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NUMBER OF PERMUTATIONS WITH SAME PEAK SET

FOR SIGNED PERMUTATIONS

FRANCIS CASTRO-VELEZ, ALEXANDER DIAZ-LOPEZ, ROSA ORELLANA,
JOSÉ PASTRANA, AND RITA ZEVALLOS

Abstract. A signed permutation π = π1π2 . . . πn in the hyperoctahe-
dral group Bn is a word such that each πi ∈ {−n, . . . ,−1, 1, . . . , n} and
{|π1|, |π2|, . . . , |πn|} = {1, 2, . . . , n}. An index i is a peak of π if πi−1 < πi >

πi+1 and PB(π) denotes the set of all peaks of π. Given any set S, we define
PB(S,n) to be the set of signed permutations π ∈ Bn with PB(π) = S. In
this paper we are interested in the cardinality of the set PB(S, n). In [4], Bil-
ley, Burdzy and Sagan investigated the analogous problem for permutations
in the symmetric group, Sn. In this paper we extend their results to the hy-
peroctahedral group; in particular we show that #PB(S, n) = p(n)22n−|S|−1

where p(n) is the same polynomial found in [4] which leads to the explicit
computation of interesting special cases of the polynomial p(n). In addition
we have extended these results to the case where we add π0 = 0 at the
beginning of the permutations, which gives rise to the possibility of a peak
at position 1, for both the symmetric and the hyperoctahedral groups.

1. Introduction

A permutation π = π1π2 . . . πn in the symmetric group Sn has a peak at
index i if πi−1 < πi > πi+1. The peak set of π is defined to be P (π) =
{i | i is a peak of π}, then we define

P (S, n) = {π ∈ Sn |P (π) = S}

to be the set of all permutations with the same peak set S. For example, the
permutation π = 2 6 5 1 4 3 has peaks at position 2 and 5, hence P (π, 6) =
{2, 5}.

Stembridge [9] was one of the first to study the combinatorics of peaks, in
particular he gave a peak analog of Stanley’s theory of poset partitions. Addi-
tional interest in the study of peaks arose when Nyman [7] showed that summing
permutations according to their peak sets leads to a non-unital subalgebra of
the group algebra of the symmetric group.

In a recent paper [4] Billey, Burdzy and Sagan considered the cardinalities of
the sets P (S, n). They discovered that #P (S, n) = p(n)2n−#S−1 for some poly-
nomial p(n) depending on S; they also computed special cases of the polynomial
p(n). One motivation for studying peaks of permutations lies in probability the-
ory, in a recent paper Billey, Burdzy, Pal and Sagan [5] studied distributions on
graphs that are related to random permutations with certain peak sets. Besides
the applicability to probability theory, the problem of enumerating permuta-
tions and signed permutations with respect to a given statistic is an interesting
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problem on its own, for example the enumeration of permutations related to
peak sets has also been studied in [6, 10, 11].

It is natural that when a result related to the symmetric group (the Coxeter
group of type A) is obtained one wishes to generalize it to other Coxeter groups.
In this paper we generalize the results in [4] to the group of signed permutations,
the hyperoctahedral group Bn (the Coxeter group of type B). A signed permu-
tation π = π1π2 . . . πn is a word such that each πi ∈ {−n, . . . ,−1, 1, . . . , n} and
{|π1|, |π2|, . . . , |πn|} = {1, 2, . . . , n}. A peak of a signed permutation is defined
in exactly the same way as for regular permutations. We will denote by PB(π)
the set of peaks of a signed permutation π and define

PB(S, n) = {π ∈ Bn |PB(π) = S}.

We show that #PB(S, n) = 22n−#S−1pB(n), where pB(n) is the same polyno-
mial as for the symmetric group, this generalizes Theorem 3 in [4]. We also
consider special cases of the polynomials pB(n).

Peaks for signed permutations are also of interest in the construction of alge-
braic structures. In [3] Bergeron and Hohlweg have described peak analogues
of the peak algebras for the hyperoctahedral group and Petersen [8] considered
peak algebras of the hyperoctahedral group when the signed permutations are
grouped by number of peaks.

The second part of our paper considers the enumeration of peak classes when
we put a zero at the beginning of the permutations for both the symmetric
and hyperoctahedral groups. That is, we consider permutations of the form
π0π1 · · · πn where π0 = 0. These permutations arose in the study of unital peak
algebras of the symmetric group [1, 2]. In the case of the symmetric group,
adding a zero at the beginning of every permutation has the effect of having

the identity as the unique permutation with no peaks. We denote by P̂ (S, n)

the set of permutations with a zero added in Sn with peak set S and P̂B(S, n)
the corresponding set for the hyperoctahedral group. We generalize results

obtained in [4] to P̂ (S, n) and P̂B(S, n). In particular, we give a method for

computing #P̂ (S, n) and #P̂B(S, n) and compute these numbers for special
sets S.

We now give a more detail description of the contents of this paper. In
Section 2, we prove that #PB(S, n) = pB(n)2

2n−s−1 where pB(n) is an integral
polynomial in terms of n. In addition, we show that the polynomials pB(n) in
Bn are equal to the polynomials p(n) in Sn found in [4]. We also show that
the values for #PB(S, n) are symmetric for a fixed n as we vary the set S. In

Section 3, we provide a method to compute #P̂B(S, n) for any S. We find that

if S = ∅, #P̂B(S, n) can be written in terms of the Stirling numbers of the

second kind. Another result in this section gives us the parity of #P̂B(S, n).

Additionally, we find that #PB(S, n) can be written as the sum of #P̂B(S, n)

and #P̂B(S ∪ {1}, n) which gives us the results of the previous section when

2 ∈ S. Finally, we calculate #P̂B(S, n) for various specific sets S.
Finally, in Section 4, we focus on the symmetric group, we provide a method

to compute #P̂ (S, n) for any S. We also find that #P (S, n) can be written as

the sum of #P̂ (S, n) and #P̂ (S ∪ {1}, n) which gives us the results in [4] when
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2 ∈ S. Another result in this section gives us the parity of #P̂ (S, n). Finally,

we calculate #P̂ (S, n) for various special cases of the set S.

2. Signed Permutations in Bn

Let Bn be the hyperoctahedral group, i.e., the group of signed permutations,
and let π = π1π2 . . . πn be a permutation in Bn. Recall that we define a position
i ∈ {2, . . . , n− 1} as a peak if πi−1 < πi > πi+1, and the set PB(π) as the set
of all peaks of π.

Define a set S = {i1 < · · · < is} to be n-admissible if #PB(S, n) 6= 0. Note
that we insist the elements be listed in increasing order. Notice that S cannot
contain two consecutive integers and S is a subset of {2, . . . , n− 1}. The mini-
mum possible value of n for which S is n-admissible is is+1, and in that case S
is n-admissible for all n ≥ is+1. If we make a statement about an admissible set
S, we mean that S is n-admissible for some n and the statement holds for every
n such that S is n-admissible. It is well-known that the number of n-admissible
sets is the n-th Fibonacci number. We include a proof for completeness.

Proposition 2.1. Let An be the set of n-admissible peak sets S. Then the size
of An is given by the n-th Fibonacci number.

Proof. Note that A1 = A2 = {∅}, thus the result holds for n = 1 and n = 2.
Now consider n ≥ 3. We can write An as a union of disjoint sets Aα and Aβ

where Aα is the set of n-admissible sets that do not contain n − 1, and Aβ is
the set of n-admissible sets that do contain n − 1. But note that since An−1

contains all (n − 1)-admissible peak sets S, which cannot contain the element
n− 1, it must be equal to Aα. Also, adding n− 1 to all the peak sets in An−2

gives us Aβ . Therefore |An| = |An−1|+ |An−2|.
�

If we fix n and the cardinality of the set S, then there exists a set T of
the same cardinality as S such that #PB(S, n) = #PB(T, n). We make this
symmetry property more explicit in the following proposition.

Proposition 2.2. Let S = {i1, i2, . . . , ik} and T = {n+ 1− ik, . . . , n+ 1− i1}.
Then #PB(S, n) = #PB(T, n).

Proof. Define f : Bn → Bn such that if π = π1π2 · · · πn, f(π) = πn · · · π2π1.
Note that f is an involution, because f(f(π)) = π.

Now let ρ = ρ1ρ2 . . . ρn ∈ PB(S, n). If j is a peak of ρ then n+1− j is a peak
of f(ρ), hence the peak set of f(ρ) is {n+ 1− ik, . . . , n + 1− i2, n+ 1− i1}.
Thus f(ρ) ∈ PB(T, n). Similarly, if f(π) ∈ PB(T, n) we can show that f(f(π)) ∈
PB(S, n). Therefore #PB(S, n) = #PB(T, n). �

Remark: Note that since Sn ⊆ Bn, this result holds in Sn as well.

We now prove the following special case which will be the base case for our
induction later on. In what follows we set [n] = {1, 2, . . . , n}.

Proposition 2.3. The number of signed permutations with no peaks is equal
to 22n−1.
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Proof. Let π = π1π2 . . . πn be a signed permutation, and k = min(π1, π2, . . . , πn).
Since {|π1|, |π2|, . . . , |πn|} = [n] then there is a πj with |πj | = 1. Hence k = 1
or k < 0.

Thus the number of signed permutations with no peaks can be divided into
those with k = 1 and those with k < 0. Let us first assume that k = 1. Then,
we can write π = k11k2 where k1 denotes the portion to the left of 1 and k2
denotes the portion to the right of 1. To have PB(π) = ∅, k1 must be decreasing
and k2 must be increasing. We notice that the size of k1 ranges from 0 to n− 1
and the values of πi in k1 and k2 range from 2 to n because k = 1. This means
that the number of signed permutations with no peaks when k = 1 is equal to
the number choices of a subset of elements from {2, . . . , n} to be in k1 since
after the choices are made, the rest of π is determined. This implies that the
number of signed permutations with no peaks and k = 1 equals to

n−1∑

j=0

(
n− 1

j

)
= 2n−1.

Now let k < 0. Note that the numbers that can go in π are from the set
A = {k+1, k+2, . . . ,−1, 1, . . . , n}. We also notice that the size of k1 can vary
from 0 to n − 1 again. Although we have more than n − 1 options available
to put in k1, we note that if an integer m ∈ [n] is in the permutation, then
−m cannot be, and vice versa. As a result we have n − 1 numbers to put in
k1 and then we multiply by 2 for every element in A for which its negative is
in A as well. Furthermore the number of signed permutations with no peaks
and k fixed, where k < 0 equals 2n−1 · 2k−1 (since we are multiplying by 2
for every element in {k + 1, k + 2, . . . − 1}). Hence the total number of signed
permutations with no peaks and k < 0 is

n∑

k=1

2n−1 · 2k−1 = 2n−1
n∑

k=1

2k−1 = 2n−1(2n − 1) = 22n−1 − 2n−1.

But we have to add in what we obtained in the k = 1 case to get the total
number of signed permutations with no peaks, then the number is 22n−1. �

We now show that the results in [4] for the symmetric group extend to the
case of sign permutations.

Theorem 2.4. Let S = {i1, i2, . . . , is} be admissible. Then

#PB(S, n) = pB(n)2
2n−s−1,

where pB(n) = pB(S, n) is a polynomial depending on S such that pB(n) is an
integer for all integral n. In addition, the degree of pB(n) = is−1 (when S = ∅,
the degree of pB(n) = 0).

Proof. We prove by induction on i1 + i2 + · · · + is, following the argument in
[4]. We previously showed that #PB(∅, n) = 22n−1, thus our claim is true for
the base case. Our inductive hypothesis is that our claim is true for any set
Ŝ = {r1, r2, . . . , rt} where r1 + r2 + . . . + rt < i1 + i2 + · · ·+ is.

We let k = is− 1. For any n ≥ is, let Π be the set of all signed permutations
π = π1π2 . . . πn such that PB(π1π2 . . . πk) = S1 = S−{is} and PB(πis . . . πn) =
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∅. We can partition Π into blocks by the peak set of π. In addition to the peaks
given by S1 = S − {is}, there could be a peak at πk, a peak at πis , or no peak
at both πk and πis . Note that these are all the possibilities, and that the three
are disjoint. Thus, if we let S2 = S1 ∪ {is − 1}, then

#Π = #PB(S2, n) + #PB(S, n) + #PB(S1, n). (1)

First, we find #Π. Recall that for π ∈ Π, PB(π1 . . . πk) = S1 and PB(πis . . . πn)
equals ∅. Therefore to construct any π, first we choose k = is − 1 elements to
be in the first section. For signed permutations, if an integer m ∈ [n] is in
the permutation, then −m cannot be, and vice versa. Therefore we choose
k elements from a set of n elements. The number of ways to do so is

(
n
k

)
.

Then we create a signed permutation from these n elements, arranged in a
way such that their peak set is S1. We have denoted the number of ways to
do so by #PB(S1, k). Finally we arrange the last n − k items such that their
peak set is ∅. The number of ways to do this is #PB(∅, n − k). Therefore,
#Π =

(
n
k

)
#PB(S1, k)#PB(∅, n − k).

By our inductive assumption, #PB(S1, k) = p1(k)2
2k−(s−1)−1 = p1(k)2

2k−s,
where p1(k) is a polynomial of degree is−1− 1, and we know from the base case
that #PB(∅, n − k) = 22(n−k)−1 = 22n−2k−1. Thus,

#Π = p1(k)

(
n

k

)
22n−s−1.

Similarly, we find that by our inductive assumption, #PB(S1, n) = p1(n)2
2n−s

and #PB(S2, n) = p2(n)2
2n−s−1, where p2(n) has degree is − 2. Thus,

#PB(S, n) = #Π−#PB(S1, n)−#PB(S2, n)

= p1(k)

(
n

k

)
22n−s−1 − p1(n)2

2n−s − p2(n)2
2n−s−1

=

(
p1(k)

(
n

k

)
− 2p1(n)− p2(n)

)
22n−s−1.

Note that p1(k)
(
n
k

)
has degree k. We know 2p1(n) has degree is−1 − 1 < k,

and p2(n) has degree is − 2 < k, then the coefficient of 22n−s−1 is a polynomial
of degree k = is − 1. Since

(
n
k

)
, 2p1(n), and p2(n) all have integral values at

integer n, the difference also has integral values at integer n. �

The proof of Theorem 2.4 immediately yields the following recursive formula
for the polynomial pB(S, n).

Corollary 2.5. If S 6= ∅ is admissible and m = maxS then

pB(S, n) = p1(m− 1)

(
n

m− 1

)
− 2p1(n)− p2(n)

where S1 = S − {m}, S2 = S1 ∪ {m− 1}, and pi(n) = pB(Si, n) for i = 1, 2.

Proof. Looking at the proof of Theorem 2.4, we can see that the greatest element
in S is is which means that m = is. We also let k = is − 1 = m − 1, then by
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Theorem 2.4 we have

pB(S, n) = p1(k)

(
n

k

)
− 2p1(n)− p2(n) = p1(m− 1)

(
n

m− 1

)
− 2p1(n)− p2(n).

�

The recursive formula for the polynomial pB(n) = pB(S, n) in terms of
pB(S1, k), pB(S1, n), and pB(S2, n), given in Corollary 2.5, is identical to the
recursive formula for the polynomial when working in Sn, where Theorem 3 in
[4] shows that #P (S, n) = p(n)2n−|S|−1. In fact, we can show in general that
pB(n) = p(n).

Lemma 2.6. For any non-empty S = {i1, i2, . . . , is}, let S2 = {i1, i2, . . . , is−1, is−
1}. Then pB(S, n) + pB(S2, n) = p(S, n) + p(S2, n) implies pB(S, n) = p(S, n)
for any n.

Proof. We assume that pB(S, n) + pB(S2, n) = p(S, n) + p(S2, n) and consider
two cases s = 1 and s > 1.

Case s = 1: Since S has only one element, we can write S = {m} and induct
on m. The base case is m = 1, since we cannot have a peak at position 1,
pB(S, n) = p(S, n) = 0. Now, we assume our claim is true for S = {m}, where
m ≥ 1. Consider S = {m+ 1}, our assumption gives us that pB({m+ 1}, n) +
pB({m}, n) = p({m+1}, n) + p({m}, n), and our inductive hypothesis gives us
our result.

Case s > 1: In this case, we notice that if we write is = is−1 + z, then S =
{i1, i2, . . . , is−1, is−1 + z} and S2 = {i1, i2, . . . , is−1, is−1 + (z − 1)}. Therefore,
by induction on z we can easily see that, assuming pB(S, n) + pB(S2, n) =
p(S, n) + p(S2, n) implies pB(S, n) = p(S, n). �

Theorem 2.7. For any S = {i1, i2, . . . , is} and for any n, if #P (S, n) =
p(n)2n−s−1 and #PB(S, n) = pB(n)2

2n−s−1, then p(n) = pB(n) is the same
polynomial in n depending on S for both Sn and Bn.

Proof. First, let S1 = S −{is} and S2 = S1 ∪{is − 1}. By Corollary 2.5 we can
write

pB(S, n) + pB(S2, n) =

(
n

is − 1

)
pB(S1, is − 1)− 2pB(S1, n). (2)

By [4], we can also write

p(S, n) + p(S2, n) =

(
n

is − 1

)
p(S1, is − 1)− 2p(S1, n). (3)

By Lemma 2.6 it is enough to show that the recursive formulas for the poly-
nomials for S of size s are equal, i.e. pB(S, n) + pB(S2, n) = p(S, n) + p(S2, n).
We show this by inducting on s.

The base case is s = 0. Here, S1 = ∅, then Equation (2) and Equation
(3) are in terms of the polynomials for S = ∅. By Proposition 2.3, we have
that pB(∅, n) = 1, and the same is true for p(∅, n) [4]. Therefore pB(S, n) +
pB(S2, n) = p(S, n) + p(S2, n) in the base case.

Now, we assume that our claim holds for s − 1 ≥ 0. Then if we let S3 =
(S1 − {is−1}) ∪ {is−1 − 1}, our inductive hypothesis gives us that pB(S1, n) +
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pB(S3, n) = p(S1, n) + p(S3, n). By Lemma 2.6 this hypothesis implies that
pB(S1, n) = p(S1, n). By the same argument, since our inductive hypothesis
applies for any n, pB(S1, is − 1) = p(S1, is − 1). Therefore Equation (2) and
Equation (3) will give us our claim for any s.

�

In [4], the polynomials p(n) have been computed for several special cases of S
using Corollary 2.5. Hence using Theorem 2.7 we obtain the same polynomials
for Bn given in the following corollaries.

Corollary 2.8. If S = {m} is admissible then

pB(S, n) =

(
n− 1

m− 1

)
− 1.

Corollary 2.9. If S = {2,m} is admissible then

pB(S, n) = (m− 3)

(
n− 2

m− 1

)
+ (m− 2)

(
n− 2

m− 2

)
−

(
n− 2

1

)
.

Corollary 2.10. If S = {2,m,m+ 2} is admissible then

pB(S, n) = m(m−3)

(
n

m+ 1

)
−2(m−3)

(
n− 2

m− 1

)
−2(m−2)

(
n− 2

m− 2

)
+2

(
n− 2

1

)
.

3. Permutations in Bn with π0 = 0

Recall that a peak is defined such that the permutation π ∈ Bn has a peak
at position i if πi−1 < πi > πi+1. Therefore if we introduce the assumption that
π0 = 0 for all π ∈ Bn, then a permutation π can have a peak at position 1 if
0 < π1 > π2, that is if π1 is positive and π has a descent at 1 (i.e. π1 > π2). We

define P̂B(S, n) to be the set of all permutations in Bn with peak set S with
the assumption that π0 = 0. The number of n-admissible sets is also given by
the Fibonacci sequence.

Proposition 3.1. Let An be the set of n-admissible peak sets S. Then the size
of An is given by the (n+ 1)th Fibonacci number.

Proof. The proof is exactly the same as for Proposition 2.1 with initial values
A1 = {∅} and A2 = {∅, {1}}. �

The next theorem shows that similar recursion holds for computing values for

#P̂B(S, n). We then proceed to compute special cases for various n-admissible
peak sets S.

Theorem 3.2. Let S = {i1, i2, . . . , is} be an admissible set then,

#P̂B(S, n) =

(
n

is − 1

)
#P̂B(S1, is − 1)22(n−is)+1 −#P̂B(S1, n)−#P̂B(S2, n).

where S1 = S − {is} and S2 = S1 ∪ {is − 1}.

Proof. This equation is based on the construction given in the proof of Theorem
2.4. We omit the details as they are exactly the same as in that proof. �
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A B C

Figure 1. General shape for π ∈ P̂B(∅, n).

In the following theorem we show that #P̂ (∅, n) is given by sequence A007051
in the OEIS. The first few values of this sequence are 1, 2, 5, 14, 41, 122, 365, . . . .

Theorem 3.3. Let S = ∅. Then

#P̂B(S, n) =
3n + 1

2
.

Proof. Let π ∈ P̂B(∅, n). A general shape for π is given by Figure 1, where the
section labeled A is negative and decreasing, the section labeled B is negative
and increasing, and the section labeled C is positive and increasing. According
to these sections, we can partition π into sections π = π0πAπBπC . In general,
up to two of these sections can be empty. We also assume that πB contains the
entire section of the permutation that is negative and ascending, including the
minimum of π. For example, if π = 0− 4− 5− 6− 2− 1 3, then πA = −4− 5,
πB = −6− 2− 1 and πC = 3.

Now, define a function f from Bn to the set of partitions of [n + 1] into at
most 3 blocks. Let π ∈ Bn. If π = π0πAπBπC , then we let A, B, and C be
the subsets of [n] that correspond to the absolute values of the sections πA, πB ,
and πC , respectively. Then f maps π to the partition of [n + 1] into at most
3 blocks, given by {A,B,C ∪ {n+ 1}}, where if a section is empty it is not
represented in the partition. Then f(π) is in the set of partitions of [n+1] into
at most 3 blocks.

Next, we define the inverse of f from the set of partitions of [n + 1] into at
most 3 blocks to Bn. Let P be such a partition. We write P as a set of three
blocks, where we allow some of the blocks to be empty. I.e., if P = {P1, P2},
we write P = {P1, P2, ∅}. If Pj is the block containing n + 1, then we let
C = Pj − {n+ 1}. If Pi is the block containing the maximum value of the
remaining two blocks, then we let B = Pi, and we let A be the remaining block.
Hence, P maps to the signed permutation π = π0πAπBπC , such that πA is given
by negating the elements of A and ordering them so they are decreasing, πB is
given by negating the elements of B and ordering them so they are increasing,
and πC is given by ordering the elements of C so they are increasing.

It is known that the size of the set of partitions of [n+1] into at most 3 blocks
is given by the first three Stirling numbers of the second kind, S(n + 1, 1) +

S(n+1, 2)+S(n+1, 3) = 3n+1
2 . Therefore, the size of P̂B(S, n) is (3

n+1)/2. �

3.1. Parity of P̂B(S, n). In the previous section we showed that PB(S, n) was
always a multiple of a power of 2, and hence always even. This is no longer the

case for P̂B(S, n) as we show in the next theorem.
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Theorem 3.4. Let S = {i1, i2, . . . , is}. Then #P̂B(S, n) is even if S contains
some even number or if n is odd, and is odd otherwise.

Proof. We induct on i1 + i2 + · · · + is.
Our base case is i1 + i2 · · · + is = 0, where, S = ∅. Clearly, S contains no

even elements. Note that #P̂B(∅, n) = (3n +1)/2 is even if n is odd and odd if
n is even, thus our claim holds.

Recall Theorem 3.2, which states that if S1 = S−{is} and S2 = S1∪{is−1},
then

#P̂B(S, n) =

(
n

is − 1

)
#P̂B(S1, is − 1)22(n−is)+1 −#P̂B(S1, n)−#P̂B(S2, n).

Note that the first term will always be even, since it is multiplied by 2 with

some positive exponent. Therefore #P̂B(S, n) is even if and only if #P̂B(S1, n)+

#P̂B(S2, n) is even. If n is odd, then by our inductive assumption, #P̂B(S1, n)

and #P̂B(S2, n) are both even, then their sum is even.
Now, consider the case where n is even. If S has at least one even element, let

ij be the first even element in S. Either ij ∈ S1 or ij = is. In the first case, our

inductive hypothesis implies that #P̂B(S1, n) and #P̂B(S2, n) are both even,
then their sum is even. In the second case, S1 has no even elements, thus by

our inductive hypothesis, #P̂B(S1, n) is odd. Note that if is is even, then is−1

is odd and S2 has no even elements. Therefore #P̂B(S2, n) is also odd, thus
their sum is even.

Now consider the case where S contains no even elements and n is still even.
Since S1 contains no even elements, by our inductive hypothesis #P̂B(S1, n)
is odd. But since is is odd, is − 1 must be even. Therefore by our inductive

hypothesis #P̂B(S2, n) is even, hence their sum is odd. �

3.2. Relationship between #PB(S, n) and #P̂B(S, n). The following rela-

tion between #PB(S, n) and #P̂B(S, n) allows us to extrapolate some results
from Section 2.

Proposition 3.5. If S is admissible, then

#PB(S, n) = #P̂B(S, n) + #P̂B(S ∪ {1}, n).

Proof. For any π ∈ PB(S, n), either π has a descent at position 1 (i.e. π1 < π2),
or it does not. Therefore we can write PB(S, n) as a union of disjoint sets
PB(S, n) = Pα(S, n) ∪ Pβ(S, n) where π ∈ Pα(S, n) has a descent at po-
sition 1 and π ∈ Pβ(S, n) does not. Note that π ∈ Pα(S, n) correspond

to an element in P̂B(S ∪ {1}, n) by adding a zero at the beginning of π.

Hence, #Pα(S, n) = #P̂B(S ∪ {1}, n). Similarly, any π ∈ Pβ(S, n) corre-

sponds to an element in P̂B(S, n) and thus #Pβ(S, n) = #P̂B(S, n). Therefore

#PB(S, n) = #P̂B(S, n) + #P̂B(S ∪ {1}, n). �

Proposition 3.5 implies the following corollary.

Corollary 3.6. If S is admissible and 2 ∈ S, then

#PB(S, n) = #P̂B(S, n).
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Proof. If 2 ∈ S, then that means that the peak set S ∪ {1} has two consecutive

peaks which is clearly not possible. This means that #P̂B(S ∪ {1}, n) = 0,

implying that #PB(S, n) = #P̂B(S, n) using Proposition 3.5. �

Using this relation, we are able to find a formula for #P̂B(S, n) in the case
where the permutation has one peak.

Proposition 3.7. Let S = {m} be admissible, then

#P̂B({m}, n) = 4n−m−1
m∑

i=1

(
n

m− i

)
(3m−i+1)4i(−1)i+1−(m mod 2)

[
3n + 1

2

]
.

Proof. We will induct on m. First let m = 1 then using Theorem 3.3 and
Proposition 3.5,

#P̂B({1}, n) = #PB(∅, n)−#P̂B(∅, n)

= 22n−1 −

[
3n + 1

2

]

= 4n−2(2)(4) −

[
3n + 1

2

]

= 4n−1−1
1∑

i=1

(
n

1− i

)
(31−i + 1)4i(−1)i+1 − (1 mod 2)

[
3n + 1

2

]
.

We assume our claim is true for m and we consider m+1. Apply Theorem 3.2
for the peak set S = {m+ 1} to obtain the following

#P̂B({m+1}, n) =

(
n

m

)
#P̂B(∅,m)#PB(∅, n−m)−#P̂B(∅, n)−#P̂B({m}, n).

Apply Proposition 2.3, Theorem 3.3 and the inductive hypothesis, then

#P̂B({m+ 1}, n) =

(
n

m

)(
3m + 1

2

)
22(n−m)−1 −

(
3n + 1

2

)
−

4n−m−1
m∑

i=1

[(
n

m− i

)
(3m−i + 1)4i(−1)i+1

]
+ (m mod 2)

(
3n + 1

2

)

= −4n−m−1

((
n

m− 0

)
(3m−0 + 1)(4)0(−1)0+1

+

m∑

i=1

(
n

m− i

)
(3m−i + 1)4i(−1)i+1

)
− (m+ 1 mod 2)

(
3n + 1

2

)

= −4n−m−1
m∑

i=0

(
n

m− i

)
(3m−i + 1)4i(−1)i+1 − (m+ 1 mod 2)

(
3n + 1

2

)

= −4n−(m+1)−1
m+1∑

i=1

(
n

(m+ 1)− i

)
(3(m+1)−i + 1)4i(−1)i+1

− (m+ 1 mod 2)

(
3n + 1

2

)
. �
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Again, applying the relation to the case S = {m} gives us a result for S =
{1,m}.

Corollary 3.8. Let S = {1,m} be admissible, then

#P̂B(S, n) = 22n−2

[(
n− 1

m− 1

)
− 1

]
− 4n−m−1

m∑

i=1

(
n

m− i

)
(3m−i + 1)(4)i(−1)i+1

+ (m mod 2)

[
3n + 1

2

]
.

Proof. Apply Proposition 3.5 to obtain the following

#PB({m}, n) = #P̂B({m}, n) + #P̂B({m} ∪ {1}, n).

We then use Theorem 2.4 together with Corollary 2.8 for #PB({m}, n) and

Proposition 3.7 for #P̂B({m}, n). The rest follows. �

The following result is a general result for a two-element peak set S.

Proposition 3.9. Let S = {m,m+ z} be admissible, then #P̂B(S, n) equals

z−2∑

i=0

(−1)i22(n−m−z+i+1)−1

(
n

m+ z − 1− i

)[
4z−i−2

m∑

j=1

(
(3m−j + 1)4j(−1)j+1

(
m+ z − i− 1

m− j

))
− (m mod 2)

(
3m+z−i−1 + 1

2

)]
− (z − 1 mod 2)

[
4n−m−1

m∑

i=1

(
(3m−i + 1)4i(−1)i+1

(
n

m− i

))
− (m mod 2)

(
3n + 1

2

)]
.

Proof. Let S = {m,m+z} be admissible, let S1 = {m} and S2 = {m,m+z−1}.
Apply Theorem 3.2 to obtain the following recursive formula,

#P̂B(S, n) =

(
n

m+ z − 1

)
#P̂B(S1,m+ z − 1)#PB(∅, n − (m+ z) + 1)

−#P̂B(S1, n)−#P̂B(S2, n).

Then apply the recursion #P̂B(S2, n) until m+ z−1 approaches m+1, then

if a = m+ z − 1 we arrive at the following formula for #P̂B(S, n)

z−2∑

i=0

[
(−1)i

(
n

a− i

)
#P̂B({m},m+ z − 1− i)#PB(∅, n − (m+ z) + 1− i)

]

−(z − 1 mod 2)#P̂B({m}, n).

Using Proposition 3.7 and Proposition 2.3 we obtain the result. �

We have the following special case when S is a three element set.
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Proposition 3.10. Let S = {1,m,m+ 2} be admissible, then

#P̂B(S, n) = 4n−m−1
m∑

i=1

(3m−i + 1)(4)i(−1)i+1

[(
n

m− i

)
−

1

2

(
n

m+ 1

)(
m+ 1

m− i

)]

+ 4n−1

[
m− 1

2

(
n

m+ 1

)
+ 1−

(
n− 1

m− 1

)]

+ (m mod 2)

[(
n

m+ 1

)(
3m+1 + 1

2

)
22(n−m−1)−1 −

3n + 1

2

]
.

Proof. Let S1 = {1,m} and let S2 = {1,m,m + 1} and apply Theorem 3.2.

Note that #P̂B(S2, n) = 0, then

#P̂B(S, n) =

(
n

m+ 1

)
#P̂B(S1,m+ 1)#PB(∅, n − (m+ 2) + 1)−#P̂B(S1, n).

The result follows from Corollary 3.8 and and Proposition 2.3. �

4. Permutations in Sn with π0 = 0

Let Sn be the set of all permutations π = π1π2 . . . πn of [n]. Recall that we
define the set P (π) as the set of all peaks of π. Now, we introduce the condition

π0 = 0, which will allow our peak set to contain i = 1. Define P̂ (π) as the set

of all peaks of π with π0 = 0, and P̂ (S, n) as the set of all permutations of Sn

having π0 = 0 and peak set S.
We first give the recursive method that will allow us to compute formulas

for the special peak sets S = {{m}, {1,m}, {1,m,m + 2}, {1,m, n − 1}}. This
recursive formula is based on Theorem 2.4.

Theorem 4.1. Let S = {i1, i2, . . . , is} be an admissible set then,

#P̂ (S, n) =

(
n

is − 1

)
#P̂ (S1, is − 1)2n−is −#P̂ (S1, n)−#P̂ (S2, n).

Proof. The method to obtain this expression is based on the construction of Π
in Theorem 2.4. For this we let the max(S) = is and k = is − 1, and the rest
follows. �

We need the next result in order to prove future cases.

Proposition 4.2. The number of permutations with peak set P̂ (π) = ∅ is equal
to one.

Proof. Let π = π0π1 . . . πn be a permutation in P̂ (∅, n), and π0 = 0. Now
suppose π1 > 1, then there is an integer m ∈ {2, 3, . . . n} such that πm = 1,
hence there is a peak at a position i ∈ {1, . . . m− 1}. Therefore, in order
to have no peaks, π1 must equal 1. Now suppose π2 > 2, then there is an
integer m ∈ {3, 4, . . . n} such that πm = 2, hence there is a peak at a position
i ∈ {2, . . . ,m− 1}. Therefore, in order to have no peaks, π2 must equal 2.
Apply the same procedure n− 1 times. Thus in order to have a permutation of

the form π = π0π1 . . . πn with π0 = 0 and peak set P̂ (π) = ∅, the permutation
must satisfy πi = i, for i ∈ {0, 1, . . . , n}. �
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We need the next result as a base case for the special case S = {m}.

Proposition 4.3. Let S = {1}. Then

P̂ (S, n) = 2n−1 − 1.

Proof. Let π ∈ P (∅, n). Then either π ∈ P̂ ({1} , n) or by Proposition 4.2, π

is the identity in Sn. Therefore by [4] Proposition 2 we have #P̂ ({1} , n) =
#P (∅, n)− 1 = 2n−1 − 1. �

Now we make use of the recursive formula in Theorem 4.1 and the result in
Proposition 4.2 to obtain a recursive formula for the case when S = {m}. This
will lead us to have a closed formula for this case.

Lemma 4.4. Let S = {m} be admissible. Then we can find the number of
permutations with peak set S recursively by

#P̂ (S, n) = 2n−m

(
n

m− 1

)
−#P̂ ({m− 1} , n)− 1.

Proof. Let Π be the set of all π ∈ Sn such that if π = π1π2 . . . πm−1πm . . . πn,

then P̂ (π1π2 . . . πm−1) = ∅ and P (πm . . . πn) = ∅.
Note that since π could have a peak at position m−1, position m, or neither,

then Π is a union of disjoint sets Π = P̂ ({m−1}, n)∪P̂ ({m}, n)∪P̂ (∅, n). Thus,

#P̂ ({m}, n) = #Π−#P̂ (∅, n) −#P̂ ({m− 1}, n). (4)

We can construct Π by first choosing the m − 1 first elements, arranging
them so their peak set is the empty set, and arranging the n − m + 1 other
elements so their peak set is the empty set. Therefore by Proposition 4.2 and
by [4] Proposition 2 we have

#Π =

(
n

m− 1

)
#P̂ (∅,m− 1)#P (∅, n −m+ 1)

=

(
n

m− 1

)
2n−m.

Also, by Proposition 4.2, #P̂ (∅, n) = 1. Therefore by (4) the result follows.
�

Proposition 4.5. Let S = {m} be admissible. Then

#P̂ (S, n) =

m∑

i=1

2n−i

(
n

i− 1

)
(−1)m−i − (m mod 2).

Proof. We induct on m. Our base case is m = 1. Then by Proposition 4.3, our
claim is true. Now, by our inductive assumption,

P̂ ({m− 1} , n) =
m−1∑

i=1

2n−i

(
n

i− 1

)
(−1)m−1−i − (m− 1 mod 2).
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Using this value for P̂ ({m− 1} , n) in the recursive formula given in Lemma
4.4, we find

#P̂ (S, n) = 2n−m

(
n

m− 1

)
− 1−

(
m−1∑

i=1

2n−i

(
n

i− 1

)
(−1)m−1−i − (m− 1 mod 2)

)

= 2n−m

(
n

m− 1

)
(−1)0 +

m−1∑

i=1

2n−i

(
n

i− 1

)
(−1)m−i − (m mod 2)

=

m∑

i=1

2n−i

(
n

i− 1

)
(−1)m−i − (m mod 2). �

From Proposition 4.5 we notice that we can factor a power of two out of the
summation, in this way we obtain a new formula for the case S = {m}.

Proposition 4.6. Let S = {m} be admissible, then

#P̂ ({m}, n) =
pm−1(n)2

n−m

(m− 1)!
− (m mod 2) (5)

where pm−1(n) = p(S, n) is a polynomial depending on S such that p(n) is an
integer for all integral n. Also, deg(pm−1(n)) = m− 1.

Proof. We will prove this by induction on m. The case where m = 1 is true

since we already found that #P̂ ({1}, n) = 2n−1 − 1 where p(n) = 1 and is of
degree 1− 1 = 0. We will assume that the proposition is true for m and we will
prove it for the m+ 1 case. We will first use the recurrence relation in Lemma
4.4 with our inductive assumption to get

#P̂ ({m+ 1}, n) =

(
n

m

)
2n−(m+1) − 1−

(
pm(n)2n−m

(m− 1)!
− (m mod 2)

)

=
2n−(m+1)

m!

(
n!

(n−m)!
− 2mpm(n)

)
− (m+ 1 mod 2).

We now have to prove that

n!

(n−m)!
− 2mpm(n)

is a polynomial in terms of n with degree m. Because m is fixed, we can see that
this expression is a polynomial in terms of n and we can also clearly see that
n!/(n −m)! has degree m and because of the inductive hypothesis 2m · pm(n)
has degree m− 1 which means that the whole expression has degree m which
completes the induction. �

Corollary 4.7. Additionally,

pm(n) = m!
m∑

i=0

2i(−1)i
(

n

m− i

)
. (6)
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Proof. From Proposition 4.6 we have a recursive formula for pm(n),

pm(n) =
n!

(n−m)!
− 2mpm−1(n).

We will prove this by induction on m. The case where m = 0 is obviously true

since using the formula we get that p0(n) = 1 which agrees with #P̂ ({1}, n) =
2n−1 · 1 − 1. We will assume that the proposition is true for m and we will
it prove it for the m + 1 case. Using the recursive formula and the inductive
hypothesis we get

pm+1(n) =
n!

(n− (m+ 1))!
− 2(m+ 1) · pm(n)

=
n!

(n− (m+ 1))!
− 2(m+ 1)

(
n!

(n−m)!
+m!

m∑

i=1

2i(−1)i
(

n

m− i

))

=
n!

(n− (m+ 1))!
− 2(m+ 1)

(
m!

(
n

m

)
+m!

m∑

i=1

2i(−1)i
(

n

m− i

))

=
n!

(n− (m+ 1))!
+ (m+ 1)!

m+1∑

i=1

2i(−1)i
(

n

m+ 1− i

)

= (m+ 1)!

m+1∑

i=0

2i(−1)i
(

n

m+ 1− i

)
.

which is what we wanted thus completing the induction. �

In the following proposition we compute #P̂ ({m}, n) using a different ap-
proach. The new formula we obtain will help us to compute other special cases
such when S = {1, n − 1} in a simpler way.

Proposition 4.8. Let S = {n −m} be admissible. Then

#P̂ (S, n) =
m−1∑

i=0

2i
(
n− (m− i)

i+ 1

)
.

Proof. Let π = π1π2 . . . πn be a permutation in Sn. We will prove this proposi-
tion by induction on m. We will first prove the base case, when m = 1. Letting
m = 1 means that we will have a peak only in the (n−1)-th position. Note that
πi ∈ [n] which means that the number on the n−1 position has to be n because
otherwise there would either be no peaks or more than one peaks. We know
that the numbers before the n − 1 position must be in increasing order, thus
the permutation is completely determined by the element in the nth position.
There are

(
n−1
1

)
ways to choose the last element.

Now assume the proposition is true for m ≥ 1, we will prove that it is true for
m+1. This means that we have a peak at the n−(m+1)-th position, then using
reasoning similar to the one used in the inductive hypothesis, we know that n
is either in position n − (m+ 1) or in the last position. If n is in the position
of the peak, the number of permutations that satisfy this condition is equal to
the number of ways to choose the last m+1 numbers in the permutation times
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the number of ways to arrange these m+ 1 numbers so that they do not form
a peak. This number is equal 2m

(
n−1
m+1

)
.

If n is in the n-th position of the permutation, then we can reduce the
computation to the m-th case of the induction. Thus,

2m
(
n− 1

m+ 1

)
+

m−1∑

i=0

2i
(
n− (m− i)

i+ 1

)
=

m∑

i=0

2i
(
n− (m+ 1− i)

i+ 1

)

which was what we were looking for. �

Note that doing a change of variable in the previous result will lead us to
obtain better results for the case S = {m}.

Remark 4.9. Let S = {m} be admissible. Notice from the Proposition 4.8 that

we can write #P̂ (S, n), as

#P̂ (S, n) =

n−(m+1)∑

i=0

2i
(
m+ i

i+ 1

)
.

Proposition 4.10. Let S = {1,m} be admissible, then

#P̂ ({1,m}, n) =

m−2∑

i=1

(
n

m− i

)
(2m−i−1 − 1)(2n−(m−i+1))(−1)i+1

−(m mod 2)(2n−1 − 1).

Proof. Let S = {1,m} be admissible and let S1 = {1} and S2 = {1,m − 1}.
Recall Theorem 4.1 provides the following recursive fomula

#P̂ (S, n) =

(
n

m− 1

)
#P̂ ({1},m − 1)#P (∅, n −m+ 1)−#P̂ ({1}, n)

−#P̂ ({1,m − 1}, n)

=

(
n

m− 1

)
(2m−2 − 1)(2n−m)− (2n−1 − 1)−#P̂ ({1,m− 1}, n).

To obtain the terms (2m−2 − 1) and (2n−1 − 1) apply Proposition 4.3 and
the term (2n−m+1−1) follows from Proposition 2 in [4]. The result follows by
induction. �

Proposition 4.11. Let S = {1,m,m+2} be admissible, then #P̂ (S, n) equals

m−2∑

i=1

(2m−i−1 − 1)(−1)i+1(2n−m+i−1)

[(
n

m+ 1

)(
m+ 1

m− i

)
1

2
−

(
n

m− i

)]

+(m mod 2)

(
2n−1 − 1−

(
n

m+ 1

)
2n−m−2(2m − 1)

)
.

Proof. We apply the same method as in Proposition 4.10. For this we let

S1 = {1,m} and S2 = {1,m,m + 1}. Note that #P̂ ({1,m,m + 1}, n) = 0
since we can not have consecutive peaks. Then we construct Π based on the
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number of ways to arrange the permutations in S1 and S2 and use Theorem 4.1
to obtain the recursive formula.

#P̂ ({1,m,m+ 2}, n) = Π−#P̂ ({1,m}, n)

=

(
n

m+ 1

)
#P̂ ({1,m},m + 1)#P (∅, n − (m+ 2) + 1)−#P̂ ({1,m}, n)

Now for the terms #P̂ ({1,m},m + 1) and #P̂ ({1,m}, n) apply Proposition
4.10, and for #P (∅, n − (m + 2) + 1) apply Proposition 2 in [4]. The result
follows. �

Proposition 4.12. Let S = {1,m, n − 1} be admissible, then we have the

following recursive formula for #P̂ (S, n)

m−2∑

i=1

(2m−i−1 − 1)(2n−m+i−1)(−1)i+1

(
1

2

(
n

n− 2

)(
n− 2

m− i

)
−

(
n

m− i

))

−(m mod 2)

(
(2n−2 − 2)

(
n

2

)
− 2n−1 + 1

)
−#P̂ ({1,m, n − 2} , n).

Proof. let S1 = {1,m} and S2 = {1,m, n − 2}. Apply Theorem 4.1 to obtain
the recursive formula.

#P̂ ({1,m, n − 1}, n) = 2

(
n

2

)
#P̂ ({1,m}, n − 2)#P (∅, n − (n− 1) + 1)

−#P̂ ({1,m}, n) −#P̂ ({1,m, n − 2}, n).

Now for #P̂ ({1,m}, n − 2) and #P̂ ({1,m}, n) apply Proposition 4.10. The
result follows. �

4.1. Relationship between #P (S, n) and #P̂ (S, n). In this section we use

the relationship between #P (S, n) and #P̂ (S, n) to find new formulas for spe-
cial cases. We begin by giving this relationship.

Proposition 4.13. If S is admissible then

#P (S, n) = #P̂ (S, n) + #P̂ (S ∪ {1} , n).

We omit the proof of this proposition since it is identical at the proof of
Proposition 3.5.

Corollary 4.14. Let S = {1,m} be an admissible set, then

#P̂ ({1,m} , n) =

((
n− 1

m− 1

)
− 1

)
2n−2 −#P̂ ({m} , n).

Proof. We apply Proposition 4.13 to the case S = {m}, using the fact that

#P ({m} , n) =
((

n−1
m−1

)
− 1
)
2n−2 from Theorem 6 in [4]. �

Corollary 4.15. Let S = {1, n− 1} be an admissible set then,

#P̂ (S, n) = 2n−2(n− 2)− (n− 1).
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Proof. Note that S = {1, n − 1} is a special case of S = {1,m} with m = n−1.
Now apply Corollary 4.14 and Remark 4.9. Then we have,

#P̂ ({1, n− 1} , n) =

((
n− 1

(n− 1)− 1

)
− 1

)
2n−2 −

n−((n−1)+1)∑

i=0

2i
(
(n− 1) + i

i+ 1

)

= 2n−2(n − 2)− (n− 1). �

We propose now a result that also comes as a result of Proposition 4.13.

Corollary 4.16. Let S = {i1, i2, . . . , is} where i1 = 2. Then

#P̂ (S, n) = p(n)2n−s−1

where p(n) = p(S, n) is an polynomial depending on S with degree is − 1, such
that p(n) is an integer for all integral n.

Furthermore, if we let m = max(S), S1 = S −{m}, and S2 = S1 ∪ {m− 1},
then

p(S, n) = p(S1,m− 1)

(
n

m− 1

)
− 2p(S1, n)− p(S2, n).

Proof. We apply Proposition 4.13, and note that #P̂ (S ∪ {1} , n) = 0 if 2 ∈ S.
Thus,

#P̂ (S, n) = #P (S, n).

Hence, we can apply Theorem 3 in [4] for #P (S, n) to this special case of

#P̂ (S, n). �

4.2. Parity of #P̂ (S, n). Notice from the previous results how the number
of permutations varies according to the parity of some integer related to the
peaks. This lead us to establish a relation between the parity of the numbers of
permutations with a given peak set and the parity of the numbers in the peak
set.

Theorem 4.17. Let S = {i1, i2, . . . , is} be admissible. Then #P̂ (S, n) is even
if and only if there exists ij ∈ S such that ij is even.

Proof. We induct on i1+ i2+ · · ·+ is. Our base case is i1+ i2 · · ·+ is = 0, where,
S = ∅. Clearly, S contains no even elements. By Proposition 4.2, #P (∅, n) = 1
for all n, thus our claim holds.

Now, by Theorem 4.1 if we let S1 = S − {is} and S2 = S1 ∪ {is − 1}, then

#P̂ (S, n) =

(
n

is − 1

)
2n−is#P̂ (S1, is − 1)−#P̂ (S1, n)−#P̂ (S2, n).

S admissible implies is < n. Since n− is > 0, then
(

n
is−1

)
2n−is#P̂ (S1, is − 1) is

even in all cases.
Assume that #P̂ (S, n) is even. Then either #P̂ (S1, n) and #P̂ (S2, n) are

both even, or they are both odd. If #P̂ (S1, n) is even, then, by the inductive
hypothesis, S1 contains some even element. Since S1 ⊂ S, S then contains some

even element. If #P̂ (S2, n) is odd, then, by the inductive hypothesis, all its
elements are odd, including is − 1. Therefore is is even, hence S contains some
even element.
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Assume that S contains some even element. Then either S1 contains some
even element and is is even, or S1 contains some even element and is is odd, or
S1 does not contain any even elements and is is even. In the first case and the

second case, by inductive hypothesis #P̂ (S1, n) and #P̂ (S2, n) are both even,

then #P̂ (S, n) is even. In the third case, is − 1 is odd, thus by the inductive

hypothesis #P̂ (S1, n) and #P̂ (S2, n) are both odd, hence #P̂ (S, n) is even.
�
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