arXiv:1308.4946v1 [math.CO] 22 Aug 2013

ON THE EFFECTIVE AND AUTOMATIC ENUMERATION
OF POLYNOMIAL PERMUTATION CLASSES

Cheyne Homberger and Vincent Vatter*
Department of Mathematics
University of Florida
Gainesville, Florida USA

We describe an algorithm, implemented in Python, which can enumerate
any permutation class with polynomial enumeration from a structural
description of the class. In particular, this allows us to find formulas for
the number of permutations of length n which can be obtained by a finite
number of block sorting operations (e.g., reversals, block transpositions,
cut-and-paste moves).

1. INTRODUCTION

The “Fibonacci Dichotomy” of Kaiser and Klazar [15] was one of the first general results on the
enumeration of permutation classes. It states that if there are fewer permutations of length » in a
permutation class than the nth Fibonacci number, for any n, then the enumeration of the class is
given by a polynomial for sufficiently large n. Since the Fibonacci Dichotomy was established for
permutation classes, Balogh, Bollobas, and Morris [6] showed that it extends to the (more general)
context of ordered graphs, while other proofs of the Fibonacci Dichotomy for permutations have
been given by Huczynska and Vatter [14] and Albert, Atkinson, and Brignall [3].

While much of the focus on this strand of research has shifted to the consideration of larger classes
(see Bollobas [7] and Klazar [16] for surveys), we return to consider two open questions about
polynomial classes.

e Question 1.1. Given a structural description of a polynomial permutation class, how can we
enumerate it?

e Question 1.2. Which polynomials can occur as enumerations of polynomial classes?
We view a satisfactory answer to Question 1.1 as a prerequisite for the investigation of Question

1.2, and thus our focus in this paper is on enumerating polynomial classes. Our answer of Question
1.1 also has applications to the study of genome rearrangements, as discussed in Section 3.

*The second author was partially supported by the NSA Young Investigator Grant H98230-12-1-0207.
Date: August 23, 2013
AMS 2000 Subject Classification. Primary: 05A15; Secondary: 05A05

http://arxiv.org/abs/1308.4946v1

POLYNOMIAL PERMUTATION CLASSES 2

The permutation 7 of length n contains the permutation o of length & (written ¢ <) if 7 has a
subsequence of length k& which is order isomorphic to o. For example, m = 391867452 (written in
list, or one-line notation) contains ¢ = 51342, as can be seen by considering the subsequence 91672
(= m(2)7(3)m(5)m(6)7(9)). A permutation class, or simply class, is a downset in this subpermutation
order; thusif Cisaclass, 7 € C,and ¢ < 7, then o € C.

While there are many ways to specify a class, two are particularly relevant to this problem. One
is by the class’ basis, the minimal permutations not in the class. Another is by some structural
description of the class. We adopt a structural approach to the specification of classes, the details
of which will be described briefly.

We should mention that there are several established approaches which could, theoretically, be used
to enumerate polynomial classes, but these each has drawbacks.

e Polynomial classes are contained in “geometric grid classes”, so they fall under the purview
of the results of Albert, Atkinson, Bouvel, Ruskuc, and Vatter [2]. However, their proofs are
nonconstructive. Indeed, our work can be viewed as illuminating some preliminary obstacles
which an algorithmic approach to geometric grid classes would have to overcome.

e Polynomial classes contain only finitely many “simple permutations”, so the methods of Al-
bert and Atkinson [1] (or the refinements introduced by Brignall, Huczynska, and Vatter [8])
could be used to compute their generating functions. However, this method has yet to be
implemented, and applying it would require us to first determine the basis of the class is
question.

e Polynomial classes can be enumerated using the insertion encoding of Albert, Linton, and
Ruskuc [4] (which is implemented in the Maple package INSENC described in Vatter [18]).
However, this method also requires the basis of the class.

Before describing our approach we must first describe the structure of polynomial classes. An
interval in the permutation 7 is a sequence of contiguous entries whose values form an interval of
natural numbers. A monotone interval is then an interval in which the entries are monotone (increas-
ing or decreasing). Given a permutation o of length m and nonempty permutations a1, . . ., &, the
inflation of o by aa, ..., @, is the permutation 7 = o[a, .. ., @y, | obtained by replacing each entry
o(i) by an interval that is order isomorphic to «;. For example,

3142[1,321,1,12] = 6 321 7 45.

Going against tradition, in this work we allow inflations by the empty permutation.

The polynomial classes can be, roughly, described as those for which the entries of every member
of the class can be partitioned into a finite number of monotone intervals, which are related to
each other in one of a finite number of ways. To describe this more concretely, let us say that a peg
permutation is a permutation where each entry is decorated with a +, —, or e, such as

p=3"1"4°2%

As demonstrated above, we decorate peg permutations with tildes; in this context, p denotes for us
the underlying (non-pegged) permutation, 3142 in this example. The grid class of the peg permu-
tation p, Grid(p) is the set of all permutations which may be obtained by inflating p by monotone

POLYNOMIAL PERMUTATION CLASSES 3

Figure 1: The two permutations shown on the left are the obstructions which prevent a class
from being “monotone griddable”. The two permutations on the right (and all symmetries of
them, eight in total) are the obstructions which prevent a monotone griddable class from being
a polynomial class.

intervals of type determined by the signs of j: p(i) may be inflated by an increasing (resp., decreas-
ing) interval if /(i) is decorated with a + (resp., —) while it may only be inflated by a single entry
or the empty permutation if 5(¢) is dotted. Thus if 7 € Grid(p) then its entries can be partitioned
into monotone intervals which are compatible with p; if this partition is denoted P then we refer to
P as a p-partition of 7 and the pair (7, P) as a p-partitioned permutation.

Given a set G of peg permutations, we denote the union of their corresponding grid classes by
Grid(@) = |] Grid(p).
pe@

As the next result shows, our goal is to enumerate such classes.
Theorem 1.3 (The combination of [14, Corollary 3.4] and [2, Theorem 10.3]). For a permutation class
C the following are equivalent:

(1) |Cy| is given by a polynomial for all sufficiently large n,

(2) |Cyn| < F, for somen,

(3) C does not contain arbitrary long permutations of any of the forms described in Figure 1, and

(4) C = Grid(G) for a finite set G of peg permutations.

2. THE ALGORITHM

We need a few prerequisites before our algorithm can be described. First we define a partial order
on peg permutations. Given peg permutations 7 and p of lengths k and n, respectively, 7 < p if
there are indices 1 < i1 < i3 < --- < i, < n such that p(i1)p(i2) - - - p(ix) is order isomorphic to 7
and for each j, 7(j) is decorated with a

+ore if p(i;)is decorated with a +,
—ore if p(i;)is decorated with a —, or
o if p(i;) is dotted.

In other words, in order to obtain a smaller element in this peg permutation order, one can change
signs to dots and delete entries. Note that Grid(7) < Grid(p) whenever 7 < p, but the reverse
implication is not true; for example, Grid(1°2°*) < Grid(1"), but 1°2° < 17,

POLYNOMIAL PERMUTATION CLASSES 4

In addition, we extend the notion of intervals to peg permutations in the trivial way, by ignoring
decoration; thus the intervals of p are the same as the intervals of p, although they carry their deco-
ration from p. We must also say something about monotone intervals of (unpegged) permutations:

Proposition 2.1. If two monotone intervals of a permutation intersect, then their union is also a monotone
interval.

Proof. Suppose that two monotone intervals intersect. By symmetry, we may assume that one of
them is increasing. By considering the various cases, it is clear that the other monotone interval
must also be increasing, and that their union is also an increasing interval. O

We say that the p-partitioned permutation (7, P) fills the peg permutation p if each part of P corre-
sponding to a signed entry in p contains at least two entries, and each part of P corresponding to
a dotted entry contains precisely one entry. Clearly every peg permutation has a unique minimum
filling permutation, in which each part corresponding to a signed entry contains precisely two en-
tries, and each part corresponding to a dotted entry contains precisely one entry. We further say
that the set G of peg permutations is complete if every 7 € Grid(G) fills some j € G. It is not difficult
to construct complete sets of peg permutations, as we observe below without proof.

Proposition 2.2. Every downset in the peg permutation order is complete.

Given a set of peg permutations, the first step of our algorithm is to complete it, by computing its
downward closure.

Proposition 2.1 shows every permutation 7 has a unique coarsest partition into monotone intervals.
In other words, for each = there is a unique peg permutation p such that = is p-griddable, but not
7-griddable for any 7 < p. In particular, this implies that, for this g, Grid(p) # Grid(7) for all 7 < p.
We call a peg permutation p with this property compact, i.e., p is compact if Grid(7) # Grid(p) for
all 7 < p. For example, 2°1~ is not compact because 1~ < 271° and Grid(271*) = Grid(17).

Our next result ties the definitions of compactness and filling together.

Proposition 2.3. For a peg permutation p, the following conditions are equivalent:

(1) pis compact,

(2) p does not have an interval order isomorphic to 1t2%,172°, 1°2%, or symmetrically, to 2717, 271°,
2°17, and

(3) every permutation which fills p has a unique p-partition.

Proof. First we show that (1) and (2) are equivalent. It is clear that (1) implies (2), so it remains only
to show that (2) implies (1). Suppose to the contrary that p is not compact, so Grid(p) = Grid(7) for
some 7 < p. Let m be any permutation that fills g and suppose that P is its p-partition and P’ is its
7-partition. Then, because 7 < j and 7 fills j, there must be a part of P’ which intersects two parts
of P. Thus these two parts of P together form a monotone interval of 7= by Proposition 2.1, and this
implies that p must contain one of the intervals listed in (2).

Now we show that (3) is equivalent to (2). If (2) fails to hold (so / contains one of the specified
intervals) then it is clear that some permutations which fill p have nonunique p-partitions, so (3)

POLYNOMIAL PERMUTATION CLASSES 5

implies (2). Suppose then that the permutation fills 5 but has two different p-partitions, P and P’.
As in the proof that (1) is equivalent to (2), there must be two parts of one of these two partitions
which together form a monotone interval, but this again implies that p contains one of the intervals
listed in (2), completing the proof. O

We say that the set G of peg permutations is compact if every peg permutation it contains is compact.
Note that we do not lose any permutations if we remove the non-compact peg permutations from
a complete set G to obtain a set G’ < G. For j € G/, if 7 € Grid(p) then 7 has a unique j-partition,
but this does not necessarily imply that 7 doesn’t fill some other 7 € G’. For example, 2341 fills
both 2°3°4°1° and 2" 1°. To address this problem, we say that a compact peg permutation / is clean
if Grid(p) ¢ Grid(7) for any shorter peg permutation 7. We say that the set G of peg permutations
is clean if each of them is clean.

Proposition 2.4. The compact peg permutation p is clean if and only if it does not have an interval order
isomorphic to 1°2° or 2°1°.

Proof. If p contains an interval order isomorphic to 1°2°® or 2°1° then let 7 denote the peg permu-
tation obtained by contracting this interval to a single entry decorated with the appropriate sign;
clearly Grid(p) < Grid(7).

Otherwise suppose that Grid(p) < Grid(7) where 7 is shorter than p and let 7 be any permutation
which fills p. In any 7-partition of = there must be a monotone interval formed from entries in
different parts of any p-partition of 7. Because p is compact, we see from our previous proposition
that p must have contain a 1°2° or 2°1° interval, as desired. O

Given a complete and compact set G, it is not in general possible to obtain a clean set G’ such that
Crid(G") = Grid(G): to return to our previous example, if 2°3°4*1* € G but 21* ¢ G then we
cannot simply remove 2°3°4°1* from G as we would lose permutations in doing so (and we cannot
counteract this by adding 2+1° to G as then we would gain permutations). We address this problem
shortly.

Now suppose that we are given a set G of peg permutations and wish to enumerate Grid(G). By
Proposition 2.2, we may assume that G is complete (in the algorithm, this amounts to a preprocess-
ing step). Then, by Proposition 2.3 (2) we may assume that G is compact (another preprocessing

step). We may describe the elements of Grid(G) by specifying a peg permutation together with a

vector indicating the lengths of the monotone intervals (though Grid(G) may not be in bijection
with the set of such pairs because G need not be clean).

To describe this precisely, we need notation for integer vectors. For us, P denotes the set of all
m-tuples of positive integers, and given ¥ € P, the sum of its entries is denoted ||7] = >} v(4).
Given two vectors 7, W € P™, we write ¥ < W and say that ¥/ is contained in o if ¥(¢) < @ (i) for all
i. If ¥ € @, we say that @ avoids v It is worth noting that P forms a lattice under this partial order
with join given by pairwise maximum,

U v = (max{v(l),w(1)},...,max{v(m), w(m)}).

Downsets of vectors under this order are the vector analogues of permutation classes, and thus
we call them vector classes. As with permutation classes, every vector class has a unique basis B

POLYNOMIAL PERMUTATION CLASSES 6

consisting of the minimal vectors not in the class. Unlike permutation classes, however, bases of
vector classes are necessarily finite (by Higman’s Theorem [13]).

Now let p be a compact peg permutation of length m and v € P"*. We define the inflation of p by
¥, denoted 5[¥], to be the permutation in Grid(p) obtained by inflating 5(i) by a monotone interval
of length v(¢), with the direction of the run determined by the decoration of 5(7). For example,
2117[(4,2)] = 3456 12. If ¥ < & then it is clear that p[0] < p[w]; by Proposition 2.3 (3), it follows
that if p is compact and p[¢] fills j then the reverse is true: p[¢] < p[w] implies that ¥ < .

Suppose that V and W are vector classes with bases By and By, respectively. It is obvious that the
basis of V n W is the set of minimal elements in By u Byy. Computing bases for unions is slightly
less transparent. If By, and By are both singletons, consisting of ¥ and , respectively, say, then the
basis of V U Wis ¥ v W. Therefore we see that for general bases,

(ﬂ {v-avoiding vectors}) U (ﬂ {w-avoiding vectors}))

veBy wWe By

VuWw

ﬂ {v-avoiding vectors} u {w-avoiding vectors},
veBy,
we By
= ﬂ {¥ v w-avoiding vectors},
veBy,
UjEBW

so the basis for V U W consists of the minimal elements in the set

{ﬁvw’ : ﬁerandzﬁeBW}.

The class of vectors ¢ such that p[¢] € Grid(p) is therefore
M = {0 : v(i) < 1if p(i) is dotted}.

Given a peg permutation p and any vector class V < M ; we now define a cross-section, denoted
by Grid(p, V), to be the set of permutations of the form p[?] for ¥ € V which fill j; these are the
permutations of the form p[v] for vectors ¢’ € V which contain the vector ni; defined by
o . | 2 ifp(i)is signed, or,
(i) = { 1 if 5(i) is dotted.

We are now in position to “clean” G. Proposition 2.4 shows that cleaning 5 amounts to contracting
monotone intervals of dotted entries. Thus for every peg permutation p there is a clean peg permu-
tation 7 and a downset V such that the peg permutations which fill j are precisely the cross-section
Crid(7, V). Note that two different peg permutations in G might clean to the same peg permutation,
and thus in this step we may need take unions of the associated vector classes.

Therefore, given a complete and compact set G of peg permutations, we can compute a complete,
compact, and clean set G’ and associate to each g € G’ a vector class V; such that Grid(G) is in
bijection with the disjoint union of cross-sections

|J Grid(5, V).

peG’

POLYNOMIAL PERMUTATION CLASSES 7

After all this preprocessing, the enumeration problem is essentially trivial. Consider a cross-section
Grid(p, V) where the basis of V is By and let s(j) denote the number of signed entries of . The gen-
erating function for Grid(p, V) is given by inclusion-exclusion (based on how many basis elements
a given vector contains):

B zlmav(V B

2, Ve

Bc By

where \/ B denotes the join of all vectors in B (and \/ J is the all-1 vector).

3. GENOME REARRANGEMENT

The genes in a chromosonal genome may be thought of a discrete blocks of DNA, and thus labeled
from 1 to n along the genome. During the process of evolution, the genes in a genome of one species
might be rearranged via one or several operations and then appear in a different order (given
by a permutation) in the genome of a different species. By studying the number of operations
required to transform the identity permutation into = we may therefore get an estimate of how
many mutations occured in the evolution of the second species from the first. There are several
different operations of interest, which we briefly survey in what follows. Of particular interest
to the results of this paper is that in all of these operations, the class of permutations which can
be obtained in at most k£ operations from the identity is a polynomial permutation class, and its
structural description, as Grid(G) for a set G of peg permutations, is routine to compute. Thus
using the Python package which implements the approach described in the previous section, we
are able to automatically compute the polynomials enumerating these classes. The majority of
these enumerations were not previously in the OEIS [17]— the new sequences are those numbered
A228392-A228401.

All of the operations we survey are based on the notion of a block, which is a contiguous sequence
of entries. The block transposition operation was introduced by Bafner and Pevzner [5]. In a single
block transposition one is allowed to interchange two adjacent blocks of a permutation. Thus we
may change

w(1) (i = 1) |x(i) - w(G =) |[7(G) -7k = D) | 7(k) - 7()

into

w(1)---m(i = 1)|w(j) -7k = D[7)) -7 = D] w(k) - 7).

In the language of grid classes, the set of permutations which can be generated by a single block
transposition from the identity is Grid(173*2%47%). Below we include the data for permutations
which can be generated from the identity with 3 or fewer block transpositions. Note that the poly-
nomials given are only valid for sufficiently large n.

Ny 1 2 3 4 5 6 7 8 9 10 | OEIS [17] reference
1 1 2 5 11 21 36 57 85 121 166 A000292
() + (G +(3)
2 1 2 6 23 89 295 827 2017 4405 8812 A228392
(o) + (5) +2(3) +8(5) +18(3) +11(5)
3 1 2 6 24 120 675 3527 15484 56917 179719 A228393
(0) + () +2(3) +9(3) + 44(3) +220(5) + 656(7) + 841(5) + 369(5)

http://oeis.org/
http://oeis.org/A228392
http://oeis.org/A228401
http://oeis.org/
http://oeis.org/A000292
http://oeis.org/A228392
http://oeis.org/A228393

POLYNOMIAL PERMUTATION CLASSES

A prefix block transposition is a special case of a block transposition in which the blocks must be at
the beginning of the permutation. This method of rearrangement was first studied by Dias and
Meidanis [11]. The data for permutations which can be generated from the identity by 3 or fewer
prefix block transpositions is below; again, the polynomials are only valid for sufficiently large n.

Ny 12 3 4 5 6 7 8 9 10 | OEIS [17] reference
1 1 2 4 7 11 16 22 29 37 46 A000124
(6) + ()
2 1 2 6 21 61 146 302 561 961 1546 A228394
(6) + (3) +2(3) +6(3)
3 1 2 6 24 116 521 1877 5531 13939 31156 A228395
(o) + (5) +2(5) +9(3) +40(3) +90(5)

A reversal reverses one block in a permutation, thus transforming

w(1) - w(i = 1) [n(0) - 7(= 1) |7() - 7(n)

into

w(1) - w(i =17 = 1) 7() | 7(5) - w(n).

Hence the class of permutations which can be sorted by a single reversal is Grid(17273"). This
method of rearrangement was first introduced by Watterson, Ewens, Hall, and Morgan [19]. Below
is our data for this operation.

N1 2 3 4 5 6 7 8 9 10 | OEIS [17] reference
1 1 2 4 7 11 16 22 29 37 46 A000124
(6) + (%)
2 1 2 6 22 63 145 288 516 857 1343 A228396
8(5) —3(7) + (5) +4(3)
3 1 2 6 24 118 534 1851 5158 12264 25943 A228397
318(%) — 214(7T) + 131(5) — 61(%) + 20(%) + 70(%5) + 35(%)

By restricting reversals to initial segments of a permutation we obtain the prefix reversal operation,
which was introduced under the name pancake sorting by “Harry Dweighter” (actually, Jacob E.
Goodman) as a Monthly problem [12].

MYyl 2 3 4 5 6 7 8 9 10 | OEIS [17] reference
11 2 3 4 5 6 7 8 9 10 A000027
(1)
211 2 5 10 17 26 37 50 65 82 A002522
2(p) = 1(7) +2(3)
311 2 6 21 52 105 186 301 456 657 A228398
=3(5) +3(7) —2(5) +6(3)

The cut-and-paste operation is a generalization of both the reversal operation and the block trans-
position operation. A single cut-and-paste move consists of moving a single block of the permuta-
tion anywhere else in the permutation, with the option of reversing this block at the same time.

http://oeis.org/
http://oeis.org/A000124
http://oeis.org/A228394
http://oeis.org/A228395
http://oeis.org/
http://oeis.org/A000124
http://oeis.org/A228396
http://oeis.org/A228397
http://oeis.org/
http://oeis.org/A000027
http://oeis.org/A002522
http://oeis.org/A228398

POLYNOMIAL PERMUTATION CLASSES 9

Cut-and-paste sorting was introduced by Cranston, Sudborough, and West [10].

MYyl 2 3 4 5 6 7 8 9 10 | OEIS [17] reference
11T 2 6 16 35 66 112 176 261 370 A060354
(1) +3(5)
2|1 2 6 24 120 577 2208 6768 17469 39603 A228399
—18(g) +45(7) — 61(3) +70(3) —53(3) +88(5) + 107(5)
31 2 6 24 120 720 5040 36757 223898 1055479 A228400
508264 (7) — 280036()) + 140012(%) — 57622(7;) + 13839(7y)
+4136(%) — 5368(%) + 531(%) + 21125(%) + 12615(7)

Finally, the block interchange operation is similar to the block transposition operation except that in
this operation we are allowed to interchange any two blocks. This was first studied by Christie [9].
The size of the peg permutations involved in this case grows so fast that we were only able to
compute the first two enumerations.

MNYy1 2 3 4 5 6 7 8 9 10 | OEIS [17] reference
111 2 6 16 36 71 127 211 331 496 A145126
(o) + () +2(5) + (})
211 2 6 24 120 540 1996 6196 16732 40459 A228401
(o) + (5) +2(5) +9(3) +44(5) +85(5) +70(7) +21(5)

The Python code used to perform these computations is available at

htt ps://github. com cheyneh/ pol yper ntl ass.

REFERENCES

[1] ALBERT, M. H., AND ATKINSON, M. D. Simple permutations and pattern restricted permu-
tations. Discrete Math. 300, 1-3 (2005), 1-15.

[2] ALBERT, M. H., ATKINSON, M. D., BOUVEL, M., RUSKUC, N., AND VATTER, V. Geometric
grid classes of permutations. Trans. Amer. Math. Soc., in press.

[3] ALBERT, M. H., ATKINSON, M. D., AND BRIGNALL, R. Permutation classes of polynomial
growth. Ann. Comb. 11, 3-4 (2007), 249-264.

[4] ALBERT, M. H., LINTON, S., AND RUSKUC, N. The insertion encoding of permutations. Elec-
tron. J. Combin. 12, 1 (2005), Research paper 47, 31 pp.

[5] BAFNA, V., AND PEVZNER, P. A. Sorting by transpositions. SIAM J. Discrete Math. 11,2 (1998),
224-240.

[6] BALOGH, J., BOLLOBAS, B., AND MORRIS, R. Hereditary properties of ordered graphs. In
Topics in discrete mathematics, M. Klazar, J. Kratochvil, M. Loeb], J. Matousek, R. Thomas, and
P. Valtr, Eds., vol. 26 of Algorithms Combin. Springer, Berlin, 2006, pp. 179-213.

http://oeis.org/
http://oeis.org/A060354
http://oeis.org/A228399
http://oeis.org/A228400
http://oeis.org/
http://oeis.org/A145126
http://oeis.org/A228401
https://github.com/cheyneh/polypermclass

POLYNOMIAL PERMUTATION CLASSES 10

[7] BOLLOBAS, B. Hereditary and monotone properties of combinatorial structures. In Surveys
in Combinatorics 2007, A. Hilton and J. Talbot, Eds., no. 346 in London Mathematical Society
Lecture Note Series. Cambridge University Press, 2007, pp. 1-39.

[8] BRIGNALL, R., HUCZYNSKA, S., AND VATTER, V. Simple permutations and algebraic gener-
ating functions. J. Combin. Theory Ser. A 115, 3 (2008), 423-441.

[9] CHRISTIE, D. A. Sorting permutations by block-interchanges. Inform. Process. Lett. 60, 4 (1996),
165-169.

[10] CRANSTON, D. W., SUDBOROUGH, I. H., AND WEST, D. B. Short proofs for cut-and-paste
sorting of permutations. Discrete Math. 307,22 (2007), 2866-2870.

[11] Dias, Z., AND MEIDANIS, J. Sorting by prefix transpositions. In Proceedings of the 9th Interna-
tional Symposium on String Processing and Information Retrieval (London, UK, UK, 2002), SPIRE
2002, Springer-Verlag, pp. 65-76.

[12] DWEIGHTER, H. Elementary problems and solutions, problem E2569. Amer. Math. Monthly 82
(1975), 1010.

[13] HIGMAN, G. Ordering by divisibility in abstract algebras. Proc. London Math. Soc. (3) 2 (1952),
326-336.

[14] HUCZYNSKA, S., AND VATTER, V. Grid classes and the Fibonacci dichotomy for restricted
permutations. Electron. J. Combin. 13 (2006), R54, 14 pp.

[15] KAISER, T., AND KLAZAR, M. On growth rates of closed permutation classes. Electron. J.
Combin. 9, 2 (2003), Research paper 10, 20 pp.

[16] KLAZAR, M. Overview of some general results in combinatorial enumeration. In Permutation
Patterns (2010), S. Linton, N. Ruskuc, and V. Vatter, Eds., vol. 376 of London Mathematical Society
Lecture Note Series, Cambridge University Press, pp. 3-40.

[17] THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES. Published electronically at
http://oeis.org/.

[18] VATTER, V. Finding regular insertion encodings for permutation classes. J. Symb. Comput. 47
(2012), 259-265.

[19] WATTERSON, G. A., EWENS, W. J., HALL, T. E., AND MORGAN, A. The chromosome inver-
sion problem. Journal of Theoretical Biology, 99 (1982), 1-7.

http://oeis.org/

	1 Introduction
	2 The Algorithm
	3 Genome Rearrangement

