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ON THE MINIMUM ORDER OF k-COP-WIN GRAPHS

WILLIAM BAIRD, ANDREW BEVERIDGE, ANTHONY BONATO, PAOLO CODENOTTI,
AARON MAURER, JOHN MCCAULEY, AND SILVIYA VALEVA

ABSTRACT. We consider the minimum order graphs with a given cop number. We prove that
the minimum order of a connected graph with cop number3 is 10, and show that the Petersen
graph is the unique isomorphism type of graph with this property. We provide the results of
a computational search on the cop number of all graphs up to and including order10. A rela-
tionship is presented between the minimum order of graph with cop numberk and Meyniel’s
conjecture on the asymptotic maximum value of the cop numberof a connected graph.

1. INTRODUCTION

Cops and Robbersis vertex-pursuit game played on graphs that has been the focus of much
recent attention. Throughout, we only consider finite, connected, undirected graphs. There are
two players consisting of a set ofcopsand a singlerobber. The game is played over a sequence
of discrete time-steps orrounds, with the cops going first in the first round and then playing
alternate time-steps. The cops and robber occupy vertices,and more than one cop may occupy
a vertex. When a player is ready to move in a round they must move to a neighboring vertex. We
include loops on each vertex so that players canpass, or remain on their own vertex. Observe
that any subset of cops may move in a given round. The cops win if after some finite number
of rounds, one of them can occupy the same vertex as the robber. This is called acapture. The
robber wins if he can avoid capture indefinitely. Awinning strategy for the copsis a set of rules
that if followed, result in a win for the cops, and awinning strategy for the robberis defined
analogously.

If we place a cop at each vertex, then the cops are guaranteed to win. Therefore, the minimum
number of cops required to win in a graphG is a well defined positive integer, named thecop
numberof the graphG. We writec(G) for the cop number of a graphG, and say that a graph
satisfyingc(G) = k is k-cop-win. For example, the Petersen graph is3-cop-win. If k = 1,
then we say thatG is cop-win. Nowakowski and Winkler [12], and independently Quilliot [14],
considered the game with one cop only; the introduction of the cop number came in [1]. Many
papers have now been written on cop number since these three early works; see the book [4] for
additional references and background on the cop number.

Meyniel’s conjecture is one of the deepest unsolved problems on the cop number. It states
that for a connected graphG of ordern, c(G) = O(

√
n). Hence, the largest cop number of

a graph is asymptotically bounded above byd
√
n for a constantd. The conjecture has so far

resisted all attempts to resolve it, and the best known bounds (see, for example, [10]) do not
even prove thatc(G) = O(nε), for ε < 1.

The goal of the current study is to investigate the minimum order of graphs with a given cop
number. For a fixed positive integerk, definemk to be the minimum order of a connected graph
G satisfyingc(G) ≥ k. DefineMk to be the minimum order of a connectedk-cop-win graph.
It is evident that themk are monotonically increasing, andmk ≤ Mk.
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Up until this study, only the first two values of these parameters where known:m1 = M1 = 1
andm2 = M2 = 4 (witnessed by the4-cycle). We derive thatm3 = M3 = 10; interestingly, the
Petersen graph is the unique isomorphism type of3-cop-win graph with order10. In addition to
a proof of this fact, we performed a computer search to calculate the cop number of every con-
nected graph on 10 or fewer vertices (there are nearly 12 million such unlabelled graphs). We
performed this categorization by checking for cop-win orderings [12] and using an algorithm
provided in [5]. We present these computational results in the next section.

We prove the following theorems.

Theorem 1. If G is a graph on at most9 vertices, thenc(G) ≤ 2.

Theorem 2. The Petersen graph is the unique isomorphism type of graph on10 vertices that is
3-cop-win.

The proofs of Theorems 1 and 2—which are deferred to Section 4—exploit new ideas which
are of interest in their own right. In particular, we prove a suite of structural lemmas concerning
the cop number of graphs containing a vertex whose co-degreeis a small constant, namely with
maximum degree at leastn− 7, wheren is the order of the graph.

Further, we prove that Meyniel’s conjecture is equivalent to bounds on the valuesmk; see
Theorem 3. We give lower bounds on the growth rates of the number of non-isomorphick-cop-
win graphs of a given order in Theorem 4.

For background on graph theory see [16]. We use the notationv(G) = |V (G)|. We use
the notationV andE for the vertices and edges of a graphG, respectively, ifG is clear from
context. Foru, v ∈ V , we write u ∼ v when uv ∈ E. For S ⊆ V , we write u ∼ S
whenu /∈ S and there existsv ∈ S such thatu ∼ v. Given a vertexv, its neighborhoodis
N(v) = {u ∈ V | (v, u) ∈ E}, and itsclosed neighborhoodis N [v] = {v} ∪ N(v). We
defineN(S) =

⋃
v∈S N(v) \ S andN [S] =

⋃
v∈S N [v]. For convenience, we use the notation

N(u, v) = N({u, v}). A vertexv isdominatedby the vertexw if N [v] ⊆ N [w]. ForS ⊆ V (G),
the subgraph induced byS is denotedG[S]. We use the notationX \ Y for the difference of
sets. IfH is an induced subgraph ofG, then we writeG − H for G[V (G) \ V (H)]. For a set
S of vertices ofG, we also writeG − S for G[V (G) \ S]. For sets of verticesS, T ⊆ V , we
denote the set of edges between the two sets by[S : T ] = {st ∈ E | s ∈ S, t ∈ T}, and we use
|S : T | to denote the cardinality of this set. We denote the minimum degree byδ(G) and the
maximum degree by∆(G). We generalize the latter symbol to subsets of vertices: forS ⊆ V ,
∆(S) = maxs∈S deg(s).

2. COMPUTATIONAL RESULTS

We present the results of a computer search on the cop number of small order graphs. For
a positive integern, definefk(n) to be the number of non-isomorphic connectedk-cop-win
graphs of ordern (that is, theunlabelledgraphsG of ordern with c(G) = k). Defineg(n) to
be the number of non-isomorphic (not necessarily connected) graphs of ordern, andgc(n) the
number of non-isomorphic connected graphs of ordern. Trivially, for all k, fk(n) ≤ g(n). The
following table presents the values ofg, gc, f1, andf2 for small orders.

The values ofg andgc come from [15],f1 was computed by checking for cop-win order-
ings [12], whilef2 andf3 were computed using Algorithm 1 in [5]. Among these graphs there
is only one graphG of order10 that requires 3 cops to win (which independently verifies The-
orems 1 and 2). The graphG must be the Petersen graph, since we know that it is 3-cop win.
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ordern g(n) gc(n) f1(n) f2(n) f3(n)

1 1 1 1 0 0
2 2 1 1 0 0
3 4 2 2 0 0
4 11 6 5 1 0
5 34 21 16 5 0
6 156 112 68 44 0
7 1,044 853 403 450 0
8 12,346 11,117 3,791 7,326 0
9 274,668 261,080 65,561 195,519 0
10 12,005,168 11,716,571 2,258,313 9,458,257 1

3. MEYNIEL’ S CONJECTURE AND GROWTH RATES

The following theorem, while straightforward to prove, sets up an unexpected connection
between Meyniel’s conjecture and the order ofmk.

Theorem 3. (1) mk = O(k2).
(2) Meyniel’s conjecture is equivalent to the property that

mk = Ω(k2).

Hence, if Meyniel’s conjecture holds, then Theorem 3 implies thatmk = Θ(k2).

Proof. The incidence graphs of projective planes have order2(q2 + q + 1), whereq is a prime
power, and have cop numberq + 1; see [2] or [13]. Hence, this family of graphs show that for
q a prime power,

mq+1 = O(q2)

Now fix k a positive integer. Bertrand’s postulate (which states that all integersx > 1, there is
a primeq betweenx and2x; see [6, 8]) provides a primeq with k < q < 2k. Hence,

mk ≤ mq ≤ mq+1 = O(q2) = O((2k)2) = O(k2).

For item (2), ifmk = o(k2), then there is some connected graphG with ordero(k2) and
cop numberk. But Meyniel’s conjecture implies thatc(G) = o(k), a contradiction. Hence,
Meyniel’s conjecture implies thatmk = Ω(k2).

For the reverse direction, suppose thatmk = Ω(k2). For a contradiction, suppose that
Meyniel’s conjecture is false. Then there is a connected graphG of ordern with c(G) = k =
ω(

√
n). Then

√
n = o(k), and son = o(k2). But thenmk ≤ n = o(k2), a contradiction. �

While the parametersmk are non-decreasing, an open problem is to determine whetherthe
Mk are in fact non-decreasing. A possibly more difficult problem is to settle whethermk = Mk

for all k ≥ 1. The gap in our knowledge of the parametersmk andMk points to the question
of growth rates for the classes of connectedk-cop-win graphs. It is well known (see [15] for
example) that

g(n) = (1 + o(1))
2(

n

2
)

n!

= 2
1

2
n2

−
1

2
n−n log

2
n+n log

2
e−Θ(logn),
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where the second equality follows by Stirling’s formula. The following theorem supplies a
super-exponential lower bound to the parametersfk. A vertex isuniversalif it is adjacent to all
others. Iff : X → Y is a function andS ⊆ X, then we denote the restriction off to S by
f ↾ S.

Theorem 4. (1) For all n > 1, g(n− 1) ≤ f1(n).
(2) For k > 1, and alln > 2mk, g(n−mk − 1) ≤ fk(n).

Proof. For item (1), fix a graphG of ordern− 1. FormG′ by adding a universal vertex toG. If
G ≇ H, then it is an exercise to show thatG′ ≇ H ′. Item (1) now follows sinceG′ is cop-win.

For item (2), givenG of ordern−mk − 1, form a graphG+k as follows. First formG′ with
the new universal vertex labelledxG. Fix ak-cop-win graphH of ordermk (which we label as
HG), and specify a fixed vertexyG of HG. Add the bridgexGyG connectingHG toG′.

We first claim thatG+k is k-cop-win. We have thatc(G+k) ≥ k, since a winning strategy for
the robber if there are fewer thank cops is to remain inHG. To show thatc(G+k) ≤ k, a set of
k cops plays as follows. At the beginning of the game, one cop isonxG, while the remaining
cops stay inG. ThenR cannot move toG′ without being caught, so the robber moves inHG.
All the cops then move toHG and play their winning strategy there, with the following caveat.
If R moves outsideHG, then the cops play as ifR is onyG. Eventually, the robber is caught in
HG, or the robber is inG′ and at least one cop occupiesyG. But then that cop moves toxG to
win.

To finish the proof of (2), we must show that ifG ≇ J, thenG+k ≇ J+k. For a contradiction,
let h : G+k → J+k be an isomorphism. Then we must haveh(xG) = xJ by noting thatxG

andxJ are the only vertices with the maximum degreen−mk (note thatyG has degree at most
mk < n −mk by hypothesis). The vertexyG is unique with the property that it is adjacent to
xG and has neighbors not adjacent toxG (the same holds by replacing the subscriptG by J).
But thenh(HG) = HJ , which implies the contradiction that restricted mappingh ↾ G : G → J
is an isomorphism. �

We do not know the asymptotic order forfk (even ifk = 1). A recent result [3] proves that
the number of distinctlabelledcop-win graphs is2

1

2
n2

−
1

2
n+o(n).

4. PROOFS OFTHEOREMS 1 AND 2

We now proceed to the proofs of Theorems 1 and 2, but first introduce notation for the state
of the game. We fix a connected graphG on which the game is played. The state of the game
is a pair(C ; r), whereG is a connected graph,C is ak-tuple of verticesC = (c1, c2, . . . , ck),
whereci ∈ V (G) is the current position of copCi, andr ∈ V (G) is the current position of the
robberR. For notational convenience, we write(c1, . . . , ck ; r) for ((c1, . . . , ck) ; r). When we
need to specify whose turn it is to act, we underline the position of the player whose turn it is:
(C ; r) denotes that it is the cops’ turn to move, and(C ; r) the robber’s.

We use a shorthand notation to describe moves:(c1, . . . , ck ; r)→(c′1, . . . , c
′

k ; r) denotes the
cop move where eachCi moves fromci to c′i. Similarly (c1, . . . , ck ; r)→(c1, . . . , ck ; r

′) de-
notes the robber’s move fromr to r′. We will concatenate moves and we use the shorthand։,
meaning a cop move followed by a robber move:

(c1, . . . , ck ; r)։(c′1, . . . , c
′

k ; r
′)
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is equivalent to

(c1, . . . , ck ; r)→(c′1, . . . , c
′

k ; r)→(c′1, . . . , c
′

k ; r
′).

There will be cases where the strategy allows for either the robber or the cops to be in one
of several positions. In general, forTi ⊆ V , S ⊆ V , the state of the game has the form
(T1, . . . , Tk ; S) means thatci ∈ Ti, andr ∈ S.

The robber’ssafe neighborhood, denotedS(R), is the connected component ofG − N [C]
containing the robber. We say that the robber istrappedwhenS(R) = ∅. This condition is
equivalent to having bothr ∈ N(C) andN(r) ⊆ N [C]. Once the robber is trapped, he will be
caught on the subsequent cop move, regardless of the robber’s next action. When the robber is
trapped, we are in acop-winning position, denoted byC .

4.1. The end game. We frequently use the following facts to identify cop-win strategies for
two cops in the end game. We state a more general version of these results fork cops.

We need the following property arising in the study of cop-win graphs, which first appears in
[7]. Every cop-win graph has at least one winningno-backtrack strategyfor the cop, meaning
a winning strategy where the cop never repeats a vertex during the pursuit. Typically, a graph
has multiple winning no-backtrack strategies. We say that avertexv is no-backtrack-winning
if there is a winning no-backtrack strategy for the cop starting atv. For example, whenG is a
tree, every vertex is no-backtrack-winning.

Next we fix some notation. For a setU = {u1, . . . , ut} ⊆ V , letN ′

U(uj) = N(uj)\N [U \uj]
be the neighbors ofuj that are not adjacent to any other vertex inU .

Lemma 5. Let (C ; r) be the state of the game. Suppose that there exists acj ∈ C such that
either(a) [S(R) : N ′

C(cj)] = ∅ andG[S(R)] is cop-win; or(b) N(S(R))∩N ′

C(cj) = {v} such
thatH = G[S(R) ∪ {v}] is cop-win andv is no-backtrack-winning inH. Then the cops can
win from this configuration.

Proof. Let S = S(R) be the initial safe neighborhood ofR. In both cases, only copCj is
active, while the others remain stationary. In case (a), copCj moves intoS and follows a cop-
win strategy onG[S]. In case (b), copCj moves tov and then follows a no-backtrack strategy
onG[S ∪ {v}]. This prevents the robber from ever reachingv. In both cases, the only way for
the robber to avoid capture byCj is to move into the neighborhood of the remaining cops.�

We highlight two useful consequences that are used heavily for k = 2 in subsequent proofs.

Corollary 6. Let (C ; r) be the state of the game, played withk ≥ 2 cops. If|S(R)| ≤ 2 and
|N(S(R))| ≤ 2k − 1, then the cops can win.

Proof. Let S = S(R). We have|N(S) ∩N(C)| ≤ 2k − 1, so the pigeonhole principle ensures
that there exists a copCj such that|N(S)∩N ′

C(cj)| ≤ 1. We are done by Lemma 5, since every
vertex of a connected2-vertex graph is non-backtrack-winning. �

Corollary 7. Let (C ; r) be the state of the game, played withk ≥ 2 cops. If

max
v∈S(R)

degG(v) ≤ 3

andS(R) contains at most one vertex of degree3, then the cops can win.
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Proof. Let S = S(R). SinceG[S] is connected, we have[S : N(C)] ≤ 3. Therefore, some cop
Cj has|S : N ′

C(cj)| ≤ 1. If G[S] is a tree, then we are done by Lemma 5. IfG[S] is not a tree,
thenG[S] must be unicyclic with one degree 3 vertex, sayu. Therefore,|S : N(C)| = 1, and
except foru, every vertex in the cycle has degree 2 inG. A winning strategy for the cops is as
follows: two cops move until they both reachu. Now S(R) is a path, so Lemma 5 completes
the proof. �

4.2. Graphs with ∆(G) ≥ n−6. In this section, we prove Theorem 1. We also make progress
on the proof of Theorem 2 by showing that ifv(G) = 10 and∆(G) = 4, thenc(G) ≤ 2. For
convenience, we recall the statements of these results prior to their respective proofs.

Lemma 8. Let G be a graph onn vertices. If there is a vertexu ∈ V (G) of degree at least
n− 6, then eitherc(G) ≤ 2 or the induced subgraphG[V \N [u]] is a 5-cycle.

Corollary 9. If ∆(G) ≥ n− 5, thenc(G) ≤ 2.

Lemma 8 and its immediate corollary are crucial tools in proving the main results. In par-
ticular, Theorem 1 is a quick consequence of Corollary 9. This reduces the search to 10 vertex
graphs with2 ≤ δ(G) ≤ ∆(G) ≤ 4.

Proof of Lemma 8.LetH = G[V \N [u]]. By Lemma 5(a), ifH is cop-win, thenc(G) ≤ 2. In
particular this holds ifH does not contain an induced cycle of length at least 4. So we only need
to consider the case wherev(H) = 4 or 5, andH contains an induced4-cycle. Letx1, x2, x3, x4

form the 4-cycle inH (in that order). Letx5 be the additional vertex (if present).
We now distinguish some cases based onN(x5) ∩ H. If x5 ∼ xi for everyi ∈ {1, 2, 3, 4},

thenH is cop-win, and hence,c(G) ≤ 2. We therefore have 5 cases to consider, depicted in
Figure 4.1. Case (a) includes the situation whendeg(u) = n− 5, and there is no vertexx5.

x1

x2

x3

x4

x5 x1

x2

x3

x4

x5 x1

x2

x3

x4

x5 x1

x2

x3

x4

x5 x1

x2

x3

x4

x5

(a) (b) (c) (d) (e)

FIGURE 4.1. The five cases forG[V \N [u]] in Lemma 8.

First we make some technical claims. We start by noting that moving tox5 is in most situa-
tions a bad idea for the robber in Cases (a), (b) and (c).

Claim 1. In Cases (a), (b), and (c), if the state of the game is of the form (N [u], V (H) ; x5),
the cops have a winning strategy.

For the proof of the claim,C1 moves tou. In Case (a),S(R) = {x5} and we are already done
by Corollary 6. In Case (b), if possible,C2 moves directly tox2; otherwise,C2 moves first to
x1 and then tox2; in either case the robber is trapped atx5. In Case (c),C2 moves tox2 or x1

(whicheverc2 is adjacent to), again trapping the robber inx5 The proof of the claim follows.
Next we consider the structure ofN(y) ∩ V (H) for verticesy ∈ N(u).
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x1

x2

x3

x4

x5

u

y

x1

x2

x3

x4

x5

u

y

x1

x2

x3

x4

x5

u

y

x1

x2

x3

x4

x5

u

y

(A) (B1) (B2) (B3)

FIGURE 4.2. The four classes of possible structures ofG for Claim 2. Vertex
x5 might not be present, and dashed edges might not be present.

Claim 2. Suppose the state of the game has the form(N [u], {x1, x3} ; y), wherey ∈ N(u) is
such that either (a) N(y) ∩ V (H) = {x2, x4}, or (b) y is adjacent to at most one ofx2 or x4;
then the cops have a winning strategy.

For the proof of the claim, Figure 4.2 shows the four classes of possible graph structures. Let
us first consider the structure (B1). Letz = x2. C1 moves tou, andC2 moves toz. Now the
robber is trapped in all cases of Figure 4.1 except Case (a). In Case (a) the robber’s only move
is to x5. After this move, the robber can be caught by Claim 1. The samecop strategy works
for structures (B2) and (B3), takingz = x4. A simplified version of this proof shows that the
same cop strategy works for structure (A), takingz = c2. The proof of the claim follows.

We remark that in Cases (d) and (e) of Figure 4.1,x5 andx1 are symmetric, so the statement
holds also for configuration(N [u], x5 ; y)

The next claim concerns the situation where there are two vertices inN(u) that do not satisfy
the condition of the previous claim.

Claim 3. If there are two verticesy, z ∈ N(u) such that{x2, x3, x4} ⊆ N(y), and{x1, x2, x4} ⊆
N(z), thenc(G) ≤ 2.

For the proof of Claim 3, first we deal with all cases but Case (d). The cops start atu and
z. If the robber starts atx3, the cops’ winning strategy is:(u, z ; x3)→(u, y ; x3)C . [Anthony:
clarify the use of the C notation here.] If the robber starts atx5, the strategy will depend on
the structure ofH. In Cases (a), (b), and (c) we are done by Claim 1. In Case (e) the following
is a winning strategy:(u, z ; x5)→(u, x1 ; x5)C .

The remainder of the proof deals with Case (d), which requires a more involved argument.
First suppose that there existsw ∈ N(u) such that{x2, x4, x5} ⊆ N(w). Then the cops start

at u andz. The robber can start atx3 or x5 in either case the cops have a winning strategy:
(u, z ; x3)→(y, u ; x3)C ; or (u, z ; x5)→(w, u ; x5)C .

Now assume that no suchw exists. Start the cops atu andy. The robber starts in{x1, x5}.
If the robber starts atx1, then(u, y ; x1)→(y, u ; x1)C . So we may assume the robber starts
at x5. If |N(x5) ∩ N(u)| ≤ 1, we are done by Corollary 6. Otherwise, the cops move by
(u, x3 ; x5)→(v, z ; x5), for somev ∈ N(x5) ∩ N(u). The robber is forced to move to some
w ∈ N(x5) ∩N(u) (if no suchw exists, thenR is trapped). By our initial argument,w cannot
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be adjacent to bothx2 andx4, so the state satisfies the conditions of Claim 2(b), and the proof
of the claim follows.
Claim 4. Eitherc(G) ≤ 2, or we can relabel the vertices ofH via an automorphism ofH so
thatx1 is adjacent toN(u).

To prove the claim, suppose that no such relabeling exists. We will show a winning strategy
for the cops, starting atu andx3. In Cases (a) and (b) the claim follows from Corollary 6 (either
S(R) = {x1} or S(R) = {x5}). In Cases (d) and (e),S(R) ⊆ {x1, x5}, and we are assuming
that bothx1 andx5 have no edges toN(u); hence,|N(S(R))| ≤ 2, and we are again done by
Corollary 6. In Case (c)S(R) = {x1, x5}, and we are assuming that bothx1 andx2 do not have
neighbors inN(u). By Claim 1, we may assumeR does not start atx5, and soR starts atx1.
Let v ∈ N(u) ∩N(x5) (if x5 ≁ N(u), thenN(S(R)) is dominated byc2 = x3). Now the cops
can win by following the strategy:(u, x3 ; x1)→(v, x3 ; x1)C . The proof of the claim follows.

Armed with the above claims, we now conclude the proof Lemma 8. By Claim 4, we may
assumex1 ∼ w ∈ N(u). Initially placeC1 atu andC2 atx1. The robber could start atx3 or, in
Cases (a), (b), and (d), atx5. If the robber starts atx5 in Cases (a) and (b), then we are done by
Claim 1. In Case (d),x5 andx3 are symmetric, so without loss of generality,r = x3, and the
initial state is(u, x1 ; x3).

If x3 ≁ N(u), then the cops win by Corollary 6. Otherwise letv ∈ N(x3) ∩N(u). ThenC1

moves fromu to v, whileC2 remains fixed atx1, forcingR to somey ∈ N(u) ∩ N(x3), with
y ≁ v, y ≁ x1. If no suchy exists, thenR is trapped. Ify is adjacent to only one ofx2 or x4,
we are in the state(v ∈ N(u), x1 ; y), which satisfies the conditions of Claim 2 (b), and hence,
the cops have a winning strategy.

Otherwisey is adjacent tox2, x3, andx4. The cops move(v, x1 ; y)→(x3, w ; y), for some
w ∈ N(x1) ∩ N(u). If y ∼ x5, andR moves tox5, then the cops win: in Cases (a),(b),(c) we
are done by Claim 1; in Case (d),(x3, w ; x5)→(y, u ; x5)C ; in Case (e), the cops can adopt a
different strategy from the beginning:(u, y ; x1)→(u, x5 ; x1)C . The only other option is forR
to move to somez ∈ N(u), z ≁ x3. So the state is(x3, w ; z). Either the pairy, z satisfies the
conditions of Claim 3, or the current state satisfies the conditions of Claim 2(b) or (a). In either
case, we are done. This concludes the proof of Lemma 8. �

We now state some quick but useful consequences of Lemma 8.

Corollary 10. Let G be a graph onn vertices. If there is a vertexu ∈ V of degree at least
n− 6, and a vertexv ∈ V \N [u] such that|N(v) \N(u)| ≥ 3, thenc(G) ≤ 2.

Proof. The vertexv has three neighbors inG[V \ N [u]], and hence,G[V \ N [u]] cannot be a
5-cycle. �

Corollary 11. LetG be a graph onn vertices. If there is a vertexu of degree at leastn − 6
and a vertexv ∈ V \N [u] with deg(v) ≤ 3, thenc(G) ≤ 2.

Proof. By Lemma 8, we only need to consider the case whereG[V \ N [u]] is a 5-cycle,
x1, x2, x3, x4, x5 (in that order). Without loss of generality, letdeg(x1) ≤ 3, anddeg(x2) ≥ 3.
For eachi = 1, . . . , 5 such thatdeg(xi) ≥ 3, pick someyi ∈ N(xi)∩N(u) arbitrarily (we allow
yi = yj for i 6= j). The game starts as(u, x4 ; {x1, x2})։(u, {x3, x4} ; x1). First we deal with
the case wheredeg(x1) = 2 and the case wheredeg(x1) = 3 andy1 ∼ x4. The cops’ winning
strategy for these two cases is the same:(u, {x3, x4} ; x1)։(y2, x4 ; x1)→(x2, x4 ; x1)C .
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Now we may assume that allxi have degree3, and hence,yi exists for alli. We may further
assume thatx4 6= y1, and, sincex3 andx4 are symmetric, we are also done in the casey1 ∼ x3.
The only remaining possibility isN(y1)∩ (V \N [u]) ⊆ N [x1]. Sincex3 andx4 are symmetric,
without loss of generality, the state is(u, x4 ; x1). The cops first move toy2 andx5, forcing the
robber toy1, then in one more move, the robber is trapped aty1: (y2, x5 ; y1)→(u, x1 ; y1)C .

�

These corollaries are enough to prove that every 9-vertex graphs is 2 cop-win, and to show
that if v(G) = 10 and∆(G) = 4 thenc(G) ≤ 2.

Proof of Theorem 1.If ∆(G) ≥ 4, then we are done by Lemma 8. If∆(G) = 3, then we are
done by Corollary 11. �

Lemma 12. If v(G) = 10 and∆(G) ≥ 4, thenc(G) ≤ 2.

Proof. Let u ∈ V (G) have degree at least4. By Lemma 8, eitherc(G) ≤ 2 or deg(u) = 4, and
G[V \ N [u]] is a 5-cycle. Now, by Corollary 11, eitherc(G) ≤ 2, or everyu ∈ V − N [u] has
deg(u) ≥ 4. In the latter case,|[N(u) : V \ N [u]]| ≥ 10; thus, by the pigeonhole principle,
there existsv ∈ N(u) such that|N(v) ∩ (V \N [u])| ≥ 3. We now deal with this case, namely
u andv have degree4, andN(u) ∩N(v) = ∅.

By Lemma 8, bothG[V (G) \N [u]] andG[V (G)− \N [v]] are5-cycles. The resulting graph
structure must be one of the two shown in Figure 4.3. Considering the structure in Figure 4.3(a),
we note thatdeg(z1) = deg(z2) = 3 in order to maintain the induced 5-cycle structures, and
hence, we are done by Corollary 11.

Now suppose thatG has the structure in Figure 4.3(b). In this case we showdeg(x3) = 3,
and we are again done by Corollary 11. To show thatdeg(x3) = 3, we look at each potential
additional edge, and show thatV \N [x3] is not a 5-cycle, and hence, we are done by Lemma 8.
We only need to consider edges toy1, y2 or y3: other potential edges would not maintain the
induced 5-cycle structure. We havex3 ≁ y1 because{v, y2, y3} form a triangle. We have
x3 ≁ y3 becausez1 is adjacent to each ofx1, y1, y2. Finally, x3 ≁ y2 because the existence of
this edge would forcey3 ∼ x1, which is symmetric to the forbiddenx3 ∼ y1. �

u v

x1 y1

x2 y2

x3 y3

z1

z2

u v

x1 y1

x2 y2

x3 y3

z1

z2

(a) (b)

FIGURE 4.3. The two possible starting structures in the proof of Lemma 12.
Circled vertices cannot have additional edges.
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4.3. Graphs with ∆(G) = n− 7. In this section, we complete the proof of Theorem 2.

Lemma 13. Let G be a graph with a vertexu with ∆(G) = deg(u) = n − 7 and such that
deg(v) ≤ 3 for everyv ∈ V \N [u]. Then eitherc(G) = 2 or the induced subgraphG[V \N [u]]
is a 6-cycle.

This lemma can be generalized a bit more. In particular, if weremove the restriction on
the maximum of degree of vertices inV \ N [u], then the proofs of Lemmas 8 and 13 can be
adapted to show thatH must contain an induced 5-cycle or 6-cycle. However, the case analysis
is cumbersome, so we have opted for this simpler formulation. The version stated above is
sufficient to prove one our the main results: the Petersen graph is the only 10-vertex graph
requiring 3 cops.

Proof of Lemma 13.Let H = G[V \ N [u]] and suppose thatc(G) > 2. First, we observe
thatH must be connected. Otherwise, we can adapt the proof of Corollary 11 to show that
c(G) = 2. Indeed,H has at most one componentH1 whose cop number is 2. We use the
strategy described in the proof of Corollary 11 to capture the robber. The only alteration of the
strategy is to address the robber moving fromN(u) to H − H1. However,|V (H − H1)| ≤ 2,
so this component is cop-win. One cop responds by moving tou, while the other moves into
H −H1 for the win (by Lemma 5(a)).

Therefore, we may assume thatH is connected andc(H) ≥ 2. This means thatH must con-
tain an inducedk-cycle fork ∈ 4, 5, 6.Suppose thatG contains an induced 4-cyclex1, x2, x3, x4.
Without loss of generality,x5 ∼ x1, andx6 is adjacent to at most three of{x2, x3, x4, x5} (be-
cause we already havedeg(x1) = 3). Start the cops atu andx1, so thatS(R) is one of{x3},
{x6} or {x3, x6}. In the first two cases,∆(S(R)) ≤ 3 so the cops win by Corollary 7. The
last option occurs whenx3 ∼ x6. If x6 has at most one neighbor inN(u), then we are again
done by Corollary 7, since∆(S(R)) ≤ 3. Whenx6 has two neighbors inN(u), the game play
depends on the initial location of the robber. If the robber starts atx6, thenC1 holds atu while
C2 moves fromx1 to x2 to x3, trapping the robber. If the robber starts atx3, then the roles are
reversed:C1 moves tox6 in two steps whileC2 holds atx1. At this point, the robber is trapped.

Next, suppose thatG contains an induced 5-cyclex1, x2, x3, x4, x5. Without loss of gen-
erality, x6 ∼ x1. If x6 is adjacent to two of thexi, then we can placeC1 at u andC2 at
somexj so that|N(S(R)) ∩ N(u)| ≤ 1, giving a cop winning position by Lemma 5(b).
Indeed, by symmetry there are only 2 cases to consider: ifx6 ∼ x2, thenC2 starts atx4

and S(R) = {x1, x2, x6}; if x6 ∼ x3, thenC2 startsx3, andS(R) = {x1, x5}. So we
may assume thatx6 has no additional neighbors inH. There are two cases to consider. If
x2 andx4 do not share a neighbor inN(u), then the game play begins withC2 chasingR
onto x2: (u, x1 ; {x3, x4})։ · · ·։(u, {x4, x5} ; x2). If x2 is not adjacent toN(u), then the
cops can ensureS(R) satisfies Corollary 7 on their next move. Indeed,C2 moves tox4. If
N(x6) ∩ N(u) = ∅, then the situation already satisfies Corollary 7, otherwise, C1 moves to
N(x6) ∩N(u), and now the situation satisfies Corollary 7.

The final case to consider is whenx2 and x4 are both adjacent toy ∈ N(u). By sym-
metry, x3 andx5 are adjacent toz ∈ N(u). By symmetry, there is one game to consider:
(u, x1 ; x3)։(z, x2 ; x4) which is cop-win by Corollary 7. Thus, the only option forH is an
induced 6-cycle. �
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We can now prove that the Petersen graph is the unique 3 cop-win graph of order 10. The
following lemma may be proved by checking the 18 possible 3-regular graphs of order 10 listed
at [11], but we provide a short proof for completeness.

Lemma 14. The Petersen graph is the only3-regular graphG such that for every vertexu ∈
V (G), G[V (G) \N [u]] is a6-cycle.

Proof. Pick any vertexu in G. The complement is a 6-cycle, where every vertex is adjacent
to exactly one vertex inN(u). Let N(u) = {y, z, w}. Label the vertices of the6-cycle xi,
0 ≤ i ≤ 5, where edges are between consecutive indices. Without lossof generality, say
x0 ∼ y. BecauseV \N [x0] is a 6-cycle, we must have thatx2 ∼ w andx4 ∼ z (by symmetry
this is the only option). The only remaining edges to add are amatching betweenx1, x3, x0 and
y, z, w. To avoid a triangle inV \ N [y], we cannot havex3 ∼ z or x3 ∼ w; hence,x3 ∼ y.
Similarly,x1 ∼ z, andx5 ∼ w. But this gives an isomorphic copy of the Petersen graph.�

We now prove one of the main theorems.

Proof of Theorem 2.Let G be a graph of order 10 such thatc(G) = 3. We haveδ(G) ≥ 2:
otherwise, the vertex of degree onev ∈ V (G) is a dominated vertex, soc(G) = c(G− v) ≤ 2
by Theorem 1. Lemma 12 ensures that∆(G) ≤ 3. It is straightforward to see that∆(G) = 3
since a connected 2-regular graph is a cycle which is 2-cop-win.

Suppose a vertexu ∈ V (G) hasdeg(u) = 3. Then by Lemma 13,G[V \N [u]] must be a 6-
cycle. If every vertex inN(u) has degree 3, thenG is 3-regular withc(G) = 3, and therefore,G
is the Petersen graph by Lemma 14. Otherwise, there is a vertex x1 ∈ V \N [u] with deg(v) = 2.
In the rest of the proof we give a winning strategy for the copsin this case.

Let the 6-cycleG[V \ N [u]] be {x1, x2, x3, x4, x5, x6} with edges between consecutive in-
dices. Without loss of generality,deg(x1) = 2 anddeg(x2) = 3. Let k = max{i | deg(xi) =
3}. The initial configuration is

(u, x4 ; {x1, x2, x6}).
If k ≤ 5, then the cops win by Corollary 7. Whenk = 6, the strategy depends on the initial rob-
ber location. Lety ∈ N(u)∩N(x2). We either have(u, x4 ; x2)։(y, x4 ; x1)→(y, x5 ; x1)C , or
(u, x4 ; x1)։(y, x5 ; x1)C , or (u, x4 ; x6)։(u, x5 ; x1) →(y, x6 ; x1)C . The robber is trapped
for every initial placement. �

5. FURTHER DIRECTIONS

We conclude with some reflections on our results and some openproblems. The Petersen
graph is the unique 3-regular graph of girth 5 of minimal order, so that Theorem 2 provides a
tight lower bound forn whenc(G) = 3. Recall that a(k, g)-cageis ak-regular graph with girth
g of minimal order. See [9] for a survey of cages. The Petersen graph is the unique(3, 5)-cage,
and in general, cages exist for any pairk ≥ 2 andg ≥ 3. Aigner and Fromme [1] proved that
graphs with girth5, and degreek have cop number at leastk; in particular, ifG is a(k, 5)-cage,
thenc(G) ≥ k. Let n(k, g) denote the order of a(k, g)-cage. Is it true that a(k, 5)-cage is
k-cop-win? Next, since we havemk ≥ n(k, 5), it is natural to speculate whethermk = n(k, 5)
for k ≥ 4. It seems reasonable to expect that this is true at least for small values ofk. It is
known thatn(4, 5) = 19, n(5, 5) = 30, n(6, 5) = 40 andn(7, 5) = 50. Do any of these cages
attain the analogousmk? More generally, we can ask the same question for largek: is mk
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achieved by a(k, 5)-cage? It is known thatn(k, 5) = Θ(k2), so an affirmative resolution would
be consistent with Theorem 3.

The techniques to prove Theorems 1 and 2 may prove useful in classifying the cop number
of graphs with order11. We will consider this problem, and the value ofm4 in future work.
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