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Universidad Carlos III de Madrid

Avda. de la Universidad, 30
28911 Leganés, SPAIN

JSALAS@MATH.UC3M.ES, EJSANCHE@MATH.UC3M.ES
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Abstract

We consider a family of combinatorial problems related to generalized Stir-

ling permutations with fixed number of ascents that can also be understood

in terms of ordered trees and forests. They will be solved by introducing a

three-parameter generalization of the well-known Eulerian numbers that will

be studied in the framework of generating-function methods. By using a non-

trivial involution, we map these generalized Eulerian numbers onto a family of

generalized Ward numbers for which we also provide a combinatorial interpre-

tation.
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1 Introduction

Stirling permutations of order n are permutations of the multiset {12, 22, . . . , n2}
such that, for each 1 ≤ r ≤ n, the elements appearing between two occurrences of r
are at least r [14]. Given a Stirling permutation ρ = r1r2 . . . r2n , the index i will be
called an ascent of ρ if ri < ri+1. The number of Stirling permutations of order n with
exactly k ascents is given by second-order Eulerian numbers Bn,k [14]. Second order
Eulerian numbers are closely related to Ward numbers Wn,k [26], [19, entry A134991].
They form an inverse pair in the sense of Riordan [23] (see [24], [19, entry A008517]):

Wn,k =

k∑

j=0

(
n− j

n− k

)
Bn,j , (1.1a)

Bn,k =

k∑

j=0

(−1)k−j

(
n− j

k − j

)
Wn,j . (1.1b)

We will use Eq. (1.1a) to provide a new combinatorial interpretation of Ward numbers
in terms of Stirling permutations.

Stirling permutations and Eulerian numbers have been generalized to multisets of
the form {1ν , 2ν , . . . , nν} by Gessel [13] (as cited by Park [20]) and Park [20,21]. Brenti
considered Stirling permutations of the more general multiset {1ν1, 2ν2, . . . , nνn} in the
context of Hilbert polynomials [3]. The particular case {1ν, 2ν+2, . . . , nν+2} was also
studied by Janson et al. [17].

The purpose of the paper is to study several combinatorial problems associated
with natural generalizations of the Stirling permutations considered by Gessel and
Stanley, Park and other authors [14,20]. We will also discuss the same problems from
a graph theoretic point of view by using bijections between generalized Stirling per-
mutations, ordered trees [17, 20] and forests. The combinatorial numbers that count
such Stirling permutations with a fixed number of ascents are natural generalizations
of the Eulerian numbers. Some particular numbers of this class have been considered
in other contexts [4,5,10] but, to our knowledge, most of them have not appeared be-
fore in the literature. There are indeed other generalizations of the Eulerian numbers
that do not fall in the above class: e.g., the r–Eulerian numbers [2, 12, 18, 22], or the
numbers A(r, s | α, β) due to Carlitz and Scoville [6].

In all our cases, these Eulerian numbers satisfy two-parameter linear recurrence
relations that can be studied in an efficient way by using generating function tech-
niques [1]. With the help or these methods, we define a family of generalized Ward
numbers, and get closed expressions for them in terms of generalized Eulerian num-
bers, in the form of inverse pairs similar to Eqs. (1.1). These relations provide a
simple combinatorial interpretation for the generalized Ward numbers in the present
context.
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2 Generalized Stirling permutations

It is useful for our purposes to introduce several definitions based on the ν–Stirling
permutations of order n discussed by Park [20]:

Definition 2.1. Let ν be a positive integer and X = {x1 < x2 < · · · < xn} be a
totally ordered set of cardinality n. A (ν,X)–Stirling permutation is a permutation
of the multiset {xν

1, x
ν
2 , . . . , x

ν
n} such that, for each 1 ≤ j ≤ n, the elements occurring

between two occurrences of xj are, at least, xj.

Remarks. 1. This definition implies that the elements occurring between two con-
secutive occurrences of xj are greater or equal than xj . As a consequence of this, the
ν occurrences of xn should go together.

2. If X = [n], then the (ν, [n])–Stirling permutations are equivalent to the canon-
ical ν–Stirling permutations of order n. In Definition 2.5, the X will correspond to
different subsets of [n].

3. If X = ∅ the unique (ν,∅)–Stirling permutation is the empty permutation.

Definition 2.2. Let ν, t be positive integers, X = {x1 < x2 < · · · < xn} be a totally
ordered set of cardinality n, and consider x0 = 0 < x1 < x2 < · · · < xn. A (ν, t, X)–
Stirling permutation is a permutation of the multiset {0t, xν

1 , x
ν
2, . . . , x

ν
n} such that for

each 0 ≤ j ≤ n the elements occurring between two occurrences of xj are at least xj.

Remarks. 1. If t = 0, a (ν, 0, X)–Stirling permutation is just a (ν,X)–Stirling
permutation.

2. If X = ∅ the unique (ν, t,∅)–Stirling permutation is the permutation 0t.

3. The number of (ν, t, X)–Stirling permutations is
|X|−1∏
k=0

(kν + t + 1).

In order to count generalized Stirling permutations with a fixed number of ascents,
we introduce a three-parameter generalization of the standard Eulerian numbers, that
we will refer to as the ν-order (s, t)-Eulerian numbers :

Definition 2.3. Let ν, s ≥ 1 and t ≥ 0 be integers. The ν-order (s, t)-Eulerian

numbers
〈
n

k

〉(ν)
(s,t)

are defined as those satisfying the recurrence

〈
n

k

〉(ν)

(s,t)

= (k + s)

〈
n− 1

k

〉(ν)

(s,t)

+ (νn− k + t + 1− ν)

〈
n− 1

k − 1

〉(ν)

(s,t)

+ δk0δn0 , (2.1)

with the additional conditions
〈
n

k

〉(ν)
(s,t)

= 0 if n < 0 or k < 0.

Remark. The values of ν, s, t do not have to be integers as
〈
n

k

〉(ν)
(s,t)

is obviously a

polynomial in these three parameters. However, we have restricted their ranges to
make contact with their combinatorial interpretation.
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Proposition 2.4. The number of (ν, t, [n])–Stirling permutations with k ascents is

equal to
〈
n

k

〉(ν)
(1,t)

.

Proof. This is just a generalization of the proof of Eq. (6.1) in [10]. Let Jν,t(n, k) be
the number of (ν, t, [n])–Stirling permutations with k ascents. We want to show that

Jν,t(n, k) =
〈
n

k

〉(ν)
(1,t)

by induction on n.

The case n = 0 is trivial: Jν,t(0, k) = δ0,k =
〈
0
k

〉(ν)
(1,t)

, as there is a unique permuta-

tion of this type (the empty permutation).

Let us assume that Jν,t(n − 1, k) =
〈
n−1
k

〉(ν)
(1,t)

for all 0 ≤ k ≤ n − 1. We have to

insert now the block nν . This will leave the number of ascents unchanged, or increase
it by one unit. We have then only two choices: (1) start from a (ν, t, [n− 1])–Stirling
permutation with k ascents, or (2) start from a (ν, t, [n − 1])–Stirling permutation
with k − 1 ascents. In the first case, we can place the block nν at the beginning of
the permutation or insert it at any of the k ascents. In the second case, we can insert
the block nν at any of the ν(n− 1) + t− (k − 1) non-ascent places. Hence

Jν,t(n, k) = (k + 1)Jν,t(n− 1, k) + (νn− k + t+ 1− ν)Jν,t(n− 1, k − 1) .

This equation completes the proof.

Remarks. 1. If (s, t) = (1, 0), these numbers reduce to the ordinary Eulerian
numbers for ν = 1, to the second-order Eulerian numbers for ν = 2 [14], and to the
third-order Eulerian numbers for ν = 3 [19, entry A219512].

2. If ν = 2 and (s, t) = (1, t), these numbers correspond to the generalization by
Carlitz [4, 5] and Dillon and Roselle [10].

Definition 2.5. Let us fix integers ν ≥ 1 and t ≥ 0, and a generalized ordered
partition t = (t1, . . . , ts) of t with s ≥ 1 parts (and ti ≥ 0). A (ν, t, n)–Stirling
permutation is a sequence ρ = (ρ1, ρ2, . . . , ρs), of length s, such that each entry ρi is a
(ν, ti, Xi)–Stirling permutation for some generalized ordered partition (X1, X2, . . . , Xs)
of [n] (where we allow that some of the Xi are the empty set).

Remarks. 1. If t = (t) (i.e., s = 1), the (ν, t, n)–Stirling permutations reduce to the
(ν, t, n)–Stirling permutations.

2. If n = 0, there is a single (ν, t, 0)–Stirling permutation: (0t1 , 0t2 , . . . , 0ts), where
in the cases with ti = 0 we have an empty entry.

Theorem 2.6. The number of (ν, t, n)–Stirling permutations with k ascents is equal

to
〈
n

k

〉(ν)
(s,t)

.

Proof. Let Jν,t(n, k) be the number of (ν, t, n)–Stirling permutations with k ascents.

We want to show that Jν,t(n, k) =
〈
n

k

〉(ν)
(s,t)

by induction on n.

The case n = 0 is trivial: Jν,t(0, k) = δ0,k =
〈
0
k

〉(ν)
(s,t)

, as there is a unique permuta-

tion of this type: (0t1 , 0t2 , . . . , 0ts).
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Let us assume that Jν,t(n − 1, k) =
〈
n−1
k

〉(ν)
(s,t)

for all 0 ≤ k ≤ n − 1. Then, as

explained in the proof of Proposition 2.4, we have two choices to insert the block nν

in a (ν, t, n − 1)–Stirling permutation with k ascents: (1) start from a (ν, t, n − 1)–
Stirling permutation with k ascents and insert the block at the beginning of the s

entries or at any of the k ascents; or (2) start from a (ν, t, n−1)–Stirling permutation
with k−1 ascents, and insert the block at any of the ν(n−1)+ t− (k−1) non-ascent
places. Then,

Jν,t(n, k) = (k + s)Jν,t(n− 1, k) + (νn− k + t+ 1− ν)Jν,t(n− 1, k − 1) .

This completes the proof.

Remark. The number of (ν, t, n)–Stirling permutations with k ascents does depend
on t but only through t and s. This is also true for the number of (ν, t, n)–Stirling
permutations that is given by

n−1∏

k=0

(kν + t + s) . (2.2)

3 Increasing trees and forests

Gessel [13] and Park [20] discussed the bijection between ν–Stirling permutations
and the class of increasing trees. In this section we generalize these results to the
class of (ν, t, [n])–Stirling permutations introduced above. For the (ν, t, n)–Stirling
permutations, we introduce a similar construction in terms of forests.

Definition 3.1. Let X = {x1 < · · · < xn} be a totally ordered set. An increasing
X–tree is a rooted tree with the internal vertices labelled by the elements of X in
such a way that the node labelled x1 is distinguished as the root and such that, for
each 2 ≤ i ≤ n, the labels of the nodes in the unique path from the root to the
node labelled xi form an increasing sequence. A generalized increasing X–tree is an
increasing X0–tree with |X| + 1 internal vertices labelled by the elements of the set
X0 = {x0 = 0 < x1 < x2 < · · · < xn}.

Remark. The family of generalized increasing X–trees is bijective with the family
of increasing [|X|+ 1]–trees.

Definition 3.2. For an integer d ≥ 2, d-ary increasing X–trees are increasing X–
trees where each internal node has d labelled positions for children. Equivalently, for
integers d ≥ 2, d0 ≥ 1, (d, d0)-ary increasing X–trees are generalized increasing X–
trees where the root x0 = 0 has d0 labelled positions for children, and any non-root
internal node xi (1 ≤ i ≤ n) has d labelled positions for children.

Remarks. 1. A d-ary increasing X–tree has d|X| edges, |X| internal nodes with
outdegree equal to d, and (d− 1)|X|+ 1 external nodes.
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2. A (d, d0)-ary increasing X–tree has d|X| + d0 edges, a root with outdegree
equal to d0, |X| internal nodes with outdegree equal to d, and (d−1)|X|+d0 external
nodes.

3. The family of (d, 1)-ary increasing X–trees is bijective with the d-ary increasing
[|X|]–trees. The family of (d, d)-ary increasing X–trees is bijective with the d-ary
increasing [|X|+ 1]–trees.

Theorem 3.3. Let ν ≥ 1, t ≥ 0 be integers. The family of (ν+1, t+1)–ary increasing
[n]–trees is in natural bijection with (ν, t, [n])–Stirling permutations.

Proof. The proof is a generalization of Gessel’s theorem (see [20]) that relies on the
argument presented in [25] for ordinary permutations. Let ρ be any word on the
alphabet {x0 < x1 < · · · < xn} with possible repeated letters. Let us define a planar
tree T (ρ) as follows: If ρ = ∅, then T (ρ) = ∅; if ρ 6= ∅, then ρ can be factorized
uniquely in the form ρ = ρ1iρ2i · · · iρνi+1 where i is the least element (letter) of ρ
and νi its multiplicity. Let i be the root of T (ρ) and T (ρ1), T (ρ2),. . . , T (ρνi+1)
the subtrees (from left to right) obtained by removing i. This yields an inductive
definition of T (ρ). Notice that the outdegree of an internal vertex i is νi + 1. Notice
also that when ρ corresponds to a generalized Stirling permutation, if j is a letter of
ρk, then j does not belong to any ρl for l 6= k.

Remark. See [17] for a detailed proof of a related statement, and Figure 1 for some
simple examples of the Stirling permutations and their associated trees.

1

2

3

∅ ∅ ∅ ∅

∅ ∅ ∅

∅ ∅ ∅

0

∅ ∅ 1

∅ ∅ 2

∅ ∅ ∅ ∅

∅

(a) (b)

Figure 1: (a) The (3, [3])–Stirling permutation 333222111 and its corresponding 4–ary
increasing [3]–tree. (b) The (3, 2, [2])–Stirling permutation 00112221 and its corre-
sponding (4, 3)–ary increasing [2]–tree. This permutation has two ascents at indices
2 and 4. These ascents are underlined in the permutation for clarity.
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Definition 3.4. Let n ≥ 0, s ≥ 1 be integers. An (s, [n])–forest is a forest F =
(T1, . . . , Ts) composed by s labelled generalized increasing Xi–trees Ti, for some gen-
eralized ordered partition (X1, . . . , Xn) of [n] (where we allow Xi = ∅). Given
u = (u1, . . . , us) with ui ≥ 1 integers, a (d,u)–ary increasing (s, [n])–forest F =
(T1, . . . , Ts) is an (s, [n])–forest such each Ti is a (d, ui)-ary increasing Xi-tree, for
some generalized partition (X1, . . . , Xs) of [n].

Theorem 3.5. Let ν, s ≥ 1, t ≥ 0 be integers, t = (t1, . . . , ts) a generalized ordered
partition of t (ti ≥ 0), and 1 = (1, . . . , 1). The family of (ν +1, t+ 1)–ary increasing
(s, [n])–forests is in natural bijection with the class of (ν, t, n)–Stirling permutations.

Proof. Is a straightforward generalization of Theorem 3.3. See Figure 2 for a concrete
example of this class of forest.

Remark. Park [20] gives two bijections for the class of (ν, [n])–Stirling permutations:
one in terms of (ν + 1)-ary increasing trees, and another one in terms of (ordered)
forests of increasing trees. We have adapted the former for the class of (ν, t, [n])–
Stirling permutations, but we will not use the latter in the present paper.

0

2

∅ 3

∅ ∅ ∅ ∅

∅ ∅

∅ ∅

1

5

∅ ∅ ∅ ∅

∅ ∅ ∅

0

∅ 4

∅ ∅ ∅ ∅

∅

Figure 2: The (3, t, 5)–Stirling permutation (23332200, 555111, 0444,∅) correspond-
ing to t = (2, 0, 1, 0) and the generalized partition ({2, 3}, {1, 5}, {4},∅) of [5]. We
show the corresponding (4, t+ 1)–ary (4, [5])–forest F = (T1, T2, T3, T4).

4 The ν-order (s, t)-Eulerian numbers

We study in detail some properties of the ν-order (s, t)-Eulerian numbers intro-
duced in Definition 2.3, and whose combinatorial interpretations have been discussed
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in Theorems 2.6 and 3.5. In this section, s, t will be considered indeterminate param-
eters. These numbers satisfy the recurrence relation (2.1) which is a particular case
of the one analyzed in [1]. The exponential generating function (EGF)

F (ν)(x, y; s, t) =
∑

n,k≥0

〈
n

k

〉(ν)

(s,t)

xk y
n

n!
(4.1)

for the ν-order (s, t)-Eulerian numbers is given by [1, Section A.1.5]:

F (ν)(x, y; s, t) =

(
Tν

(
ey(1−x)ν T−1

ν (x)
)

x

)s (
1− x

1− Tν (ey(1−x)νT−1
ν (x))

)s+t

, (4.2)

where Tν (ν ∈ N) is a one-parameter family of functions given by

T−1
ν (z) = z eQν(z) , where Qν(z) =

ν−1∑

k=1

(
ν − 1

k

)
(−z)k

k
. (4.3)

For ν = 1, T1 = 1 is the identity function, and for ν = 2, T2 is the tree function
T2 = T [8, 9].

The ν-order (s, t)-Eulerian polynomials are defined as:

P (ν)
n (x; s, t) =

n∑

k=0

〈
n

k

〉(ν)

(s,t)

xk (4.4)

and satisfy that P
(ν)
n (1; s, t) is given by (2.2). They can be computed by using Theo-

rem 4.1 and Eq. (4.4) of Ref. [1]:

P (ν)
n (x; s, t) =

(1− x)s+t+νn

xs

n!

2πi

∫

C

zs−1

(1− z)s+t+1−ν

[
log

zeQν(z)

xeQν(x)

]−n−1

dz (4.5a)

=
(1− x)s+t+νn

xs
lim
z→x

∂n

∂zn

(
zs−1(z − x)n+1

(1− z)s+t+1−ν

[
log

zeQν(z)

xeQν(x)

]−n−1
)

, (4.5b)

where C is a closed simple curve of index +1 surrounding only the singularity at
z = x in the complex z-plane.

A Rodrigues-like formula for the ν-order (s, t)-Eulerian polynomials can also be
obtained from the integral (4.5a) by performing the change of variables zeQν(z) = eu

and xeQν(x) = ev. Therefore, z = Tν(e
u) and x = Tν(e

v). We immediately obtain
from (4.5a):

P (ν)
n (Tν(e

v); s, t) =
(1− Tν(e

v))s+t+νn

Tν(ev)s
dn

dvn
Tν(e

v)s

(1− Tν(ev))s+t
, (4.6)

where actual computations are facilitated by the fact that the derivative of Tν(x) is
given in closed form by the expression

T ′
ν(x) =

Tν(x)

x (1− Tν(x))ν−1
. (4.7)
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An equivalent representation of P
(ν)
n (x; s, t) can be obtained directly from the EGF

(4.2) after performing the change of variables y 7→ u = (1− x)νy:

P (ν)
n (x; s, t) = n!

(1− x)s+t+νn

xs
[un]

(Tν (e
u T−1

ν (x)))
s

(1− Tν (eu T−1
ν (x)))s+t . (4.8)

We now illustrate the use of the previous results to derive explicit expressions for the
(s, t)-Eulerian numbers and the second order (s, t)-Eulerian numbers. In fact, one can
use similar techniques to obtain formulas for higher-order (s, t)-Eulerian numbers,
although these computations are more involved.

4.1 The (s, t)-Eulerian numbers

When ν = 1, we will employ the traditional notation A
(s,t)
n (x) = P

(1)
n (x; s, t). By

using (4.8), we immediately get

A(s,t)
n (x) = (1− x)s+t+n n! [un]

es u

(1− x eu)s+t
. (4.9)

This formula allows us to obtain the following closed expressions for A
(s,t)
n :

A(s,t)
n (x) = (1− x)s+t+n

∑

j≥0

(s+ t)j

j!
(s+ j)n xj (4.10)

=
∑

k≥0

xk

k∑

j=0

(−1)k−j (n+ s+ t)k−j

j! (k − j)!
(s+ t)j (s+ j)n . (4.11)

From (4.10), we easily obtain

Proposition 4.1. The (s, t)-Eulerian polynomials A
(s,t)
n satisfy the relation

xA
(s,t)
n (x)

(1− x)n+s+t
=
∑

k≥1

(s+ t)k−1

(k − 1)!
(k + s− 1)n xk , (4.12)

for any n ≥ 0 and arbitrary parameters s, t.

This proposition generalizes the well-known formulas for the ordinary Eulerian
polynomials An = A

(1,0)
n :

xAn(x)

(1− x)n+1
=
∑

k≥1

kn xk , (4.13)

and for the Eulerian polynomials with the traditional indexing A
(0,1)
n [2, Theorem 1.21]:

A
(0,1)
n (x)

(1− x)n+1
=
∑

k≥0

kn xk . (4.14)

A closed expression for
〈
n

k

〉
(s,t)

can obtained from (4.11) to conclude that

9



Theorem 4.2. The generalized (s, t)-Eulerian numbers are equal to

〈
n

k

〉

(s,t)

=

〈
n

k

〉(1)

(s,t)

=
1

k!

k∑

j=0

(−1)k−j

(
k

j

)
(n + s+ t)k−j (s+ t)j (s+ j)n (4.15)

for n ≥ 0 and 0 ≤ k ≤ n.

Remarks. 1. It is obvious in Eq. (4.15) that the numbers
〈
n

k

〉
(s,t)

are polynomials in

both parameters s, t.
2. The ordinary Eulerian numbers with the standard [15, Eq. (6.38)] and the

traditional [7] ordering are respectively given by

〈
n

k

〉
=

〈
n

k

〉

(1,0)

=
k∑

j=0

(−1)j
(
n+ 1

j

)
(k − j + 1)n , (4.16a)

A(n, k) =

〈
n

k

〉

(0,1)

=
k∑

j=0

(−1)j
(
n+ 1

j

)
(k − j)n =

〈
n

k − 1

〉
. (4.16b)

3. The shifted r-Eulerian numbers corresponding to (s, t) = (r, 0) are a natural
generalization of the r-Eulerian numbers [22, p. 215], [12, Chapter II, p. 17], [18], [2,
Problems 17 and 18, p. 38] that fit in the framework of the problem discussed in
Ref. [1].

4. Notice that the (s,−s)-Eulerian numbers take the simple form (cf. (4.2)):
〈
n

k

〉

(s,−s)

= (−1)k
(
n

k

)
sn . (4.17)

4.2 The second order (s, t)-Eulerian numbers

When ν = 2, it is customary to write B
(s,t)
n (x) = P

(2)
n (x; s, t). By using (4.8) we

immediately get

B(s,t)
n (x) = n!

(1− x)s+t+2n

xs
[un]

(T (T−1(x) eu))
s

(1− T (T−1(x) eu))s+t , (4.18)

where T is the tree function [8, 9]. For |z| < e−1, this function is given by the power
series:

T (z) =

∞∑

n=1

nn−1

n!
zn . (4.19)

It satisfies that T (z) exp(−T (z)) = z (or equivalently, T−1(z) = ze−z), and it is
closely related to the Lambert W function [8, 9]: T (z) = −W (−z).

Using (4.18), it is not very difficult to obtain an explicit closed form for both the
second-order (s, t)-Eulerian polynomials and the second-order (s, t)-Eulerian num-
bers. By expanding (1−T (ξ))−(s+t) in powers of T (ξ), where ξ = T−1(x) eu = x e−x+u,
we get:

B(s,t)
n (x) = n!

(1− x)s+t+2n

xs

∞∑

j=0

(s+ t)j

j!
[un]T (ξ)s+j . (4.20)
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One important property of the tree function (4.19) is that the Taylor expansion
at z = 0 of its powers can be computed in closed form [9, Eq. (10)]:

T (z)s =
∞∑

k=0

s (k + s)k−1

k!
zs+k . (4.21)

Using this expression in (4.20) we obtain

B(s,t)
n (x) = (1− x)s+t+2n

∞∑

p=0

xp

p!
e−x(p+s)

×

p∑

j=0

(
p

j

)
(s+ t)j (s+ j) (p+ s)n+p−j−1 . (4.22)

From this equation we easily obtain the following proposition, which resembles
Proposition 4.1 for the (s, t)-Eulerian polynomials A

(s,t)
n :

Proposition 4.3. The second-order (s, t)-Eulerian polynomials B
(s,t)
n satisfy for any

n ≥ 0 and arbitrary parameters s, t the relation

xex(s−1) B
(s,t)
n (x)

(1− x)2n+s+t
=
∑

k≥1

(xe−x)
k

(k − 1)!

×

k−1∑

j=0

(
k − 1

j

)
(s+ t)j (s+ j) (k + s− 1)n+k−j−2 . (4.23)

When (s, t) = (1, 0), we get the following relation for the ordinary second-order

Eulerian polynomials Bn(x) = B
(1,0)
n (x):

xBn(x)

(1− x)2n+1
=
∑

k≥1

kn+k−1

(k − 1)!

(
xe−x

)k
, (4.24)

that resembles Eq. (4.13) for the ordinary Eulerian polynomials An(x). The proof of
these results makes use of the following combinatorial identities:

1 =
n∑

j=0

(
n

j

)
j! j

1

nj+1
=

n∑

j=0

(
n

j

)
(j + 1)!

1

(n+ 1)j+1
. (4.25)

A closed expression for the second-order generalized (s, t)-Eulerian numbers can
be obtained by writing (4.22) in the form

B(s,t)
n (x) =

∑

k≥0

xk

k!

k∑

r=0

(
k

r

)
(s+ t+ 2n)k−r

r∑

p=0

(
r

p

)
(−1)k−p

×

p∑

j=0

(
p

j

)
(s + t)j (s+ j) (p+ s)n+r−j−1 , (4.26)

to conclude
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Theorem 4.4. The second-order generalized (s, t)-Eulerian numbers are equal to

〈〈
n

k

〉〉

(s,t)

=

〈
n

k

〉(2)

(s,t)

=
1

k!

k∑

r=0

(
k

r

)
(s+ t+ 2n)k−r

r∑

p=0

(
r

p

)
(−1)k−p

×

p∑

j=0

(
p

j

)
(s+ t)j (s+ j) (p+ s)n+r−j−1 (4.27)

for n ≥ 0 and 0 ≤ k ≤ n.

Remarks. 1. Again, from Eq. (4.27) we see that the numbers
〈〈
n

k

〉〉
(s,t)

are polynomials

in both parameters s, t.
2. The ordinary second-order Eulerian numbers with the standard [15, Eq. (6.38)]

and the traditional [7] ordering are respectively given by

〈〈
n

k

〉〉
=

〈〈
n

k

〉〉

(1,0)

=

k∑

r=0

(−1)k−r

(
1 + 2n

k − r

){
n + r + 1

r + 1

}
, (4.28a)

Bn,k =

〈〈
n

k

〉〉

(0,1)

=
k∑

r=0

(−1)k−r

(
1 + 2n

k − r

){
n + r

r

}
=

〈〈
n

k − 1

〉〉
, (4.28b)

where the numbers
{
n

k

}
are the standard Stirling subset numbers [15]. The inverse

relation of Eq. (4.28a) is given in [15, Eq. (6.43)].
3. The second-order (s,−s)-Eulerian numbers take the form

〈〈
n

k

〉〉

(s,−s)

= s

k∑

r=0

1

r!

(
2n

k − r

) r∑

p=0

(
r

p

)
(−1)k−p (p+ s)n+r−1 . (4.29)

5 The ν-order generalized (s, t)-Ward numbers

Definition 5.1. Let ν, s ≥ 1 and t ≥ 0 be integers. The ν-order generalized (s, t)-
Ward numbers W (ν)(n, k; s, t) are defined as those satisfying the recurrence

W (ν)(n, k; s, t) = (k + s)W (ν)(n− 1, k; s, t)

+ (νn + k + s+ t− 1− ν)W (ν)(n− 1, k − 1; s, t) + δk0δn0 , (5.1)

with the additional conditions W (ν)(n, k; s, t) = 0 if n < 0 or k < 0.

The family of ν-order generalized (s, t)-Ward numbers is related to the ν-order

(s, t)-Eulerian numbers by a non-trivial involution F → F̂ that can be derived from
the following:

Proposition 5.2. Let F (x, y) = F (x, y;µ) be the solution of

−(β + β ′ x) x
∂F

∂x
+ (1− α y − α′ x y)

∂F

∂y
= (α + γ + (α′ + β ′ + γ′) x)F , (5.2)
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with parameters µ = (α, β, γ;α′, β ′, γ′), β 6= 0, and initial condition F (x, 0) =
F (x, 0;µ) = 1. Then,

F̂ (x, y) = F̂ (x, y; µ̂) = F

(
β x

β − β ′ x
, y

β − β ′ x

β
;µ

)
, (5.3)

is a solution of Eq. (5.2) with parameters

µ̂ =

(
α, β, γ;α′ + β ′ −

αβ ′

β
,−β ′, γ′ + β ′ −

γ β ′

β

)
, (5.4)

and initial condition F̂ (x, 0) = F̂ (x, 0; µ̂) = 1.

The straightforward proof relies on making the appropriate change of variables in
Eq. (5.2), and then regrouping the resulting terms. Proposition 5.2 implies

Corollary 5.3. If
∣∣n
k

∣∣ (resp.
∣̂∣n
k

∣∣) is the solution of

∣∣∣∣
n

k

∣∣∣∣ = (αn+ βk + γ)

∣∣∣∣
n− 1

k

∣∣∣∣+ (α′n+ β ′k + γ′)

∣∣∣∣
n− 1

k − 1

∣∣∣∣ + δn0δk0 (5.5)

with parameters µ (resp. µ̂), then

∣∣∣∣
n

k

∣∣∣∣ =

k∑

j=0

∣̂∣∣∣
n

j

∣∣∣∣
(
n− j

n− k

) (
β ′

β

)k−j

, (5.6a)

∣̂∣∣∣
n

k

∣∣∣∣ =

k∑

j=0

∣∣∣∣
n

j

∣∣∣∣
(
n− j

n− k

) (
−
β ′

β

)k−j

. (5.6b)

Remark. Notice that when ββ ′ 6= 0 the pair

ak =

k∑

j=0

âj

(
n− j

n− k

) (
β ′

β

)k−j

, (5.7a)

âk =

k∑

j=0

aj

(
n− j

n− k

) (
−
β ′

β

)k−j

, (5.7b)

is an inverse pair in the sense of Riordan [23] (see also [16]), and it generates the
combinatorial identity

k∑

i=j

(−1)i+j

(
n− i

n− k

)(
n− j

n− i

)
= δkj . (5.8)

According to the results presented in Sections A.15 and A.1.6 of Ref. [1], the EGF
for the ν-order (s, t)-Ward numbers FW (x, y; µ̂) with µ̂ = (0, 1, s; ν, 1, t+ s− ν − 1)

13



and the EGF for the (ν + 1)-order (s, t)-Eulerian numbers FE(x, y;µ) with µ =
(0, 1, s; ν + 1,−1, t− ν) are related by (cf. (5.3)):

FW (x, y; µ̂) = FE

(
x

1 + x
, y (1 + x);µ

)
, (5.9a)

FE(x, y;µ) = FW

(
x

1− x
, y (1− x); µ̂

)
. (5.9b)

If we use (4.2), we obtain from (5.9a) the EGF for the ν-order (s, t)-Ward numbers [1,
Section A.1.6]:

FW (x, y) =
Tν+1

(
ey (1+x)−ν

T−1
ν+1

(
x

1+x

))s

[
1− Tν+1

(
ey (1+x)−ν

T−1
ν+1

(
x

1+x

))]s+t

1

xs (1 + x)t
. (5.10)

Finally, using (5.6) we obtain the following

Corollary 5.4. The numbers
〈
n

k

〉(ν)
(s,t)

and W (ν)(n, k; s, t) are related by the equations

W (ν)(n, k; s, t) =

k∑

j=0

〈
n

j

〉(ν+1)

(s,t)

(
n− j

n− k

)
, (5.11a)

〈
n

k

〉(ν+1)

(s,t)

=

k∑

j=0

(−1)k−j W (ν)(n, j; s, t)

(
n− j

n− k

)
. (5.11b)

Notice that when (ν, s, t) = (1, 0, 1) we recover the Ward numbers [19, entry
A134991] W (1)(n, k; 0, 1) = W (n, k) =

{{
n+k

k

}}
, corresponding to the parameters

µ = (0, 1, 0; 1, 1,−1). The numbers
{{

n

k

}}
are the associated Stirling subset num-

bers [11], [19, entry A008299]. Eq. (5.11) relates these numbers with the second-order
(0, 1)-Eulerian numbers (i.e., the second-order Eulerian numbers with the traditional
indexing

〈〈
n

k

〉〉
(0,1)

= Bn,k) in the form mentioned in Eq. (1.1):

{{
n+ k

k

}}
=

k∑

j=0

Bn,j

(
n− j

n− k

)
, (5.12a)

Bn,k =

k∑

j=0

(−1)k−j

{{
n + j

j

}} (
n− j

k − j

)
. (5.12b)

As Bn,k =
〈〈

n

k−1

〉〉
for n ≥ 1 and 1 ≤ k ≤ n, we can substitute this expression

into (5.12) and, after some algebraic manipulations, we arrive at the formulas [24,
Corolaries 5 and 4]:

〈〈
n

k

〉〉
=

k∑

j=0

(−1)k−j

{{
n+ j + 1

j + 1

}} (
n− j − 1

k − j

)
, (5.13a)

{{
n+ k

k

}}
=

k∑

j=0

〈〈
n

j

〉〉 (
n− j − 1

k − j − 1

)
. (5.13b)
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6 Combinatorial interpretation of the generalized

Ward numbers

In this section, we will give a combinatorial interpretation of the ν-order general-
ized (s, t)–Ward numbers (cf. (5.1)) based on the identity (5.11a).

For fixed values of n, k, s, t, and a given generalized partition t of t with s parts,
the interpretation relies on the fact that, to obtain W (ν)(n, k; s, t), we sum over the
number of (ν + 2, t+ 1)–ary increasing (s, [n])–forests F with j ascents times

(
n−j

n−k

)
.

In this latter factor, n− j admits a simple interpretation in terms of the set E(F ) of
internal nodes of F that are the first (leftmost) children of their respective parents.
For a tree T with n internal nodes, the cardinal of this set is denoted by Dn,1 = |E(T )|
by Janson et al. [17]. We will see that

(
n−j

n−k

)
is closely related to the number of ways

of marking n− k nodes of the set E(F ).

1

∅ 2

3

∅ ∅ ∅ ∅

∅ ∅ ∅

∅ ∅

0

1

∅ ∅ 2

∅ ∅ ∅ ∅

∅

∅ ∅

(a) (b)

Figure 3: (a) A 4–ary increasing [3]–tree Ta, which is equivalent to the (3, [3])-Stirling
permutation 133322211 with one ascent at index 1 (which is underlined) and two
distinguished nodes (in boldface): the root and the one labelled 3. These nodes are
depicted in gray. Note that D0(Ta) = {①,③} and |D0(Ta)| = D3,1+1 = 2 for this tree.
(b) A (4, 3)–ary increasing [2]–tree Tb equivalent to the (3, 2, [2])–Stirling permutation
11222100 with one ascent at index 2, and one distinguished node (labelled 1). In
this case, D1(Tb) = {①} and |D1(Tb)| = D2,1 = 1. In both examples, all possible
distinguishable nodes are actually chosen.

Let us start with the simplest case s = 1 by considering the class of (ν+2, t+1)–
ary increasing [n]–trees. Then, for any tree T of this class with j ascents, it is easy
to prove that (see [17, Theorem 2]):

n− j = |E(T )|+ δt,0 . (6.1)
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When t > 0, we can choose the n−k distinguished nodes from the set Dt(T ) = E(T );
when t = 0, we make the choice from the set D0(T ) which is now the union of the
root node and the set E(T ). (Notice that our definition of ascent slightly differs from
that of Ref. [17].) See Figure 3 for two examples with t = 0 (a) and t > 0 (b). In
this figure, distinguished nodes are depicted in gray. Putting all together, we can
conclude that:

Theorem 6.1. Let us fix integers n, t ≥ 0, ν ≥ 1, and 0 ≤ k ≤ n. Then,
W (ν)(n, k; 1, t) counts the number of (ν + 2, t + 1)–ary increasing [n]–trees T with
at most k ascents and n− k distinguished nodes from the set Dt(T ).

0

2

∅ 3

∅ ∅ ∅ ∅

∅ ∅

∅ ∅

1

5

∅ ∅ ∅ ∅

∅ ∅ ∅

0

∅ 4

∅ ∅ ∅ ∅

∅

Figure 4: A (4, t + 1)–ary increasing (4, [5])–forest F = (T1, T2, T3, T4) with t =
(2, 0, 1, 0) and the generalized partition ({2, 3}, {1, 5}, {4},∅) of [5]. It corresponds
to the (3, t, 5)–Stirling permutation (23332200, 555111, 0444,∅) with 2 ascents and
two distinguished nodes (labelled 1 and 2) out of the three possible ones. From left
to right, the first tree T1 has one ascent at index 1 and one distinguished node out
of |D2(T1)| = 1; the second tree has no ascents and one distinguished node out of
|D0(T2)| = 2; the third tree has one ascent at index 1 and no distinguished nodes
(D1(T3) = ∅); and the last one, T4, is the trivial empty tree.

Let us now consider the extension of Theorem 6.1 for s ≥ 2. In this case, our basic
objects are indeed the (ν + 2, t+ 1)–ary increasing (s, [n])-forests F with j ascents.
Each connected component Ti of the forest F = (T1, . . . , Ts) is a (ν + 2, ti + 1)–ary
increasing Xi–tree, where (X1, X2, . . . , Xs) is a generalized partition of [n]. Let the
ji be the number of ascents of Ti, then |Xi| − ji = |Dti(Ti)|. If we define the set

Dt(F ) =
s⋃

i=1

Dti(Ti) , (6.2)
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we get that, irrespectively of the partition (X1, X2, . . . , Xs), for any (ν+2, t+1)–ary
increasing (s, [n])-forest F with j ascents

|Dt(F )| =

s∑

i=1

(|Xi| − ji) = n− j . (6.3)

This fact allow us to generalized Theorem 6.1 when s ≥ 2:

Theorem 6.2. Let us fix integers n, t ≥ 0, ν, s ≥ 1, and 0 ≤ k ≤ n. Given any
generalized ordered partition t = (t1, . . . , ts) of t, W (ν)(n, k; s, t) counts the number
of (ν + 2, t + 1)–ary increasing (s, [n])–forests F with at most k ascents and n − k

distinguished nodes from the set Dt(F ) defined in (6.2).

This theorem completes the combinatorial interpretation of the ν–order generalized
(s, t)–Ward numbers for ν, s ≥ 1 and t ≥ 0. Figure 4 shows an example of a (4, t +
1)–ary increasing (4, [5])–forest F = (T1, T2, T3, T4) with t = (2, 0, 1, 0), and the
generalized partition ({2, 3}, {1, 5}, {4},∅) of [5]. This forest has two ascents and
two distinguished nodes out of the three possible ones Dt(F ) = {①,②,⑤}.
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