
ar
X

iv
:1

30
8.

17
00

v1
  [

cs
.D

M
] 

 7
 A

ug
 2

01
3

A SIMPLE COMBINATORIAL INTERPRETATION OF CERTAIN

GENERALIZED BELL AND STIRLING NUMBERS

PIETRO CODARA, OTTAVIO M. D’ANTONA, PAVOL HELL

Abstract. In a series of papers, P. Blasiak et al. developed a wide-ranging
generalization of Bell numbers (and of Stirling numbers of the second kind)
that appears to be relevant to the so-called Boson normal ordering problem.
They provided a recurrence and, more recently, also offered a (fairly complex)
combinatorial interpretation of these numbers. We show that by restricting the
numbers somewhat (but still widely generalizing Bell and Stirling numbers),
one can supply a much more natural combinatorial interpretation. In fact, we
offer two different such interpretations, one in terms of graph colourings and
another one in terms of certain labelled Eulerian digraphs.

1. Introduction

In [BPS03a, BPS03b, MBP05, BHP+07] P. Blasiak et al. introduced coefficients
Br,s(n), and Sr,s(n, k) that provide a wide-ranging generalization of Bell numbers,
and of Stirling numbers of the second kind, respectively. In particular they defined
the generalized Bell polynomial (see [BPS03a, Equations (1.5) and (2.1)])1

Br,s(n, t) =

ns
∑
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Sr,s(n, k)t
k =

= e−t

∞
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(1)

where r, s, n, k are positive integers and r ≥ s.
These coefficients generalize Bell numbers, and Stirling numbers of the second

kind, usually denoted Bn, and S(n, k), respectively, because by letting r = s = t = 1
in the above formula, one obtains the classical formula of Dobinski [Com74]

(2) B1,1(n) =
1

e

∞
∑

k=0

kn

k!
.

In fact Bn = B1,1(n), and S(n, k) = S1,1(n, k).

The work of P. Blasiak et al. was motivated by the fact that their coefficients
appear to be relevant for the so called Boson normal ordering problem.

In [BPS03b] the authors asked for a combinatorial interpretation of these coef-
ficients. Later on, in [BHP+07], they provided one such interpretation, in terms of

Date: August 9, 2013.
1We denote by (x)n the falling factorial x(x − 1) · · · (x − n + 1). (Note that the authors of

[BPS03a, BPS03b, MBP05, BHP+07] use the symbol xn instead.)
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what they called colonies of bugs. We refer to [BHP+07, Section III] for the exact
definition, but we remark that a colony of bugs is a fairly complex object that
corresponds to a labelled tree whose vertices include labels as well as cells. Each
bug in a colony corresponds to a subtree, and has a type (r, s); it consists of a body
of r cells, as well as of s legs, some of which can be free [BHP+07, Section III]. It
turns out ([BHP+07, Theorem 3.1]) that Br,s(n) counts the number of colonies of
n bugs each of type (r, s), and that Sr,s(n, k) counts the number of such colonies
having exactly k free legs.

In this note we suggest a simpler combinatorial interpretation of these coeffi-
cients, at least in some important cases. Our interpretations are stated in standard
combinatorial terminology, in terms of colourings and labeled Eulerian digraphs.

Our focus is the case r = s. We supply two simple combinatorial interpretations
of the coefficients Bm,m(n) and Sm,m(n, k), for all positive integersm,n, k. We note
that these coefficients are still much more general than the Bell numbers B1,1(n)
and the Stirling numbers of the second kind S1,1(n, k). Our first interpretation
(Section 2) is in terms of colourings of a certain graph. In Sections 3 we supply
another interpretation of the same numbers in terms of the number of certain
labeled Eulerian digraphs. Finally, in Section 4 we remark that in the general case
when r and s are different, there appear to be in certain cases well-known simple
combinatorial interpretations as well; we discuss mostly the case r = 2, s = 1, but
also remark on possible connections for certain values in the cases r > 2 and s = 1.

2. Colourings

A k-colouring of a graph G is a partition of the vertex set of G into k non-empty
stable sets, i.e. sets not containing adjacent vertices. Each such stable set is called
a colour-class of the partition.

Sometimes a k-colouring is defined as a mapping of vertices into a set of k colours,
so that adjacent vertices obtain different colours. We note that for us the names
of the colours do not play a role, i.e., two mappings that yield the same partition
are considered the same colouring. Moreover, we require that each colour-class is
non-empty (which corresponds to the requirement that each colour is used).

We denote by Km the complete graph on m vertices, and by nKm the disjoint
union of n copies of Km.

For positive integers m,n, k, let Cm(n, k) denote the number of k-colourings of
nKm. We first prove a recurrence for the numbers Cm(n, k).

Proposition 2.1. We have

(3) Cm(n, k) =

m
∑

i=0

(

m

i

)

(k − i)m−iCm(n− 1, k − i) ,

with initial conditions

Cm(n, k) = 0 whenever k < m , and

Cm(1, k) =

{

1 if k = m,

0 otherwise .

Proof. The case k < m is trivial (with fewer then m colours we cannot colour Km).
It is also obvious that when n = 1 we have a unique k-colouring of Km when k = m,
and none when k > m.
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To prove the recurrence, we describe how to obtain, in two steps, all k-colourings
of nKm, for k ≥ m and n 6= 1. Fix an arbitrary copy of Km.

(1) Choose i vertices of the fixed Km, each forming a singleton colour-class.

(2) Insert the remaining m − i vertices of the fixed Km in the colour-classes of
all (k − i)-colourings of (n− 1)Km.

Step (1) can be done in
(

m
i

)

ways, and step (2) in (k − i)m−iCm(n − 1, k − i)
ways. Our claim is proved. �

Remark. Note that Cm(n, nm) = 1.

We now have the following result.

Proposition 2.2. Sm,m(n, k) counts the number of k-colourings of nKm. In other

words, Sm,m(n, k) = Cm(n, k).

Proof. A simple manipulation of the formulas shows that recurrence (3) coincides
with the recurrence (21) in [BPS03b], namely:

Sr,r(n+ 1, k) =

r
∑

p=0

(

k + p− r

p

)

(r)pSr,r(n, k + p− r) .

Indeed, (m)i
(

k+i−m
i

)

= (k + i−m)i
(

m
i

)

. �

Needless to say, the recurrence (3) generalizes the classical recursion for the
Stirling numbers of the second kind. Using (3), we can compute a few examples.
In Table 1 we compute the number of k-colourings of nK3.

S3,3(n, k) k=3 4 5 6 7 8 9 10

n=1 1
2 6 18 9 1
3 36 540 1242 882 243 27 1
4 216 13608 94284 186876 149580 56808 11025 1107
5 1296 330480 6148872 28245672 49658508 41392620 18428400 4691412

Table 1. S3,3(n, k).

Table 1 also appears in [BPS03a, Table 1]. Denoting by Bm(n) the number of
all colourings of nKm, we have (cf. [BPS03a, Equation (1.5)]):

(4) Bm(n) =

nm
∑

k=m

Cm(n, k) =

nm
∑

k=m

Sm,m(n, k) = Bm,m(n) .

For instance, summing the rows of Table 1 we obtain 1, 34, 2971, 513559, . . . , that
is the sequence B3,3(n) in [BPS03a], that is the sequence A069223 from [OEIS].

Example 1. Figure 1 shows the graph 2K3.

a

b

c d

e

f
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Figure 1. The graph 2K3.

The eighteen 4-colourings of 2K3 are

a|d|be|cf a|d|bf |ce a|e|bd|cf a|e|bf |cd a|f |bd|ce a|f |be|cd

ad|b|e|cf ad|b|f |ce ae|b|d|cf ae|b|f |cd af |b|d|ce af |b|e|cd

ad|be|c|f ad|bf |c|e ae|bd|c|f ae|bf |c|d af |bd|c|e af |be|c|d .

3. Labelled Eulerian Digraphs

We consider digraphs that allow loops and multiple edges in the same direction.
A digraph G is Eulerian if at every vertex the in-degree equals the out-degree.
(Note that we do not require G to be connected.) The edge set of an Eulerian
digraph G can be partitioned into directed cycles. We call an Eulerian digraph
(n,m)-labelled if its edge set is partitioned into n directed m-cycles, each with a
distinguished first edge (and hence a unique second, third, etc., m-th edge). Figure
2 shows a (2, 3)-labelled Eulerian digraph, with its 2 directed 3-cycles; the jth edge
of the ith cycle is labelled ei,j .

e11

e12

e13

e22

e21

e23

Figure 2. A (2, 3)-labelled Eulerian digraph.

Theorem 3.1. The number of (n,m)-labelled Eulerian digraphs is equal to Bm,m(n).

Proof. We show a bijection between the set of (n,m)-labelled Eulerian digraphs and
the number of colourings of nKm. To this end we assign an arbitrary order to the n
cliques of nKm. Thus the vertices of nKm will be called vi,j for i = 1, 2, . . . , n, and
j = 1, 2, · · · ,m. We define a bijective mapping φ associating ei,j with vi,j . (Here
ei,j is the ith edge of the jth cycle.)

• From graphs to colourings. Let Tm(n) be the set of (n,m)-labelled Eulerian
digraphs. Here we establish a bijection between the k-colourings of nKm and the
elements of Tm(n) with k vertices. Let now τ be an element of Tm(n) with k

vertices. Let , for t = 1, 2, . . . , k, Bt be the set of edges of τ that are incident in
vertex t. It is obvious that

{B1, B2, . . . , Bk}

is a partition of the set of edges of τ . Now, by construction, one sees that

{φ(B1), φ(B2), . . . , φ(Bk)}

is a k-colouring of nKm.
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For instance, the graph drawn in the picture 2 corresponds to the following
colouring of 2K3

v1,3 | v1,1v2,1 | v1,2v2,3 | v2,2

• From colourings to graphs. Let π = {B1, B2, ..., Bk} be a colouring of nKm. We
describe the directed graph, τ , associated with π.

τ has k vertices, say w1, w2, ..., wk. To define the edges of τ we assume first
m > 1. Let, for i = 1, 2, ..., n, and j = 1, 2, ...,m, Bp be the block of π containing
vertex vi,j , and Bq be the block of π containing vertex vi,j+1. Notice that the
indices of the vertices of nKm are considered in clockwise order: vi,m+1 ≡ vi,1.
Then edge ei,j starts at wp, and ends at wq.

If m = 1, the edges of τ are loops. Specifically ei,1 starts and ends at wt, where
t is the index of the block of π containing vertex vi,1. �

Thus we can say again that the number of (n,m)-labelled Eulerian digraphs
with k vertices enjoy the same recurrence as Sm(n, k). Therefore counting these
graphs corresponds to another combinatorial interpretations of the coefficients of
[BPS03a].

We close the Section with a remark. It is obvious that any k-colouring of a given
set is fully described by any k − 1 of its colour-classes. Accordingly, one can give
a slightly different interpretation of coefficients Sm(n, k) by removing the last edge
from each cycle, producing a partition into labeled directed paths instead of cycles.
This model generalizes the concept of loopless, oriented multigraphs on n labeled
arcs as in A020556 in [OEIS].

4. Conclusions

We hope that simpler combinatorial interpretations can be found for other gen-
eralized Bell numbers and Stirling numbers of the second kind. In particular, we
note that our bijections (in Sections 2 and 3) exist for the disjoint union of cliques
of different sizes.

For the coefficients S2,1(n, k) we observe that Equation (15) of [BPS03b] implies
that S2,1(n, k) is equal to the (positive) Lah number

L(n, k) =
n!

k!

(

n− 1

k − 1

)

.

According to the classical interpretation of Lah numbers, this means that S2,1(n, k)
counts the number of ordered placements of n balls into k boxes, and B2,1(n) counts
the number of ordered placements of n balls into boxes [Com74].

Table 2 provides some values of S2,1(n, k). Those values also appear in [BPS03a,
Table 1], and in sequences A105278 of [OEIS], where further combinatorial inter-
pretations of such coefficients are proposed.

Finally, we remark that the values of S3,1(n, 1) in Table 1 in [BPS03a] appear
to be identical to the sequence A001147 from [OEIS], which counts the number of
increasing ordered rooted trees on n+1 vertices. (Here ”increasing” means the ver-
tices are labeled 0, 1, 2, ..., n so that each path from the root has increasing labels.)
Similarly, the values S4,1(n, 1) appear to be identical to the sequence A007559 from
[OEIS].
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S2,1(n, k) k=1 2 3 4 5 6 7 8 9

n=1 1
2 2 1
3 6 6 1
4 24 36 12 1
5 120 240 120 20 1
6 720 1800 1200 300 30 1
7 5040 15120 12600 4200 630 42 1
8 40320 141120 141120 58800 11760 1176 56 1
9 362880 1451520 1693440 846720 211680 28224 2016 72 1

Table 2. S2,1(n, k).
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