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Abstract.
We study the analyticity of the partition function of the hard hexagon model

in the complex fugacity plane by computing zeros and transfer matrix eigenvalues
for large finite size systems. We find that the partition function per site computed
by Baxter in the thermodynamic limit for positive real values of the fugacity is
not sufficient to describe the analyticity in the full complex fugacity plane. We
also obtain a new algebraic equation for the low density partition function per
site.

AMS Classification scheme numbers: 34M55, 47E05, 81Qxx, 32G34, 34Lxx,
34Mxx, 14Kxx

Key-words: Hard hexagon model, partition function zeros, transfer matrix
eigenvalues, Hauptmoduls, modular functions.

1. Introduction

The hard hexagon model was solved by Baxter over 30 years ago [1, 2]. More precisely
Baxter computed the thermodynamic limit of the grand partition function per site for
real positive values of the fugacity z

lim
Lv,Lh→∞

Z
1/LvLh

Lv,Lh
(z) with 0 < Lv/Lh < ∞ fixed. (1)

Even more precisely Baxter computed the limit

κ(z) = lim
Lh→∞

λmax(z;Lh)1/Lh , (2)

where λmax(z;Lh) is the largest eigenvalue of the transfer matrix. Baxter found that
there are two distinct regions of positive fugacity

0 ≤ z < zc and zc < z < ∞, (3)

ar
X

iv
:1

30
6.

63
89

v2
  [

m
at

h-
ph

] 
 2

1 
Se

p 
20

13



Hard hexagon partition function for complex fugacity 2

with

zc =
11 + 5

√
5

2
= 11.0901699473 · · · , (4)

where in each separate region the partition function per site has separate analytic
expressions, which we denote by κ−(z) for the low density, and by κ+(z) for the high
density intervals respectively. The low density function κ−(z) has branch points at zc
and

zd = − 1

zc
=

11− 5
√

5

2
= −0.0901699473 · · · , (5)

is real and positive in the interval zd ≤ z ≤ zc and is analytic in the plane cut along
the real axis from zd to −∞ and zc to +∞. Conversely the high density function
κ+(z) is real and positive for zc ≤ z < +∞ and is analytic in the plane cut along
the real axis from zc to −∞.

For the purpose of thermodynamics it is sufficient to restrict attention to positive
values of the fugacity. However, it is of considerable interest to investigate the behavior
of the partition function for complex values of z as well. For finite size systems the
partition function is, of course, a polynomial and as such can be specified by its zeros.

In the thermodynamic limit the free energy will be analytic in all regions which
are the limit of the zero free regions of the finite system [3]. In general there will
be several such regions. One such example with three regions is given by Baxter [4].
There appears to be no general theorem stating when the free energy of a system can
be continued through the locus of zeros.

The analytic structure of the free energy in the complex fugacity plane is not
in general determined by the the free energy on the positive z axis and for hard
hexagons it is only for the positive z axis that a complete analysis has been carried
out. In this paper we address the problem of determining analyticity in the complex
z plane by computing the partition function zeros on lattices as large as 39× 39 and
comparing these zeros with the locus computed from the limiting partition functions
per site computed by Baxter for real positive value for the fugacity 0 ≤ z ≤ ∞.
We will see that the two functions κ±(z) are not sufficient to describe the location of
the zeros in the complex z plane. There is, of course, no reason that κ±(z) should
be sufficient to represent the partition function in the entire complex z plane. We
propose in section 6.2 an extension of Baxter’s methods which can explain our results
in the portion of the complex plane not covered by κ±(z).

In section 2 we present the relation between partition function zeros and the
eigenvalues of the transfer matrix with special attention to the differences between
cylindrical and toroidal boundary conditions.

In section 3 we begin by recalling the results of Baxter [1] for κ±(z) and the
subsequent analysis of Joyce [5] for the high density regime for the polynomial relation
between z and κ+(z). For the low density regime we derive a new polynomial relation
between z and κ−(z). Some details of the analysis of κ±(z) and the associated density
ρ−(z) are presented in Appendix A and Appendix B.

In section 4 we compute transfer matrix eigenvalues and equimodular curves
for the maximum eigenvalues for values of Lh as large as 30. We demonstrate
the difference between the equimodular curves of the full transfer matrix and the
equimodular curves for eigenvalues restricted to the sector P = 0. These equimodular
curves are compared with the partition functions per site κ±(z).
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In section 5 we present the results for partition function zeros for both toroidal
and cylindrical boundary conditions for a variety of Lh × Lv lattices. For Lh = Lv the
largest sizes are 39 × 39 for cylindrical and 27 × 27 for toroidal boundary conditions.
We compare the zeros with κ±(z) and with the equimodular eigenvalue curves of
section 4 for both the cases Lv = Lh and Lv � Lh and we analyze the density of
zeros on the negative z axis. We analyze the dependence of the approach as L→∞ of
the endpoints zd(L) and zc(L) to zd and zc by means of finite size scaling and identify
several correction to scaling exponents.

In section 6 we use our results to discuss the relation of the free energy on the
positive real fugacity axis to the partition function in the full complex fugacity plane
and some concluding remarks are made in section 7. A description of the methods
used for the numerical computations of eigenvalues and zeros are given in Appendix
E and the numerical details of the finite size scaling are given in Appendix F.

2. Preliminaries

In this section we review the concepts of partition function, transfer matrix, free energy
and partition function zeros and highlight the properties we discuss in later sections.

2.1. Partition function

The hard hexagon model is defined on a triangular lattice, which is conveniently viewed
as a square lattice with an added diagonal on each face as shown in figure 1. Particles
are placed on the sites of the lattice with the restriction that if there is a particle at
one site no particle is allowed at the six nearest neighbor sites. The grand canonical
partition function on the lattice with Lv rows and Lh columns is computed as

ZLv,Lh
(z) =

∞∑
N=0

g(N) · zN , (6)

where g(N) is the number of allowed configurations with N particles. By definition
on a finite lattice the partition function is a polynomial which can be described by its
zeros zk as

∏
(1− z/zk). For hard hexagons the order of the polynomial is bounded

above by LvLh/3 which becomes an equality when it is an integer.

2.2. Transfer matrices

An alternative and quite different representation of the partition function on the finite
lattice is given in terms of a transfer matrix T (z;Lh) computed in terms of the local
Boltzmann weights in figure 1 as

T{b1,···bLh
},{a1,···.aLh

} =

Lh∏
j=1

W (aj , aj+1; bj , bj+1), (7)

where the occupation numbers aj and bj take the values 0 and 1 and for periodic
boundary conditions in the horizontal direction we use the convention that Lh+1 ≡ 1.
Then the hard hexagon weights W (aj , aj+1; bj , jj+1) are written (see page 403 of [2])
in the form

W (aj , aj+1; bj , bj+1) = 0

for ajaj+1 = bjbj+1 = ajbj = aj+1bj+1 = aj+1bj = 1, (8)
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and otherwise:

W (aj , aj+1; bj , bj+1) = z(aj+aj+1+bj+bj+1)/4. (9)

This transfer matrix does not satisfy T = T t: thus there may be complex eigenvalues
even for z ≥ 0. As far as real values of z are concerned, the matrix elements are all
non negative for z ≥ 0 and, thus, by the Perron-Frobenius theorem the maximum
eigenvalue is real and positive.

Figure 1. Boltzmann weights for the transfer matrix of hard hexagons

For lattices with toroidal boundary conditions where there are periodic boundary
conditions in the vertical direction

ZPLv,Lh
(z) = Tr TLv (z;Lh). (10)

For lattices with cylindrical boundary conditions where there are free boundary
condition in the vertical direction

ZCLv,Lh
(z) = 〈vB |TLv (z;Lh)|v′B〉, (11)

where vB and v′B are suitable vectors for the boundary conditions on rows 1 and Lv.
For the transfer matrix (7) with Boltzmann weights given by the symmetrical form
(8) with (9) the components of the vectors vB and v′B for free boundary conditions
are

vB(a1, a2, · · · , aLh
) = v′B(a1, a2, · · · , aLh

) =

Lh∏
j=1

zaj/2. (12)

When the transfer matrix is diagonalizable (10) and (11) may be written in terms
of the eigenvalues λk and eigenvectors vk of the transfer matrix TLh

(z) as

ZPLv,Lh
(z) =

∑
k

λLv

k (z;Lh) and (13)

ZCLv,Lh
(z) =

∑
k

λLv

k (z;Lh) · ck where ck = (vB · vk)(vk · v′B). (14)

2.3. The thermodynamic limit

For finite size systems the hard hexagon partition function is a polynomial and the
transfer matrix eigenvalues are all algebraic functions. However, for physics we must
study the thermodynamic limit where Lv, Lh → ∞ and, because both the partition
function and the transfer matrix eigenvalues diverge in this limit we consider instead
of the partition function the free energy

− F/kBT = lim
Lv,Lh→∞

(LvLh)−1 · lnZLv,Lh
(z). (15)
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For real positive values of z this limit must be independent of the aspect ratio
0 < Lv/Lh < ∞ for thermodynamics to be valid.

In terms of the transfer matrix representations of the partition function (13) and
(14) we take the limit Lv → ∞

lim
Lv→∞

L−1
v · lnZLv,Lh

(z) = lnλmax(z;Lh). (16)

For the limiting free energy (15) to exist and be non zero it is required that

0 < lim
Lh→∞

L−1
h · lnλmax(z;Lh) < ∞, (17)

or, equivalently, that the partition function per site exists

κ(z) = lim
Lh→∞

λmax (z;Lh)1/Lh < ∞, (18)

(in other words the maximum eigenvalue must be exponential in Lh). This exponential
behavior will guarantee that for real positive z

lim
Lh→∞

lim
Lv→∞

(LvLh)−1 lnZLv,Lh
(z) = lim

Lv,Lh→∞
(LvLh)−1 · lnZLv,Lh

(z), (19)

independent of the aspect ratio Lv/Lh. However for complex “nonphysical values” of
z this independence of the ratio Lv/Lh is not obvious. In particular for hard squares
at z = −1 all eigenvalues of the transfer matrix lie on the unit circle and the partition
function ZLv,Lh

(−1) depends on number theoretic properties [6]-[9] of Lv and Lh.

2.4. Partition function zeros versus transfer matrix eigenvalues

It remains in this section to relate partition function zeros to transfer matrix
eigenvalues and eigenvectors. For finite lattices the partition function zeros can be
obtained from (13) and (14) if all eigenvalues and eigenfunctions are known. We
begin with the simplest case where

Lv → ∞ with fixed Lh, (20)

considered by Beraha, Kahane and Weiss [10]-[12] as presented by Salas and Sokal
[13]. This is the case of a cylinder of infinite length with Lh sites in the finite direction
where the aspect ratio Lv/Lh → ∞.

Generically the eigenvalues have different moduli and in the limit (20) the
partition function will have zeros when two or more maximum eigenvalues of T (z;Lh)
have equal moduli

|λ1(z;Lh)| = |λ2(z;Lh)|. (21)

The locus in the complex plane z is called an equimodular curve [24]-[27]. On this
curve

λ1(z;Lh)

λ2(z;Lh)
= eiφ(z), (22)

where φ(z) is real and depends on z. The density of zeros on this curve is proportional
to dφ(z)/dz.

A simple example occurs for hard hexagons where on segments of the negative
z-axis there is a complex conjugate pair of eigenvalues which have the maximum
modulus.

However, we will see that for the hard hexagon model there are points in the
complex plane where more than two eigenvalues values have equal moduli. Indeed, for
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hard squares at z = −1, we have previously noted that all eigenvalues have modulus
one.

For values of z in the complex plane where the interchange of (19) holds the
limiting locus of partition function zeros for the square Lv = Lh lattice will coincide
with the transfer matrix equimodular curves. However there is no guarantee that the
interchange (19) holds in the entire complex z plane.

Our considerations are somewhat different for toroidal and cylindrical boundary
conditions and we treat these two cases separately.

2.4.1. Cylindrical boundary conditions For cylindrical boundary conditions the
partition function is given by (14) which in addition to the eigenvalues of T (Lh)
depends on the boundary vector vB (12). Because of the periodic boundary conditions
in the Lh direction there is a conserved momentum P . Consequently the transfer
matrix and translation operator may be simultaneously diagonalized. Therefore the
transfer matrix may be block diagonalized by a transformation which is independent
of z and hence the characteristic equation will factorize. Furthermore the boundary
vector (12) for the cylindrical case satisfies

vB(a1, a2, · · · , aLh
) = vB(aLh

, a1, · · · , aLh−1) (23)

and thus is also translationally invariant. Therefore the only eigenvectors which
contribute to the partition function in (14) lie in the translationally invariant subspace
where P = 0. Consequently we are able to restrict our attention to the reduced
transfer matrix for this translationally invariant sector where the momentum of the
state is P = 0 because all of the scalar products ck in (14) for eigenvectors in sectors
with P 6= 0 vanish.

2.4.2. Toroidal boundary conditions
For toroidal boundary conditions the partition function in (13) is the sum over all

eigenvalues and a new feature arises because for P 6= 0, π the eigenvalues for ±P are
degenerate in modulus, but may have complex conjugate phases which are independent
of z. By grouping these two eigenvalues together we see that the discussion leading to
(21) still applies. There are now three types of equimodular curves:

1) Two eigenvalues are equal for crossings of eigenvectors with P = 0, π,

2) Three eigenvalues are equal for crossings of eigenvectors of P = 0, π with
P 6= 0, π,

3) Four eigenvalues are equal for crossing of eigenvectors with P 6= 0, π.

2.4.3. Nonzero finite aspect ratios Lv/Lh
We are, of course, not really interested in the limit (20) but rather in the case of

finite nonzero aspect ratio Lv/Lh and particularly in the isotropic case Lv = Lh.
There is apparently no general theory for finite nonzero aspect ratio in the literature
and we will study this case in detail below.
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3. The partition functions κ±(z) per site for hard hexagons

Baxter [1, 2] has computed the fugacity and the partition function per site in terms
of an auxiliary variable x using the functions

G(x) =

∞∏
n=1

1

(1− x5n−4)(1− x5n−1)
, (24)

H(x) =

∞∏
n=1

1

(1− x5n−3)(1− x5n−2)
, Q(x) =

∞∏
n=1

(1− xn). (25)

For high density where 0 < z−1 < z−1
c the results are

z =
1

x
·
(G(x)

H(x)

)5

and (26)

κ+ =
1

x1/3
· G

3(x)Q2(x5)

H2(x)
·
∞∏
n=1

(1− x3n−2)(1− x3n−1)

(1− x3n)2
, (27)

where, as x increases from 0 to 1, the value of z−1 increases from 0 to z−1
c .

For low density where 0 ≤ z < zc

z = −x ·
(H(x)

G(x)

)5

and (28)

κ− =
H3(x)Q2(x5)

G2(x)
·
∞∏
n=1

(1− x6n−4)(1− x6n−3)2(1− x6n−2)

(1− x6n−5)(1− x6n−1)(1− x6n)2
, (29)

where, as x decreases from 0 to −1, the value of z increases from 0 to zc.

3.1. Algebraic equations for κ±(z)

The auxiliary variable x can be eliminated between the expressions for z and κ (26)-
(29) and the resulting functions κ±(z) are in fact algebraic functions of z. To give
these algebraic equations we follow Joyce [5] and introduce the functions

Ω1(z) = 1 + 11z − z2, (30)

Ω2(z) = z4 + 228z3 + 494z2 − 228z + 1, (31)

Ω3(z) = (z2 + 1) · (z4 − 522z3 − 10006z2 + 522z + 1). (32)

For the high density Joyce (see eqn. (7.9) in [5]) showed that the function κ+(z)
satisfies a polynomial relation of degree 24 in the variable κ+(z)

f+(z, κ+) =

4∑
k=0

C+
k (z) · κ6k

+ = 0, where (33)

C+
0 (z) = −327 z22

C+
1 (z) = −319 z16 · Ω3(z),

C+
2 (z) = −310 z10 · [Ω2

3(z) − 2430 z · Ω5
1(z)],

C+
3 (z) = −z4 · Ω3(z) · [Ω2

3(z) − 1458 z · Ω5
1(z)]

C+
4 (z) = Ω10

1 (z). (34)
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Joyce has also derived an algebraic equation for the density (see eqn. (8.28) in [5])
which follows from (33).

For low density we have obtained by means of a Maple computation the
substantially more complicated polynomial relation which was not obtained in [5]

f−(z, κ−) =

12∑
k=0

C−k (z) · κ2k
− = 0, where (35)

C−0 (z) = −232 · 327 · z22,

C−1 (z) = 0

C−2 (z) = 226 · 323 · 31 · z18 · Ω2(z),

C−3 (z) = 226 · 319 · 47 · z16 · Ω3(z),

C−4 (z) = −217 · 318 · 5701 · z14 · Ω2
2(z),

C−5 (z) = −216 · 314 · 72 · 19 · 37 · z12 · Ω2(z) Ω3(z),

C−6 (z) = −210 · 310 · 7 · z10 · [273001 · Ω2
3(z) + 26 · 35 · 5 · 4933 · z · Ω5

1(z)],

C−7 (z) = −29 · 310 · 11 · 13 · 139 · z8 · Ω3(z) Ω2
2(z),

C−8 (z) = −35 · z6 · Ω2(z) · [7 · 1028327 · Ω2
3(z) − 26 · 34 · 11 · 419 · 16811 · z · Ω5

1(z)],

C−9 (z) = −z4 · Ω3(z) · [37 · 79087 Ω2
3(z) + 26 · 36 · 5150251 · z · Ω5

1(z)],

C−10(z) = −z2 · Ω2
2(z) · [19 · 139Ω2

3(z) − 2 · 36 · 151 · 317 · z · Ω5
1(z)]

C−11(z) = −Ω2(z) Ω3(z) · [Ω2
3(z) − 2 · 613 · z · Ω5

1(z)],

C−12(z) = Ω10
1 (z). (36)

We have verified that Joyce’s algebraic equation for the density (see eqn. (12.10)
in [5]) follows from (35).

We note the symmetry

z44 · f±
(
−1

z
,
κ±
z

)
= f±(z, κ). (37)

In Appendix A we discuss the behavior κ±(z) at the singular points zc, zd.

3.2. Partition function for complex z

From section 2.4 we see that the simplest construction of the partition function of hard
hexagons in the complex z plane would be if the low and high density eigenvalues in
the thermodynamic limit were the only two eigenvalues of maximum modulus and
that the interchange of limits (19) holds for z in the entire complex plane. Then
the zeros would be given by the equimodular curve |κ+(z)| = |κ−(z)|. Because the
partition functions per site κ±(z) satisfy algebraic equations this curve will satisfy an
algebraic equation which can be found by setting κ+(z) = rκ−(z) in the equation
(33) for κ+(z) and computing the resultant between equations (35) and (33). The
solutions of this equation for r on the unit circle will give all the locations where
κ±(z) have equimodular solutions. We have produced this equation using Maple but
unfortunately is it too large to print out. However, we are only interested in the
crossings of the maximum modulus eigenvalues. Consequently we have computed this
curve not from its algebraic equation but directly from the parametric representations
(26)-(29). We plot this curve in figure 2. The curve crosses the positive real axis at zc
and the negative real axis at z = −5.9425104 · · · which is exactly determined from
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the algebraic equation of the equimodular curve given in Appendix C. The tangent to
the equimodular curve is discontinuous at this negative value of z.

We will see in the next section that this two eigenvalue assumption is insufficient
to account for our finite size computations in some regions of the plane.

Figure 2. The equimodular curve for |κ−(z)| = |κ+(z)| in the complex z plane.
The crossing of the positive z axis is at zc and the crossing of the negative z axis
is at z = −5.925104 · · ·

4. Transfer matrix eigenvalues

To obtain further information on the partition function in the complex z plane we
compute, in this section, the eigenvalues for finite sizes of the transfer matrix T (z; Lh)
for the case of periodic boundary conditions in the Lh direction.

There are two ways to study the eigenvalues of the transfer matrix; analytically
and numerically. Numerical computations can be carried out on matrices which are
too large for symbolic computer programs to handle. However, analytic computations
reveal properties which cannot be seen in numerical computations. Consequently we
begin our presentation with analytic results before we present our numerical results.

4.1. Analytic results

The eigenvalues of a matrix are obtained as the solutions of its characteristic
equation. For the transfer matrices of the hard hexagon model this characteristic
equation is a polynomial in the parameter z and the eigenvalue λ with integer
coefficients. Consequently the eigenvalues λ are algebraic functions of z. In general
such characteristic polynomials will be irreducible (i.e. they will not factorize into
products of polynomials with integer coefficients).

There are two important analytic non-generic features of the hard hexagon
eigenvalues: factorization of the characteristic equation and the multiplicity of the
roots of the resultant.

4.1.1. Factorization of the characteristic equation
For a transfer matrix with cylindrical boundary conditions the characteristic

equation factorizes into subspaces characterized by a momentum eigenvalue P . In
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general the characteristic polynomial in the translationally invariant P = 0 subspace
will be irreducible. We have found that this is indeed the case for hard squares.
However, for hard hexagons we find that for Lh = 12, 15, 18, the characteristic
polynomial, for P = 0, factors into the product of two irreducible polynomials
with integer coefficients. We have not been able to study the factorization for larger
values of Lh but we presume that factorization always occurs and is a result of the
integrability of hard hexagons. What is unclear is if for larger lattices a factorization
into more than two factors can occur.

4.1.2. Multiplicity of the roots of the resultant
An even more striking non-generic property of hard hexagons is seen in the

computation of the resultant of the characteristic polynomial in the translationally
invariant sector. The zeros of the resultant locate the positions of all potential
singularities of the solutions of the polynomials.

We have been able to compute the resultant for Lh = 12, 15, 18, and find that
almost all zeros of the resultant have multiplicity two which indicates that there is
in fact no singularity at those points and that the two eigenvalues cross. This very
dramatic property will almost certainly hold for all Lh and must be a consequence of
the integrability (although to our knowledge no such theorem is in the literature).

4.2. Numerical results in the sector P = 0

For the partition function with cylindrical boundary conditions only the transfer
matrix eigenvalues with P = 0 contribute. In this sector we have numerically
computed eigenvalues of the transfer matrix, in the P = 0 sector, for systems of
size as large as Lh = 30 which has dimension 31836. For such large matrices brute
force computations will obviously not be sufficient and we have developed algorithms
specific to this problem which we sketch in Appendix E. We restrict our attention to
values of Lh being a multiple of three, to minimize boundary effects which will occur
when the circumference Lh is incompatible with the three-sublattice structure of the
triangular lattice.

In figure 3 we plot the equimodular curves for the crossing of the largest transfer
matrix eigenvalues in the P = 0 sector for Lh = 12, 15, 18, 21, 24, 27, and in figure 4
we plot Lh = 30. It is obvious from these curves that more than two eigenvalues of the
transfer matrix contribute to the partition function because of the increasing number
of regions in the left half plane which we refer to as the “necklace”. A striking feature
is that there is a pronounced mod 6 effect where for Lh ≡ 3 (mod 6) there is a level
crossing curve in the necklace on the negative real z axis which is not present for
Lh ≡ 0 (mod 6). The level crossing curves separate the necklace into well defined
regions. The number of these regions is Lh/3− 4 for L ≤ 27. The number of regions
for Lh = 30 is the same as for Lh = 24. For Lh = 21, 27 all the branch points of
the necklace are given in table 1 and in table 2 for Lh = 18, 24, 30.

There are further features in figures 3 and 4 which deserve a more detailed
discussion.

4.2.1. Comparison with the equimodular curve of κ±(z)
If the two eigenvalues κ±(z) computed in [1] were sufficient to describe the Lh → ∞

thermodynamic limit of these finite size computations then the equimodular curves of
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figures 3 and 4 must approach the equimodular curve of κ±(z) of figure 2. We make
this comparison for Lh = 30 in figure 4.

In figure 4 the agreement of the κ±(z) level crossing curve with the eigenvalue
equimodular curve for Lh = 30 is exceedingly good in the entire portion of the plane
which does not include the necklace. However, in the necklace region the κ±(z) curve
does not agree with either the inner or outer boundaries of the necklace but rather
splits the necklace region into two parts.

A more quantitative argument follows from the values of the leftmost crossing
with the negative real axis of the necklace given in table 1 for Lh ≡ 0 (mod 6) and in
table 2 for Lh ≡ 3 (mod 6). In both cases the left most crossing moves to the left to
a value which if extrapolate in terms of 1/Lh lies between 9 and 10. The Y branching
in tables 1 and 2 also moves to the left but does not extrapolate to a value to the left
of z = −5.9425104 · · · where the κ±(z) equimodular curve crosses the negative real
axis. We interpret this as implying that the necklace persists in the thermodynamic
limit and that at least one more transfer matrix eigenvalue is needed to explain the
analyticity of the free energy in the complex z plane.

Lh = 21 Lh = 27 comment
−3.7731 −4.1138 Y branching

−5.5898± 5.8764i −4.6228± 7.2480i necklace end
−5.2737± 6.5159i
−5.2321± 6.3840i

−5.2264± 1.3949i −5.3175± 1.4134i
−7.2883± 2.4533i −7.6848± 2.4225i

−7.9020 −8.2803 leftmost crossing

Table 1. The branch points of the necklace of the equimodular curves of hard
hexagons with cylindrical boundary conditions for Lh = 21, 27.

Lh = 18 Lh = 24 Lh = 30 comment
−3.8370 −4.0637 −4.3794 Y branching

−6.3703± 4.0485i −4.8079± 7.0090i −4.4043± 7.4623i necklace end
−6.5389± 4.7519i −6.9134± 4.4771i
−5.8477± 3.8460i −5.8526± 3.4864i

−7.1499 −7.8663 −8.0937 leftmost crossing

Table 2. The branch points of the necklace of the equimodular curves of hard
hexagons with cylindrical boundary conditions for Lh = 18, 24, 30.

4.2.2. The endpoints zd(Lh) and zc(Lh)
In table 3 we give the endpoints which approach the unphysical and the physical

singular points of the free energy zd and zc. We also give in this table the ratio of
the largest to the next largest eigenvalue at zd(Lh) and zc(Lh) as determined from
eigenvalue crossings. In the limit Lh → ∞ this ratio must go to unity so the deviation
from one is a measure of how far the finite size Lh is from the thermodynamic limit.
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Figure 3. Plots in the complex fugacity plane z of the equimodular curves
of hard hexagon eigenvalues with cylindrical boundary conditions of size Lh =
12, 15, 18, 21, 24, 27. The value of Lh is given in the upper left hand corner of
the plots.
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Figure 4. Comparison of the dominant eigenvalue crossings Lh = 30 shown
in red with the equimodular curve |κ+(z)| = |κ−(z)| of figure 2 shown in black.
Color online.

Lh zd(Lh) λ1/λmax zc(Lh) λ1/λmax

12 −0.09051765 0.45085 9.7432± 5.0712i 0.55487
15 −0.09037303 0.53048 10.2971± 3.9465i 0.54278
18 −0.09030007 0.59046 10.5753± 3.2016i 0.58463
21 −0.09026034 0.63709 10.7340± 2.6730i 0.62006
24 −0.09023555 0.67431 10.8310± 2.2852i 0.65030
27 −0.09021968 0.70467 10.8955± 1.9834i 0.67582
30 −0.09020833 0.72989 10.9389± 1.7499i 0.69827
∞ −0.09016994 1.00000 11.09016994 1.00000

Table 3. The values of the endpoints zd(L), zc(L) for hard hexagons on the
cylindrical lattice with length Lh as determined from the equimodular eigenvalue
curves and the ratios of the first excited state λ1 to the largest eigenvalue λmax

at zd(Lh) and zc(Lh).

4.3. Eigenvalues for the toroidal lattice partition function

For lattices with toroidal boundary conditions the eigenvalues of all momentum
sectors, not just P = 0, contribute to the partition function. In particular, in the
thermodynamic limit for P = ±2π/3, it is shown in [14] that there is an eigenvalue
λ±2π/3(z;Lh) such that for z ≥ zc

lim
Lh→∞

λ±2π/3(z;Lh)

λmax(z;Lh)
= e±2πi/3. (38)

These two eigenvalues with P = ±2π/3 cause significant differences from the
equimodular curves for P = 0 for finite values of Lh. We illustrate this in figures 5
and 6. In figure 5 we plot the equimodular curves for toroidal boundary conditions
for Lh = 9, 12, 15, 18, 21.

In these figures level crossings of 2 eigenvalues are shown in red, of 3 eigenvalues
in green and 4 eigenvalues in blue. For sectors separated by a red boundary, both
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sectors have momentum P = 0. For sectors separated by a green boundary, one
sector has momentum P = 0, and the other has two eigenvalues of equal modulus
and fixed phases of e±2πi/3. For sectors separated by a blue boundary, each sector
has two eigenvalues of equal modulus, and fixed phases of e±2πi/3. The equimodular
curve |κ−(z)| = |κ+(z)| is plotted in black for comparison.

It is instructive to compare the necklace regions of the plots of figure 5 with the
corresponding plots of figure 3 where the momentum of the eigenvalues is restricted to
P = 0. We do this in figure 6 where in the necklace region we have added in dotted red
lines the P = 0 level crossing of figure 3 which are, now, crossings of sub-dominant
eigenvalues.

There are two important observations to make concerning these plots.

4.3.1. The rays out to infinity
The most striking difference between the equimodular curves for cylindrical and

toroidal boundary conditions is that there are “rays” of equimodular curves which go
to infinity. These rays all have three equimodular eigenvalues which separate a sector
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Figure 5. Plots in the complex fugacity plane z of the equimodular curves
of hard hexagon eigenvalues for toroidal lattices for L = 12, 15, 18, 21. On
the red lines 2 eigenvalues are equimodular, on the green lines 3 eigenvalues
are equimodular and on the blue lines 4 eigenvalues are equimodular. The
equimodular curve |κ−(z)| = |κ+(z)| is given in black for comparison. Color
online.

with P = 0 from a sector with P = ±2π/3. In the limit Lh → ∞ these three
eigenvalues on the rays become equimodular independent of z, and thus there will be
no zeros on these rays in the thermodynamic limit.

4.3.2. Dominance of P = 0 as Lh → ∞
We see in figure 6 that for the smaller values of Lh, such as 12 and 15, a sizable

portion the region in the necklace has momentum P = ±2π/3. However, as seen in
the plots for Lh = 18, 21 and 24 as Lh increases the regions with P = 0 grow and
squeeze the regions with P = ±2π/3 down to a very small area. It is thus most
natural to conjecture that, in the limit Lh → ∞, only momentum P = 0 survives,
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Figure 6. Comparison in the complex fugacity plane z of the necklace region of
the equimodular curves of hard hexagon maximal eigenvalues for toroidal lattices
for Lh = 12, 15, 18, 21, 24 with the eigenvalue crossing in the P = 0 sector
of figure 3. On the red lines 2 eigenvalues are equimodular, on the green lines 3
eigenvalues are equimodular and on the blue lines 4 eigenvalues are equimodular.
The dotted red curves are the additional crossings in the P = 0 sector from
figure 3 which are now sub-dominant. The equimodular curve |κ−(z)| = |κ+(z)|
is given in black for comparison. Color online.

except possibly on the equimodular curves themselves.
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5. Partition function zeros

We now turn to zeros of the partition function ZL,L(z) on the lattices of size L × L.
Just as we required the creation of specialized algorithms to compute the eigenvalues
of the transfer matrix so we need specialized algorithms to compute the polynomials.
We have studied both cylindrical and toroidal boundary conditions.

5.1. Cylindrical boundary conditions

We have computed partition function zeros for lattices with cylindrical boundary
conditions for sizes up to 39 × 39. We plot these zeros in figure 7. These plots
share with the equimodular P = 0 eigenvalue curves of figure 3 the feature of having
a necklace in the left half plane beyond the Y branching. These plots also have
the feature that as the size increases the number of zeros inside the necklace region
increases. However, in contrast with the equimodular P = 0 eigenvalue curves there
is no necklace for L = 15.

5.1.1. Branching of the necklace
We give the left most crossing of the necklace, the Y branching point and the

necklace endpoint in table 4. We note that the left most crossing is to the left of
the corresponding left most crossing of the transfer matrix eigenvalue equimodular
crossings given in tables 1 and 2. These crossings are moving to the right with
increasing L for L ≥ 27. The Y branchings are moving to the right for L ≥ 30.
These trends are the opposite of what was found for the transfer matrix eigenvalue
curves which only went up to Lh = 27. We note that for 15 × 15 through 27 × 27
there is only one region in the necklace. However. for 30 × 30 there are two regions,
for 33× 33 three, for 36× 36 five and for 39× 39 seven. It is unknown if the number
of regions increases for larger lattices.

L leftmost crossing Y branching necklace endpoints
15 no necklace −6.8311
18 −8.666 −5.6655
21 −9.1957 −4.5411 (min)
24 −8.8963± 0.264i −4.7137
27 −9.4969 −4.8031 −6.292287± 7.325196i
30 −9.2717± 0.541i −5.0851 (max) −5.515958± 8.174231i
33 −9.4610 −4.8875 −4.728011± 8.742729i
36 −9.213± 0.527i −4.6972 −4.797746± 8.473961i
39 −9.3221 −4.5687 −4.270164± 8.792602i

Table 4. The necklace crossing and endpoints as a function of L for the
L×L lattice with cylindrical boundary conditions. There is a mod 6 phenomenon
apparent in both the location of the necklace crossings and the endpoint. The
necklace endpoints at L = 27, 33, 39 and at L = 30, 36 are moving to the right.

5.1.2. Comparison with the eqimodular curves
In figure 8 we compare the equimodular curves for Lh = 27 with the partition

function zeros of the 27 × 27 lattice by plotting the partition function zeros for the
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lattices 27× 27, 27× 54, 27× 135 and 27× 270. This comparison clearly shows how
slight kinks for 27× 27 grow into an equimodular curve with 5 separate regions.

Figure 7. Plots of partition function zeros in the complex fugacity plane z
of hard hexagon model for lattices with cylindrical boundary conditions of size
15× 15, 18× 18, 21× 21, 24× 24, 27× 27, 30× 30, 33× 33, 36× 36, 39× 39.

5.1.3. The endpoints zd(L) and zc(L)
In table 5 we give the values of the endpoints which approach zd and zc. We note that
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Figure 8. The partition function zeros for the lattices 27× 27 , 27× 54 27× 135
and 27× 270. For 27× 270 the equimodular curve is shown in red. Color online

the values of zd(Lh) and zc(Lh) of table 3 as determined from the equimodular curves
are significantly closer to the limiting values zd and zc than the corresponding values
of table 5. We also note that, in table 3, Re(zc(Lh)) is monotonic and approaches
zc from below, while in table 5 Re(zc(Lh)) is not monotonic and approaches zc from
above.

It is clear in table 5 that zd(L) is converging rapidly to zd and a careful
quantitative analysis well fits the data with the form

zd(L)− zd = b0L
−12/5 + b1L

−17/5 + b2L
−22/5 + a3L

−27/5 + · · · (39)

with

b0 = 1.7147(1), b1 = −9.30(2), b2 = 48(2), b3 = −180(30). (40)

The exponent 12/5 is the leading exponent of the energy operator of the Lee-Yang
edge as is seen from analysis of [15] and [16]. It is expected to be the inverse of the
correlation exponent ν at z = zd but a computation of this correlation length is not
in the literature.

For zc(L) the data of table 5 is well fit by

|zc(L)| − zc = a0L
−6/5 + a1L

−2 + a2L
−14/5 + · · · (41)
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L zd(L) zc(L)
9 −0.0957417573 5.9002937473± 12.2312152474i
12 −0.0932266680 9.2335210855± 9.3476347389i
15 −0.0920714392 10.5114514245± 7.2812520022i
18 −0.0914523473 11.0571925423± 5.8559364459i
21 −0.0910853230 11.3084528958± 4.8492670401i
24 −0.0908515103 11.4268383658± 4.1113758041i
27 −0.0906942824 11.4806273673± 3.5521968857i
30 −0.0905839894 11.5012919280± 3.1162734906i
33 −0.0905039451 11.5044258314± 2.7682753249i
36 −0.0904442058 11.4981796564± 2.4848695493i
39 −0.0903985638 11.4869896404± 2.2501329582i
∞ −0.0901699437 11.0901699437

Table 5. The values of zd(L), and zc(L) as a function of L for the L × L
lattice with cylindrical boundary conditions as determined from the zeros of the
partition function.

where

a0 = 53.0(1), a1 = −50(5), a2 = −200(50) (42)

where the exponent y = 6/5 is the inverse of the correlation length exponent ν of the
hard hexagon model at z = zc [14]. The exponent −2 is consistent with −y − |y′|
where y′ = −4/5 is the exponent for the subdominant energy operator φ(3.1) for the
three state Potts model [17] and the exponent −14/5 follows from −y−2|y′|. We note
that the potential exponents −y − 1 and −2y do not appear in (41).

The analysis leading to (39) and (41) and the relation with conformal field theory
is given in appendix F.

5.1.4. Comparison with the equimodular curve of κ±(z)
In figure 9 we compare the zeros for the 39 × 39 lattice with the equimodular curve

of the κ±(z) of figure 2. Unlike the comparisons of figure 4 the κ±(z) equimodular

Figure 9. The equimodular curves for |κ−(z)| = |κ+(z)| in the complex z
plane and the partition function zeros for cylindrical boundary conditions on the
39 × 39 lattice
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curve does not have a region of overlap with the zeros of the 39 × 39 lattice. However,
in the region to the right of the necklace, if

lim
Lh→∞,Lv→∞

ZLv,Lh
(z)1/LvLh is independent of Lv/Lh,

then, for this region, the limiting locus of zeros will agree with the κ± equimodular
curve. We have examined this possibility and find that we can well fit this portion of
the zero locations of figure 7 by a shifted cardioid

Re(z) =
a

2
+ c + a cos θ +

a

2
· cos 2θ,

Im(z) = a sin θ +
a

2
· sin 2θ. (43)

The fitting parameters a and c depend on L, and, when plotted versus 1/L, these
values fall very closely on a straight line which extrapolated to L → ∞ gives a
curve which is virtually indistinguishable from the κ± equimodular curve outside of
the necklace regions. We take this to be evidence that in this non necklace region
the limit (43) for cylindrical boundary conditions is independent of the ratio Lv/Lh.
Further numerical details are given in Appendix D.

5.2. Toroidal boundary conditions

It is numerically more difficult to compute partition function zeros for toroidal
boundary conditions and the maximum size we have been able to study is 27 × 27.
These results are plotted in figure 10. There is a necklace for L ≥ 12 and there are
zeros in the necklace region for 15 × 15 through 21 × 21. For 24 × 24 and 27 × 27
there are no zeros in the necklace region.
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Figure 10. Plots of partition function zeros in the complex fugacity plane
z for hard hexagon with toroidal boundary conditions of size L × L with L =
12, 15, 18, 21, 24, 27. The value of L×L is given in the upper left hand corner
of the plots.
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5.2.1. Comparison with the equimodular curve of κ±(z)
In figure 11 we compare the partition function zeros for toroidal boundary conditions

on the 27 × 27 lattice with the equimodular curve of κ±(z). Outside of the necklace
region the agreement is much closer than it was for the cylindrical case for the 39 × 39
lattice. It is appealing to attribute this agreement with the absence of boundary effects.

Figure 11. The equimodular curves for |κ−(z)| = |κ+(z)| in the complex z
plane and the partition function zeros for toroidal boundary conditions on the
27× 27 lattice

5.2.2. Dependence on the aspect ratio Lv/Lh
We conclude our study of partition function zeros by examining the dependence of

the zeros on the aspect ratio Lv/Lh of the Lh × Lv lattices. In figure 12 we plot
the partition function zeros for the toroidal lattices of various ratios Lv/Lh as large
as 40 for Lh = 15, 18, 21. We see that the number of zeros outside the main curve
increases for fixed Lh with increasing aspect ratio and for fixed aspect ratio decreases
with increasing Lh. It is furthermore obvious that even for an aspect ratio of 40 there
are remarkably few zeros on the rays seen in the transfer matrix equimodular curves
of figure 5. From this we conclude, for fixed Lv/Lh < ∞ with Lh → ∞, that the
partition function zeros of the Lh × Lv on the toroidal lattice will not have any rays
of zeros which extend to infinity.



Hard hexagon partition function for complex fugacity 24

Figure 12. Partition function zeros for toroidal boundary conditions on the
lattices 15 × 150, 15 × 300, 15 × 600, the lattices 18 × 180, 18 × 360 and the
lattice 21× 210. The number of points off of the main curve for fixed aspect ratio
Lv/Lh decreases with increasing Lh.
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5.3. Density of zeros for zy ≤ z ≤ zd
On the negative z axis we label as zj the position of the jth zero where z1 is the zero
nearest to z = 0 and zy is the zero closest to the Y branching on the negative z axis.
Then calling NL the number of zeros in the interval zy ≤ z ≤ 0 on a finite lattice of
size L × L the density D(z) in the thermodynamic limit is proportional to

D(z) = lim
L→∞

DL(zj) where DL(zj) =
1

NL · (zj − zj+1)
. (44)

This density of zeros will diverge at zd as (1− z/zd)−1/6, which is obtained from
the leading term in the expansion of ρ−(z). This expansion is obtained, in Appendix
B, from the algebraic equation (see eqn. (12.10) in [5]) as

ρ−(z) = t
−1/6
d · Σ0(td) + Σ1(td) + t

2/3
d · Σ2(td) + t

3/2
d · Σ3(td)

+ t
7/3
d · Σ4(td) + t

19/6
d · Σ5(td), (45)

where td = 5−3/2 · (1 − z/zd), the fractional powers are all defined positive for
positive td and where the Σi(td) read

Σ0 = − 1√
5

+
1

12

(
5 +

11√
5

)
td +

1

144

(
275 +

639√
5

)
t2d +

1

1296

(
17765 +

37312√
5

)
t3d + · · ·

Σ1 =
1

2

(
1 +

1√
5

)
+

1√
5
td +

1

2

(
5− 1√

5

)
t2d −

1

2

(
5− 83√

5

)
t3d + · · ·

Σ2 = − 2√
5
− 2

15
(25− 4

√
5)td +

4

45
(125− 108

√
5)t2d −

4

405
(16775− 4621

√
5)t3d + · · ·

Σ3 = − 3√
5
− 3

4

(
15− 7√

5

)
td +

3

16

(
175− 1189√

5

)
t2d −

21

16

(
705− 646√

5

)
t3d + · · ·

Σ4 = − 4√
5
− 2

15
(175− 13

√
5)td +

2

45
(1625− 2637

√
5)t2d −

52

405
(22100− 3499

√
5)t3d + · · ·

Σ5 = − 6√
5
− 1

2

(
95− 31√

5

)
td +

1

24

(
3875− 34641√

5

)
t2d −

31

216

(
55685− 40892√

5

)
t3d + · · ·

(46)

The term in t
2/3
d was first obtained by Dhar [18] but the full expansion has

not been previously reported. The form (45) follows from the renormalization group
expansion [16] of the singular part of the free energy at z = zd

fs = t
2/y
d ·

4∑
n=0

t
−n(y′/y)
d ·

∞∑
m=0

an;m · tmd , (47)

where y = 12/5 is the leading renormalization group exponent for the Yang-Lee edge,
and y′ = −2, the exponent for the contributing irrelevant operator which breaks

rotational invariance on the triangular lattice, is determined from the term t
2/3
d in

(45).
The density ρ−(z) has singularities only at zd and zc in the plane cut on

∞ ≤ z ≤ zd and zc ≤ z ≤ ∞. However, this does not require that the series (46) for
Σj(td) will have td evaluated at zc as their radii of convergence. We have investigated
this by computing the coefficients cj(n) of zn in the series for Σj(td) using Maple up
to n = 1200. For Σ0(td) these coefficients are all positive for n > 1 and for Σj(td) with
j = 2, 3, 4 all coefficients are negative. However, for Σ5(td) the coefficients are negative
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for 0 ≤ n ≤ 19 and positive for n ≥ 20. For Σ1(td) the coefficients are positive for
0 ≤ n ≤ 554 and negative for n ≥ 555. Furthermore the ratios rj = cj(n)/cj(n + 1)
seem to be converging to 2−3/2 = 0.08944271 · · · which corresponds to z = 0.

We investigate the density ρ−(z) further by plotting, in figure 13, DL(zj) as a
function of z computed from the zeros of the L × L lattice with cylindrical boundary
conditions for L = 33, 36, 39. The values ofDL(zj) for all three lattices lie remarkably
close to the same curve except for the region −0.093 < z < zd, where some scatter
is observed which is caused by the finite size of the lattice.

Figure 13. Log plots of the density of zeros DL(zj) on the negative z axis for
L × L lattices with cylindrical boundary conditions. The figure on the right is
an expanded scale near the singular point zd.

Figure 14. Plots of DL(zj)/D′L(zj) on the negative z axis for L × L lattices
with cylindrical boundary conditions. For the plot on the left it is impressive that
for the range −4.0 ≤ z ≤ −0.14 the data is extremely well fitted by the power
law form (48) with an exponent −1.32 (which corresponds to a slope of −0.76)
and an intercept zf = −0.029. The plot on the right is an expanded scale near
zd and the line passing through z = zd with slope of −6 is plotted for comparison
which corresponds to the true exponent = −1/6 which only is observed in a very
narrow range near zd of −0.095 ≤ z ≤ zd = −0.0901 · · ·.
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To estimate the divergence of D(z), at z = zd, we write for z near zd

D(z) ∼ A · (zd − z)α and thus
D(z)

D′(z)
∼ zd − z

α
, (48)

where D′(z) is the derivative of D(z). In figure 14 we plot DL(zj)/D
′
L(zj), where we

define

D′L(zj) =
DL(zj+1)−DL(zj)

zj+1 − zj
. (49)

For z, away from zd, the plot is very well fitted by the z-line

DL(z)

D′L(z)
∼ zf − z

α
, (50)

with αf = −1.32 · · · (or α−1
f = −0.76 · · ·), and zf = −0.029 · · · However, for

−0.14 ≤ z ≤ zd this fit is no longer valid. We make in figure 14 a comparison
with the true value of α = −1/6, which is obtained from κ−(z). This figure vividly
illustrates the very limited range of validity for the use of perturbed conformal field
theory and scaling arguments to describe systems away from critical points. The same
phenomenon has been seen in [19, eqn. (4.8) and Fig. 4] for Hamiltonian chains.

6. Discussions

The results of the numerical studies presented above allow us to discuss in some
detail the relation of the functions κ±(z), which completely describe the hard hexagon
partition function per site on the positive z axis, with the partition function per site
in the full complex z plane. In particular the approach to the thermodynamic limit,
the existence of the necklace, the relation to the renormalization group and questions
of analyticity will be addressed.

6.1. The thermodynamic limit

When the fugacity z is real and positive the free energy and the partition function per
site is independent of the aspect ratio Lv/Lh of the Lh × Lv lattice as Lh, Lv → ∞,
and will be the same for both cylindrical and toroidal boundary conditions. This is a
necessary condition for thermodynamics to be valid.

However, the example of hard squares at z = −1, where it is found [6]-[9] that the
partition function ZLv,Lh

(−1) depends on number theoretic properties of Lv and Lh,
demonstrates that there may be places in the complex z plane where a thermodynamic
limit independent of Lv/Lh does not exist. We have investigated in sections 4 and
5 the extent to which our data supports the conclusion that for complex z there is
a thermodynamic limit independent of the aspect ratio Lv/Lh as stated in (19). If
this independence holds then the limiting locus of partition function zeros will lie on
the limiting locus of transfer matrix equimodular curves. However, the converse does
not need to be true and there is no guarantee that zeros will lie on all limiting loci
of transfer matrix eigenvalues. In particular we have argued in sections 4.3 and 5.2.2
that for toroidal boundary conditions there will be no zeros in the rays which go to
infinity.
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6.2. Existence of the necklace

All the data both for partition function zeros and transfer matrix eigenvalues contain
a necklace in the left half plane. Such a necklace is incompatible with a partition
function which only includes the functions κ±(z).

For cylindrical boundary conditions it is clear from figures 3 and 4 that the
limiting locus of transfer matrix equimodular curves in the necklace region has not
yet been obtained. Furthermore in figures 3 and 4 there are equimodular curves inside
the necklace region beginning at Lh = 18 whereas in figure 7 partition function zeros
only appear clearly inside the necklace region for lattices 30 × 30 and greater.

For toroidal boundary conditions the dominance of the P = 0 sector in the limit
Lh → ∞, discussed in section 4.3.2, implies that in the thermodynamic limit the
necklace will be the same as for cylindrical boundary conditions.

The simplest mechanism which will account for this behavior is for there to be
one (or more) extra eigenvalue(s) of the transfer matrix which becomes dominant in
the necklace region. Further analytic computation is needed to verify this mechanism.
However, the present data does not rule out the possibility that for sufficiently large
systems the necklace region could be filled with zeros.

6.3. Relation to the renormalization group

The form of the singularity of the density ρ−(z) at z = zd given in section 5.3 in
(47) is not the most general form, allowed by the renormalization group. The most
general form allows the singular part of the free energy to have y′ = −1, which would

give a term in (45) with exponent t
1/4
d (which is, in fact, not present). This may be

explained by the following renormalization group argument given by Cardy [20]. The
integer corrections given by ny′ are conformal descendants of the identity operator.
The total scaling dimension of these operators is N + N̄ . Their conformal spin is
N − N̄ , where N and N̄ are nonnegative integers, and the corresponding exponent
y′ is 2 − N − N̄ . However, the six fold lattice symmetry of the hard hexagon model
allows only operators with N − N̄ ≡ 0 (mod 6). Therefore the dimensions y′ cannot
be odd which is what is observed in (45). The same conclusion will apply also to hard
squares but not for hard triangles.

6.4. Analyticity of the partition function

The final property to be discussed is the relation of the analyticity of the free energy
obtained by analytically continuing the free energy from the positive z axis into the
complex z plane.

For hard hexagons the functions κ±(z) have singularities only at z = zd, zc, ∞,
whereas the partition function per site in the complex plane fails to be analytic at those
boundaries which are the thermodynamic limit of the equimodular curves. It is obvious
for hard hexagons that these boundaries have nothing to do with the analyticity of
κ±(z). However it is unknown if in general the partition function per site on the
real axis can be continued analytically beyond the region where it corresponds to the
maximum modulus of the transfer matrix eigenvalue.

The other locus where the hard hexagon model has partition function zeros is on
the negative real axis for z ≤ zd. These zeros correspond to the complex conjugate
solutions for κ−(z) alone and have no connection with κ+(z). The leading singular
behavior of hard hexagons at zd is believed to be a property shared by all systems
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with purely repulsive (positive) potentials and is a universal repulsive-core singularity
[21, 22]. Therefore it is of considerable interest to determine whether the ability to
continue through this locus of zeros, which is the case for the integrable system of hard
hexagons, will hold for all the non-integrable models in the same universality class.

7. Conclusion

The hard hexagon model solved by Baxter [1, 2] not only satisfies the Yang-Baxter
equation but also as shown by Joyce [5] and Tracy et al [28, 29] has a remarkable
structure in terms of algebraic modular functions and their associated Hauptmoduls.
It is thus a good candidate for a global analysis in the whole complex plane of the
partition function per site which is complementary to a local analysis based on series
expansions and perturbation theory.

In this paper we have made a precision finite size study for the hard hexagon
model of the zeros of the partition function and of the equimodular curves of the
transfer matrix in the complex fugacity plane z. This study reveals that the partition
function per site has more structure for complex z than has been seen in previous
studies on much smaller systems [24]-[27]. In particular our results demonstrate
that the conjecture on zeros of the hard hexagon partition function made in [27]
is incorrect, and corresponds to a too simple high density equimodular condition of
the Hauptmodul being real. This condition has to be replaced by more involved
equimodular conditions involving both the low and high density partition functions.
Furthermore we have found that the results of [1, 2] on the positive z axis are not
sufficient to determine all of the analytic structure of the partition function per site
in the complex z plane.

The full significance of our results is to be seen in the comparison with hard
squares and with the Ising model in a magnetic field which do not satisfy a Yang-
Baxter equation and will not have the global properties of modular functions. In
particular we note that in section 4.1.2 it was found that on the negative z axis the
zeros of the resultant of the characteristic equation of the transfer matrix have the
remarkable property that their multiplicity is two. This is in distinct contrast with
hard squares where the multiplicity of the roots of the resultant is one.

Hard squares and hexagons are the limiting case of Ising models in a magnetic
field when the field becomes infinite. The results of this paper have extensions to Ising
models in a finite magnetic field which will be presented elsewhere.

Acknowledgments
We are pleased to acknowledge fruitful discussions with J.L. Cardy and A.J.

Guttmann. One of us (JJ) is pleased to thank the Institut Universitaire de France and
Agence Nationale de la Recherche under grant ANR-10-BLAN-0401 and the Simons
Center for Geometry and Physics for their hospitality. One of us (IJ) was supported
by an award under the Merit Allocation Scheme of the NCI National facility at the
ANU, where the bulk of the large scale numerical computations were performed, and
by funding under the Australian Research Council’s Discovery Projects scheme by the
grant DP120101593. We also made extensive use of the High Performance Computing
services offered by ITS Research Services at the University of Melbourne.



Hard hexagon partition function for complex fugacity 30

Appendix A. The singularities of κ±(z)

The partition functions per site κ±(z) are singular at zc, zd and ∞. At z = zc, and
z = zd, the values of the three Ωi read respectively

Ω1(zc) = 0, Ω2(zc) = (55/2zc)
2, Ω3(zc) = −(55/2zc)

3, (A.1)

Ω1(zd) = 0, Ω2(zd) = (55/2zd)
2, Ω3(zd) = (55/2zd)

3. (A.2)

Appendix A.1. High density

As z → ∞ the physical κ+(z), which satisfies the algebraic equation (33), diverges.
There is only one such real solution and by direct expansion of (33) we find that

κ+(z) = z1/3 +
1

3
z−2/3 +

5

9
z−5/3 +

158

81
z−8/3 +

2348

243
z−11/3 + · · · (A.3)

which agrees with eqn. (7.14) in [5]. It follows from (A.3) that κ+(z) has a branch
cut on the segment −∞ < z ≤ zd and that on this segment the phase is

e±πi/3 for Imz = ±ε → 0. (A.4)

When zc < z < ∞ there is one real positive, one real negative, and one complex
conjugate pair of solutions to the fourth order equation (33) for κ6

+. The negative
solution is larger in magnitude than the positive solution, and, thus, cannot correspond
to any eigenvalue of the transfer matrix. However, the magnitude of the complex
conjugate pair of solutions is less than the value of the real positive root. At z = zc
the real positive root collides with the complex conjugate pair.

When z = zc, introducing the rescaled variable

wc+ = Ω3(zc) ·
κ6

+(zc)

z6
c

= −(55/2/zc)
3 · κ6

+(zc), (A.5)

we find that (33) reads (wc+ + 39)3 = 0. Thus, using (A.5) and the fact that κ+(zc)
must be positive, we obtain

κ+(zc) = (33 · 5−5/2 zc)
1/2 = 2.3144003 · · · (A.6)

which is (7.17) of [5].
For z = zd, introducing the rescaled variable wd+ = Ω3(zd) · κ6

+(zd)/z
6
d

= (55/2/zd)
3 · κ6

+(zd), we find that (33) also reads (wd+ + 39)3 = 0. Using (A.4),

one gets κ+(zd)
6 = 39/58 (1525 − 682 51/2) or κ+(zd) = e±πi/3 0.208689 · · ·.

Appendix A.2. Low density

When z = zc equation (35) reduces using (A.1) to the eleventh order equation

f−(zc, wc−) =

11∑
k=0

C̃−k · wkc− = 0 (A.7)

with wc− = 55/2 κ2
−(zc)/zc and

C̃−0 = −232 · 327,

C̃−1 = 0,

C̃−2 = 226 · 323 · 31,

C̃−3 = −226 · 319 · 47,
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C̃−4 = −217 · 318 · 5701,

C̃−5 = 216 · 314 · 72 · 19 · 37,

C̃−6 = −210 · 310 · 7 · 273001,

C̃−7 = 29 · 310 · 11 · 13 · 139,

C̃−8 = −35 · 7 · 1028327,

C̃−9 = 37 · 79087,

C̃−10 = −19 · 139,

C̃−11 = 1, (A.8)

which factorizes as

f−(zc, wc−) = (wc− + 24)2 · (wc− − 33)3 · (wc− − 24 · 33)6 = 0. (A.9)

From the second factor in (A.9) we obtain the solution

κ−(zc) = (33 · 5−5/2 zc)
1/2 = κ+(zc), (A.10)

as required by continuity. At z = zc the solution for κ−(zc) is three fold degenerate
which also agrees with the degeneracy of κ+(zc).

For 0 < z < zc there is one real positive, one real negative and five complex
conjugate solutions of the 12th order equation (35). Three of the complex conjugate
pairs have a modulus less than the real positive solution. At z = zc a collision of the
real positive root with one of the complex conjugate pairs occurs.

When z = zd an analogous reduction can be made by use of (A.2) and of the
rescaling wd− = 55/2 κ2

−(zd)/zd. We find, in analogy to (A.9), the factorization

f−(zd, wd−) = −(wd− − 24)2 · (wd− + 33)3 · (wd− + 24 · 33)6 = 0. (A.11)

At z = zd the last factor in (A.11) vanishes and we find

κ−(zd) = (−24 · 33 · 5−5/2 zd)
1/2 = (24 · 33 · 5−5/2/zc)

1/2

= 4 |κ+(zd)| = 0.83475738 · · · . (A.12)

For zd < z < 0 there are three real positive, three real negative, and three
complex conjugate solutions of the polynomial relation (35) of degree twelve in κ2

−, and
all three of the complex conjugate solutions have a modulus smaller than the largest
positive real solution. The largest positive real solution is the dominant eigenvalue,
until z = zd, when a collision with the next real largest solution and two complex
conjugate pairs occurs.

Appendix B. Expansion of ρ−(z) at zc and zd

The low density function ρ−(z) satisfies the polynomial equation of degree twelve in
ρ− and degree four in z (see eqn. (12.10) in [5])

ρ11
− · (ρ− − 1) · z4 − [ρ5

− z
3 − (ρ− − 1)5 z] · p7

+ ρ2
− · (ρ− − 1)2 · p8 · z2 + ρ− · (ρ− − 1)11 = 0 (B.1)

where

p7 = 22ρ7
− − 77 ρ6

− + 165ρ5
− − 220ρ4

− + 165ρ3
− − 66ρ2

− + 13ρ− − 1,

p8 = 119ρ8
− − 476ρ7

− + 689ρ6
− − 401ρ5

− − 6ρ4
− + 125ρ3

− − 63ρ2
− + 13ρ− − 1.(B.2)
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This equation has the remarkable property that at z = zc, zd it reduces to a fifth
order equation

− 275 + 123
√

5

8000
· (10ρ− − 5 +

√
5)5 = 0 for z = zc, (B.3)

− 275− 123
√

5

8000
· (10ρ− − 5 −

√
5)5 = 0 for z = zd. (B.4)

There are four distinct Puiseux expansions of ρ− about zc which are real for
z < zc. The leading exponents of these expansions are −1, −1/6, 0, 0. The physical
solution must be finite at z = zc and we see from (B.3) that the two solutions which
are constant at z = zc have the value ρ−(zc) = (1 − 5−1/2)/2. To decide which of
these two Puiseux expansions is the correct physical solution we need the independent
condition that the leading nonanalytic term has exponent 2/3. The result [5, 12.15]
follows from this additional condition.

At z = zd there are also four Puiseux expansions of ρ−(z) which are real for
zd < z. The leading exponents are, again, −1, −1/6, 0, 0. Now, unlike ρ−(zc), the
density is not constant at z = zd, but diverges with exponent −1/6. Furthermore,
in the cluster expansion of ρ−(z) about z = 0, it follows, from a theorem of
Groeneveld [23], that because the sign of the coefficient of zn is (−1)n−1, the density
must be negative in the segment zd < z < 0. The leading term of the Puiseux
expansion with exponent −1 is positive and is, thus, excluded. There are six conjugate
solutions with exponent −1/6. The member of this class which has the correct negative
behavior z → zd+ is the result given in (45).

Appendix C. The Hauptmodul equations and the κ± equimodular curves

The equations (33) and (35) for κ± may be usefully re-expressed in terms of the
Hauptmodul H

H = 1728 z · Ω5
1(z)

Ω2
3(z)

, (C.1)

by making the rescaling

W± = Ω3(z) ·
(κ±
z

)6

. (C.2)

For high density it is straight forward to use (C.1) and (C.2) in (33) to obtain

P+(W+, H) = H2 · W 4
+ + 27 · 36 · (27H − 32) · W 3

+

+ 27 · 316 · (45H − 32) · W 2
+ − 212 · 325W+ − 212 · 333 = 0. (C.3)

The algebraic curve P+(W+, H) = 0 is the union of two genus zero curves.

For low density the polynomial relation (35) on κ− in the z variable can be
written in terms of the Hauptmodul (C.1), and of the rescaled variable W− (C.2), as
follows

P−(W−, H) = H6 · W 12
− + 212 · 37 · P11 · W 11

− + 219 · 313 · P10 · W 10
−

− 232 · 318 · P9 · W 9
− − 236 · 329 · P8 · W 8

− + 252 · 338 · P7 · W 7
−

+ 262 · 346 · P6 · W 6
− − 277 · 356 · P5 · W 5

− − 285 · 365 · P4 · W 4
−

+ 2100 · 373 · P3 · W 3
− − 2110 · 383 · P2 · W 2

− + 47 · 2126 · 392 · W−
− 2132 · 399 = 0, (C.4)
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where the polynomials Pn read:

P11 = 85423588659H5 − 1273194070087H4 + 5683675368960H3

− 3624245 · 212 · 36H2 + 901 · 219 · 39H − 224 · 311,

P10 = 2098366262345322754767H5 − 4991131592299977169590H4

+ 3893219286516719759223H3 − 1056221406812154079936H2

+ 56427952366139092992H − 483780265 · 217 · 35,

P9 = 15382723254412673871318753H4 + 26277083153777345473689849H3

+ 4098422120568047655974595H2 + 37921229707060286737587H

+ 1560354561975860656,

P8 = 1020939125266735071750904401H4 − 1161800973997140083525143956H3

+ 214393801490313112726470774H2 − 2006070488338798415238516H

+ 59190955246329648961,

P7 = 508697400997842959916351H3 − 554351605658908065490725H2

− 35192800976394203832051H − 2775596721861024679,

P6 = 1245962466251450908065H3 − 15255449815782496728645H2

+ 8457596543456744207175H − 13332664262978720611,

P5 = 114630292396020573H2 − 366034684810378734H + 92792159042784817,

P4 = 938107512437391H2 − 1026461977730478H + 933965999427127,

P3 = 121395557277H − 59327302513,

P2 = 11532609H − 1281659. (C.5)

Do note that the algebraic curve P−(W−, H) = 0 is actually a genus zero curve.
The algebraic curve (C.4) is the sum of 43 monomials of degree six in H and degree
12 in W−, as compared to a sum of 157 monomials of degree 22 in z and degree 24
in κ− for (35). At first sight, the polynomial relation (C.4), in the Hauptmodul and
the rescaled variable W−, looks quite different from (35). In fact, the two polynomial
relations (C.4) and (35) are in agreement, as can be seen on the quite remarkable
identity

z66 · P−(W−, H) = 1218 · f−(z, κ−) · f−(z, e2πi/3 κ−) · f−(z, e−2πi/3 κ−), (C.6)

where the l.h.s. of (C.6) is actually a polynomial expression in terms of κ− and z.

Appendix C.1. κ+ versus κ−

The functions κ− and κ− are not related by analytic continuation. However, because
both W+ and W− are algebraic functions of the same Hauptmodul we can eliminate
H between (C.3) and (C.4) to obtain the following algebraic relation between W+ and
W−

W−
4W+

6 + 32W−
3W 5

+ · (1509W− − 512W+)

− 2 W 2
−W

3
+ · (W 3

− − 411832512W 2
−W+ + 937623552W−W

2
+ − 50331648W 3

+)

− 32W−W
2
+ · (34791W 4

− − 182579836224W 3
−W+ − 1128985165824W 2

−W
2
+

− 549067948032W−W
3
+ + 8589934592W 4

+)

+ (W 4
− − 84091500544W 3

−W+ − 1482164797440W 2
−W

2
+ − 8145942347776W−W

3
+

+ 68719476736W 4
+) · (W 2

− − 172928W−W+ + 4096W 2
+) = 0. (C.7)
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This remarkable algebraic relation for hard hexagons follows from the modular
properties of κ+ and κ− and is not expected to exist for a generic system.

One verifies easily that eliminating W+ between (C.3) and (C.7) one recovers
(C.4), and that eliminating W− between (C.4) and (C.7) one recovers (C.3).

The polynomial relation (C.7) of degree six in W+ and W−, is actually also a
genus zero algebraic curve.

The situations where κ− = κ+ (see (A.10)) correspond to W− = W+

in (C.7). It yields the values 0, −39, −57707, 22743 ± 30268 i, corresponding to
W− = W+ = −39. Note that κ− = .83475738 · · · in (A.12) corresponds to the
integer value W− = −212 39.

Appendix C.2. The κ± equimodular curves

The κ± equimodular condition reads |W+| = |W−| in terms of W±. Setting the ratio

r =
W+

W−
, (C.8)

we can obtain a polynomial relation between this ratio r and the Hauptmodul H,
eliminating W− between P−(W−, H) = 0 and P+(r · W−, H) = 0, by performing
a resultant. This resultant calculation yields a polynomial condition P (r, H) = 0,
where the polynomial, of degree 36 in r and degree 18 in H, is the sum of 577
monomials. When H = 0 this polynomial reduces to

P (r, 0) = 2108 · r3 · (4096 r + 19683)6 · (4096 r − 1)12 · (r − 1)6, (C.9)

and when H = 1, it reduces to

P (r, 1) = (330225942528 r3 + 216854102016 r2 + 72695294208 r + 1)3

× (16777216 r3 − 297467904 r2 + 2692418304 r − 1)6 · (256 r + 27)9. (C.10)

The equimodularity condition |κ+| = |κ−| corresponds to an algebraic curve in
the (x, y) complex plane (z = x + i y). This curve can be obtained by writing
the Hauptmodul as a function of x and y, namely H = X(x, y) + i Y (x, y),
where X(x, y) and Y (x, y) are quite large rational expressions of x and y, and
then parametrising the equimodularity condition |r| = 1 as r = (1− t2)/(1 + t2) +
2 i t/(1 + t2), where t is a real variable. This amounts to writing

P

(
1− t2
1 + t2

+ i · 2 t

1 + t2
, X(x, y) + i Y (x, y)

)
= P(x, y, t) + i · Q(x, y, t) = 0.

where P(x, y, t) and Q(x, y, t) are quite large rational expressions of the real
variables x, y and t. Let us denote N1(x, y, t) the numerator of P(x, y, t) and
N2(x, y, t) the numerator of Q(x, y, t). Eliminating t between N1(x, y, t) = 0 and
N2(x, y, t) = 0, performing a resultant, one will get finally a quite large polynomial
condition P(x, y) = 0, corresponding to the algebraic equation of the equimodularity
condition |κ+| = |κ−|.

Appendix C.2.1. Icosahedral symmetry of the equimodular curve
The polynomial condition is too large to be given explicitly here. It is, however,

worth noting that, since the equimodular curve is deduced from polynomial expressions
that depend only on the Hauptmodul H, the equimodular curve has the quite
non-trivial property that it is compatible with the icosahedral symmetry of the
hard hexagon model [30]. This icosahedral symmetry corresponds to the following
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symmetry of the Hauptmodul (C.1). Let us introduce the complex variable ζ defined
by z = ζ5, the fifth root of unity ω and the golden number τ

ω = 1/4
√

5 − 1/4 + 1/4 i
√

2

√
5 +
√

5, τ =
1 +
√

5

2
. (C.11)

Let us consider the order-five transformation h5

ζ −→ h5(ζ) = τ · ω + (1− τ) ζ

ω + τ ζ
. (C.12)

It is a non-trivial but straightforward calculation to see that the Hauptmodul H,
seen as a function of the complex variable ζ, is actually invariant by this order-
five transformation h5, by the involution ζ → −1/ζ as well as the order-five
transformation ζ → ω · ζ:

H(ζ) = H(h5(ζ)) = H
(−1

ζ

)
= H(ω · ζ). (C.13)

Appendix C.2.2. A selected point of the equimodular curve
The algebraic equimodular curve P(x, y) = 0 intersects the real axis y = 0

at the critical value zc (i.e. H = 0, see (C.9)) and at an algebraic value
z = −5.94254104 · · · corresponding to the algebraic value of the Hauptmodul
H = 1.2699347 · · ·, a root of the polynomial P12(H) of degree twelve in H:

P12(H) = 4206595200930643574789609575412 · H12

− 3035676163450716673183784433435873765727935868148497169025 · 29 · H11

+ 180032218185835528405034756761309783218694171171683152985 · 216 · H10

− 963917598568487789731961832547602704647778692096330233 · 225 · H9

+ 4687917985071549790872555988500591318811098924601809 · 233 · H8

− 11794524087347323954434252908699683281468087505905 · 241 · H7

+ 34111250660390601705930372758400977149413250857 · 248 · H6

− 16562829715197286592872531393597405351924479 · 257 · H5

+ 10432786705236893496285793791292996147041 · 265 · H4

− 4452980987936971936196603653288348935 · 273 · H3

+ 2184609189525225289847951233328377 · 280 · H2

− 14687865423363371951559480967168 · 1761607683 · H
+ 9564979206. (C.14)

This algebraic point corresponds to the following algebraic values of W±, in (C.4)
and (C.3), W+ = −5404.2605 · · · and W− = 2118.9287 · · · + 971.5363 · · · i, the
ratio r = W+/W− being, as it should, a complex number of unit modulus, namely
−0.3920 · · · + i .9199 · · · This algebraic point is characterized by the fact that W+ or
κ6

+ (but not κ−) is a real number: κ6
+ = 26.6786 · · · but κ− = 0.864 · · ·−1.497 · · · i.
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Appendix D. Cardioid fitting of partition function zeros

Examples of the excellent fit by the cardioid curve (43) of the inner boundary of the
partition function zero on cylindrical lattices referred to in section 5.1.3 for the cases
33 × 33, 36×36 and 39 × 39 are plotted in figure D1. In figure D2 we plot the values
of a(L) and c(L) the best fitted cardioid of (43) versus 1/L and observe that they are
remarkable well fitted by a straight line which extrapolates as L → ∞ to

a = 7.6302 · · · c = −4.1268 · · · (D.1)

Figure D1. Fitting of the partition function zeros for cylindrical boundary
conditions to the cardioid of (43) for the 33× 33, 36× 36 and 39× 39 lattice.

Figure D2. The fitting parameters a and c for cylindrical boundary conditions
of the cardioid (43) versus L for the partition zeros of the L× L lattice.
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Appendix E. Transfer-matrix algorithms

k−1

k

k+1

j−1 j j+1

Figure E1. The movement of the transfer-matrix cut-line in the general case.

To calculate the partition functions ZLv,Lh
(z) we use what are known as ‘transfer

matrix’ techniques. These work by moving a cut-line through the lattice and
constructing a partial partition function for each possible configuration/state of sites
on the cut-line. The most efficient way of calculating the partition function is to build
up the lattice site-by-site as illustrated in figure E1. Sites on the cut-line are shown
as large solid circles. Each of these sites can be either empty or occupied. Because
of the hard particle constraint, nearest neighbors cannot be occupied simultaneously.
So any configuration can be mapped to a binary integer in an obvious fashion with
empty sites mapped to 0 and occupied sites to 1. The distinct configurations along the
cut-line are thus circular n-bit strings with no repeated 1’s. Their number is given by
the Lucas numbers L(n) (sequence A000204 in the OEIS [31]), which have the simple
recurrence L(n) = L(n−1)+L(n−2). In fact, L(n) = (1+

√
5)/2)n+(1−

√
5)/2)n, so

the number of allowed configurations has the growth constant (1 +
√

5)/2 = 1.618 . . .,
and are therefore exponentially rare among the integers. Hence as is standard in such
a case we use hash tables as our basic data structure to store and access the sparse
array representing the state space of the model.

For each configuration we maintain a partial partition function (sum over all
states) for the lattice sites already visited with each occupied site given weight z and
each empty site given weight 1. The shaded circles in figure E1 represent sites already
fully accounted for, that is, all possible occupancies have been summed over. The
open circles are sites that are yet to be visited and hence are not yet accounted for.
The black circles are not yet fully accounted for since their possible ‘interactions’ with
the open sites have not yet been included. The movement of the cut-line in figure E1
consists of a move from the site at position (j, k+1) to the ‘new’ site at position
(j+1, k) with ‘interactions’ with the neighbor sites at (j, k) and (j + 1, k+ 1). Notice
that the update of the partial partition functions does not depend on the state of any
other sites on the cut-line. Formally we can view the update as a matrix multiplication
w = Tv, mapping the vector of partition functions v prior to the move to the vector of
partition functions w after the move. The great advantage of the site-by-site updating
is that we need not store the actual transfer matrix T; it is given implicitly by a set of
simple updating rules depending only on the ‘local’ configuration (states) of the sites
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on the cut-line which are nearest neighbors to the new site.
We shall refer to the configuration of sites prior to the move as a ‘source’ and

denote its integer representation with an S while a configuration after the move is
referred to as a ‘target’ and denoted with a T . In an update we simply have to
determine the allowed configuration of the ‘new’ site, that is, whether the new site is
occupied or empty. The ‘hard’ constraint makes this very simple since the new site
can be occupied only when all neighbor sites in the source configuration are empty.
Since each site can be either empty (0) or occupied or (1) the four sites around the face
have 16 possible configurations but only 6 are allowed because of the hard constraint.
The 3 sites along the left and top form the ‘local’ source configuration and there are 5
(out of 8) allowed configurations. The local target configuration is given by the states
of the 3 sites along the bottom and right of the face (2 sites occur in both source and
target). By writing down the 6 allowed local configurations one can easily deduce the
following simple updating rules

Z(T000) = Z(S000) + Z(S010),

Z(T100) = Z(S100),

Z(T010) = z · Z(S000), (E.1)

Z(T001) = Z(S001),

Z(T101) = Z(S101),

where the subscript triplets represent the states of the ‘local’ source sites at positions
(j, k), (j, k+1), (j+1, k+1) and target sites at positions (j, k), (j+1, k), (j+1, k+1),
respectively.

The transfer matrix algorithm described above takes care of the summation over
sites in the interior of the lattice. Special rules apply at the top and bottom of a
column. When adding a site at the top of a new column we include interactions
between the site left of the new site and the site in the previous column on the bottom
row (this interaction along a diagonal edge implements part of the periodic boundary
condition in the Lh direction). Finally after we have completed a new column the
site ‘left over’ in the previous column is superfluous to requirements and we can
‘contract’ the state space by summing over the states of this site. The number of
distinct configurations for a column of height Lh sites is then L(Lh+ 1) for a partially
completed column, and L(Lh) when the column has been completed.

The transfer matrix algorithm described above is the same whether used in the
calculation of partition function zeroes or eigenvalue crossings. Below we briefly
outline how it is used in the two cases.

Appendix E.1. Partition function zeros

To calculate partition function zeros we need the exact partition function on an Lv×Lh
lattice. This is simply a polynomial in z of degree Lv · Lh/3 with integer coefficients.
So for each state along the cut-line the partial partition function is maintained as an
array of integers of size Lv ·Lh/3 + 1. The coefficients become very large and in order
to deal with this the calculations were performed using modular arithmetic. So the
calculation for a given size lattice was performed several times modulo different prime
numbers with the full integer coefficients reconstructed from the calculated remainders
using the Chinese remainder theorem. Utilizing the standard 32-bit integers we used
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primes of the form pi = 230 − di, that is we used the set of largest primes smaller
than 230. Depending on the Lv and Lh the number of primes required to reconstruct
the exact integer coefficients can exceed 100. The zeros of the partition function can
then be calculated numerically (to any desired accuracy) using root finders such as
MPSolve [32] or Eigensolve [33]. We used MPSolve with a few calculations checked
by using Eigensolve.

The transfer-matrix algorithm can readily be parallelised. One of the main ways of
achieving a good parallel algorithm using data decomposition is to identify an invariant
under the operation of the updating rules. That is, we seek to find some property of
the configurations along the cut-line which does not alter in a single iteration. As
mentioned above only the ‘new’ site can change occupation status. Thus, any site not
directly involved in the update cannot change from being empty to being occupied
and vice versa. This invariant allows us to parallelise the algorithm in such a way
that we can do the calculation completely independently on each processor with just
two redistributions of the data set each time an extra column is added to the lattice.
This method for achieving a parallel algorithm has been used extensively for other
combinatorial problems and the interested reader can look at [34] or [35, Ch 7] for
details.

Cylindrical boundary conditions are simply implemented by starting the transfer
matrix calculation with the all empty state having weight one (all other states having
weight zero), iterating the algorithm to add Lh columns and then summing over all
states.

Toroidal boundary conditions are fairly easy to implement but they are
computationally expensive. The problem is that in order to include the interactions
between sites in the first and last columns we have to ‘remember’ the state of the first
column. Here we did this by simply specifying the initial state of the first column SI,
starting with the initial weights Z(S) = 0 when S 6= SI and Z(SI) = zm, where m
is number of occupied sites in SI . For each value of SI we then perform the transfer
matrix calculation as described above until the final column has been completed.
Finally we put in the interactions between the occupation numbers in the last column
with state S and those in the first column, sum over all states S, and repeat for all SI.
The saving grace is that one does not have to do this calculation for all values of SI.
Indeed, any SI related by translational and reflection symmetry give rise to the same
result. In table E1 we have listed the number of distinct initial states NI one needs to
consider in a calculation of the partition function with toroidal boundary conditions
on a lattice of width Lh. The numbers NI are given by sequence A129526 in the OEIS
[31]. Note that for large Lh states which are invariant under the generators of the
dihedral group DLh

are exponentially rare. Therefore L(Lh)/NI ∼ 2Lh for Lh � 1,
and this is nicely brought out by the entries in table E1. Naturally the calculations
for different initial states can be done completely independently making it trivial to
parallelise over SI (one can also fairly easily combine this with the parallel algorithm
over state space should this be required).

The bulk of the large scale calculations for this part of the project were performed
on the cluster of the NCI National Facility at ANU. The NCI peak facility is a Sun
Constellation Cluster with 1492 nodes in Sun X6275 blades, each containing two
quad-core 2.93GHz Intel Nehalem CPUs with most nodes having 3GB of memory per
core (24GB per node). The largest size calculation we performed was for cylindrical
boundaries where we went up to 39 × 39. This required the use of 256 processors
(cores to be precise) taking around 140 CPU hours per prime with the calculation
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Lh NI L(Lh) L(Lh)/NI Lh NI L(Lh) L(Lh)/NI
3 2 4 2.00 6 5 18 3.60
9 9 76 8.44 12 26 18 12.38

15 64 1364 21.31 18 209 5778 27.64
21 657 24476 37.25 24 2359 103682 43.95
27 8442 439204 52.02 30 31836 1860498 58.44

Table E1. The number NI of distinct initial states required to calculate
the partition function with toroidal boundary conditions compared to the total
number of states given by the Lucas numbers.

being repeated for 25 primes. The largest calculation for toroidal boundaries was the
27 × 27 lattice. This is sufficiently small memory wise to fit on a single core so we
only used a parallelisation over initial states. The calculation took around 550 CPU
hours per prime with the calculation repeated for 14 primes.

Appendix E.2. Transfer matrix eigenvalues

The equimodular curves on Lh ×∞ strips where eigenvalues of largest modulus cross
can be obtained from numerical studies using the transfer matrix algorithm outlined
above. As we have seen, the dimension dim T of the transfer matrix T for hard
hexagons confined to a strip of height Lh grows exponentially fast with Lh. Hence
the calculation of the eigenvalues of T and the resulting equimodular curves quickly
becomes a very demanding task. We have however seen that the updating rules
(E.1) do not require us to manipulate or store all the (dim T)2 entries of T, but
rather operate on two vectors of size dim T, namely v and Tv, representing the set
of conditional probabilities before and after a move of the cut-line. In other words,
the trick of adding the sites to the system one at a time has produced a sparse-matrix
factorization of T.

It is possible to take further advantage of this gain to extract also the leading
eigenvalues of T. Namely, we use a set of iterative diagonalisation methods in which
the object being manipulated is not T itself but rather its repeated action on a suitable
set of vectors. An iterative scheme that works well even in the presence of complex
and degenerate eigenvalues is known as Arnoldi’s method [36]. This forms part of a
class of algorithms called Krylov subspace projection methods [37]. These methods
take full advantage of the intricate structure of the sequence of vectors Tnv naturally
produced by the power method. If one hopes to obtain additional information through
various linear combinations of the power sequence, it is natural to formally consider
the Krylov subspace

Kn(T,v) = Span{v,Tv,T2v, ...,Tn−1v}
and to attempt to formulate the best possible approximations to eigenvectors from
this subspace. We make use of the public domain software package ARPACK [38]
implementing Arnoldi’s method with suitable subtle stopping criteria. The ARPACK
package allows one to extract eigenvalues (and eigenvectors) based on various criteria,
including the one relevant to our calculations, namely the eigenvalues of largest
modulus.

The problem specific input for this type of calculation only consists in a user
supplied subroutine providing the action of T on an arbitrary complex vector v. In



Hard hexagon partition function for complex fugacity 41

our case this amounts to iterating the update rules (E.1) until a complete column
has been added to the lattice. In particular, the sparse-matrix factorization and the
subtleties having to do with the ‘inflation’ of the state space before the addition of the
first site in a new row, as well as the ‘contraction’ after the addition of the last site
in a completed row, are all hidden inside this subroutine and not visible to Arnoldi’s
method. The iterations of T are thus computed for a fixed complex value of the
fugacity z until the ARPACK routines have converged.

Very briefly, we trace the equimodular curve as follows. First we find a point on
the equimodular curve; we can choose a point on the negative real axis, say z0 = −1,
that we know is on the curve. To find a new point z on the curve we start at the
previous point and look for a new point on a circle of radius ε (in general we use
ε = 10−2) at an angle θ0 from the previous point. In general this trial point will not
lie on the equimodular curve. Our algorithm then finds a new point by using the
Newton-Raphson method to converge in the angle θ towards a zero in the distance
between leading eigenvalues. The pair (z, θ) is then used as the starting values (z0, θ0)
for a new iteration of the search algorithm. This procedure in then iterated until the
equimodular curve has been traced. Points where the curve branches are detected
by noting that the third leading eigenvalue becomes equal in modulus to the leading
eigenvalue. End points are detected by noting that the procedure cannot find a new
point (in fact it turns around and converges towards a point on the part of the curve
already traced). Many aspects of this search algorithm involve subtleties, in particular
automatizing the procedure in the case where the equimodular curve has a complicated
topology with many branchings; this will be described fully in a separate publication
[39].

As for the partition function zeroes, we are interested in tracing the equimodular
curves for both toroidal and cylindrical boundary conditions. Since in both cases we
use the same transfer matrix T (i.e., with periodic boundary conditions in the Lh
direction) it might seem that the curves would be identical. This is not the case.
Indeed, in the cylindrical case the initial condition imposed on the first column of the
lattice is that all sites in the preceding column are empty. In particular, this initial
state is translational invariant and thus has momentum P = 0. This momentum
constraint can be imposed by rewriting T in the translational and reflection symmetric
subspace of dimension NI . Once again, an appropriate ‘inflation’ and ‘contraction’
of the state space has to be performed at the beginning and the end of the user
supplied subroutine, as the kink on the cut-line describing the intermediate states
breaks the dihedral symmetries explicitly. But since these intermediate steps are
hidden from Arnoldi’s method, the end result amounts to diagonalising a transfer
matrix of smaller dimension, dim T = NI . Meanwhile, the equimodular curve for
toroidal boundary conditions is obtained by diagonalising the original transfer matrix
without the P = 0 constraint, i.e., with dimension dim T = L(Lh).

The memory requirements of the algorithm up to the largest size Lh = 30 that we
attempted is quite modest and the calculation can be performed on a basic desktop or
laptop computer. As an example the calculation of the equimodular curve for Lh = 30
with cylindrical boundary conditions took about 10 days on a MacBook Pro with a
quad core I7 2.3GHZ processor.



Hard hexagon partition function for complex fugacity 42

Appendix F. Finite-size scaling analysis of zc(L) and zd(L)

According to the theory of finite-size scaling (FSS) [40], the free energy per site
corresponding to the j-th eigenvalue of the transfer matrix has the scaling form

1

L
fj

(
|z − zc|Ly, uL−|y

′|
)
, (F.1)

where zc is the critical point, y is the leading relevant eigenvalue under the
renormalization group (RG), and u is the coupling to an RG irrelevant operator with
eigenvalue y′ < 0. If more than one RG irrelevant coupling is present there will be
further arguments to the function, which we here omit for clarity. The equimodularity
condition |f1| = |f2| can obviously be written in the same scaling form as can the
partition function zeros. Moreover, FSS assumes that the functions fj are analytic in
their arguments for z 6= zc, which implies at leading order that

|z − zc| = AL−y +BuL−y−|y
′| + . . . , (F.2)

where A and B are non-universal constants. To higher orders, the terms appearing on
the right-hand side involve powers of L−1 that can be any non-zero linear combination
of y and |y′| with non-negative integer coefficients. There is obviously no guarantee
that all such terms will appear, since some of the multiplying constants (A,B, . . .)
may be zero.

When it is known that z → zc as L→∞, with zc real, one can similarly analyze
distances other than |z − zc| to the critical point that vanish linearly with z − zc.
Examples include ||z| − zc|, Re(z)− zc, Im(z), and Arg(z).‡ According to the general
principles of FSS [40] these variables can be developed on |z − zc| and the irrelevant
RG couplings, and (F.2) will follow, albeit necessarily with different values of the
non-universal constants (A,B, . . .).

The critical point zc > 0 in the hard hexagon model is known to be in the
same universality class as the three-state ferromagnetic Potts model [41]. The energy
operator of the latter [42] provides the RG eigenvalue y = 2− 2h2,1 = 6/5, where we
have used the Kac table notation hr,s, familiar from conformal field theory (CFT),
for the conformal weight of a primary operator φ(r,s). Subdominant energy operators,
φ(3,1) and φ(4,1), follow from CFT fusion rules and lead to RG eigenvalues y′ = −4/5
and y′′ = −4 respectively. Our numerical analysis of |zc(L)| − zc for L up to 39 (see
table 5) gives good evidence for the FSS form

|zc(L)| − zc = a0L
−6/5 + a1L

−2 + a2L
−14/5 + . . . . (F.3)

The powers of L−1 appearing on the right-hand side can be identified with y, y + |y′|
and y+ 2|y′|. This is compatible with the above general result; note however that the
power 2y = 12/5, which is a priori possible, is not observed numerically.

The CFT of the Lee-Yang point zd < 0 is much simpler [16], since there is only
one non-trivial primary operator φ(2,1). It provides the RG eigenvalue y = 12/5. Our
numerical analysis of |zd(L)− zd| (see table 5) gives strong evidence for the FSS form

|zd(L)− zd| = b0L
−12/5 + b1L

−17/5 + b2L
−22/5 + . . . . (F.4)

The powers of L−1 on the right-hand side can be identified with y, y + 1 and y + 2.
The integer shifts in (F.4) can be related to descendent operators in the CFT, since

‡ Obviously we here exclude cases where the variable is identically zero, such as when Im(z) = 0, or
when ||z| − zc| = 0 because of a circle theorem.
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|y′| is a positive integer for descendents of the identity operator; note that some
descendents are ruled out by symmetry arguments, as in section 5.3. Another source
of corrections in powers of L−1 is that the data of table 5 are computed for L × L
systems with cylindrical boundary conditions. Indeed, while the length L along the
periodic direction is unambiguous, the one along the free direction should possibly be
interpreted as L + a in the continuum limit, where a is a constant of order unity. In
any case, it is remarkable that y + 1 = 11/5 does not occur in (F.4).

To probe the finite-size scaling form, i.e., determine which terms actually occur
in the asymptotic expansion, we carry out a careful numerical analysis of how the
endpoints zd(L) and zc(L) approach zd and zc in the thermodynamic limit. Since our
data for end-point positions is most extensive in the case of partition function zeros
with cylindrical boundary conditions we analyse the data of table 5. We also tried to
analyse the data in table 3 obtained from equimodular calculations, but we found that
this data set suffers from numerical instability presumably because our determination
of the end-point position is not sufficiently accurate. Note that the data in table 5
can be calculated to any desired numerical accuracy since it is obtained from the zeros
of polynomials. Obviously the data for zd(L) is much closer to the thermodynamic
limit zd than is the corresponding data for zc(L) so it is no surprise that the analysis
of zd(L) is ‘cleaner’ than that for zc(L) and hence we start our exposition with the
former.

Firstly, plotting ln |zd(L)− zd| versus lnL confirms a power-law relationship (see
left panel of figure F1). To estimate the exponent we take a pair of points at L and
L − 3, calculate the resulting slope of a straight line through the data-points, and
in figure F1 we plot the slope versus 1/L. Clearly, the slope can be extrapolated
to the predicted value, 12/5, for the exponent. We next look for sub-dominant
exponents. Accepting the 12/5 exponent as exact we form the scaled sequence,
s(L) = L12/5|zd(L) − zd| ' a + b/Lα, and look at the sequence of differences,
d(L) = s(L) − s(L − 3) ∝ 1/Lα+1, thus eliminating the constant term. As before
we calculate the slope of ln d(L) versus lnL and plot against 1/L. From figure F1 the
slope is seem to extrapolate to a value of −2, so α = 1 and hence the sub-dominant
exponent is 17/5. We then repeat the analysis starting with the d(L) sequence which
we scale by L2. The estimates for the local slopes are shown in figure F1 and are again
consistent with a slope of −2, indicating that the third exponent in the asymptotic
expansion is 22/5.

From the above analysis we conclude that the correct asymptotic form is (F.4).
It is tempting to conjecture that the sequence of integer spaced corrections L−12/5−k

will continue indefinitely. However, we cannot completely rule out the presence of
extra terms such as L−n·12/5 for n ≥ 2. This is borne out by a further analysis
using five terms in the asymptotic expansion namely the three exponents firmly
established above and a further two terms with exponents 2y = 24/5, y + 3 = 27/5,
and y + 3 = 27/5, y + 4 = 32/5, respectively. The resulting amplitude estimates are
shown in figure F2. Clearly, the fits using only terms of the form y+k display much less
variation against 1/L and this could be an indication that only these types of terms
are present in the asymptotic expansion. However, the amplitude b3 when fitting using
an exponent 24/5 does not appear to vanish and hence we are not willing to claim
with certainty that this term is absent. If we assume only terms of the form y + k,
we can obtain refined amplitude estimates by truncating the expansion after a fixed
number of terms and fitting using sub-sequences of consecutive data points. Results
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Figure F1. The left panel are log-log plots of the data for |zd(L) − zd| (filled
circles), d(L) (open circles) and L2d(L) − (L − 3)2d(L − 3) (diamonds). In the
right panel we plot the corresponding local slopes versus 1/L.

for the leading amplitude b0 are displayed in figure F3. Note that the estimates are
quite accurate and that as more terms from the asymptotic expansion are included
the estimates have less variation. We estimate that

b0 = 1.7147(1), b1 = −9.30(2), b2 = 48(2), b3 = −180(30).(F.5)

Figure F2. Amplitude estimates versus 1/L when fitting to a five-term
asymptotic form akin to (F.4), but with two additional exponents as indicated on
the plots.

We now turn to zc(L) where we start by analysing the data for |zc(L)|− zc. Note
that the modulus |zc(L)| can be viewed as a crude approximation to where the zeros
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Figure F3. Estimates for the leading amplitude b0, plotted versus 1/L in the
asymptotic expansion (F.4) when truncating after 4 to 8 terms and using only
exponents 24/5 + k.

intercept the real axis since it amounts to saying that the zeros approach the real axis
along a circle. Many other measures of the distance/approach to zc could be used
but this one happens to be particularly well-behaved so we start our exposition with
this quantity. As above we first look at the local log-log slope for this data shown in
the left panel of figure F4. In this case the data displays pronounced curvature but
nevertheless it seems reasonable that the slope can be extrapolated to the predicted
value −6/5. We next look for sub-dominant exponents. Accepting the 6/5 exponent
as exact we form the scaled sequence, s(L) = L6/5(|zc(L)|− zc) ' a+ b/Lα. We again
look at the sequence d(L) of differences and plot the local slopes in the right panel of
figure F4 using open circles. In this case the results are not as clear cut. The data
can be extrapolated to a value > −2 and it is consistent with the predicted exponent
y+ |y′| = 2, which would yield a slope of −1.8. We then repeated the analysis scaling
d(L) by L9/5 and looking at the differences. The local slopes are shown as diamonds
in the right panel of figure F4. Clearly no meaningful extrapolation can be performed
on this data other than to say that a value of −1.8 cannot be ruled out.

Figure F4. Local slopes versus 1/L for ||zc(L)| − zc| in the left panel and in the
right panel the sequences d(L) (open circles) and L9/5d(L)− (L− 3)9/5d(L− 3)
(diamonds).
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To further investigate the asymptotic scaling form we turn to amplitude fitting
using

|zc(L)| − zc = a0/L
6/5 + a1/L

10/5 + a2/L
∆. (F.6)

We look at three possible values for the third exponent ∆, namely y + 1 = 11/5,
2y = 12/5, or y + 2|y′| = 14/5. The results are displayed in figure F5 where we
plot the estimated values of the three amplitudes for the three different values of ∆.
Firstly, we note that the estimates for the amplitude a0 (left panel) are quite stable
though the estimates become more stable as the value of ∆ is increased. Secondly,
the data for the amplitude a1 (middle panel) is very striking; for a ∆ of 11/5 or 12/5
the estimates vary greatly with L and even have the wrong sign from the extrapolated
value; in sharp contrast for ∆ = 14/5 the estimates are quite well converged with only
a mild dependence on L. Finally, for the amplitude a2 (right panel) we see that the
amplitude estimates for ∆ = 11/5 or 12/5 may well extrapolate to a value of 0 while
the estimates for ∆ = 14/5 clearly extrapolate to a non-zero values around −200 or so.
Taken together this is quite clear evidence that the correct value of the third exponent
is ∆ = y + 2|y′| = 14/5. We estimate roughly that

a0 = 53.0(1), a1 = −50(5), a2 = −200(50). (F.7)

Figure F5. Amplitude estimates versus 1/L. The panels (from left to right)
shows the estimates for the amplitudes a0, a1 and a2 when fitting to the
asymptotic form (F.6) while using three different values for the third exponent ∆.

In figure F6 we plot the data for |zc(L)| − zc (left panel) and |zd(L) − zd| (right
panel) and the asymptotic fits obtained above.

It is universally expected that the end-point zc(L) converges towards zc, as can
be confirmed by analyzing the behavior of Re(zc(L)) and Im(zc(L)) against 1/L. This
obviously means that the imaginary part must vanish as L→∞. To examine this we
repeat the above analysis for arg(zc(L)). The ‘local-slope’ analysis is not as clear-cut
in this case but it is consistent with the two leading terms in (F.6). The amplitude
analysis is again very clean as can be seen in figure F7 and from this we obtain the
amplitude estimates

a0 = 15.83(2), a1 = −3.0(5), a2 = 8(2). (F.8)

These values of course differ from those in (F.7) since we are analyzing a different
quantity.

Finally we carried out a similar analysis for the quantity |zc(L) − zc|. Again
the evidence for the leading amplitude being −6/5 was firm. However, the local-
slope analysis for the sub-dominant term was inconclusive. In figure F8 we plot the
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Figure F6. Data for |zc(L)| − zc (left panel) and |zd(L)− zd| (right panel) and
fitted curves to the asymptotic forms (F.3) and (F.4) using the listed amplitude
estimates (F.7) and (F.5).

Figure F7. Amplitude estimates versus 1/L. The panels (from left to right)
shows the estimates for the amplitudes a0, a1 and a2 when fitting arg(zc(L)) to
the asymptotic form (F.6) while using three different values for the third exponent
∆.

amplitude estimates obtained when fitting to (F.3). We observe a very strong variation
in a1 and a2, but on the other hand the amplitude estimates are nice and monotonic,
suggesting that the data might just be really hard to fit. In particular we note that
a1 could extrapolate to 0. We then tried a new fit using an additional fourth term
with exponent −18/5, thus assuming exponents of the form y + k|y′| = 6/5 + k · 4/5
In this case we found much more stable amplitude estimates with a0 = 183.5(5). The
other amplitudes displayed quite a bit of scatter so we will not quote error-bars, but
we found a1 ' 6.5, a2 ' 930 and a3 ' −5200. Remarkably a1 is quite small compared
to the other quantities which may well explain the numerical difficulties we had with
the analysis. Note that we make no claim that y+k|y′| exhausts the exponents and it
is quite likely that other exponents, such as 2y+ |y′| = 16/5, could occur, but our data
sets are too limited to answer such questions beyond the terms explicitly included in
(F.3).
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Figure F8. Amplitude estimates versus 1/L. The panels (from left to
right) shows the estimates for the amplitudes a0, a1 and a2 when fitting to the
asymptotic form (F.3) while using the data for |zc(L)− zc|.
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