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On the average number of subgroups of the group

Zm × Zn

Werner Georg Nowak and László Tóth

Abstract

Let Zm be the group of residue classes modulo m. Let s(m,n) and c(m,n) denote the
total number of subgroups of the group Zm × Zn and the number of its cyclic subgroups,
respectively, where m and n are arbitrary positive integers. We derive asymptotic formulas
for the sums

∑

m,n≤x
s(m,n),

∑

m,n≤x
c(m,n) and for the corresponding sums restricted to

gcd(m,n) > 1, i.e., concerning the groups Zm × Zn having rank two.
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1 Introduction

Throughout the paper we use the notations: N := {1, 2, . . .}, N0 := {0, 1, 2, . . .}, Zm is the
additive group of residue classes modulo m, φ is Euler’s totient function, τ(n) is the number
of divisors of n, µ denotes the Möbius function, ψ is the Dedekind function given by ψ(n) =
n
∏

p |n(1+1/p), ∗ stands for the Dirichlet convolution of arithmetic functions, ζ is the Riemann

zeta-function. Let n =
∏

p p
νp(n) be the prime power factorization of n ∈ N, where the product

is over the primes p and all but a finite number of the exponents νp(n) are zero. Furthermore,
let γk (k ∈ N0) denote the Stieltjes constants defined by

γk := lim
x→∞





∑

n≤x

(log n)k

n
− (log x)k+1

k + 1



 ,

where γ0 = γ is the Euler-Mascheroni constant. We note that the constants γk are connected to
the coefficients of the Laurent series expansion of the function ζ(s) about its pole s = 1, namely,

ζ(s) =
1

s− 1
+

∞
∑

k=0

(−1)kγk
k!

(s− 1)k ,

see, e.g., A. Ivić [7, Th. 1.3].
Consider the group G := Zm ×Zn, where m,n ∈ N are arbitrary. Note that G is isomorphic

to Zgcd(m,n)×Zlcm(m,n). If gcd(m,n) = 1, then G is cyclic, isomorphic to Zmn. If gcd(m,n) > 1,
then G has rank two. We recall that a finite Abelian group has rank r if it is isomorphic to
Zn1 ×· · ·×Znr , where n1, . . . , nr ∈ N\{1} and nj |nj+1 (1 ≤ j ≤ r−1). Let s(m,n) and c(m,n)
denote the total number of subgroups of the group G and the number of its cyclic subgroups,
respectively.
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Concerning general properties of the subgroup lattice of finite Abelian groups, see R. Schmidt
[11], M. Suzuki [13]. For every m,n ∈ N one has

s(m,n) =
∏

p

s(pνp(m), pνp(n)) , (1)

c(m,n) =
∏

p

c(pνp(m), pνp(n)) . (2)

For the p-group Zpa × Zpb of rank two, with 1 ≤ a ≤ b, the following explicit formulas hold:

s(pa, pb) =
(b− a+ 1)pa+2 − (b− a− 1)pa+1 − (a+ b+ 3)p + (a+ b+ 1)

(p− 1)2
, (3)

c(pa, pb) = 2(1 + p+ p2 + . . .+ pa−1) + (b− a+ 1)pa . (4)

The formula (3) was deduced, applying Goursat’s lemma for groups, by G. Călugăreanu [3,
Sect. 4] and J. Petrillo [10, Prop. 2], and using the concept of the fundamental group lattice by
M. Tărnăuceanu [14, Prop. 2.9], [15, Th. 3.3]. Formula (4) was given in [15, Th. 4.2]. Therefore,
s(m,n) and c(m,n) can be computed using (1), (3) and (2), (4), respectively. The following
more compact formulas were derived in [4] by a simple elementary method: For every m,n ∈ N,

s(m,n) =
∑

d |m,e |n

gcd(d, e)

=
∑

d | gcd(m,n)

φ(d)τ(m/d)τ(n/d)
(5)

and
c(m,n) =

∑

d |m,e |n

φ(gcd(d, e))

=
∑

d | gcd(m,n)

(µ ∗ φ)(d)τ(m/d)τ(n/d).
(6)

See also [17, 18] for a general identity concerning the number of cyclic subgroups of an
arbitrary finite Abelian group.

The identities (1) and (2) tell us that the functions (m,n) 7→ s(m,n) and (m,n) 7→ c(m,n)
are multiplicative, viewed as arithmetic functions of two variables. This property follows also
from the first formulas of (5) and (6), respectively. See [4, Sect. 2]. Therefore, n 7→ s(n) :=
s(n, n) (sequence [12, A060724]) and n 7→ c(n) := c(n, n) (sequence [12, A060648]) are multi-
plicative functions of a single variable and for every n ∈ N one has

s(n) =
∑

d |n

τ(d)ψ(n/d) , (7)

c(n) =
∑

d |n

ψ(d) , (8)

see [4, Sect. 3]. Note that s(n) =
∑

d |n c(d) (n ∈ N).
In this paper we are concerned with the asymptotic properties of the Dirichlet summatory

functions of s(m,n), c(m,n), s(n) and c(n). As far as we know, no such results are given in the
literature. The only existing asymptotic results for the number of subgroups of finite Abelian
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groups having rank two concern another function, namely t2(n), see Section 4. We establish
asymptotic formulas for the sums

∑

m,n≤x s(m,n),
∑

m,n≤x c(m,n), S
(2)(x) :=

∑′
m,n≤x s(m,n),

C(2)(x) :=
∑′

m,n≤x c(m,n),
∑

n≤x s(n) and
∑

n≤x c(n), where
∑′ means that summation is

restricted to gcd(m,n) > 1. Here S(2)(x) and C(2)(x) represent the number of subgroups,
respectively cyclic subgroups of the groups Zm×Zn having rank two, with m,n ≤ x. Our main
results are given in Section 2, while their proofs are contained in Section 3.

We remark that a compact formula for the number s3(n) of subgroups of the group (Zn)
3

and an asymptotic formula for the sum
∑

n≤x s3(n) were given in [5].

2 Results

The double Dirichlet series of the functions s(m,n) and c(m,n) can be represented by the
Riemann zeta function, as shown in the next result.

Theorem 1. For every z, w ∈ C with ℜz > 1,ℜw > 1,

∞
∑

m,n=1

s(m,n)

mznw
=
ζ2(z)ζ2(w)ζ(z + w − 1)

ζ(z + w)
, (9)

∞
∑

m,n=1

c(m,n)

mznw
=
ζ2(z)ζ2(w)ζ(z + w − 1)

ζ2(z +w)
, (10)

Remark 1. According to (9) and (10),

∞
∑

m,n=1

s(m,n)

mznw
=

∞
∑

m,n=1

c(m,n)

mznw

∞
∑

m,n=1

F (m,n)

mznw
,

where the function F is defined by F (m,n) = 1 for m = n and F (m,n) = 0 for m 6= n
(m,n ∈ N). Therefore (see, e.g., [17] and [19] for related properties of the Dirichlet convolution
of arithmetic functions of several variables and of multiple Dirichlet series),

s(m,n) =
∑

d | gcd(m,n)

c(m/d, n/d) (m,n ∈ N) . (11)

Theorem 2. For large real x and every fixed ε > 0,

∑

m,n≤x

s(m,n) = x2

(

3
∑

r=0

Ar(log x)
r

)

+O
(

x
1117
701

+ε
)

, (12)

∑

m,n≤x

c(m,n) = x2

(

3
∑

r=0

Br(log x)
r

)

+O
(

x
1117
701

+ε
)

, (13)

where 1117/701 ≈ 1.5934, Ar, Br (0 ≤ r ≤ 3) are constants,

A3 =
1

3ζ(2)
=

2

π2
, A2 =

1

ζ(2)

(

3γ − 1− ζ ′(2)

ζ(2)

)

,

A1 =
1

ζ(2)

(

8γ2 − 6γ − 2γ1 + 1− 2(3γ − 1)
ζ ′(2)

ζ(2)
+ 2

(

ζ ′(2)

ζ(2)

)2

− ζ ′′(2)

ζ(2)

)

,
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B3 =
1

3ζ2(2)
=

12

π4
, B2 =

1

ζ2(2)

(

3γ − 1− 2
ζ ′(2)

ζ(2)

)

,

B1 =
1

ζ2(2)

(

8γ2 − 6γ − 2γ1 + 1− 4(3γ − 1)
ζ ′(2)

ζ(2)
+ 6

(

ζ ′(2)

ζ(2)

)2

− 2
ζ ′′(2)

ζ(2)

)

.

Remark 2. Let ∆(x) denote the error term in the Dirichlet divisor problem, i.e.,

∆(x) :=
∑

n≤x

τ(n)− x log x− (2γ − 1)x ,

and
θ0 := inf{θ : ∆(x) = O(xθ)} ,

for x large. Then O
(

x
1117
701

+ǫ
)

can be readily replaced by O

(

x
3−θ0
2−θ0

+ε
)

. Using the classic bound

θ0 ≥ 1
3 , one obtains O

(

x8/5+ε
)

. The hitherto sharpest result θ0 ≥ 131
416 , which is due to M. Huxley

[6], gives the O-term stated in Theorem 2.

Remark 3. The constants A0 and B0 can be constructed from the proof below. They are
quite complicated and hardly accessible to numerical evaluation, since they involve inter alia
the infinite series

∑∞
k=1 τ(k)∆(k)k−2.

In order to formulate our result concerning the sums S(2)(x) and C(2)(x) some further nota-
tions are needed. For K ∈ N and s ∈ C let

FK(s) :=
∏

pνp(K) ||K

(

1− ηp(K) p−s
)

, where ηp(K) :=
νp(K)

νp(K) + 1
, (14)

α0(K) := FK(1) =
∏

pνp(K) ||K

(

1− ηp(K) p−1
)

,

α1(K) := F ′
K(1) =

∑

p∗ |K

ηp∗(K)

p∗
log p∗

∏

pνp(K) ||K, p 6=p∗

(

1− ηp(K)

p

)

,
(15)

and let
β0(K) := τ(K)α0(K) , β1(K) := τ(K) (α0(K)(2γ − 1) + α1(K)) . (16)

Theorem 3. For large real x and every fixed ε > 0,

S(2)(x) :=
∑

m,n≤x
gcd(m,n)>1

s(m,n) = x2

(

3
∑

r=0

Cr(log x)
r

)

+O
(

x
1117
701

+ε
)

, (17)

C(2)(x) :=
∑

m,n≤x
gcd(m,n)>1

c(m,n) = x2

(

3
∑

r=0

Dr(log x)
r

)

+O
(

x
1117
701

+ε
)

, (18)
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where C3 = A3, D3 = B3, Cr = Ar − br, Dr = Br − br (0 ≤ r ≤ 2) with Ar and Br (0 ≤ r ≤ 3)
defined in Theorem 2 and br (0 ≤ r ≤ 2) given by

b2 =
∞
∑

K=1

µ(K)

(

β0(K)

K

)2

=
∏

p

(

1− 4

p2
+

4

p3
− 1

p4

)

,

b1 =

∞
∑

K=1

2µ(K)

K2
β0(K) (β1(K)− β0(K) logK) ,

b0 =

∞
∑

K=1

µ(K)

K2
(β1(K)− β0(K) logK)2 ,

(19)

using the notation of (15) and (16).

Theorem 4. We have
∑

n≤x

s(n) =
5π2

24
x2 +O

(

x log8/3 x
)

. (20)

∑

n≤x

c(n) =
5

4
x2 +O

(

x log5/3 x
)

. (21)

3 Proofs

Proof of Theorem 1. Applying the second formula of (5) we deduce for ℜz,ℜw > 1,

∞
∑

m,n=1

s(m,n)

mznw
=

∞
∑

d,a,b=1

φ(d)τ(a)τ(b)

(da)z(db)w
=

∞
∑

d=1

φ(d)

dz+w

∞
∑

a=1

τ(a)

az

∞
∑

b=1

τ(b)

bw
,

and using the familiar formulas for the latter Dirichlet series we obtain (9). The proof of (10),
based on the second formula of (6) is similar. �

Proof of Theorem 2. We need the following result.

Lemma 1. For m,n ∈ N let

T (m,n) :=
∑

ℓ | gcd(m,n)

ℓ τ
(m

ℓ

)

τ
(n

ℓ

)

,

i.e.,
∞
∑

m,n=1

T (m,n)

mznw
= ζ2(z)ζ2(w)ζ(z + w − 1)

for ℜz,ℜw > 1. Then for an arbitrary fixed ε > 0,

S(x) :=
∑

m,n≤x

T (m,n) = x2

(

3
∑

r=0

cr(log x)
r

)

+O
(

x
1117
701

+ε
)

.

Here c3 =
1
3 , c2 = 3γ − 1, c1 = 8γ2 − 6γ − 2γ1 +1. The constant c0 can be constructed from the

proof below, but is not accessible to numerical evaluation for the reason described in Remark 3.
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Proof of Lemma 1. For x large, let 1 < y < x be a positive real parameter at our disposal,
and put z := x

y . Further, write M := max(j, k) for short. Then,

S(x) =
∑

ℓM≤x
ℓ,j,k∈N

ℓ τ(j)τ(k) =















∑

ℓM≤x
ℓ≤y

+
∑

ℓM≤x
M≤z

−
∑

ℓM≤x
ℓ≤y,M≤z















ℓ τ(j)τ(k)

=: S1(x) + S2(x)− S3(x) ,

(22)

say. In what follows1, let θ be an arbitrary fixed real greater than θ0. Then, firstly,

S3(x) =
∑

ℓ≤y

ℓ
∑

j,k≤z

τ(j)τ(k)

=
(

1
2y

2 +O(y)
)

(

z log z + (2γ − 1)z +O(zθ)
)2

= 1
2x

2 log2 z + (2γ − 1)x2 log z + 1
2(2γ − 1)2x2

+O

(

x2

y
log2 x

)

+O
(

x1+θy1−θ
)

.

(23)

Secondly,

S1(x) =
∑

ℓ≤y

ℓ

(

(x

ℓ
log

x

ℓ
+ (2γ − 1)

x

ℓ

)2
+O

(

(x

ℓ

)1+θ
))

=
∑

ℓ≤y

ℓ
(x

ℓ
log

x

ℓ
+ (2γ − 1)

x

ℓ

)2
+O

(

x1+θy1−θ
)

.

(24)

By a straightforward computation,

∑

ℓ≤y

ℓ
(x

ℓ
log

x

ℓ
+ (2γ − 1)

x

ℓ

)2

= x2
∑

ℓ≤y

log2 ℓ

ℓ
− 2x2(log x+ (2γ − 1))

∑

ℓ≤y

log ℓ

ℓ

+ x2(log x+ (2γ − 1))2
∑

ℓ≤y

1

ℓ
.

(25)

By Euler’s summation formula, for r = 0, 1, 2,

∑

ℓ≤y

logr ℓ

ℓ
=

logr+1 y

r + 1
+ γr +O

(

logr y

y

)

.

Combining this with (25) and (24), we get

S1(x) = x2
(

log2 x(log y + γ)

− log x
(

log2 y − 2(2γ − 1) log y − 2γ(2γ − 1) + 2γ1
)

+
1

3
log3 y − (2γ − 1) log2 y

+ (2γ − 1)2 log y + γ(2γ − 1)2 − 4γγ1 + 2γ1 + γ2
)

+O

(

x2

y
log2 x

)

+O
(

x1+θy1−θ
)

.

(26)

1This arrangement implies that O(xθ log x) can be replaced throughout by O(xθ), etc.
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Finally, with M := max(j, k),

S2(x) =
∑

j,k≤z

τ(j)τ(k)
∑

ℓ≤ x
M

ℓ =
∑

j,k≤z

τ(j)τ(k)

(

x2

2M2
+O

( x

M

)

)

. (27)

The O-term here contributes overall

≪ x
∑

j,k≤z

τ(j)τ(k)√
jk

≪ x





∑

j≤z

τ(j)√
j





2

≪ xz log2 x =
x2

y
log2 x . (28)

Writing S∗
2(x) for the main term in (27), we get

S∗
2(x) =

x2

2

∑

j,k≤z

τ(j)τ(k)

max(j2, k2)

= x2
∑

j≤k≤z

τ(k)

k2
τ(j)− x2

2

∑

k≤z

τ2(k)

k2
=: x2

(

R1(z)− 1
2R2(z)

)

.

(29)

Now

R2(z) =
ζ4(2)

ζ(4)
+O

(

log3 x

z

)

=
5π4

72
+O

(

log3 x

z

)

. (30)

Further,

R1(z) =
∑

k≤z

τ(k)

k2
(k log k + (2γ − 1)k +∆(k))

=
∑

k≤z

τ(k)

k
(log k + 2γ − 1) +

∑

k≤z

τ(k)∆(k)

k2
.

(31)

Here the last sum equals

∞
∑

k=1

τ(k)∆(k)

k2
+O

(

zθ−1
)

=: C1 +O
(

zθ−1
)

.

Moreover, using Stieltjes integral notation,

∑

k≤z

τ(k)

k
(log k + 2γ − 1)

=

z+
∫

1−

log u+ 2γ − 1

u
d (u log u+ (2γ − 1)u+∆(u))

=

z
∫

1

log u+ 2γ − 1

u
(log u+ 2γ) du+ (2γ − 1)2 +O(zθ−1)

−
z
∫

1

d

du

(

log u+ 2γ − 1

u

)

∆(u) du

=
1

3
log3 z +

(

2γ − 1
2

)

log2 z + 2γ(2γ − 1) log z + C2 +O
(

zθ−1
)

,

(32)
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where

C2 := (2γ − 1)2 +

∞
∫

1

log u+ 2(γ − 1)

u2
∆(u) du .

Putting together (27) - (32), and recalling that z = x
y , we arrive at

S2(x) = x2
(

1

3
log3 z +

(

2γ − 1
2

)

log2 z + 2γ(2γ − 1) log z

+ C1 + C2 −
5π4

144

)

+O

(

x2

y
log2 x

)

+O
(

x1+θy1−θ
)

.

(33)

Finally, using (23), (26), and (33) in (22), an involved but straightforward calculation yields

S(x) = x2

(

3
∑

r=0

cr(log x)
r

)

+O

(

x2

y
log2 x

)

+O
(

x1+θy1−θ
)

,

with c1, c2, c3 as stated in Lemma 1. Balancing the two O-terms here, the optimal choice is

y = x
1−θ
2−θ . This completes the proof of Lemma 1. �

Now use that (cf. Theorem 1 and Remark 1),

s(m,n) =
∑

d | gcd(m,n)

µ(d)T (m/d, n/d) (m,n ∈ N) .

We deduce
∑

m,n≤x

s(m,n) =
∑

d≤x

µ(d)
∑

a,b≤x/d

T (a, b)

=
∑

d≤x

µ(d)

(

(x

d

)2
3
∑

r=0

cr

(

log
x

d

)r
+O

(

(x

d

) 1117
701

+ε
)

)

= x2V (x) +O





∑

d≤x

(x

d

) 1117
701

+ε



 ,

where the error term is O
(

x
1117
701

+ε
)

and

V (x) =
(

c3 log
3 x+ c2 log

2 x+ c1 log x+ c0
)

∑

d≤x

µ(d)

d2

−
(

3c3 log
2 x+ 2c2 log x+ c1

)

∑

d≤x

µ(d) log d

d2

+(3c3 log x+ c2)
∑

d≤x

µ(d) log2 d

d2
− c3

∑

d≤x

µ(d) log3 d

d2

=
(

c3 log
3 x+ c2 log

2 x+ c1 log x+ c0
)

(

1

ζ(2)
+O

(

1

x

))

−
(

3c3 log
2 x+ 2c2 log x+ c1

)

(

ζ ′(2)

ζ2(2)
+O

(

log x

x

))

8



+(3c3 log x+ c2)

(

2(ζ ′(2))2 − ζ ′′(2)ζ(2)

ζ3(2)
+O

(

log3 x

x

))

−c3
(

c∗ +O

(

log3 x

x

))

,

with a certain constant c∗, leading to the asymptotic formula (12).
From (11) we deduce by Möbius inversion that

c(m,n) =
∑

d | gcd(m,n)

µ(d)s(m/d, n/d) ,

and obtain
∑

m,n≤x

c(m,n) =
∑

d≤x

µ(d)
∑

a,b≤x/d

s(a, b) .

Applying now the formula (12), similar computations show the validity of (13). �

Proof of Theorem 3. Obviously, by (5),

∑

m,n≤x
gcd(m,n)>1

s(m,n) =
∑

m,n≤x

s(m,n)−
∑

m,n≤x
gcd(m,n)=1

τ(m)τ(n) . (34)

In order to find an asymptotics for the last sum we need an auxiliary result.

Lemma 2. 2 For K a positive integer and Y a large real variable satisfying K ≤ Y 9, it holds
true that

∑

n≤Y

τ(Kn) = β0(K)Y log Y + β1(K)Y +O
(

Y 1/3+ε
)

,

for every fixed ε > 0, uniformly in K, with the notations given by (15) and (16). Note that
β0(K) , β1(K) ≪ Kε.

Proof of Lemma 2. We start from the formula3 (cf. E. C. Titchmarsh [16, (1.4.2)])

1

τ(K)

∞
∑

n=1

τ(Kn)

ns
= ζ2(s)FK(s) (ℜs > 1) ,

where FK(s) is defined in (14). We can follow the classic example of the deduction of [16,

Theorem 12.2], sketching only the necessary changes. With an := τ(Kn)
τ(K) ≤ τ(n) and T := Y 2/3,

Perron’s formula gives

∑

n≤Y

an =
1

2πi

1+δ+iT
∫

1+δ−iT

ζ2(s)FK(s)
Y s

s
ds+O

(

Y 1/3+ε
)

,

with arbitrarily small fixed δ > 0. The line of integration is now shifted to s = −δ + it,
−T ≤ t ≤ T . On the horizontal line segments −δ ≤ σ ≤ 1 + δ, t = ±T ,

FK(σ ± iT ) ≪
∏

p |K

pδ ≤ Kδ ≤ Y 9δ ,

2It is possible or even likely, that this result or even a sharper assertion is contained in the literature. However,
the authors’ attempts to find it were not successful.

3The authors are grateful to Professor A. Ivić for directing their attention to this identity.
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hence this brings in only a harmless factor. The residue of the integrand at s = 1 equals

α0(K)Y log Y + (α0(K)(2γ − 1) + α1(K))Y,

where α0(K) and α1(K) are defined by (15).
Furthermore, the residue of the integrand at s = 0 is

ζ2(0)FK(0) =
1

4

∏

pνp(K) ||K

(1− ηp,K) ≪ 1

uniformly in K. It remains to estimate the integral

−δ+iT
∫

−δ−iT

ζ2(s)FK(s)
Y s

s
ds .

Expanding the product which defined FK(s) we obtain 2ω(K) ≪ Kδ′ terms (with ω(K)
denoting the number of prime divisors of K) of the form B−s where B is the product of some
or all of the primes which divide K.

Now the proof of [16, Theorem 12.2], which involves ζ2(s) alone, ultimately leads to estimates
of the type

T
∫

1

G(t)eiΦ(t) dt≪ max
[1,T ]

|G(t)| max
[1,T ]

∣

∣Φ′′(t)
∣

∣

−1/2
,

with G(t),Φ(t) real functions. Writing Bδ−it = Bδe−it logB , we see that Bδ ≤ Kδ contributes
only a harmless factor, while −t logB does not contribute at all to Φ′′(t). This completes the
proof of Lemma 2. �

Lemma 3. For large real x, let

U(x) :=
∑

m,n≤x
gcd(m,n)=1

τ(m)τ(n) .

Then it follows that

U(x) = x2
(

b2 log
2 x+ b1 log x+ b0

)

+O
(

x4/3+ε
)

for every ε > 0. Here the constants b0, b1 and b2 are given by (19).

Proof of Lemma 3. By a familiar device usually attributed to Vinogradov,

U(x) =
∑

K≤x

µ(K)
∑

m,n≤x
K | gcd(m,n)

τ(m)τ(n)

=
∑

K≤x

µ(K)





∑

n≤ x
K

τ(Kn)





2

.

(35)
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The contribution of the K with x9/10 < K ≤ x is small: Using that τ(Kn) ≤ τ(K)τ(n), we
get

∑

x9/10<K≤x

µ(K)





∑

n≤ x
K

τ(Kn)





2

≪
∑

x9/10<K≤x

τ2(K)
( x

K

)2+ε
≪ x11/10+ε .

But if K ≤ x9/10, then K ≤
(

x
K

)9
, thus we may apply Lemma 2 to the inner sum in (35).

In this way,

U(x) =
∑

K≤x9/10

µ(K)

(

β0(K)
x

K
log

x

K
+ β1(K)

x

K
+O

(

( x

K

)1/3+ε/2
))2

+O
(

x11/10+ε
)

.

The O-term here contributes overall at most

≪ x4/3+ε
∑

K≤x9/10

K−4/3 ≪ x4/3+ε .

We claim that this implies that

U(x) =x2

(

∞
∑

K=1

µ(K)

K2
(β0(K) log x+ β1(K)− β0(K) logK)2

)

+O
(

x4/3+ε
)

.

(36)

But this is easy to see, since

x2





∑

K>x9/10

µ(K)

K2
(β0(K) log x+ β1(K)− β0(K) logK)2





≪ x2+ε
∑

K>x9/10

K−2+ε ≪ x11/10+2ε .

By an obvious calculation, (36) completes the proof of Lemma 3. �

Now Lemma 3 and (34), together with (12) and (13), give the asymptotics (17) and (18),
respectively. �

Proof of Theorem 4. The asymptotic formulas (20) and (21) are direct consequences of (7)
and (8), respectively, and of the known estimate

∑

n≤x

ψ(n) =
15

2π2
x2 +O(x log2/3 x)

of A. Walfisz [20, p. 100]. �

4 Appendix

Let t2(n) denote the sum of the numbers of subgroups of Abelian groups of order n having rank
≤ 2 (up to isomorphisms). Then one has the following Dirichlet series representation, due to
G. Bhowmik: For ℜz > 1,

∞
∑

n=1

t2(n)

nz
= ζ2(z)ζ2(2z)ζ(2z − 1)

∏

p

(

1 +
1

p2z
− 2

p3z

)

. (37)
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The universality of this Dirichlet series was proved in [9]. For asymptotic properties of t2(n),
based on formula (37) see the papers [1, 8]. More generally, for finite Abelian groups A let
tr(n) =

∑

#A=n,rank(A)=r s(A), where #A is the order of A, rank(A) is its rank and s(A) stands
for the number of subgroups of G. See [2] for properties of the function tr(n).

Here we give a short direct proof for (37). By the Busche-Ramanujan identity for the divisor
function τ (cf. [19]), the second formula of (5) can be written as

s(m,n) =
∑

d | gcd(m,n)

d τ(mn/d2) , (38)

see [4]. Now, according to the definition of t2(n) and using (38),

t2(n) =
∑

kℓ=n
k | ℓ

s(k, ℓ) =
∑

kℓ=n
k | ℓ

∑

d | k

dτ(kℓ/d2) =
∑

d2a2j=n

dτ(a2j) ,

that is
t2(n) =

∑

d2k=n

dτ(k)τ(1, 2; k) (n ∈ N) , (39)

where, as usual, τ(1, 2; k) =
∑

a2b=k 1 (sequence [12, item A046951]). Note that τ(1, 2; k) =
∏

p (⌊νp(k)/2⌋ + 1). It turns out that the function t2(n) is multiplicative and (39) quickly leads
to the formula (37).

Let u2(n) denote the total number of cyclic subgroups of Abelian groups of order n having
rank ≤ 2 (up to isomorphisms), not investigated in the literature. It follows at once from (11)
and the above results for t2(n) that

∞
∑

n=1

u2(n)

nz
= ζ2(z)ζ(2z)ζ(2z − 1)

∏

p

(

1 +
1

p2z
− 2

p3z

)

,

and
u2(n) =

∑

a2b=n

µ(a)t2(b) (n ∈ N) .
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[3] G. Călugăreanu, The total number of subgroups of a finite abelian group, Sci. Math. Jpn.,
60 (2004), 157–167.

12
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