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ON THE MINIMUM ORDER OF k-COP-WIN GRAPHS

WILLIAM BAIRD, ANDREW BEVERIDGE, ANTHONY BONATO, PAOLO CODENOTTI,
AARON MAURER, JOHN MCCAULEY, AND SILVIYA VALEVA

ABSTRACT. We consider the minimum order graphs with a given cop num¥r prove that
the minimum order of a connected graph with cop nuntbisr10, and show that the Petersen
graph is the unique isomorphism type of graph with this prgpeWe provide the results of
a computational search on the cop number of all graphs updaretuding orderl0. A rela-
tionship is presented between the minimum order of graph wdp numbek and Meyniel's
conjecture on the asymptotic maximum value of the cop nurabarconnected graph.

1. INTRODUCTION

Cops and Robbers vertex-pursuit game played on graphs that has been the fifanuch
recent attention. Throughout, we only consider finite, @med, undirected graphs. There are
two players consisting of a set obpsand a singleobber. The game is played over a sequence
of discrete time-steps apunds with the cops going first in the first round and then playing
alternate time-steps. The cops and robber occupy verioglsmore than one cop may occupy
a vertex. When a player is ready to move in a round they musenma neighboring vertex. We
include loops on each vertex so that players pass or remain on their own vertex. Observe
that any subset of cops may move in a given round. The copsfaiter some finite number
of rounds, one of them can occupy the same vertex as the robteris called acapture The
robber wins if he can avoid capture indefinitelyw#nning strategy for the copgs a set of rules
that if followed, result in a win for the cops, andaanning strategy for the robbes defined
analogously.

If we place a cop at each vertex, then the cops are guaramteed.tTherefore, the minimum
number of cops required to win in a graphis a well defined positive integer, named ttap
numberof the graphGG. We write ¢(G) for the cop number of a graphi, and say that a graph
satisfyingc(G) = k is k-cop-win For example, the Petersen graptsisop-win. If k = 1,
then we say thatr is cop-win Nowakowski and Winkler [12], and independently Quilliad],
considered the game with one cop only; the introduction efdbp number came inl[1]. Many
papers have now been written on cop number since these dmgaverks; see the book][4] for
additional references and background on the cop number.

Meyniel’'s conjecture is one of the deepest unsolved problemthe cop number. It states
that for a connected graphi of ordern, ¢(G) = O(y/n). Hence, the largest cop number of
a graph is asymptotically bounded abovedayn for a constantl. The conjecture has so far
resisted all attempts to resolve it, and the best known ®(sek, for example, [10]) do not
even prove that(G) = O(n®), fore < 1.

The goal of the current study is to investigate the minimudeoof graphs with a given cop
number. For a fixed positive integeydefinem,, to be the minimum order of a connected graph
G satisfyinge(G) > k. Define M, to be the minimum order of a connecteetop-win graph.

It is evident that then, are monotonically increasing, and, < M,..
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Up until this study, only the first two values of these pararetvhere knownin, = M; = 1
andms = M, = 4 (witnessed by thé-cycle). We derive thati; = M3 = 10; interestingly, the
Petersen graph is the unique isomorphism typ&cdp-win graph with ordet0. In addition to
a proof of this fact, we performed a computer search to caleuthe cop humber of every con-
nected graph on 10 or fewer vertices (there are nearly 12omi#luch unlabelled graphs). We
performed this categorization by checking for cop-win onmtigs [12] and using an algorithm
provided in [5]. We present these computational resulteértext section.

We prove the following theorems.

Theorem 1. If G is a graph on at mosi vertices, ther(G) < 2.

Theorem 2. The Petersen graph is the unique isomorphism type of gragii eertices that is
3-cop-win.

The proofs of Theorenis 1 ahd 2—which are deferred to Selckieexploit new ideas which
are of interest in their own right. In particular, we proveude of structural lemmas concerning
the cop number of graphs containing a vertex whose co-déegeegmall constant, namely with
maximum degree at least— 7, wheren is the order of the graph.

Further, we prove that Meyniel’'s conjecture is equivalenbbunds on the values,; see
Theoren B. We give lower bounds on the growth rates of the en@inon-isomorphié-cop-
win graphs of a given order in Theoréin 4.

For background on graph theory séel[16]. We use the notatiéh = |V (G)|. We use
the notation” and E for the vertices and edges of a graghrespectively, ifGG is clear from
context. Foru,v € V, we writeu ~ v whenuv € E. ForS C V, we writeu ~ S
whenu ¢ S and there exists € S such that, ~ v. Given a vertex, its neighborhoods
N() = {u € V | (v,u) € E}, and itsclosed neighborhoots N[v] = {v} U N(v). We
defineN(S) = U,es N(v) \ S andN[S] = |J,s N[v]. For convenience, we use the notation
N(u,v) = N({u,v}). Avertexv isdominatedy the vertexv if N[v] C N[w]. ForS C V(G),
the subgraph induced by is denoted>[S]. We use the notatioX \ Y for the difference of
sets. IfH is an induced subgraph 6f, then we writeG — H for G[V(G) \ V(H)]. For a set
S of vertices ofGG, we also writeG — S for G|V (G) \ S]. For sets of vertices, 7" C V, we
denote the set of edges between the two setSbyl'| = {st € F | s € S,t € T}, and we use
|S : T'| to denote the cardinality of this set. We denote the minimegree byj(G) and the
maximum degree byA(G). We generalize the latter symbol to subsets of verticesSfar V,
A(S) = maxgeg deg(s).

2. COMPUTATIONAL RESULTS

We present the results of a computer search on the cop nurhberatl order graphs. For
a positive integer, define f;(n) to be the number of non-isomorphic connectedop-win
graphs of order. (that is, theunlabelledgraphsG of ordern with ¢(G) = k). Defineg(n) to
be the number of non-isomorphic (not necessarily connggtieghbhs of order., andg.(n) the
number of non-isomorphic connected graphs of orddrivially, for all &, f.(n) < g(n). The
following table presents the valuesg@fg., fi, and f, for small orders.

The values ofy and g. come from [15], f; was computed by checking for cop-win order-
ings [12], while f, and f3; were computed using Algorithm 1 inl[5]. Among these grapleseh
is only one grapltz of order10 that requires 3 cops to win (which independently verifies-The
oremd_1 andl2). The graph must be the Petersen graph, since we know that it is 3-cop win.
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‘ ordern H g(n) ‘ ge(n) ‘ fi(n) ‘ fa(n) ‘ f3(n) ‘
1 1 1 1 0 0
2 2 1 1 0 0
3 4 2 2 0 0
4 11 6 5 1 0
5 34 21 16 5 0
6 156 112 68 44 0
7 1,044 853 403 450 0
8 12,346 11,117 3,791 7,326 0
9 274,668 | 261,080 | 65,561 | 195519 | O
10 12,005,168 11,716,571 2,258,313 9,458,257 1

3. MEYNIEL'S CONJECTURE AND GROWTH RATES

The following theorem, while straightforward to prove,ssep an unexpected connection
between Meyniel’s conjecture and the ordengf.

Theorem 3. (1) my = O(K?).
(2) Meyniel’s conjecture is equivalent to the property that

Hence, if Meyniel's conjecture holds, then Theorfém 3 ingptieatm;, = O(k?).

Proof. The incidence graphs of projective planes have o2der + ¢ + 1), whereg is a prime
power, and have cop number- 1; see[2] or[13]. Hence, this family of graphs show that for
¢ a prime power,

Mgt1 = O(QQ)
Now fix k£ a positive integer. Bertrand’s postulate (which statesdliantegerse > 1, there is
a primeq betweenr and2z; see[[6/ 8]) provides a primgwith £ < ¢ < 2k. Hence,

mi < my < mepn = 0(g) = O((2k)%) = O(K?).

For item (2), if m; = o(k?), then there is some connected graplwith ordero(k?) and
cop numberk. But Meyniel's conjecture implies tha{G) = o(k), a contradiction. Hence,
Meyniel's conjecture implies that, = Q(k?).

For the reverse direction, suppose that = Q(k?). For a contradiction, suppose that
Meyniel’s conjecture is false. Then there is a connectegtgfaof ordern with ¢(G) = k =
w(y/n). Theny/n = o(k), and son = o(k?). But thenm,;, < n = o(k?), a contradiction. [

While the parameters,,, are non-decreasing, an open problem is to determine whistber
M, are in fact non-decreasing. A possibly more difficult probie to settle whether, = M,
for all £ > 1. The gap in our knowledge of the parameters and M, points to the question
of growth rates for the classes of connecktedop-win graphs. It is well known (see [15] for
example) that

9(5)

gin) = (1+o(1)=

2 %n2 — %n—n log, n+nlog, e—O(logn)

)
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where the second equality follows by Stirling’s formula. eTfollowing theorem supplies a
super-exponential lower bound to the paramefgr#\ vertex isuniversalif it is adjacent to all
others. Iff : X — Y is a function andS C X, then we denote the restriction ¢fto S by

f1s.

Theorem 4. (1) Foralln > 1,g(n —1) < fi(n).
(2) Fork > 1,and alln > 2my, g(n —my, — 1) < fi(n).

Proof. For item (1), fix a grapldz of ordern — 1. FormG’ by adding a universal vertex t@. If
G 2 H, thenitis an exercise to show that ¢ H'. Item (1) now follows sincé&:’ is cop-win.

For item (2), giverG of ordern — m;, — 1, form a graphG+* as follows. First formG’ with
the new universal vertex labelled;. Fix a k-cop-win graphH of orderm, (which we label as
Hg), and specify a fixed vertey; of H. Add the bridgerqye connectingH; to G-

We first claim thatG** is k-cop-win. We have that(G**) > k, since a winning strategy for
the robber if there are fewer thancops is to remain il ;. To show that(G**) < k, a set of
k cops plays as follows. At the beginning of the game, one camig;, while the remaining
cops stay inG. Then R cannot move ta>’ without being caught, so the robber movesin.
All the cops then move té/; and play their winning strategy there, with the followingyeat.

If R moves outsidé{, then the cops play as & is ony. Eventually, the robber is caught in
Hg, or the robber is inG’ and at least one cop occupigs. But then that cop moves ta; to
win.

To finish the proof of (2), we must show thatif2 J, thenG** 2 J**. For a contradiction,
let h : G** — J** be an isomorphism. Then we must havea) = z; by noting thatzg
andz; are the only vertices with the maximum degree m,, (note thaty; has degree at most
my < n — my by hypothesis). The vertey; is unique with the property that it is adjacent to
z¢ and has neighbors not adjacenti4o (the same holds by replacing the subscéipby J).
But thenh(Hs) = H;, which implies the contradiction that restricted mappindG : G — J
is an isomorphism. O

We do not know the asymptotic order féif (even ifk = 1). A recent result[3] proves that
the number of distindabelledcop-win graphs ig:2""~zm+o(m)

4. PROOFS OFTHEOREMS[I AND [2

We now proceed to the proofs of Theorems 1 land 2, but firstdotre notation for the state
of the game. We fix a connected grapton which the game is played. The state of the game
is a pair(C'; r), whereG is a connected grapli; is ak-tuple of vertices” = (c¢y, o, ..., cx),
wherec; € V(G) is the current position of co@’;, andr € V(G) is the current position of the
robberR. For notational convenience, we writ@, ..., cx; r) for ((c1,...,cx); r). When we
need to specify whose turn it is to act, we underline the msitf the player whose turn it is:
(C'; r) denotes that it is the cops’ turn to move, dxd; r) the robber’s.

We use a shorthand notation to describe moves: . ., ¢ ; 7)—(c}, ..., ¢, ; r) denotes the
cop move where each; moves frome; to ¢,. Similarly (cy,...,cx; )= (¢, ... ;5 1) de-
notes the robber's move fromto ’. We will concatenate moves and we use the shorthand
meaning a cop move followed by a robber move:

(017"'7016; T)H')(Cllw"?c;c; 7’/)
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is equivalent to
(c1yo.yen; r)= (s )= (), o s 1),

There will be cases where the strategy allows for either tider or the cops to be in one
of several positions. In general, f@i C V, S C V, the state of the game has the form
(Ty,...,Ty; S) means that; € T;, andr € S.

The robber’'ssafe neighborhogddenotedS(R), is the connected componentGf— N|[C]
containing the robber. We say that the robbetragpedwhen S(R) = (). This condition is
equivalent to having both € N(C) andN(r) C N|[C]. Once the robber is trapped, he will be
caught on the subsequent cop move, regardless of the relmsxt action. When the robber is
trapped, we are in @p-winning positiondenoted bys'.

4.1. The end game. We frequently use the following facts to identify cop-wimategies for
two cops in the end game. We state a more general versionss theults fok: cops.

We need the following property arising in the study of coprgraphs, which first appears in
[7]. Every cop-win graph has at least one winnimgrbacktrack strategfor the cop, meaning
a winning strategy where the cop never repeats a vertexglthimpursuit. Typically, a graph
has multiple winning no-backtrack strategies. We say thadrgexv is no-backtrack-winning
if there is a winning no-backtrack strategy for the cop stgratv. For example, whely is a
tree, every vertex is no-backtrack-winning.

Next we fix some notation. For a dét= {u,,...,u:} C V, et N/, (u;) = N(u;)\N[U \ u;]
be the neighbors af; that are not adjacent to any other vertexin

Lemma 5. Let (C'; r) be the state of the game. Suppose that there exists=aC' such that
either(a) [S(R) : Ni(¢j)] = 0 andG[S(R)] is cop-win; or(b) N(S(R)) N Nj(¢;) = {v} such
that H = G[S(R) U {v}] is cop-win andv is no-backtrack-winning ir{. Then the cops can
win from this configuration.

Proof. Let S = S(R) be the initial safe neighborhood @. In both cases, only cop’; is
active, while the others remain stationary. In case (a),€pmoves intoS and follows a cop-
win strategy onz[S]. In case (b), cof’; moves tov and then follows a no-backtrack strategy
on G[S U {v}]. This prevents the robber from ever reachindn both cases, the only way for
the robber to avoid capture Igy; is to move into the neighborhood of the remaining copsl

We highlight two useful consequences that are used heayily £ 2 in subsequent proofs.

Corollary 6. Let(C'; r) be the state of the game, played with> 2 cops. If|S(R)| < 2 and
IN(S(R))| < 2k — 1, then the cops can win.

Proof. Let S = S(R). We have N(S) N N(C)| < 2k — 1, so the pigeonhole principle ensures
that there exists a ca; such that N (S)N N/ (c;)| < 1. We are done by Lemnia 5, since every
vertex of a connectetvertex graph is non-backtrack-winning. 0

Corollary 7. Let(C'; r) be the state of the game, played witk> 2 cops. If

d <3
nax egq(v) <

and S(R) contains at most one vertex of degehen the cops can win.
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Proof. Let S = S(R). SinceG[S] is connected, we hajé : N(C')] < 3. Therefore, some cop
C; has|S : Ni(c;)| < 1. If G[S] is a tree, then we are done by Lemimha 5[] is not a tree,
thenG[S] must be unicyclic with one degree 3 vertex, sayTherefore|S : N(C)| = 1, and
except foru, every vertex in the cycle has degree 2inA winning strategy for the cops is as
follows: two cops move until they both reach Now S(R) is a path, so Lemma 5 completes
the proof. U

4.2. Graphswith A(G) > n—6. Inthis section, we prove Theorérm 1. We also make progress
on the proof of Theorernl 2 by showing thatifG) = 10 andA(G) = 4, thenc¢(G) < 2. For
convenience, we recall the statements of these resultstpribeir respective proofs.

Lemma 8. Let G be a graph om vertices. If there is a vertex € V(G) of degree at least
n — 6, then eithere(G) < 2 or the induced subgrap&[V \ N|u]] is a 5-cycle.

Corallary 9. If A(G) > n — 5, thenc(G) < 2.

Lemmal[8 and its immediate corollary are crucial tools in prgwthe main results. In par-
ticular, Theorem 1 is a quick consequence of Corollary 9sTaduces the search to 10 vertex
graphs with2 < §(G) < A(G) < 4.

Proof of Lemmél8BLet H = G[V \ N|u]]. By Lemmdi(a), ifd is cop-win, ther:(G) < 2. In
particular this holds iff does not contain an induced cycle of length at least 4. So \Wyeneed
to consider the case wheréH ) = 4 or 5, andH contains an induceglcycle. Letxy, 2, x3, 4
form the 4-cycle inH (in that order). Letr; be the additional vertex (if present).

We now distinguish some cases based\gm;) N H. If x5 ~ z; for everyi € {1,2,3,4},
then H is cop-win, and hencey(G) < 2. We therefore have 5 cases to consider, depicted in
Figure[4.1. Case (a) includes the situation wheg(u) = n — 5, and there is no vertexs.

X9 X9 X9 M) T

XT3 it I@Il I@Il I@Il .I@Z‘l
Ty Ty T4 Ty Ty
(a) (b) (c) (d) (e)

a C e

FIGURE 4.1. The five cases far[V \ N[u]] in Lemma8.

First we make some technical claims. We start by noting thating toz; is in most situa-
tions a bad idea for the robber in Cases (a), (b) and (c).

Claim 1. In Cases (a), (b), and (c), if the state of the game is of tm{dV|u], V(H); z5),
the cops have a winning strategy.

For the proof of the claint; moves tou. In Case (a)S(R) = {z5} and we are already done
by Corollary[6. In Case (b), if possibl€), moves directly tar,; otherwise (', moves first to
x1 and then tar,; in either case the robber is trappedrat In Case (c)(> moves tor, or x;
(whichevere, is adjacent to), again trapping the robberinThe proof of the claim follows.

Next we consider the structure 8f(y) NV (H) for verticesy € N(u).
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(B3)

FIGURE 4.2. The four classes of possible structureg-dor Claim 2. Vertex
x5 might not be present, and dashed edges might not be present.

Claim 2. Suppose the state of the game has the fak|, {z1, 23} ; y), wherey € N(u) is

such that eithera) N(y) NV (H) = {x2, 24}, Or (b) y is adjacent to at most one of or x;
then the cops have a winning strategy.

For the proof of the claim, Figute 4.2 shows the four clas$@®ssible graph structures. Let
us first consider the structure (B1). Let= z,. C; moves tou, andC; moves toz. Now the
robber is trapped in all cases of Figlrel4.1 except Caser(@ase (a) the robber’s only move
is to z5. After this move, the robber can be caught by Claim 1. The szwpestrategy works
for structures (B2) and (B3), taking= z,. A simplified version of this proof shows that the
same cop strategy works for structure (A), taking c,. The proof of the claim follows.

We remark that in Cases (d) and (e) of Figure 4;landx; are symmetric, so the statement
holds also for configuratioWV|ul, zs ; y)

The next claim concerns the situation where there are twiecesrin N () that do not satisfy
the condition of the previous claim.

Claim 3. If there are two verticeg, = € N(u) suchthafzs, z3, 24} C N(y), and{zy, za, x4} C
N(z), thenc(G) < 2.

For the proof of Claim 3, first we deal with all cases but Cage {dthe cops start at and
z. If the robber starts ats, the cops’ winning strategy igu, z ; x3)—(u,y; x3)% . [Anthony:
clarify the use of the % notation here] If the robber starts ats, the strategy will depend on
the structure of{. In Cases (a), (b), and (c) we are done by Claim 1. In Case ¢dptlowing
is a winning strategytu, z ; x5)—(u, 1 ; 25)% .

The remainder of the proof deals with Case (d), which reguareore involved argument.
First suppose that there existse N (u) such thaf{xs, x4, 25} C N(w). Then the cops start
atu andz. The robber can start at; or x5 in either case the cops have a winning strategy:

(u, 25 x3)=(y,u; x3)€; 0r (u, 25 x5)—=(w,u; x5)E.

Now assume that no sueh exists. Start the cops atandy. The robber starts iz, x5 }.
If the robber starts at,, then(u,y; x1)—(y,u; x1)¢. So we may assume the robber starts
atwzs. If |[N(z5) N N(u)] < 1, we are done by Corollafyl 6. Otherwise, the cops move by
(u,x3; x5)—=(v, 2; x5), for somev € N(x5) N N(u). The robber is forced to move to some
w € N(z5) N N(u) (if no suchw exists, thenR is trapped). By our initial argument; cannot




8 W. BAIRD, A. BEVERIDGE, A. BONATO, P. CODENOTTI, A. MAURER]. MCCAULEY, AND S. VALEVA

be adjacent to both, andz,, so the state satisfies the conditions of Claifd 2(b), and thefp
of the claim follows.

Claim 4. Eitherc(G) < 2, or we can relabel the vertices &f via an automorphism off so
thatz, is adjacent taV(u).

To prove the claim, suppose that no such relabeling exiseswilshow a winning strategy
for the cops, starting atandzs. In Cases (a) and (b) the claim follows from Corollaly 6 (eith
S(R) = {x1} or S(R) = {z5}). In Cases (d) and (e (R) C {x1, x5}, and we are assuming
that bothz, andx; have no edges t&/(u); hence|N(S(R))| < 2, and we are again done by
Corollaryl6. In Case (cy(R) = {z1, z5}, and we are assuming that bathandz, do not have
neighbors inV(«). By Claim 1, we may assumi does not start ats, and SoR starts atr;.
Letv € N(u) N N(xs) (if 25 ~ N(u), thenN(S(R)) is dominated by, = z3). Now the cops
can win by following the strateg\u, x5 ; x1)— (v, z3; x1)%. The proof of the claim follows.

Armed with the above claims, we now conclude the proof LernimBy8Claim 4, we may
assumer; ~ w € N(u). Initially placeC; atu andC; atz;. The robber could start ag or, in
Cases (a), (b), and (d), a%. If the robber starts at; in Cases (a) and (b), then we are done by
Claim 1. In Case (d)z; andx3 are symmetric, so without loss of generality= x5, and the
initial state is(u, z; ; x3).

If 23 ~ N(u), then the cops win by Corollaky 6. Otherwisedet N(z3) N N(u). ThenC}
moves fromu to v, while C, remains fixed at, forcing R to somey € N(u) N N(z3), with
y =~ v,y ~ x1. If N0 suchy exists, thenk is trapped. Ify is adjacent to only one af, or x4,
we are in the staté € N(u), z; ; y), which satisfies the conditions of Claim[2 (b), and hence,
the cops have a winning strategy.

Otherwisey is adjacent tars, 23, andz,. The cops movév, x; ; y)—(z3, w; y), for some
w € N(x1) N N(u). If y ~ x5, and R moves tors, then the cops win: in Cases (a),(b),(c) we
are done by Claim 1; in Case (d)3, w; z5)—(y,u; ©5)%; in Case (e), the cops can adopt a
different strategy from the beginningz, y ; z1)—(u, x5 ; £1)¢. The only other option is foR
to move to some € N(u), z = z3. So the state i3, w; z). Either the paiy, z satisfies the
conditions of Claim 3, or the current state satisfies the itammd of Claim 2(b) ori(r). In either
case, we are done. This concludes the proof of Lefima 8. O

We now state some quick but useful consequences of Lérhma 8.

Corollary 10. Let G be a graph om vertices. If there is a vertex € V' of degree at least
n —6,and avertex € V' \ N[u] such thai N(v) \ N(u)| > 3, thenc(G) < 2.

Proof. The vertexv has three neighbors i@[V' \ N[u]], and hence[V \ N[u]] cannot be a
5-cycle. O

Corollary 11. LetG be a graph om vertices. If there is a vertex of degree at least — 6
and a vertexw € V' \ N[u] with deg(v) < 3, thenc(G) < 2.

Proof. By Lemmal8, we only need to consider the case whgf¥ \ N[u]] is a 5-cycle,
x1, Ta, T3, T4, T5 (iN that order). Without loss of generality, létg(z,) < 3, anddeg(xs) > 3.

Foreach = 1,...,5 suchthatleg(x;) > 3, pick somey; € N(z;) NN (u) arbitrarily (we allow
y; = y; for i # j). The game starts as, x4 ; {z1,z2})—(u, {3, 24} ; z1). First we deal with
the case wherdeg(z;) = 2 and the case wherig(z;) = 3 andy; ~ x4. The cops’ winning
strategy for these two cases is the satwe{zs, x4} ; ©1)— (Y2, a5 1) (22, 245 21)F.
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Now we may assume that al] have degre8, and hencey; exists for alli. We may further
assume that, # y;, and, sincers andz, are symmetric, we are also done in the case xs.
The only remaining possibility i8/(y,) N (V' \ N[u]) C N|x;]. Sincex; andz, are symmetric,
without loss of generality, the state(is, «, ; x1). The cops first move tg, andzx;, forcing the
robber toy;, then in one more move, the robber is trapped at(ys, x5 ; y1)—(u, x1; y1)%.

0

These corollaries are enough to prove that every 9-verteghgris 2 cop-win, and to show
that if v(G) = 10 andA(G) = 4 thenc(G) < 2.

Proof of Theorerl1If A(G) > 4, then we are done by Lemrha 8. Af(G) = 3, then we are
done by Corollary 11. O

Lemma12. If v(G) = 10 and A(G) > 4, thenc(G) < 2.

Proof. Letu € V(G) have degree at least By Lemmd8, eithee(G) < 2 or deg(u) = 4, and
G[V \ NJul] is a 5-cycle. Now, by Corollary 11, eithe(G) < 2, or everyu € V — NJu| has
deg(u) > 4. In the latter case|{N(u) : V' \ N[u]]| > 10; thus, by the pigeonhole principle,
there existe € N(u) such tha{ N (v) N (V' \ N[u])| > 3. We now deal with this case, namely
u andv have degred, andN (u) N N(v) = 0.

By Lemmd8, bothiG[V(G) \ N[u]] andG[V (G) — \N[v]] are5-cycles. The resulting graph
structure must be one of the two shown in Fiduré 4.3. Conisigéne structure in Figuife 4.3(a),
we note thatleg(z;) = deg(z2) = 3 in order to maintain the induced 5-cycle structures, and
hence, we are done by Corollary| 11.

Now suppose that: has the structure in Figufe 4.3(b). In this case we stew(z;) = 3,
and we are again done by Corollaryl 11. To show thaf(x;) = 3, we look at each potential
additional edge, and show thit\ N[z3] is not a 5-cycle, and hence, we are done by Lermima 8.
We only need to consider edgesita vy, or y3: other potential edges would not maintain the
induced 5-cycle structure. We have ~ y; because{v,y,,y3} form a triangle. We have
x3 ~ y3 because; is adjacent to each af;, v, y». Finally, z3 ~ y, because the existence of
this edge would forcgs ~ x1, which is symmetric to the forbiddery ~ ;. O

(b)

FIGURE 4.3. The two possible starting structures in the proof of he&afil2.
Circled vertices cannot have additional edges.



10  W. BAIRD, A. BEVERIDGE, A. BONATO, P. CODENOTTI, A. MAURER]J. MCCAULEY, AND S. VALEVA

4.3. Graphswith A(G) = n — 7. In this section, we complete the proof of Theoirem 2.

Lemma 13. Let G be a graph with a vertex with A(G) = deg(u) = n — 7 and such that
deg(v) < 3foreveryv € V'\ N[u]. Then either(G) = 2 or the induced subgrap& [V \ N|u]]
is a 6-cycle.

This lemma can be generalized a bit more. In particular, iframove the restriction on
the maximum of degree of vertices in\ N|u|, then the proofs of Lemmas 8 ahd| 13 can be
adapted to show thdf must contain an induced 5-cycle or 6-cycle. However, the easlysis
is cumbersome, so we have opted for this simpler formulatibhe version stated above is
sufficient to prove one our the main results: the Petersephgiathe only 10-vertex graph
requiring 3 cops.

Proof of LemmaI3Let H = G[V \ N[u]] and suppose thatG) > 2. First, we observe
that H must be connected. Otherwise, we can adapt the proof of @ordd to show that
¢(G) = 2. Indeed,H has at most one componeht whose cop number is 2. We use the
strategy described in the proof of Corollary 11 to captueertibber. The only alteration of the
strategy is to address the robber moving froftw) to H — H,. However,|V(H — H;)| < 2,
so this component is cop-win. One cop responds by moving tehile the other moves into
H — H, for the win (by Lemmalb(a)).

Therefore, we may assume thftis connected and /) > 2. This means thal/ must con-
tain an induced-cycle fork € 4, 5, 6. Suppose thak contains an induced 4-cycle, xs, 3, 74.
Without loss of generalityys ~ 21, andxg is adjacent to at most three §f,, z3, x4, x5} (be-
cause we already havleg(z,) = 3). Start the cops at andz;, so thatS(R) is one of{z3},
{z6} or {z3,z6}. In the first two cases)\(S(R)) < 3 so the cops win by Corollafyl 7. The
last option occurs whens ~ z4. If 2 has at most one neighbor i¥(u), then we are again
done by Corollary17, sincA(S(R)) < 3. Whenzs has two neighbors iV (u), the game play
depends on the initial location of the robber. If the roblarts atzg, thenC; holds atu while
C5 moves fromz; to z, to x5, trapping the robber. If the robber startsegf then the roles are
reversed’; moves targ in two steps while”s holds atr;. At this point, the robber is trapped.

Next, suppose that’ contains an induced 5-cycle, z», r3, x4, v5. Without loss of gen-
erality, z¢ ~ z;. If x4 is adjacent to two of the;, then we can placé€’; at v and C; at
somez; so that|N(S(R)) N N(u)] < 1, giving a cop winning position by Lemnid 5(b).
Indeed, by symmetry there are only 2 cases to considery it~ z,, then(C, starts atzy
and S(R) = {x1,z9,26}; If 26 ~ w3, thenCy startszs, and S(R) = {z1,25}. So we
may assume thats has no additional neighbors ii. There are two cases to consider. If
xo andz, do not share a neighbor iV(u), then the game play begins witt, chasingR
onto zy: (u,xy; {x3,x4})—> -+ —(u,{z4, x5} ; x3). If x5 is not adjacent taV(u), then the
cops can ensur@(R) satisfies Corollary17 on their next move. Indeéd, moves tox,. If
N(zg) N N(u) = 0, then the situation already satisfies Corollary 7, otheswi§ moves to
N(xz¢) N N(u), and now the situation satisfies Corollaty 7.

The final case to consider is when and x, are both adjacent tg € N(u). By sym-
metry, x3 and x5 are adjacent ta € N(u). By symmetry, there is one game to consider:
(u, 1 ; x3)—(z, 9 ; x4) Which is cop-win by Corollaryl7. Thus, the only option féf is an
induced 6-cycle. O
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We can now prove that the Petersen graph is the unique 3 aograph of order 10. The
following lemma may be proved by checking the 18 possible@ilar graphs of order 10 listed
at [11], but we provide a short proof for completeness.

Lemma 14. The Petersen graph is the oriyregular graphG such that for every vertex €
V(G), G[V(G) \ N[u]] is a6-cycle.

Proof. Pick any vertex: in G. The complement is a 6-cycle, where every vertex is adjacent
to exactly one vertex inV(u). Let N(u) = {y,z,w}. Label the vertices of thé-cycle z;,

0 < i < 5, where edges are between consecutive indices. Withoutologenerality, say

xo ~ y. Becausd/ \ N[x¢] is a 6-cycle, we must have that ~ w andx, ~ z (by symmetry
this is the only option). The only remaining edges to add aragching between,, z3, zo and
y,z,w. To avoid a triangle i/ \ N[y|, we cannot have; ~ z or x3 ~ w; hence,xs ~ .
Similarly, x; ~ z, andzs ~ w. But this gives an isomorphic copy of the Petersen graph(]

We now prove one of the main theorems.

Proof of Theorerhl2Let G be a graph of order 10 such thdt7) = 3. We havej(G) > 2:
otherwise, the vertex of degree one V(G) is a dominated vertex, s§G) = ¢(G —v) < 2
by TheoreniIl. Lemmia_12 ensures thgiz) < 3. It is straightforward to see tha(G) = 3
since a connected 2-regular graph is a cycle which is 2-cdop-w

Suppose a vertex € V(G) hasdeg(u) = 3. Then by Lemma13:[V' \ N[u]] must be a 6-
cycle. If every vertex inV(u) has degree 3, thef is 3-regular withe(G) = 3, and therefore(?
is the Petersen graph by Lemma 14. Otherwise, there is avarte V'\ N[u] with deg(v) = 2.

In the rest of the proof we give a winning strategy for the coghis case.

Let the 6-cycleG[V \ Nu|] be{z,zs, x3, x4, x5, 26} With edges between consecutive in-
dices. Without loss of generalityleg(z,) = 2 anddeg(xs) = 3. Letk = max{i | deg(z;) =
3}. The initial configuration is

(M; {21, 29, 26}).
If & < 5, then the cops win by Corollafy 7. Whén= 6, the strategy depends on the initial rob-
ber location. Ley € N(u)NN(z,). We either havéu, x4 ; x2)—>(y, 24; x1)—=(y, 255 21)€, Or
(w, 24 1)y, T5; 21)€, Or (u, 245 x6)—(u, x5; 1) =(y, 6 ; 1)€. The robber is trapped
for every initial placement. - O

5. FURTHER DIRECTIONS

We conclude with some reflections on our results and some pp#iems. The Petersen
graph is the unique 3-regular graph of girth 5 of minimal orde that Theorerml 2 provides a
tight lower bound fom whenc(G) = 3. Recall that dk, g)-cageis ak-regular graph with girth
g of minimal order. See [9] for a survey of cages. The Petersapiyis the uniqué3, 5)-cage,
and in general, cages exist for any paii 2 andg > 3. Aigner and Fromme [1] proved that
graphs with girthb, and degreé have cop number at leaktin particular, ifG is a(k, 5)-cage,
thenc(G) > k. Letn(k,g) denote the order of &, g)-cage. Is it true that &k, 5)-cage is
k-cop-win? Next, since we have, > n(k,5), itis natural to speculate whether, = n(k,5)
for £ > 4. It seems reasonable to expect that this is true at leastrfall salues of%. It is
known thatn(4,5) = 19, n(5,5) = 30, n(6,5) = 40 andn(7,5) = 50. Do any of these cages
attain the analogous:,? More generally, we can ask the same question for larges m,,
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achieved by dk, 5)-cage? It is known that(k, 5) = ©(k?), so an affirmative resolution would
be consistent with Theorelm 3.

The techniques to prove Theorehis 1 &ahd 2 may prove usefuhgsifying the cop number
of graphs with ordet 1. We will consider this problem, and the valuerof in future work.

Acknowledgments. We thank Volkan Isler, Graeme Kemkes, Richard Nowakowskiyét
Pratat, and Vishal Saraswat for helpful discussions. AHahi®work was supported by Institute
for Mathematics and its Applications during its Summer 2&p@cial Program on Interdisci-
plinary Research for Undergraduates.

REFERENCES

[1] M. Aigner, M. Fromme, A game of cops and robbdbsscrete Applied Mathemati&(1984) 1-12.
[2] A. Bonato, A. Burgess, Cops and Robbers on graphs basddsigns, Preprint 2012.
[3] A. Bonato, G. Kemkes, P. Pratat, Almost all cop-win gragbntain a universal verteRjscrete Mathematics
312 (2012) 1652-1657.
[4] A. Bonato, R.J. NowakowskiThe Game of Cops and Robbers on Graphmerican Mathematical Society,
Providence, Rhode Island, 2011.
[5] A. Bonato, E. Chiniforooshan, P. Pratat, Cops and Roblfrem a distanceTheoretical Computer Science
411 (2010) 3834-3844.
[6] P. Chebyshev, Mémoire sur les nombres premidisn. Acad. Sci. St.&ersbourgr (1850) 17-33.
[7]1 N.E. Clarke, R.J. Nowakowski, Cops, robber, and trafigitas Mathematica60 (2001) 91-98.
[8] P. Erdds, Beweis eines Satzes von Tschebys&uwé Sci. Math. (Szege8)(1930-32) 194-198.
[9] G. Exoo0, R. Jajcay, Dynamic cage surv&ectronic Journal of CombinatoricdDynamic Survey DS16,
revision #2, May 2011.
[10] L. Lu, X. Peng, On Meyniel's conjecture of the cop numbneprint 2012.
[11] B. McKay, Combinatorial data. Accessed July 5, 201t p: / / ¢s. anu. edu. au/ peopl e/ bdm dat a
[12] R.J. Nowakowski, P. Winkler, Vertex-to-vertex pursinia graphDiscrete Mathematic43 (1983) 235-239.
[13] P. Pratat. When does a random graph have a constant eopan@Australasian Journal of Combinatorics
46 (2010), 285—-296.
[14] A. Quilliot, Jeux et pointes fixes sur les graphes, B@s 3eéme cycle, Université de Paris VI, 1978, 131-145.
[15] N.J.A. Sloane, Sequences A000088 and A001348,0n-Line Encyclopedia of Integer Sequendsdished
electronically at http://oeis.org, 2011.
[16] D.B. West,Introduction to Graph Theor2nd edition, Prentice Hall, 2001



ON THE MINIMUM ORDER OF k-COP-WIN GRAPHS 13

DEPARTMENT OFMATHEMATICS, RYERSONUNIVERSITY, TORONTO, ON, CANADA, M5B 2K3
E-mail addressl i am bai rd@nai | . com

DEPARTMENT OFMATHEMATICS, STATISTICS AND COMPUTERSCIENCE, MACALESTERCOLLEGE, SAINT
PauL, MN, U.S.A. 55105
E-mail addressabeveri d@mcal est er. edu

DEPARTMENT OFMATHEMATICS, RYERSONUNIVERSITY, TORONTO, ON, CANADA, M5B 2K3
E-mail addressabonat o@ yer son. ca

INSTITUTE FORMATHEMATICS AND ITS APPLICATIONS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS,
MN, U.S.A. 55455
E-mail addresspaol o@ na. umrm. edu

DEPARTMENT OFMATHEMATICS, CARLETON COLLEGE, NORTHFIELD, MN, U.S.A. 55057
E-mail addressmaur er a@ar | et on. edu

DEPARTMENT OFMATHEMATICS, HAVERFORD COLLEGE, HAVERFORD, PA, U.S.A. 19041
E-mail address???

DEPARTMENT OFMATHEMATICS, UNIVERSITY OF lOWA, lOWA CITY, IA, U.S.A. 52242
E-mail addresssi | vi ya- val eva@i owa. edu



	1. Introduction
	2. Computational results
	3. Meyniel's conjecture and growth rates
	4. Proofs of Theorems 1 and 2
	4.1. The end game
	4.2. Graphs with (G) n-6
	4.3. Graphs with (G) = n-7

	5. Further directions
	Acknowledgments

	References

