
k1
, Y ′

1 , . . . , Y
′
k2
, that

depends of the lengths of the cycles β1, β2. And after we have selected these blocks, we have
the problem of the number of ways in which we can arranged it. However, it is possible that
for some specific cycle type of permutations, the problem can be managed. We leave as an
open problem to find another technique, or a refinement of the presented in this article, to
compute c(k, β) in exact way, or at least to obtain non trivial upper and lower bounds for
this number.
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authors also would like to thank Jesús Leaños for his careful reading of the paper and his very
valuable suggestions. The second author was supported by the European Research Council
(ERC) grant of Goulnara Arzhantseva, grant agreement No. 259527 and by PROMEP (SEP,
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