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Abstract: We show thatn is almost perfect if and only ifI(n)− 1 < D(n) ≤ I(n), whereI(n)
is the abundancy index ofn andD(n) is the deficiency ofn. This criterion is then extended to
the case of integersm satisfyingD(m) > 1.
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1 Introduction

If n is a positive integer, then we writeσ(n) for the sum of the divisors ofn. A numbern is
almost perfectif σ(n) = 2n − 1. It is currently unknown whether there are any other almost
perfect numbers apart from those of the form2k, wherek ≥ 0.

We denote the abundancy indexI of the positive integerw asI(w) =
σ(w)

w
. We also denote

the deficiencyD of the positive integerx asD(x) = 2x− σ(x) [4].

2 Preliminary Lemmata

We begin with some preliminary results.
Note thatI(y) = D(y) if and only if

σ(y) = 2y2 − yσ(y)

which corresponds to

(y + 1)σ(y) = 2y2 ⇐⇒ σ(y) =
2y2

y + 1
=

2y2 − 2

y + 1
+

2

y + 1
= 2(y − 1) +

2

y + 1
.

Sinceσ(y) and2(y− 1) are both integers, this implies that(y+1) | 2, from which it follows that
y + 1 ≤ 2. Hence,y ≤ 1. Together with1 ≤ y, this means thaty = 1.

We state this result as our initial lemma.
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Lemma 2.1. I(n) = D(n) if and only ifn = 1.

Next, we show conditions that are sufficient and necessary for n to be almost perfect.

Lemma 2.2. If n is a positive integer which satisfies the inequality

2n

n + 1
≤ I(n) < 2,

thenn is almost perfect.

Proof. Let n be a positive integer, and suppose that

2n

n + 1
≤ I(n) < 2.

Then we have
2n2

n+ 1
≤ σ(n) < 2n.

But
2n2

n+ 1
= 2n− 2 +

2

n+ 1
≤ σ(n) < 2n.

Sinceσ(n) is an integer andn ≥ 1, this last chain of inequalities forces

σ(n) = 2n− 1,

and we are done.

Lemma 2.3. If n is almost perfect, thenn satisfies the inequality

2n

n + 1
≤ I(n) < 2.

Proof. Let n be a positive integer, and suppose thatσ(n) = 2n− 1.

It follows that

I(n) =
σ(n)

n
= 2−

1

n
< 2.

Now we want to show that
2n

n + 1
≤ I(n).

Assume to the contrary thatI(n) < 2n
n+1

. (Note that this forcesn > 1.) Mimicking the proof

in Lemma 2.2, we have

σ(n) <
2n2

n + 1
,

from which it follows that

σ(n) < 2n− 2 +
2

n+ 1
< (2n− 2) + 1 = 2n− 1.

This contradicts our assumption thatn is almost perfect. Hence the reverse inequality

2n

n+ 1
≤ I(n)

holds.
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Remark 2.1. By their definition, all almost perfect numbers are automatically deficient. But of

course, not all deficient numbers are almost perfect.

By Remark 2.1, it seems natural to try to establish an upper bound for the abundancy index of

an almost perfect numbern, that isstrictly less than 2, and which (perhaps) can be expressed as
a rational function ofn (similar to the form of the lower bound given in Lemma 2.2 and Lemma

2.3).

Lemma 2.4. If n is a positive integer which satisfies the inequality

2n

n+ 1
≤ I(n) <

2n+ 1

n+ 1
,

thenn is almost perfect.

Proof. Let n be a positive integer, and suppose that

2n

n+ 1
≤ I(n) <

2n+ 1

n+ 1
.

Again, mimicking the proof in Lemma 2.2, we have

2n2

n+ 1
≤ σ(n) <

2n2 + n

n + 1
,

from which it follows that

2n− 2 +
2

n+ 1
≤ σ(n) < 2n− 1 +

1

n+ 1
.

Sincen ≥ 1, this last chain of inequalities forces the equation

σ(n) = 2n− 1

to be true. Consequently,n is almost perfect, and we are done.

We now show that the (nontrivial) upper bound obtained for the abundancy index ofn in
Lemma 2.4 is also necessary forn to be almost perfect.

Lemma 2.5. If n is almost perfect, thenn satisfies the inequality

2n

n+ 1
≤ I(n) <

2n+ 1

n+ 1
.

Proof. It suffices to prove that ifn is almost perfect, then the inequality

I(n) <
2n+ 1

n+ 1

holds. To this end, assume to the contrary that

2n+ 1

n + 1
≤ I(n).

Mimicking the proof in Lemma 2.4, we obtain

2n− 1 +
1

n+ 1
=

2n2 + n

n+ 1
≤ σ(n),

from which it follows that

2n− 1 < σ(n).

This contradicts our assumption thatn is almost perfect, and we are done.
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3 Main Results

Collecting all the results from Lemma 2.2, Lemma 2.3, Lemma 2.4 and Lemma 2.5, we now have

the following theorem.

Theorem 3.1. Let n be a positive integer. Thenn is almost perfect if and only if the following

chain of inequalities hold:
2n

n+ 1
≤ I(n) <

2n+ 1

n+ 1
.

Remark 3.1. Note that equality holds in

2n

n+ 1
≤ I(n)

if and only ifn = 1.

Also, it is trivial to verify that the known almost perfect numbersn = 2k (for integersk ≥ 0)

satisfy the inequalities in Theorem 3.1. In fact, Theorem 3.1 can be used to rule out particular

families of integers from being almost perfect numbers. (For example,n1 = pr andn2 = prqs,

wherep, q are odd primes andr, s are even, are easily shown not to satisfyσ(ni) = 2ni − 1

(i = 1, 2) using the criterion in Theorem 3.1.)

This can, of course, also be attempted for the caseM = 2rb2 with σ(M) = 2M − 1, where

r ≥ 1 andb is an odd composite indivisible by3, although a complete proof appears to be difficult

[1].

We now give a proof for the following result (which was originally conjectured in
http://arxiv.org/pdf/1308.6767v4.pdf).

Theorem 3.2.The bounds in Theorem 3.1 are best-possible.

Proof. The bounds
2n

n+ 1
≤ I(n) =

σ(n)

n
<

2n + 1

n+ 1

are easily seen to be equivalent to

2n · n ≤ (n+ 1) · σ(n) < 2n · n+ n

which further implies that
n (2n− σ(n)) ≤ σ(n)

and

σ(n)− n < (2n− σ(n))n

so that we obtain
I(n)− 1 < 2n− σ(n) = D(n) ≤ I(n).

Since

D(n) = 1 ≤ I(n) =
σ(n)

n
< 2 = D(n) + 1

whenn is almost perfect, we obtain the claimed result.
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Remark 3.2. Following the proof of Theorem 3.2, and by using Lemma 2.1, wehave the following

additional observations whenm > 1:

1. If D(m) < I(m) < 2, thenm is almost perfect, by Lemma 2.2.

2. The caseI(m) < D(m) < 2 cannot occur, as it implies that2m − 2 < σ(m) < 2m, so

thatD(m) = 2m− σ(m) = 1, contradicting1 ≤ I(m) < D(m) = 1.

3. If I(m) < 2 ≤ D(m), thenm is not almost perfect, by Lemma 2.2.

Next, we attempt to extend the results in Theorem 3.1 to the case of positive integersm

satisfyingD(m) > 1. To begin with, notice that, if we write1 = D(n), then the bounds in
Theorem 3.1 take the following form:

2n

n+D(n)
≤ I(n) <

2n+D(n)

n+D(n)
.

By Remark 3.1, equality holds in
2n

n +D(n)
≤ I(n)

if and only if n = 1, which is true if and only ifI(n) = D(n) by Lemma 2.1.
Now, assume thatm is a positive integer withD(m) > 1. We want to show that the following

theorem holds.

Theorem 3.3. Let m be a positive integer, and suppose thatD(m) > 1. Then we have the

following bounds for the abundancy index ofm, in terms of the deficiency ofm:

2m

m+D(m)
< I(m) <

2m+D(m)

m+D(m)
.

Proof. Assume thatm is a positive integer satisfyingD(m) > 1. (In particular, note thatm > 1

(by Lemma 2.1), and therefore thatI(m) > 1 (sinceI(m) = 1 if and only ifm = 1).)

Suppose to the contrary that

I(m) ≤
2m

m+D(m)
=

2m

3m− σ(m)
.

Then we have (noting that3m− σ(m) > 2m− σ(m) > 1)

3mσ(m)− (σ(m))2 ≤ 2m2.

Dividing through bym2, we get

(I(m))2 − 3I(m) + 2 ≥ 0

which implies that
(I(m)− 2) (I(m)− 1) ≥ 0.

This is a contradiction, as we know that1 < I(m) < 2.
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Now, assume that

I(m) ≥
2m+D(m)

m+D(m)
=

4m− σ(m)

3m− σ(m)
.

Then we obtain (noting that4m− σ(m) > 3m− σ(m) > 2m− σ(m) > 1)

3mσ(m)− (σ(m))2 ≥ 4m2 −mσ(m).

Again, dividing through bym2, we get

(I(m))2 − 4I(m) + 4 ≤ 0

which implies that
(I(m)− 2)2 ≤ 0.

This contradicts1 < I(m) < 2.

Consequently, we have the bounds

2m

m+D(m)
< I(m) <

2m+D(m)

m+D(m)

if D(m) > 1, and we are done.

We end this section with the following result, which closelyparallels that of Theorem 3.2.

Theorem 3.4.The bounds in Theorem 3.3 are best-possible.

Proof. The bounds
2m

m+D(m)
< I(m) <

2m+D(m)

m+D(m)

are easily seen to be equivalent to

2m < σ(m) +D(m)I(m) < 2m+D(m)

which further implies that

D(m) = 2m− σ(m) < D(m)I(m) < (2m− σ(m)) +D(m) = 2D(m)

so that we obtain

1 < I(m) < 2

sinceD(m) > 1. Since1 < I(m) < 2 also holds for deficient integersm satisfyingD(m) > 1,
the claimed result follows.
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4 Conclusion

The results in this article originated from the author’s attempts to show thatd is almost perfect, if

efd2 is an odd perfect number with Euler primee satisfyinge ≡ f ≡ 1 (mod 4). (That is, since

I(d) < I(d2) =
2

I(ef)
≤

2e

e+ 1
,

the author was hoping to showd < e, and thereby prove the Descartes-Frenicle-Sorli conjecture
(i.e.,f = 1) as an immediate consequence.)

It is now known that, in fact, one has

I(d2) <
2d2

d2 + 1

and

I(d) <
2d

d+ 1
,

so thatd2 (and therefore,d) are not almost perfect.
Additionally, Brown [3] has recently announced a proof fore < d, and a partial proof that

ef < d holds “in many cases”.
Nonetheless, work is in progress in [1] to try to rule out evenalmost perfect numbers other

than the powers of two.
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