Upper Bound for Critical Probability of Site Percolation on Triangular Lattice is $1 / 2^{\frac{3}{2}}$

Marko Puljii*
Center for Computational Science at Tulane University

(Dated: August 22, 2013)
In triangular lattice, the upper bound for critical probability of site percolation is $\frac{1}{2^{\frac{3}{2}}} \approx 0.3535$.

I. INTRODUCTION AND DESCRIPTION OF \mathbb{Z}^{2}

In site percolation, vertices (sites) of a graph are open with probability p, and there is the smallest $p=p_{H}$, critical p, for which open vertices form an open path the long way across a graph, so a vertex at the origin is a part of an infinite connected open vertex set, 3]. Smirnov found that for triangular lattice $\left.p_{H}=1 / 2,1\right]$, but there is the traversal, from the origin upwards, so that an infinite connected open vertex set exists for $p_{H}=1 / 2^{\frac{3}{2}} \approx 0.3535$.

In finite graph $\mathbb{Z}_{k}^{2}, 2$ pairs of opposite arcs are k edges away from the vertex at origin, Fig. 1] Basis $\mathcal{B}\left(\mathbb{Z}^{2}\right)$ of edges and the integers a_{i} assign the place to vertex $\mathbf{v} \in \mathbb{Z}_{k}^{2}$:

$$
\begin{aligned}
\mathbf{v}_{0} & =0=\text { vertex at origin of } \mathbb{Z}_{k}^{2} \subset \mathbb{Z}^{2} \\
\mathcal{B}\left(\mathbb{Z}^{d}\right) & =\left\{\uparrow_{1}, \uparrow_{2}, \uparrow_{3}, . ., \uparrow_{d}\right\},-\uparrow_{1}=\downarrow_{1} \&-\uparrow_{2}=\downarrow_{2} \\
\mathbf{v} & =a_{1} \uparrow_{1}+a_{2} \uparrow_{2}, \mathbf{v}_{0} \rightarrow \mathbf{v}=\text { path from } \mathbf{v}_{0} \text { to } \mathbf{v} \\
\left|\mathbf{v}_{0} \rightarrow \mathbf{v}\right| & =\|\mathbf{v}\|=\left|a_{1}(\mathbf{v})\right|+\left|a_{2}(\mathbf{v})\right|
\end{aligned}
$$

Places of neighbors of vertex $\mathbf{v} \in \mathbb{Z}^{2}$ can be partition into 2 up-step neighbors traversed via \uparrow_{1} and \uparrow_{2} and 2 downstep neighbors traversed via \downarrow_{1} and \downarrow_{2}. For \uparrow_{1}, there is matching \downarrow_{1}, and for \uparrow_{2}, there is matching \downarrow_{2} :

$$
\begin{aligned}
\mathcal{N}\left(\mathbf{v}, \mathbb{Z}^{2}\right) & =\text { neighbors of } \mathbf{v} \\
\mathcal{N}_{u}\left(\mathbf{v}, \mathbb{Z}^{2}\right) & =\text { up-step neighbors of } \mathbf{v}=\left\{\mathbf{v}+\uparrow_{1}, \mathbf{v}+\uparrow_{2}\right\}
\end{aligned}
$$

FIG. 1: In arcs, $\sum_{i}\left|a_{i}(\mathbf{v})\right|=4$ (outside dotted curve). In the convenient pair of opposite arcs $\left\{\mathcal{A}_{4}\left(\mathbb{Z}^{2}\right), \mathcal{A}_{-4}\left(\mathbb{Z}^{2}\right)\right\}_{1}$, $\mathcal{A}_{4}\left(\mathbb{Z}^{2}\right)=\left\{4 \uparrow_{1}, 3 \uparrow_{1}+1 \uparrow_{2}, 2 \uparrow_{1}+2 \uparrow_{2}, 1 \uparrow_{1}+3 \uparrow_{2}, 4 \uparrow_{2}\right\}$.

[^0]\mathbf{v}_{0} is k edges away from the arcs and it can be any vertex in \mathbb{Z}^{2}. Two pairs of opposite arcs in \mathbb{Z}_{k}^{2} look the same and any pair, by rotation of \mathbb{Z}^{2}, can be a convenient pair $\left\{\mathcal{A}_{k}\left(\mathbb{Z}^{2}\right), \mathcal{A}_{-k}\left(\mathbb{Z}^{2}\right)\right\}_{1}:$
\[

$$
\begin{aligned}
& \left\{\mathcal{A}_{k}\left(\mathbb{Z}^{2}\right), \mathcal{A}_{-k}\left(\mathbb{Z}^{2}\right)\right\}_{1}=\text { one of } 2 \text { pairs of opposite arcs } \\
& \mathcal{A}_{k}\left(\mathbb{Z}^{2}\right) \cap \mathcal{A}_{-k}\left(\mathbb{Z}^{2}\right)=\emptyset \\
& \\
& \mathcal{A}_{k}\left(\mathbb{Z}^{2}\right)=\left\{\begin{array}{c}
\mathbf{v}:\|\mathbf{v}\|=k \& a_{1}(\mathbf{v}), a_{2}(\mathbf{v}) \geq 0 \\
\mathbf{v} \text { built with } \uparrow_{1} \& \uparrow_{2} \text { edges only }
\end{array}\right\}
\end{aligned}
$$
\]

The shortest traversal from \mathbf{v}_{0} to $\mathcal{A}_{k}\left(\mathbb{Z}^{2}\right)$ is a traversal via vertices in $\mathcal{N}_{u}\left(\mathbf{v}, \mathbb{Z}^{2}\right)$, which are one edge closer to $\mathcal{A}_{k}\left(\mathbb{Z}^{2}\right):$

$$
\begin{aligned}
& 1^{s t}: \mathcal{A}_{1}\left(\mathbb{Z}^{2}\right)=\left\{\uparrow_{1}, \uparrow_{2}\right\} \\
& 2^{n d}: \mathcal{A}_{2}\left(\mathbb{Z}^{2}\right)=\bigcup_{\mathbf{v} \in \mathcal{A}_{1}\left(\mathbb{Z}^{2}\right)} \mathcal{N}_{u}\left(\mathbf{v}, \mathbb{Z}^{2}\right) \\
& \quad \cdot \\
& k^{t h}: \mathcal{A}_{k}\left(\mathbb{Z}^{2}\right)=\bigcup_{\mathbf{v} \in \mathcal{A}_{k-1}\left(\mathbb{Z}^{2}\right)} \mathcal{N}_{u}\left(\mathbf{v}, \mathbb{Z}^{2}\right)
\end{aligned}
$$

II. TRIANGULAR LATTICE PERCOLATION

Lattice \mathbb{Z}^{2} is percolating when the open vertices form an open path connecting \mathbf{v}_{0} with the vertices in the opposite sides of \mathbb{Z}_{k}^{2} and $k \rightarrow \infty$, so we need to know the number of paths connecting \mathbf{v}_{0} and vertices in $\mathcal{A}_{k}\left(\mathbb{Z}^{2}\right)$:

$$
\begin{aligned}
p & =\text { probability of vertex being open } \\
\psi\left(\mathbb{Z}^{2}, p\right) & =\text { number of percolating paths in } \mathbb{Z}^{2}
\end{aligned}
$$

\mathbb{Z}^{2} is embedded in \mathbf{T}, which has two pairs of opposite sides and two definitions of $\mathcal{B}(\mathbf{T})$, Fig. 2.

$$
\begin{gathered}
\mathbf{T}=\text { triangular lattice with embedded } \mathbb{Z}^{2} \\
\mathcal{B}(\mathbf{T})=\left\{\begin{array}{c}
\uparrow_{1}, \uparrow_{2}, \uparrow_{1}+\uparrow_{2}=\uparrow_{1,2}=-\downarrow_{1,2} \\
\text { or } \\
\uparrow_{1}, \uparrow_{2}, \uparrow_{1}+\downarrow_{2}=\rightarrow_{1,2}=-\leftarrow_{1,2}
\end{array}\right\} \\
\left\|\uparrow_{1,2}\right\|=\left\|\rightarrow_{1,2}\right\|=1 \\
\mathcal{N}_{u}(\mathbf{v}, \mathbf{T})=\left\{\begin{array}{c}
\mathbf{v}+\uparrow_{1}, \mathbf{v}+\uparrow_{2}, \mathbf{v}+\uparrow_{1,2} \\
\text { or } \\
\mathbf{v}+\uparrow_{1}, \mathbf{v}+\uparrow_{2}
\end{array}\right\}
\end{gathered}
$$

FIG. 2: Triangular lattice is built by adding $\uparrow_{1}+\uparrow_{2}$ and $\downarrow_{1}+\downarrow_{2}$ (left) or by adding $\uparrow_{1}+\downarrow_{2}$ and $\downarrow_{1}+\uparrow_{2}$ (right) to each $\mathbf{v} \in \mathbb{Z}^{2}$.

Arc $\mathcal{A}_{k}(\mathbf{T}), k$ edges away from $\mathbf{v}_{0} \in \mathbf{T}$, contains the vertices in $\mathcal{A}_{k+i}\left(\mathbb{Z}^{d}\right)$ traversed via $\mathcal{N}_{u}(\mathbf{v}, \mathbf{T})$:

$$
\begin{aligned}
\mathcal{A}_{k}(\mathbf{T}) & =\bigcup_{\mathbf{v} \in \mathcal{A}_{k-1}(\mathbf{T})} \mathcal{N}_{u}(\mathbf{v}, \mathbf{T}): \mathcal{A}_{1}(\mathbf{T})=\left\{\uparrow_{1}, \uparrow_{2}, \uparrow_{1,2}\right\} \\
n_{k}\left(\mathcal{A}_{k+i}\left(\mathbb{Z}^{2}\right), \mathbf{T}\right) & =\text { number of paths to } \mathcal{A}_{k+i}\left(\mathbb{Z}^{2}\right) \\
n_{k}\left(\mathcal{A}_{k}(\mathbf{T})\right) & =\sum_{i} n_{k}\left(\mathcal{A}_{k+i}\left(\mathbb{Z}^{2}\right), \mathbf{T}\right)
\end{aligned}
$$

For vertices in $\operatorname{arc} \mathcal{A}_{1}(\mathbf{T}), 2$ paths end in $\mathcal{A}_{1}\left(\mathbb{Z}^{2}\right)$ and 1 path ends in $\mathcal{A}_{2}\left(\mathbb{Z}^{2}\right)$:
$\mathcal{A}_{1}(\mathbf{T})=\left\{\mathbf{v}_{0}+\uparrow_{1}, \mathbf{v}_{0}+\uparrow_{2}, \mathbf{v}_{0}+\uparrow_{1,2}\right\} \Rightarrow \begin{array}{ll}2 & \rightarrow_{1} \\ 1 & \rightarrow_{2}\end{array} \Rightarrow \begin{aligned} & \left|\rightarrow_{1}\right|=2 \\ & \left|\rightarrow_{2}\right|=1\end{aligned}$
$\rightarrow_{1}=$ path from \mathbf{v}_{0} to a vertex in embedded $\mathcal{A}_{1}\left(\mathbb{Z}^{2}\right)$
$\left|\rightarrow_{1}\right|=$ number of paths from \mathbf{v}_{0} to $\mathcal{A}_{1}\left(\mathbb{Z}^{2}\right)$
From $\mathcal{A}_{1}(\mathbf{T})$, the number of paths doubles for up-steps from $\mathcal{A}_{1}\left(\mathbb{Z}^{2}\right)$ to $\mathcal{A}_{2}\left(\mathbb{Z}^{2}\right)$ and from $\mathcal{A}_{2}\left(\mathbb{Z}^{2}\right)$ to $\mathcal{A}_{3}\left(\mathbb{Z}^{2}\right)$. The number of paths does not change for up-steps from $\mathcal{A}_{1}\left(\mathbb{Z}^{2}\right)$ to $\mathcal{A}_{3}\left(\mathbb{Z}^{2}\right)$ and from $\mathcal{A}_{2}\left(\mathbb{Z}^{2}\right)$ to $\mathcal{A}_{4}\left(\mathbb{Z}^{2}\right)$:
. $\rightarrow_{2}=$ path ending in $\mathcal{A}_{2}\left(\mathbb{Z}^{2}\right)$
$\left|. \rightarrow_{2}\right|=$ number of paths ending in $\mathcal{A}_{2}\left(\mathbb{Z}^{2}\right)$
When counting the paths from \mathbf{v}_{0} to the $\operatorname{arcs} \mathcal{A}_{k}\left(\mathbb{Z}^{2}\right)$, $\mathcal{A}_{k+1}\left(\mathbb{Z}^{2}\right), . ., \mathcal{A}_{2 k}\left(\mathbb{Z}^{2}\right)$, the coefficients $c_{i_{k}}$ follow the rule
generated by Pascal's triangle, [4]:
$c_{i_{k}} \cdot 2^{k-i}=$ number of paths to $\mathcal{A}_{k+i}\left(\mathbb{Z}^{2}\right)$ after $k^{t h}$ step
$1^{s t}: 1,1 \Rightarrow 1 \cdot 2^{1}+1 \cdot 2^{0}$ paths to $\mathcal{A}_{1}(\mathbf{T})$
$2^{n d}: 1,2,1 \Rightarrow 1 \cdot 2^{2}+2 \cdot 2^{1}+1 \cdot 2^{0}$ paths to $\mathcal{A}_{2}(\mathbf{T})$
$3^{\text {rd }:} 1,3,3,1 \Rightarrow 1 \cdot 2^{3}+3 \cdot 2^{2}+3 \cdot 2^{1}+1 \cdot 2^{0}$ paths
$4^{t h}: 1=c_{0_{4}}, 4=c_{1_{4}}, 6=c_{2_{4}}, 4=c_{3_{4}}, 1=c_{4_{4}}$
$\sum_{i=0}^{i=k}\binom{k}{i} \cdot 2^{k-i}=$ number of paths to $\mathcal{A}_{k}(\mathbf{T})$
$\binom{k}{i} \cdot 2^{k-i}=$ number of paths to $\mathcal{A}_{k+i}\left(\mathbb{Z}^{2}\right)$
When odd or even $k \rightarrow \infty$,
$p_{H}(\mathbf{T}) \leq \min p$ for which $\binom{k}{i} \cdot 2^{k-i} \cdot p^{k} \geq 1$
$\binom{k}{\frac{k-1}{2}} \cdot 2^{k-\left(\frac{k-1}{2}\right)}=$ number of paths to $\mathcal{A}_{k+\frac{k-1}{2}}\left(\mathbb{Z}^{2}\right)$
or
$\binom{k}{\frac{k}{2}-1} \cdot 2^{k-\left(\frac{k}{2}-1\right)}=$ number of paths to $\mathcal{A}_{k+\frac{k}{2}-1}\left(\mathbb{Z}^{2}\right)$

$$
\psi(\mathbf{T}, p)=2^{\frac{1}{2}} \lim _{k \rightarrow \infty}\left(2^{\frac{1}{2}} \cdot\binom{k}{\frac{k-1}{2}}^{\frac{1}{k}} \cdot p\right)^{k}
$$

or

$$
\psi(\mathbf{T}, p)=2 \lim _{k \rightarrow \infty}\left(2^{\frac{1}{2}} \cdot\binom{k}{\frac{k}{2}-1}^{\frac{1}{k}} \cdot p\right)^{k}
$$

$$
\Rightarrow p_{H}(\mathbf{T}) \leq\left\{\begin{array}{l}
\lim _{k \rightarrow \infty} \frac{1}{2^{\frac{1}{2}} \cdot\binom{k}{\frac{k-1}{2}}^{\frac{1}{k}}} \\
\text { or } \\
\lim _{k \rightarrow \infty} \frac{1}{2^{\frac{1}{2}} \cdot\binom{k}{\frac{k}{2}-1}^{\frac{1}{k}}}
\end{array} \approx \frac{1}{2^{\frac{3}{2}}} \approx 0.3535\right.
$$

$\lim _{k \rightarrow \infty}\binom{k}{\frac{k-1}{2}}^{\frac{1}{k}} \approx 2,[2][5]$.
[3] Path is a walk via edges visiting each vertex only once.
[4] From The On-Line Encyclopedia of Integer Sequences at http://oeis.org.
[5] Limits at http://www.wolframalpha.com.

[^0]: *Marko Puljic: mpuljic@tulane.edu

