arXiv:1308.6767v7 [math.NT] 7 Oct 2016

A Criterion for Deficient Numbers

Using the Abundancy Index
and Deficiency Functions

Jose Arnaldo B. Dris

Department of Mathematics and Physics, Far Eastern Uritiyers
Nicanor Reyes Street, Sampaloc, Manila, Philippines
e-mail: jadris@feu.edu.ph, josearnaldobdris@gmail.com
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1 Introduction

If n is a positive integer, then we writg(n) for the sum of the divisors of. A numbern is
almost perfecif o(n) = 2n — 1. Itis currently unknown whether there are any other almost
perfect numbers apart from those of the farfnwherek > 0.

We denote the abundancy indéxf the positive integew asi(w) = M. We also denote
w

the deficiencyD of the positive integer asD(x) = 2z — o(z) [4].
2 Preliminary Lemmata
We begin with some preliminary results.

Note that/ (y) = D(y) if and only if

a(y) = 2y* — yo(y)
which corresponds to
2y 292 — 2 2 2
(y+1)o(y) =2 <= oly) = —— = ———+ —— =2y~ 1)+

y+1  y+1  y+1 y+1
Sinceo(y) and2(y — 1) are both integers, this implies that+ 1) | 2, from which it follows that
y+ 1 < 2. Hencey < 1. Together withl < y, this means thaj = 1.

We state this result as our initial lemma.
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Lemma 2.1. I(n) = D(n) if and only ifn = 1.
Next, we show conditions that are sufficient and necessany fo be almost perfect.

Lemma 2.2. If n is a positive integer which satisfies the inequality

2n
n+1

<I(n) <2,
thenn is almost perfect.

Proof. Letn be a positive integer, and suppose that

2n
<] <2
1S (n)
Then we have
2n? <o(n) <2
n+1_an n
But o2
n
=9 —2 < < 2n.
g = 2n +n+1_0’(n) n

Sinceo(n) is an integer and > 1, this last chain of inequalities forces
o(n)=2n—1,
and we are done. O

Lemma 2.3. If n is almost perfect, then satisfies the inequality

2n
<] < 2.
1S (n)

Proof. Letn be a positive integer, and suppose that) = 2n — 1.
It follows that

o(n 1
Iy =2 g1y
n n
Now we want to show that
2n
< I(n).
n-+1

Assume to the contrary thétn) < f—fl (Note that this forces > 1.) Mimicking the proof

in Lemmd 2.2, we have
2n?

n+1’

o(n) <

from which it follows that

o(n) <2n—2+

2
1<(2n—2)+1:2n—1.

n+
This contradicts our assumption thats almost perfect. Hence the reverse inequality
2n
<I
n+17— (n)
holds. O



Remark 2.1. By their definition, all almost perfect numbers are autowelty deficient. But of
course, not all deficient numbers are almost perfect.

By RemarK 2.1, it seems natural to try to establish an uppentbéor the abundancy index of
an almost perfect number, that isstrictly less than 2, and which (perhaps) can be expressed as
a rational function of. (similar to the form of the lower bound given in Lemial2.2 ararima
2.3).
Lemma 2.4. If n is a positive integer which satisfies the inequality
2n 2n+1
<]T <
n+1-— (n) n+1’

thenn is almost perfect.

Proof. Letn be a positive integer, and suppose that
2n 2n+1
<I(n)< .
n+17 (n) n+1
Again, mimicking the proof in Lemma2.2, we have

2n? - 2n +n
n+1

from which it follows that

2n — 2 +

< <2n-—1 .
n+17 o(n) " + n+1
Sincen > 1, this last chain of inequalities forces the equation
on)=2n-1
to be true. Consequently,is almost perfect, and we are done. O

We now show that the (nontrivial) upper bound obtained far &lbundancy index of in
LemmdZ.4 is also necessary foto be almost perfect.

Lemma 2.5. If n is almost perfect, then satisfies the inequality

2n 2n+1
<I(n)< .
n+17— (n) n+1
Proof. It suffices to prove that if: is almost perfect, then the inequality
2n +1
I(n) <
(n) <77
holds. To this end, assume to the contrary that
2 1
"),
n+1
Mimicking the proof in Lemm&2]4, we obtain
1 2n?+n
2n—1 = <
" +n+1 n+1 < o(n);

from which it follows that
2n —1 < o(n).

This contradicts our assumption thats almost perfect, and we are done. O
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3 Main Results

Collecting all the results from Lemma 2.2, Lemma 2.3, Lerhmdbad Lemma2]5, we now have
the following theorem.

Theorem 3.1. Letn be a positive integer. Themis almost perfect if and only if the following

chain of inequalities hold:
2n < 2n+1

I(n) < .
n+17 (n) n+1

Remark 3.1. Note that equality holds in

if and only ifn = 1.

Also, it is trivial to verify that the known almost perfectmbersn = 2* (for integersk > 0)
satisfy the inequalities in Theordm 3.1. In fact, Thedrefhcan be used to rule out particular
families of integers from being almost perfect numbersr @&@mple,n; = p" andny, = p"¢°,
wherep, ¢ are odd primes and, s are even, are easily shown not to satisfys;) = 2n; — 1
(z = 1, 2) using the criterion in Theorem 3.1.)

This can, of course, also be attempted for the case- 26 with o(M) = 2M — 1, where
r > 1andbis an odd composite indivisible Byalthough a complete proof appears to be difficult

[1].

We now give a proof for the following result (which was origlty conjectured in
http://arxiv.org/pdf/1308.6767v4.pdf).

Theorem 3.2. The bounds in Theorelm 8.1 are best-possible.

Proof. The bounds
2n S[_<n):a(n)<2n+1
n+1 n n+1

are easily seen to be equivalent to

2n-n<(n+1)-o(n)<2n-n+n
which further implies that
n(2n—o(n)) < o(n)

and
on)—n<2n—o(n))n

so that we obtain
I(n) —1<2n—o0(n)=D(n) <I(n).

Since
D) =1 < 1) =2 <o pmy+1
n
whenn is almost perfect, we obtain the claimed result. O
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Remark 3.2. Following the proof of Theorem 3.2, and by using Lerhmh 2. have the following
additional observations when > 1:

1. If D(m) < I(m) < 2, thenm is almost perfect, by LemrhaP.2.

2. The casd(m) < D(m) < 2 cannot occur, as it implies th&mn — 2 < o(m) < 2m, So
that D(m) = 2m — o(m) = 1, contradictingl < I(m) < D(m) = 1.

3. If I(m) < 2 < D(m), thenm is not almost perfect, by LemmaR.2.

Next, we attempt to extend the results in Theofem 3.1 to tise cd positive integers:
satisfyingD(m) > 1. To begin with, notice that, if we writé = D(n), then the bounds in
Theoren 311 take the following form:

2n 2n + D(n)
n+ D(n) < 1) < n+ D(n) "

By RemarK 3.1, equality holds in

2n
m < I(n)

if and only ifn = 1, which is true if and only iff (n) = D(n) by LemmdZ.1L.
Now, assume that: is a positive integer wittD(m) > 1. We want to show that the following
theorem holds.

Theorem 3.3. Let m be a positive integer, and suppose thHa¢m) > 1. Then we have the
following bounds for the abundancy indexof in terms of the deficiency ot:

2m 2m + D(m)
m + D(m) <(m) < m+ D(m)

Proof. Assume thatn is a positive integer satisfyin®(m) > 1. (In particular, note that, > 1
(by Lemmd2.11), and therefore thEin) > 1 (sincel(m) = 1 if and only if m = 1).)
Suppose to the contrary that

2m B 2m
m+ D(m)  3m—o(m)’

I(m) <
Then we have (noting th8tn — o(m) > 2m — o(m) > 1)
3mo(m) — (o(m))? < 2m”.
Dividing through bym?, we get
(I(m))* —3I(m) +2 >0

which implies that
(L(m)—2)(I(m)—1) > 0.

This is a contradiction, as we know thiak 7(m) < 2.

5



Now, assume that
2m+ D(m)  4m —o(m)

m+ D(m)  3m—o(m)

I(m) >

Then we obtain (noting thatn — o(m) > 3m — o(m) > 2m — o(m) > 1)

3mo(m) — (o(m))® > 4m? — mo(m).
Again, dividing through byn?, we get
(I(m))* —4I(m)+4<0

which implies that
(I(m)—2)*<0.

This contradictd < I(m) < 2.
Consequently, we have the bounds

2m 2m + D(m)
m + D(m) <I(m) < m+ D(m)

if D(m) > 1, and we are done.

O

We end this section with the following result, which closphrallels that of Theorefn 3.2.

Theorem 3.4. The bounds in Theorem 8.3 are best-possible.
Proof. The bounds
2m 2m + D(m)
— T ] < —
m + D(m) (m) m + D(m)
are easily seen to be equivalent to

2m < o(m) 4+ D(m)I(m) < 2m + D(m)
which further implies that
D(m) =2m —o(m) < D(m)I(m) < (2m — o(m)) + D(m) = 2D(m)

so that we obtain
1<I(m)<2

sinceD(m) > 1. Sincel < I(m) < 2 also holds for deficient integers satisfyingD(m) > 1,

the claimed result follows.

O



4 Conclusion

The results in this article originated from the author'eatpts to show that is almost perfect, if
e/ d? is an odd perfect number with Euler primsatisfyinge = f =1 (mod 4). (That is, since

2 2e
<

Ie) = et1

I(d) < I(d?) =

the author was hoping to shaw< e, and thereby prove the Descartes-Frenicle-Sorli conjectu
(i.e., f = 1) as an immediate consequence.)
It is now known that, in fact, one has

2d?
d?+1

I(d*) <
and < 2
d+1’
so thatd? (and thereforeg) are not almost perfect.
Additionally, Brown [3] has recently announced a proof fok d, and a partial proof that
e/ < d holds “in many cases”.
Nonetheless, work is in progress in [1] to try to rule out eaémost perfect numbers other
than the powers of two.

1(d)
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