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Abstract

In this paper we give general recommendations for successful application
of the Douglas–Rachford reflection method to convex and non-convex real
matrix-completion problems. These guidelines are demonstrated by various
illustrative examples.
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1 Introduction

Matrix completion may be posed as an inverse problem in which a matrix possess-
ing certain properties is to be reconstructed knowing only a subset of its entries.
A great many problems can be usefully cast within this framework (see [33, 36]
and the references therein).

By encoding each of the properties which the matrix possesses along with its
known entries as constraint sets, matrix completion can be cast as a feasibility
problem. That is, it is reduced to the problem of finding a point contained in the
intersection of a (finite) family of sets.
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Projection algorithms comprise a class of general purpose iterative methods
which are frequently used to solve feasibility problems (see [7] and the references
therein). At each step, these methods utilize the nearest point projection onto
each of the individual constraint sets. The philosophy here is that it is simpler
to consider each constraint separately (through their nearest point projections),
rather than the intersection directly.

Applied to closed convex sets in Euclidean space, the behaviour of projection
algorithms is quite well understood. Moreover, their simplicity and ease of imple-
mentation has ensured continued popularity for successful applications in a variety
of non-convex optimization and reconstruction problems [9, 10, 4]. This is despite
the absence of sufficient theoretical justification, although there are some useful
beginnings [16, 3, 28]. In many of these settings the Douglas–Rachford method
(see Section 2.1) has been observed to perform better than other projection al-
gorithms, and hence will be the projection algorithm of choice for this paper. A
striking example of its better behaviour is detailed in Section 4.3.

We do note that there are many other useful projection algorithms, and many
applicable variants. See for example, the method of cyclic projections [5, 8], Dyk-
stra’s method [19, 6, 13], the cyclic Douglas–Rachford method [17], and many
references contained in these papers.

In a recent paper [4], the present authors observed that many suc-
cessful non-convex applications of the Douglas–Rachford method can
be considered as matrix completion problems. The aim of this paper
is to give general guidelines for successful application of the Douglas–
Rachford method to a variety of (real) matrix reconstruction problems,
both convex and non-convex.

The remainder of the paper is organised as follows: In Section 2 we first re-
call what is known about the Douglas–Rachford method, and then discuss our
modelling philosophy. In Section 3 we consider several matrix completion prob-
lems in which all the constraint sets are convex: positive semi-definite matrices,
doubly-stochastic matrices, Euclidean distance matrices; before discussing adjunc-
tion of noise. This is followed in Section 4 by a more detailed description of
several classes in which some of the constraint sets are non-convex. In the first
two subsections, we first look at low-rank constraints and then at low-rank Eu-
clidean distance problems. In Section 4.3 we present a first detailed application by
viewing protein reconstruction from NMR data as a low-rank Euclidean distance
problem. The final three subsections of Section 4 carefully consider Hadamard,
skew-Hadamard and circulant-Hadamard matrix problems, respectively. We end
with various concluding remarks in Section 5.
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2 Preliminaries

Let E denote a finite dimensional Hilbert space – a Euclidean space. We will
typically be considering the Hilbert space of real m × n matrices whose inner
product is given by

〈A,B〉 := tr(ATB),

where the superscript T denotes the transpose, and tr(·) the trace of an n × n
square matrix. The induced norm is the Frobenius norm and can be expressed as

‖A‖F :=
√

tr(ATA) =

√√√√ n∑
i=1

m∑
j=1

a2ij.

A partial (real) matrix is an m × n array for which only entries in certain
locations are known. A completion of the partial matrix A = (aij) ∈ Rm×n, is a
matrix B = (bij) ∈ Rm×n such that if aij is specified then bij = aij. The problem of
(real) matrix completion is the following: Given a partial matrix find a completion
having certain properties of interest (e.g. positive semi-definite).

Throughout this paper, we formulate matrix completion as a feasibility problem.
That is,

Find X ∈
N⋂
i=1

Ci ⊆ Rm×n. (1)

Let A be the partial matrix to be completed. We will take C1 to be the set
of all completions of A, and the sets C2, . . . , CN will be chosen such that their
intersection has the properties of interest. In this case, (1) is precisely the problem
of matrix completion.

2.1 The Douglas–Rachford method

Recall that the nearest point projection onto S ⊆ E is the (set-valued) mapping
PS : E → 2S defined by

PSx := argmin
s∈S

‖s− x‖ = {s ∈ S : ‖s− x‖ = inf
y∈S
‖y − x‖}.

The reflection with respect to S is the (set-valued) mapping RS : E → 2E defined
by

RS := 2PS − I,

where I denotes the identity map.
In an abuse of notation, if PSx (resp. RSx) is singleton we use PSx (resp. RSx)

to denote the unique nearest point.
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We now recall what is know about the Douglas–Rachford method, as specialized
to finite dimensional spaces.

Theorem 2.1 (Convex Douglas–Rachford iterations). Suppose A,B ⊆ E are
closed and convex. For any x0 ∈ E define

xn+1 := TA,Bxn where TA,B :=
I +RBRA

2
.

Then if:

(a) A ∩B 6= ∅, (xn) converges to a point x such that PAx ∈ A ∩B.

(b) A ∩B = ∅, ‖xn‖ → +∞.

Proof. See, for example, [11, Th. 3.13].

The results of Theorem 2.1 can only be directly applied to the problem of
finding a point in the intersection of two sets. For matrix completion problems
formulated as feasibility problems with greater than two sets, we use a well known
product space reformulation.

Example 2.1 (Product space reformulation). For constraint sets C1, C2, . . . , CN

define1

D := {(x, x, . . . , x) ∈ EN |x ∈ E}, C :=
N∏
i=1

Ci.

We now have an equivalent feasibility problem since

x ∈
N⋂
i=1

Ci ⇐⇒ (x, x, . . . , x) ∈ D ∩ C.

Moreover, TD,C can be readily computed whenever PC1 , PC2 , . . . , PCN can be since

PDx =

(
1

N

N∑
i=1

xi

)N

, PCx =
N∏
i=1

PCixi.

For further details see, for example, [4, Section 3]. ♦

In the non-convex setting there are some useful theoretical beginnings. For
a Euclidean sphere and affine subspace, with the reflection performed first with
respect the sphere, Borwein and Sims [16] show that, appropriately viewed, the
Douglas–Rachford scheme converges locally. An explicit region of convergence was

1The set D is sometimes called the diagonal.

4



given by Aragón Artacho and Borwein [3] for R2. Hesse and Luke [28] obtained
local convergence results using a relaxed local version of firm nonexpansivity and
appropriate regularity conditions, assuming that the reflection is performed first
with respect to a subspace. We note that varying the order of the reflection does
not make a substantive difference.

2.2 Modelling philosophy

As illustrated for Sudoku and other NP-complete combinatorial problems in [4],
there are typically many ways to formulate the constraint set for a given matrix
completion problem. For example, by choosing different sets C2, C3, . . . , CN , in (1),
such that ∩N

i=2Ci has the properties of interest. To apply the Douglas–Rachford
method, these sets will be chosen in such a way that their individual nearest point
projections are succinctly simple to compute — ideally in closed form. There
is frequently a trade-off between the number of sets in the intersection, and the
simplicity of their projections. For example, one extreme would be to encode the
property of interest in a single constraint set. In this case, it is likely that its
projection is difficult to compute.

To illustrate this philosophy, consider the following example which we revisit
in Section 3.2. Suppose the property of interest is the constraint{

X ∈ Rm×n|Xij ≥ 0,
n∑

k=1

Xkj = 1 for i = 1, . . . ,m and j = 1, . . . , n

}
.

This set is equal to the intersection of C2 and C3 where

C2 :=
{
X ∈ Rm×n|Xij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n

}
,

C3 :=

{
X ∈ Rm×n|

n∑
i=1

Xij = 1 for j = 1, . . . , n

}
.

Here the projections onto the cone C2 and the affine space C3 can be easily com-
puted (see Section 3.2). In contrast, the projection directly onto C2 ∩C3 amounts
to finding the nearest point in the convex hull of the set of matrices having a one
in each row and remaining entries zero. This projection is less straightforward,
and has no explicit form. For details, see [20].

The order of the constraint sets in (1) also requires some consideration. For
matrix completion problems with two constraints, we can and do directly apply
the Douglas–Rachford method to C1 ∩C2, with the reflection first performed with
respect to the set C1. For matrix completion problems with more than two con-
straints, we apply the Douglas–Rachford method to the product formulation of
Example 2.1, with the reflection with respect to D performed first. In this case,
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the solution is obtained by projecting onto D and thus can be monitored by con-
sidering only a single product coordinate.

In non-convex applications, the problem formulation chosen often determines
whether or not the Douglas–Rachford scheme can successfully solve the problem
at hand always, frequently or never, see also [4]. Hence, in the rest of this paper
we focus on naive or direct implementation of the Douglas-Rachford method while
focusing on the choice of an appropriate model and the computation of the requisite
projections/reflections. In a followup paper, we will look at more refined variants
for our two capstone applications: to protein reconstruction and to Hadamard
matrix problems.

3 Convex Problems

We now look, in order, at positive-definite matrices and correlation matrices,
doubly-stochastic matrices, and Euclidean distance matrices before discussing ad-
junction of noise.

3.1 Positive semi-definite matrices

Let Sn denote the set of real n × n symmetric matrices. Recall that a matrix
A = (Aij) ∈ Rn×n is said to be positive semi-definite if

A ∈ Sn and xTAx ≥ 0 for all x ∈ Rn. (2)

The set of all such matrices form a closed convex cone (see [14, Ex. 1, Sec. 1.2]),
and shall be denoted by Sn

+. The Loewner partial order is defined on Sn by taking
A � B if A− B ∈ Sn

+. Recall that a symmetric matrix is positive semi-definite if
and only if all its eigenvalues are non-negative.

Let us consider the matrix completion problem where only some entries of the
positive semi-definite matrix A are known, and denote by Ω the location of these
entries (i.e. (i, j) ∈ Ω if Aij is known). Without loss of generality, we may assume
that Ω is symmetric in the sense that (i, j) ∈ Ω if and only if (j, i) ∈ Ω. Consider
the convex sets

C1 := {X ∈ Rn×n|Xij = Aij for all (i, j) ∈ Ω}, C2 := S+
n . (3)

Then X is a positive semi-definite matrix that completes A if and only if X ∈
C1 ∩ C2.

The set C1 is a closed affine subspace. Its projection is straightforward, and
given pointwise by

PC1(X)ij =

{
Aij if (i, j) ∈ Ω,
Xij otherwise;

(4)
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for all i, j = 1, . . . , n.

Theorem 3.1 ([29, Th. 2.1]). Let X ∈ Rn×n. Define Y = (A + AT )/2 and let
Y = UP be a polar decomposition (see [29, Th. 1.1]). Then

PC2(X) =
Y + P

2
. (5)

Remark 3.1. For X ∈ Sn, Y = X in the statement of Theorem 3.1. If this is the
case, the computation of PC2 is also simplified.

If the initial matrix is symmetric, then the corresponding Douglas–Rachford
iterates are too. This condition can be easily satisfied. For instance, if X ∈ Rn×n

then the iterates can instead be computed starting at PSn(X) = (X + XT )/2 or
XXT ∈ Sn.

Of course, for symmetric iterates only the the upper (or lower) triangular matrix
need be computed. ♦

Remark 3.2. The matrices U and P can also be easily obtained from a singular
value decomposition (see [32, p. 205]). For if Y = WSV T is a singular value
decomposition then

P = V SV T , U = WV T

produces P and U . ♦

Remark 3.3 (Positive definite matrices). Recall that a real symmetric n×n matrix
is said to be positive definite if the inequality in (2) holds strictly whenever x 6= 0.
Denote the set of all such matrices by Sn

++. Since Sn
++ is not closed, the problem of

positive definite matrix completion cannot be directly cast within this framework
by setting C2 := Sn

++.
In practice, one might wish to consider a closed convex subset of Sn

++. For
example, one could instead define

C2 := {X ∈ Rn×n|XT = X, xTXx ≥ ε‖x‖2 for all x ∈ Rn}, (6)

for some small ε > 0. Then (6) is equivalent to requiring that the eigenvalues be
not less than ε. ♦

One can apply our methods to finding semi-definite solutions to matrix Riccati
equations [2].

3.1.1 Correlation matrices

An important class of positive semi-definite matrices is the correlation matrices.
Given random variables X1, X2, . . . , Xn, the associated correlation matrix is an
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(a) X0 := Y . (b) X0 := (Y + Y T )/2. (c) X0 := Y Y T .

Figure 1: Distribution of entries in the collections of correlation matrices generated
by different initialisations of the Douglas–Rachford algorithm. The initial point is
X0, and Y is a random matrix in [−1, 1]5×5. Note (Y + Y T )/2, Y Y T ∈ S5.

element of [−1, 1]n×n whose ijth entry is the correlation between variables Xi and
Xj. Since, any random variable perfectly correlates with itself, the entries along
the main diagonal of any correlation matrix are all ones. Consequently,

{(i, i)|i = 1, . . . , n} ⊆ Ω, and Aii = 1 for i = 1, . . . , n. (7)

Moreover whenever (7) holds, A is necessarily contained in [−1, 1]n×n. This is a
consequence of the following inequality.

Proposition 3.1 ([32, p. 398]). Let A = (aij) ∈ Sn
+. Then

aiiajj ≥ a2ij.

Thus, if A is an incomplete correlation matrix, without loss of generality we
may assume that (7) holds. In this case, X is correlation matrix that completes
A if and only if X ∈ C1 ∩ C2, as defined in (3).

Consider now the problem of generating a random sample of correlation ma-
trices. This is the case, for example, when one uses simulation to determine an
unknown probability distribution [1, 39].

The Douglas–Rachford method provides a heuristic for generating such a sam-
ple by applying the method to initial points chosen according to some probability
distribution. In this case, the set of known indices, and their corresponding values,
are

Ω = {(i, i)|i = 1, . . . , n}, and Aii = 1 for i = 1, . . . , n.

The distribution of the entries in 100000 matrices of size 5 × 5 obtained from
three different sets of choices of initial point distribution is shown in Figure 1.
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3.2 Doubly stochastic matrices

Recall that a matrix A = (Aij) ∈ Rm×n is said to be doubly stochastic if

m∑
i=1

Aij =
n∑

j=1

Aij = 1, Aij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n. (8)

The set of all doubly stochastic matrices are known as the Birkhoff polytope, and
can be realised as the convex hull of the set of permutation matrices (see, for
example, [14, Th. 1.25]).

Let us now consider the matrix completion problem where only some entries
of a doubly stochastic matrix A are known, and denote by Ω the location of these
entries (i.e., (i, j) ∈ Ω if Aij is known). The set of all such candidates is given by

C1 := {X ∈ Rm×n|Xij = Aij for all (i, j) ∈ Ω}, (9)

which is similar to (3). The Birkhoff polytope may be expressed as the intersection
of the three convex sets

C2 :=

{
X ∈ Rm×n|

m∑
i=1

Xij = 1 for j = 1, . . . , n

}
, (10)

C3 :=

{
X ∈ Rm×n|

n∑
j=1

Xij = 1 for i = 1, . . . ,m

}
, (11)

C4 := {X ∈ Rm×n|Xij ≥ 0 for i = 1, . . . ,m and j = 1, . . . , n}. (12)

Then X is a double stochastic matrix that completes A if and only if X ∈ C1 ∩
C2 ∩ C3 ∩ C4.

As in (4), the set C1 is a closed affine subspace whose projection is given
pointwise by

PC1(X)ij =

{
Aij if (i, j) ∈ Ω,
Xij otherwise;

(13)

for all i = 1, . . . ,m and j = 1, . . . , n.
The projection onto C2 (resp. C3) can be easily computed by applying the

following proposition row-wise (resp. column-wise).

Proposition 3.2. Let S := {x ∈ Rm|
∑m

i=1 xi = 1}. For any x ∈ Rm,

PS(x) = x+
1

m

(
1−

m∑
i=1

xi

)
e, where e = [1, 1, . . . , 1]T .
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Proof. Since S = {x ∈ Rn|〈e, x〉 = 1}, the result follows from the standard formula
for the orthogonal projection onto a hyperplane (see, for example, [22, Sec. 4.2.1]).

The projection of A onto C4 is given pointwise by

PC4(A)ij = max{0, Aij},

for i = 1, . . . ,m and j = 1, . . . , n.

Remark 3.4. One can also address the problem of singly-stochastic matrix com-
pletion. The problem of row (resp. column) stochastic matrix completion is for-
mulated by dropping constraint C3 (resp. C2). ♦

3.3 Euclidean distance matrices

A matrix D = (Dij) ∈ Rn×n is said to be a distance matrix if

Dij = Dji =

{
= 0, i = j,
≥ 0, i 6= j;

for i, j = 1, . . . , n.

Furthermore, D is called a Euclidean distance matrix (EDM) if there are points
p1, . . . , pn ∈ Rr (with r ≤ n) such that

Dij = ‖pi − pj‖2 for i, j = 1, . . . , n. (14)

If (14) holds for a set of points in Rr then D is said to be embeddable in Rr. If D
is embeddable in Rr but not in Rr−1, then it is said to be irreducibly embeddable
in Rr.

The following result by Hayden and Wells, based on Schoenberg’s criterion [40,
Th. 1], provides a useful characterization of Euclidean distance matrices.

Theorem 3.2 ([27, Th. 3.3]). Let Q be the Householder matrix defined by

Q := I − 2vvT

vTv
, where v =

[
1, 1, . . . , 1, 1 +

√
n
]T ∈ Rn.

Then, a distance matrix D is a Euclidean distance matrix if and only if the
(n− 1)× (n− 1) block D̂ in

Q(−D)Q =

[
D̂ d
dT δ

]
(15)

is positive semidefinite. In this case, D is irreducibly embeddable in Rr where
r = rank(D̂) ≤ n− 1.
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Remark 3.5. As a consequence of Theorem 3.2, the set of Euclidean distance ma-
trices is convex. ♦

Let us consider now the matrix completion problem where only some entries of
a Euclidean distance matrix D are known, and denote by Ω the location of these
entries (i.e., (i, j) ∈ Ω if Dij is known). Without loss of generality we assume D
and Ω to be symmetric. Consider the convex sets

C1 :=
{
X ∈ Rn×n | X is a distance matrix, Xij = Dij for all (i, j) ∈ Ω

}
, (16)

C2 :=
{
X ∈ Rn×n | X̂ � 0 where X̂ is the block in Q(−X)Q in (15)

}
(17)

Then X is a Euclidean distance matrix that completes D if and only if X ∈ C1∩C2.
The projection of any symmetric matrix A = (Aij) ∈ Rn×n onto C1 can be

easily computed:

PC1(A) =


0, if i = j,
Dij, if (i, j) ∈ Ω,

max{0, Aij}, otherwise;
(18)

The projection of A onto C2 is the unique solution to the problem

min
X∈C2

‖A−X‖F .

If we denote

Q(−A)Q =

[
Â a
aT α

]
and Q(−X)Q =

[
X̂ x
xT λ

]
,

then

min
X∈C2

‖A−X‖F = min
X∈C2

‖Q(A−X)Q‖F = min
X∈C2

‖Q(−A)Q−Q(−X)Q‖F

= min
x∈Rn,λ∈R
X̂=X̂T ,X̂�0

∥∥∥∥ Â− X̂ a− x
(a− x)T (α− λ)

∥∥∥∥
F

.

A consequence of [27, Th. 2.1] is that the unique best approximation is given by[
UΛ+U

T a
aT α

]
where UΛUT = Â is the spectral decomposition (see [27, p.116]) of Â, with Λ =
diag(λ1, . . . , λn−1), and Λ+ = diag(max{0, λ1}, . . . ,max{0, λn−1}). Therefore,

PC2(A) = −Q
[
UΛ+U

T a
aT α

]
Q. (19)
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3.3.1 Noise

In many practical situations the distances that are initially known have some
errors in their measurements, and the Euclidean matrix completion problem may
not even have a solution. In these situations, a model that allows errors in the
distances needs to be considered.

Given some error ε ≥ 0, consider the convex set

Cε
1 :=

{
X ∈ Rn×n |X is a distance matrix

and |Xij −Dij| ≤ ε for all (i, j) ∈ Ω
}
. (20)

Notice that C0
1 = C1. The projection of any symmetric matrix A = (Aij) ∈ Rn×n

onto Cε
1 can be easily computed:

PCε1
(A) =


0, if i = j,

Dij + ε, if (i, j) ∈ Ω and Aij > Dij + ε,
max{0, Dij − ε}, if (i, j) ∈ Ω and Aij < Dij − ε,

max{0, Aij}, otherwise.

(21)

This model could be easily modified to include a different upper and lower bound
on each distance Dij for (i, j) ∈ Ω.

4 Non-convex Problems

We now turn to the more difficult case of non-convex matrix completion problems.

4.1 Low-rank matrices

It many practical scenarios, one would like to recover a matrix that is known to be
low-rank from only a subset of its entries. This is the case, for example, in various
compressed sensing applications [15]. The main problem here is that the low-rank
constraint makes the problem non-convex. For example, if we consider

S :=
{
A ∈ R2×2∣∣ rank(A) ≤ 1

}
,

then [
1 0
0 0

]
,

[
0 0
0 1

]
∈ S,

but for all λ ∈ (0, 1),

λ

[
1 0
0 0

]
+ (1− λ)

[
0 0
0 1

]
6∈ S.

12



4.1.1 Relaxed rank constraints

Let us consider the problem of finding a matrix of minimal rank, given that some
of the entries are known. We define a relaxed rank constraint

Cr
2 := {X ∈ Rm×n| rank(X) ≤ r}.

Then X is a matrix completion of A with rank at most r if and only if X ∈ C1∩Cr
2 .

The set of possible ranks of A is finite and bounded above by min{m,n}.
Furthermore, Cr

2 ⊆ Cs
2 for r ≤ s. It follows that X is a completion of A with

minimal rank if and only if

X ∈ C1 ∩ Cr0
2 and X 6∈ C1 ∩ Cr

2 for any r < r0.

In this case rank(X) = r0.
This suggests a binary search heuristic for finding the rank of a matrix. For

convenience, abbreviate the Douglas–Rachford method by DR, and denote by P (r)

the relaxation
Find x ∈ C1 ∩ Cr

2 . (22)

The iteration can now be implemented as shown as Algorithm 1:

input : Ω, Aij for all (i, j) ∈ Ω, MaxIterations
rlb := 0, rub := min{m,n}, r := brub/2c;
while rlb < rub do

if DR solves P (r) within MaxIterations iterations then
rub := r;

else
rlb := r + 1;

end
r := b(rlb + rub)/2c;

end
output: r

Algorithm 1: Heuristic for minimum rank matrix completion.

Of course there are many applicable variants on this idea. For instance, one
could instead perform a ternary search.

4.2 Low-rank Euclidean distance matrices

In many situations, the Euclidean distance matrix D that one aims to complete is
known to be embeddable in Rr, say with r = 3. This is the case, for example, in the
molecular conformation problem in which one would like to compute the relative
atom positions within a molecule. Nuclear magnetic resonance spectroscopy can
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be employed to measure short range interatomic distances (i.e. those less than
5–6Å)2 without structural modification of the molecule (see [42]).

These types of problems are known as low-rank Euclidean distance matrix prob-
lems. For any given positive integer r, we can modify the set C2 in (17) as follows

Cr
2 :=

{
X ∈ Rn×n | X̂ � 0 where X̂ is the block

in Q(−X)Q in (15) and rank(X̂) ≤ r
}
.

Unfortunately, as noted in [24, §5.3], the set Cr
2 is no longer convex unless r ≥ n−1

(in which case the rank condition is always satisfied and Cr
2 = C2). Nevertheless,

a projection3 of any symmetric matrix A onto Cr
2 can be easily computed. Indeed,

let us assume without loss of generality that the eigenvalues λ1, . . . , λn−1 of the
submatrix X̂ are given in nondecreasing order λ1 ≤ λ2 ≤ . . . ≤ λn−1 in the spectral
decomposition X̂ = UΛUT , where Λ = diag(λ1, . . . , λn−1). Then, PCr2

(X) can be
computed as in (19) but with Λ+ replaced by

Λr
+ := diag(0, . . . , 0,max{0, λn−r}, . . . ,max{0, λn−1}).

4.3 Protein reconstruction

Once more, despite the absence of convexity in one of the constraints, we have ob-
served the Douglas–Rachford algorithm to converge. Computational experiments
have been performed on various protein molecules obtained from the RCSB Protein
Data Bank.4 The complete structure of these proteins is contained in the respec-
tive data files as a list of points in R3, each representing an individual atom. The
corresponding complete Euclidean distance matrix can then be computed using
(14). A realistic partial Euclidean distance matrix is then obtained by removing
all entries which correspond to distances greater than 6Å. From this partial matrix,
we seek to reconstruct the molecular conformation.

In Algorithm 2 we give details regarding our Python implementation for finding
the distance matrix and in Algorithm 3 we reconstruct the positions from the
matrix completion.

21Å = 10−10 meters. The Å stands for Ångström.
3Since Cr

2 is not convex, the projection need not be unique.
4Available at http://www.rcsb.org/pdb/.
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input : D ∈ Rn×n (the partial Euclidean distance matrix)
ε := 0.1, r := 3, N := 5000, k := 0;
X := (Y + Y T )/2 ∈ Sn for random Y ∈ [−1, 1]n×n;
while k ≤ N do

X := TCε1,Cr2X;

k := k + 1;

end
output : X (the reconstructed Euclidean distance matrix)

Algorithm 2: Douglas–Rachford component of our Python implementation.

The quality of the solution is then assessed using various error measurements.
The relative error, reported in decibels (dB), is given by

Relative error := 10 log10

(‖PCr2
PCε1

XN − PCε1
XN‖2F

‖PCε1
XN‖2F

)
, where ε = 0.1, r = 3.

input : X ∈ Rn×n (the reconstructed distances matrix)
L := I − eeT/n where e = (1, 1, . . . , 1)T ;
τ := −1

2
LDL;

USV T := SingularV alueDecomposition(τ);

Z :=first n columns of U
√
S;

pi := ith row of Z for i = 1, 2, . . . , n;
output: p1, p2, . . . , pn (positions of the points in Rn)

Algorithm 3: Converting a Euclidean distance matrix to points in Rn (see
[18, Sec. 5.12]).

Let p1, p2, . . . , pn ∈ R3 denote the positions of the n atoms obtained from the
distance matrix XN , and let ptrue1 , ptrue2 , . . . , ptruen denote the true positions of the
n atoms (both relative to the same coordinate system). It is possible for both
sets of points to represent the same molecular conformation without occupying
the same positions in space. Thus, to compare the two sets, a Procrustes analysis
is performed.5 That is, we (collectively) translate, rotate and reflect the points
p1, p2, . . . , pn to obtain the point p̂1, p̂2, . . . , p̂n which minimize the least squared
error to the true positions.

Using the fitted points, we compute the root-mean-square error (RMSE) de-
fined by

RMSE :=

√√√√ 1

# of atoms

m∑
i=1

‖p̂i − ptruei ‖22,

5This can be performed, for example, using build-in MATLAB functions.
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and the maximum error defined by

Max Error := max
1≤i≤m

‖p̂i − ptruei ‖2.

Table 1: Six Proteins: average (maximum) errors from five replications (5000
iterations).

Protein # Atoms Relative Error (dB) RMSE Max Error
1PTQ 404 -83.6 (-83.7) 0.0200 (0.0219) 0.0802 (0.0923)
1HOE 581 -72.7 (-69.3) 0.191 (0.257) 2.88 (5.49)
1LFB 641 -47.6 (-45.3) 3.24 (3.53) 21.7 (24.0)
1PHT 988 -60.5 (-58.1) 1.03 (1.18) 12.7 (13.8)
1POA 1067 -49.3 (-48.1) 34.1 (34.3) 81.9 (87.6)
1AX8 1074 -46.7 (-43.5) 9.69 (10.36) 58.6 (62.6)

Our computational results are summarized in Table 1. An animation of the al-
gorithm at work constructing the protein 1PTQ can be viewed at http://carma.
newcastle.edu.au/DRmethods/1PTQ.html. We next make some general com-
ments regarding the performance of our method.

• 1PTQ and 1HOE, the two proteins with less than 600 atoms, could be re-
liability reconstructed to within a small error. A visual comparison of the
reconstructed and original molecules match well – they are indistinguishable.
See Figures 2 and 3.

• The reconstructions of 1LFB and 1PHT, the next two smallest proteins ex-
amined, were both satisfactory although not as good as their smaller coun-
terparts. A careful comparison of the original and reconstructed images in
Figure 3, shows that a large proportion of the proteins have been faithfully
reconstructed, although some finer details are missing. For instance, one
should look at the top right corners of the 1PHT images.

• The reconstructions of 1POA and 1AX8, the largest two proteins examined,
were poor. The images of the reconstructed proteins show that some bond
lengths are abnormally large. We discuss possible approaches to this issue
in Remarks 4.1 and 4.2.

• Some alternative approaches to protein reconstruction are reported in [23].
Three are:

– A “build-up” algorithm placing atoms sequentially (Buildup).
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– A classical multidimensional scaling approach (CMDSCALE ).

– Global continuation on Gaussian smoothing of the error function (DG-
SOL).

For 1PTQ and HOE, the RMS error of the Douglas–Rachford reconstruc-
tion was slightly smaller than the reconstruction obtained from either the
buildup algorithm or CMDSCALE. For 1LFB and 1PHT the RMS errors
were comparable, and for 1POA and 1AXE they still had the same order of
magnitude. DGSOL performed better than all three approaches (Douglas–
Rachford, Buildup and CMSCALE).

• For the proteins examined, computational times for the full 5000 iterations,
except for 1POA, ran anywhere from 6 to 18 hours. This time is mostly
consumed by eigen-decompositions performed as part of computing PCr2

and
could perhaps be dramatically reduced by using a cheaper approximate pro-
jection. For 1POA we used up to 50 hours for a full reconstruction.

Remark 4.1 (An upper bound on distances). The constraint C1 can be easily mod-
ified to incorporate additional distance information. For instance, upper and lower
bounds could be placed on the distance between (not necessarily adjacent) carbons
atoms on a carbon chain. Note that each carbon-carbon bond is approximately
1.5Å in length. ♦

Remark 4.2 (Two phase approach). In our implementation, the Douglas–Rachford
method encountered difficulties applied to the reconstruction of the two larger pro-
teins. It therefore would be reasonable to consider an approach were one partitions
the atoms into sets and applies the Douglas–Rachford to these sub-problems. The
reconstructed distances obtained from these sub-problems can then be used as the
initial estimates for distances in the original master problem (which considers all
the atoms). An iterative version is outline in Algorithm 4.
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input : D ∈ Rn×n (the partial Euclidean distances matrix)
Choose random X ∈ [−1, 1]n×n;
Γ := {1, 2, . . . , n} (each index represents an atom);
while continue do

if doPhase1 then // generate and solve sub-problems (phase 1)

Choose a partition of Γ into the sets Γ1,Γ2, . . . ,Γm;
for k = 1, 2, . . . ,m do

Apply Algorithm 2 to atoms indexed by Γk to obtain Xk (i.e. the
distance matrix for the atoms indexed by Γk).;
Update X with the reconstructed distances in Xk;

end

else // solve master problem (phase 2)

Apply Algorithm 2 to all atoms (i.e. index by Γ) to obtain X;
end

end
output: X (the reconstructed distance matrix)

Algorithm 4: A two phase algorithms for protein reconstruction.

We continue to work on such problem-specific refinements of the Douglas-
Rachford method: in most of our example problems a natural splitting is less
accessible. ♦

It would also be interesting to apply the methods of this section to sensor net-
work localization problems requiring the reconstruction of an incomplete distance
matrix. See, for example, [21, 35, 25].
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Figure 3: The five proteins not shown in Figure 2. The first column shows positions of original
(resp. reconstructed) atom in red (resp. blue), the second and third columns show the original
protein and a reconstructioned instance (displayed in Swiss-PdbViewer), as reported in Table 1.

Protein Atom positions Original Reconstruction

1H
O

E
1L

F
B

1P
H

T
1P

O
A

1A
X

8
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4.4 Hadamard matrices

Recall that a matrix H = (Hij) ∈ {−1, 1}n×n is said to be a Hadamard matrix of
order n if

HTH = nI. (23)

We note that there are many equivalent characterizations. For instance, (23) is
equivalent to asserting that H has maximal determinant (i.e. | detH| = nn/2) [31,
Chapter 2]. A classical result of Hadamard asserts that Hadamard matrices exist
only if n = 1, 2 or a multiple of 4. For orders 1 and 2, such matrices are easy
to find. For multiples of 4, the Hadamard conjecture asks the converse: If n is a
multiple of 4, does there exists a Hadamard matrix of order n? Background on
Hadamard matrices can be found in [31]. Thus, an important completion problem
starts with structure restrictions, but with no fixed entries.

Consider the now the problem of finding a Hadamard matrix of a given order.
We define the constraints:

C1 := {X ∈ Rn×n|Xij = ±1 for i, j = 1, . . . , n}, (24)

C2 := {X ∈ Rn×n|XTX = nI}. (25)

Then X is a Hadamard matrix if and only if X ∈ C1 ∩ C2.
The first constraint, C1, is clearly non-convex. However, its projection is simple

and is given pointwise by

PC1(X)ij =


−1 if Xij < −1,
±1 if Xij = 0,
1 otherwise.

(26)

The second constraint, C2, is also non-convex. To see this, consider the mid-
point of the two matrices(√

2 0

0
√

2

)
,

(
0
√

2√
2 0

)
∈ C2.

Nevertheless, a projection can be found by solving the equivalent problem of finding
a nearest orthogonal matrix — a special case of the Procrustes problem described
above.

Proposition 4.1. Let X = USV T be a singular value decomposition. Then

√
nUV T ∈ PC2(X).
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Proof. Let Y = X/
√
n. Then

min
X∈Rn×n
ATA=nI

‖X − A‖F =
√
n

(
min

Y ∈Rn×n
BTB=I

‖Y −B‖F

)
.

Any solution to the latter is the nearest orthogonal matrix to Y . One such matrix
can be obtained by replacing all singular values of Y by ‘one’ (see, for example,
[41]). Since

Y = UŜV T where Ŝ = S/
√
n,

is a singular value decomposition, it follows that UV is the nearest orthogonal
matrix to Y . The result now follows.

Remark 4.3. Any A ∈ PC2(X) is such that tr(ATX) = maxB∈C2 tr(BTX). ♦

Remark 4.4. Consider instead the matrix completion problem of finding a Hadamard
matrix with some known entries. This can be cast within the above framework by
appropriate modification of C1. The projection onto C1 only differs by leaving the
known entries unchanged. ♦

We next give a second useful formulation for the problem of finding a Hadamard
matrix of a given order. We take C1 as in (23) and define

C3 := {X ∈ Rn×n|XTX = ‖X‖F I}.

If X ∈ C1 then ‖X‖F = n, hence C1 ∩ C2 = C1 ∩ C3. It follows that X is a
Hadamard matrix if and only if X ∈ C1 ∩ C3. A projection onto C3 is given
similarly PC2 .

Proposition 4.2. Let X = USV T be a singular value decomposition. Then√
‖X‖F UV T ∈ PC3(X).

Proof. This is a straightforward modification of Proposition 4.1.

Remark 4.5 (Complex Hadamard matrices). It is also possible to consider complex
Hadamard matrices. In this case,

C1 := {X ∈ Cn×n| |Xij| = 1}.

The projection onto C1 is straightforward, and is given by

PC1(X)ij =

{
Xij/|Xij| if Xij 6= 0,

C1 otherwise.

Note that the real solutions to |Xij| = 1 are ±1. ♦
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Example 4.1 (Experiments with Hadamard matrices). LetH1 andH2 be Hadamard
matrices. We say H1 are H2 are distinct if H1 6= H2. We say H1 and H2 are
equivalent if H2 can be obtained from H1 by performing a sequence of row/column
permutations, and/or multiplying row/columns by −1. The number of distinct
(resp. inequivalent) Hadamard matrices of order 4n is given in OEIS sequence
A206712 :768, 4954521600, 20251509535014912000,... (resp. A00729: 1, 1, 1, 1,
5, 3, 60, 487, 13710027, ...). With increasing order, the number of Hadamard
matrices is a faster than exponentially decreasing proportion of the total number
of {+1,−1}-matrices (of which there are 2n2

for order n). This is reflected in
the observed rapid increase in difficulty of finding Hadamard matrices using the
Douglas–Rachford scheme, as order increases.

We applied the Douglas–Rachford algorithm to 1000 random replications, for
each of the above formulation. Our computational experience is summarized in
Table 2 and Figure 4. To determine if two Hadamard matrices are equivalent, we
use a Sage implementation of the graph isomorphism approach outlined in [38].

Table 2: Number of Hadamard matrices found from 1000 instances.

Order
Prop. 4.1 Formulation Prop. 4.2 Formulation

Ave Time (s) Solved Distinct Inequivalent Ave Time (s) Solved Distinct Inequivalent
2 1.1371 534 8 1 1.1970 505 8 1
4 1.0791 627 422 1 0.2647 921 541 1
8 0.7368 996 996 1 0.0117 1000 1000 1
12 7.1298 0 0 0 0.8337 1000 1000 1
16 9.4228 0 0 0 11.7096 16 16 4
20 20.6674 0 0 0 22.6034 0 0 0

We make some brief comments our the results.

• The formulation based on Proposition 4.2 was found to be faster and more
successful than the formulation based on Proposition 4.1, especially for orders
8 and 12 where it was successful in every replication. For order less than
or equal to 12, the Douglas–Rachford schema was able to find the unique
inequivalent Hadamard matrix under either formulation (except for n = 12,
Prop. 4.1 formulation). Moreover, the Proposition 4.2 formulation was able
to find four of the five inequivalent Hadamard matrices of order 16.6

• From Figure 4 we observe that if a Hadamard matrix was found, it was usu-
ally found within the first few thousand iterations. The frequency histogram
for order 16, shown in Figure 4(f), varied significantly from the corresponding
histograms for lower orders.

6All five can be found at http://www.uow.edu.au/~jennie/hadamard.html.
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(a) n = 4, Prop. 4.1 formulation. (b) n = 4, Prop. 4.2 formulation.

(c) n = 8, Prop. 4.1 formulation. (d) n = 8, Prop. 4.2 formulation.

(e) n = 12, Prop. 4.2 formulation. (f) n = 16, Prop. 4.2 formulation.

Figure 4: Frequency histograms showing the number of iterations required to find
a Hadamard matrix, for different order and formulations (solved instances only).
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For orders 20 and above, it is possible that another formulation might be more
fruitful, but almost certainly better and more problem-specific heuristics will again
be needed. ♦

Remark 4.6. Since C2 is non-convex, when computing its projection we are forced
to make a selection from the set of nearest points. In our experiments we have
always chosen the nearest point in the same way. It maybe possible to benefit
from making the selection according to some other criterion. ♦

We now turn our attention to some special classes of Hadamard matrices.

4.4.1 Skew-Hadamard matrices

Recall that a matrix A = (aij) ∈ Rn×n is skew-symmetric if AT = −A. A skew-
Hadamard matrix is a Hadamard matrix, H, such that (I−H) is skew-symmetric.
That is,

H +HT = 2I.

Skew-Hadamard matrices are of interest, for example, in the construction of com-
binatorial designs. (For a survey see [34].) The number of inequivalent skew-
Hadamard matrices of order 4n is given in OEIS sequence A001119: 1, 1, 2, 2, 16,
54, . . . (for n = 2, 3, . . . ).

In addition to the constraints C1 and C2 from the previous section, we define
the affine constraint

C3 := {X ∈ Rn×n|X +XT = 2I}.

A projection onto C1 ∩ C3 is given by

PC1∩C3(X)ij =


1 if i 6= j and Xij ≥ Xji,
−1 if i 6= j and Xij < Xji,
1 otherwise.

Then X is a skew-Hadamard matrix if and only if X ∈ (C1 ∩ C3) ∩ C2.
Table 3 shows the results of the same experiment as Section 4.4, but with the

skew constraint incorporated.

Remark 4.7. Comparing the results of Table 3 with those of Table 2, it is notable
that by placing additional constraints on the problem, both methods now succeed
at higher orders, method two is faster than before, and we can successfully find all
inequivalent skew matrices of order 20 or less.

In contrast, the three-set feasibility problem C1 ∩ C2 ∩ C3 was unsuccessful,
except for order 2. This is despite the projection onto the affine set C3 having the
simple formula

PC3(X) = I +
X −XT

2
. (27)
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Table 3: Number of skew-Hadamard matrices found from 1000 instances.

Order
Prop. 4.1 Formulation Prop. 4.2 Formulation

Ave Time (s) Solved Distinct Inequivalent Ave Time (s) Solved Distinct Inequivalent
2 0.0003 1000 2 1 0.0004 1000 2 1
4 1.1095 719 16 1 1.6381 634 16 1
8 0.7039 902 889 1 0.0991 986 968 1
12 14.1835 43 43 1 0.0497 999 999 1
16 19.3462 0 0 0 0.2298 1000 1000 2
20 29.0383 0 0 0 20.0296 495 495 2

Many mysteries remain! ♦

4.4.2 Circulant Hadamard matrices

Recall that a matrix A = (aij) ∈ Rn×n is circulant if it can be expressed as

A =


λ1 λ2 . . . λn
λn λ1 . . . λn−1
...

...
. . .

...
λ2 λ3 . . . λ1


for some vector λ ∈ Rn.

The set of circulant matrices form a subspace of Rn×n. The set {P k : i =
1, 2, . . . , n}, where P is the cyclic permutation matrix

P :=


0 0 . . . 0 1
1 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 ,

forms a basis. Consequently, any circulant matrix, A, can be expressed as the
linear combination of the form

A =
n∑

k=1

λkP
k.

Remark 4.8. Right (resp. left) multiplication by P results in a cyclic permutation
of rows (resp. columns). Hence P 2, P 3, . . . , P n represent all cyclic permutations
of the rows (resp. columns) of P . In particular, P n is the identity matrix. ♦
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Proposition 4.3 ([30, Ex. 6.7]). For X ∈ Rn×n, the nearest circulant matrix is
given by

n∑
k=1

λkP
k where λk =

1

n

∑
i,j

P k
ijXij.

A circulant Hadamard matrix is a Hadamard matrix which is also circulant.
The circulant Hadamard conjecture asserts: No circulant Hadamard matrix of

order larger than 4 exists. For recent progress on the conjecture, see [37]. Consis-
tent with this conjecture, our Douglas–Rachford implementation can successfully
find circulant matrices of order 4, but fails for higher orders.

5 Conclusion

We have provided general guidelines for successful application of the Douglas Rach-
ford method to (real) matrix completion problems: both convex and non-convex.
The message of the previous two sections is the following. When presented with a
new (potentially non-convex) feasibility problem it is well worth seeing if Douglas–
Rachford can deal with it— as it is both conceptually very simple and is usually
relatively easy to implement. If it works one may then think about refinements if
performance is less than desired.

Moreover, this approach allows for the intuition developed for continuous op-
timization in Euclidean space to be usefully repurposed. This also lets one prof-
itably consider non-expansive fixed point methods in the class of so-called CAT(0)
metric spaces — a far ranging concept introduced twenty years ago in algebraic
topology but now finding applications to optimization and fixed point algorithms.
The convergence of various projection type algorithms to feasible points is under
investigation by Searston and Sims among others in such spaces [12] — thereby
broadening the constraint structures to which projection-type algorithms apply to
include metrically rather than only algebraically convex sets.

Future computational experiments could include:

• Implementing the modifications to the protein reconstruction formulation
outlined in Remarks 4.1 and 4.2.

• Consideration of similar reconstruction problems arising in the context of
ionic liquid chemistry, and as mentioned, sensor location problems.

• Likewise, for the discovery of larger Hadamard matrices to be tractable by
Douglas–Rachford methods, a more efficient implementation is needed and
a more puissant model.
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