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Abstract

We propose a construction for complementary sets of arrays that exploits a set of
mutually-unbiased bases (a MUB). In particular we present, in detail, the construction
for complementary pairs that is seeded by a MUB of dimension 2, where we enumerate
the arrays and the corresponding set of complementary sequences obtained from the
arrays by projection. We also sketch an algorithm to uniquely generate these sequences.
The pairwise squared inner-product of members of the sequence set is shown to be 1

2 .
Moreover, a subset of the set can be viewed as a codebook that asymptotically achieves√

3
2 times the Welch bound.

1 Introduction

Sequences with relatively flat Fourier spectra are of central importance for many communica-
tions systems such as spread-spectrum, and are also used to probe structures in the context
of measurement and detection. It is often the case that a set of such sequences is required,
where family members are pairwise distinguishable - in the context of communication each
user may be assigned a different sequence from the set, and in the context of measurement
the pairwise distinguishability implies that, when probing a structure, each sequence in the
set contributes useful information to the overall measurement or detection problem. One re-
cent communication application is to orthogonal frequency-division multiplexing (OFDM),
which is a communication technique used in several wireless communication standards such
as IEEE 802.16 Mobile WiMAX. A major problem with OFDM is the large peak-to-average
power ratio (PAPR) of uncoded OFDM time signals (i.e. the signals do not have relatively
flat inverse Fourier spectra). Complementary sequences [12, 29, 4] are sets of sequences that
have out-of-phase aperiodic autocorrelations that sum to zero. This implies that they have

∗G. Wu is with the State Key Laboratory of Integrated Service Networks, Xidian University, Xi’an, 710071,
China. He is a visiting PhD student (Sep. 2012 – Aug. 2014) in the Department of Informatics, University of
Bergen, Norway: gaofei.wu@student.uib.no, M. G. Parker is with the Department of Informatics, University
of Bergen, Norway: matthew@ii.uib.no.

1

ar
X

iv
:1

30
9.

01
57

v2
  [

cs
.I

T
] 

 4
 D

ec
 2

01
3



very flat Fourier spectra - the Fourier transform of each sequence satisfies a PAPR upper
bound of 2.0, which is very low, and Davis and Jedwab [8] showed, in the context of OFDM,
how to construct ‘standard’ 2h-ary complementary sequences of length 2n, comprising second-
order cosets of generalized first-order Reed-Muller codes RM2h(1, n). As they are members
of RM2h(1, n), the sequences have good pairwise distinguishability. The work was subse-
quently extended by [22, 26, 27] and by numerous other authors [31]. [19, 20, 17, 10, 15, 21]
show that the complementary set construction is primarily an array construction, where se-
quence sets are obtained by considering suitable projections of the arrays. It is desirable
to propose complementary constructions that significantly improve set size without greatly
compromising the upper bound on PAPR or the pairwise distinguishability.

In this paper we show that the problem of construction of large sets of complementary
sequences with good pairwise distinguishability is naturally solved by seeding the recursive
construction with optimal mutually-unbiased bases (MUBs) [28, 14, 24]. By way of example,
we construct a set of complementary array pairs over the alphabet A = {0, 1, i,−1,−i} (up
to normalisation of the sequence), whose sequence projections can be viewed as a superset of
the standard quaternary complementary sequences of [8], where our construction enlarges set
size without compromising PAPR or pairwise distinguishability, at the cost of adding ‘0’ to
the QPSK alphabet - this construction exploits an optimal MUB of dimension 2. The exact
number of arrays that we construct is determined. An algorithm for generating all unique
sequence projections from these arrays is then sketched out and an implementation of this
algorithm allows us to compute the number of these sequences. These computational results
then help us to theoretically establish corresponding enumeration formulae, where we are
guided in our theoretical development by related enumerations that we found in the Online
Encyclopaedia of Integer Sequences [18]. The construction generates a set of complementary
sequences which is a relatively large superset of the complementary sequences obtained in
[8], but we show that the magnitude of the pairwise inner product between members of the
set remains at 1√

2
, the same as for the set in [8].

This paper can also be seen as a generalisation of the construction in [3], where the
authors proposed a family of complementary sequences over {0, 1,−1}. Moreover the paper
can be seen as an explicit consequence of the more general principles for the construction
of complementary sets, as described in [21]. There exist related matrix-based approaches to
complementary sequence design in the literature. For instance, the complete complementary
code approach of [30] and the paraunitary matrix approach to filter banks for complementary
sequences, as discussed in [5, 6] - the word ‘paraunitary’ refers to a matrix polynomial in
Z−1 that is unitary when |Z| = 1, and the approach of these papers is clearly similar to
our own. In particular, the recent work in [6] makes extensive recursive use of paraunitary
matrices to generate QAM complementary sequence pairs.

A subset of our sequence set can be viewed as a codebook, where the magnitude of the

pairwise inner product between codewords in the codebook approaches
√

3
2

times the Welch

bound as length increases [32, 25].
After some preliminaries in section 2, we introduce our main construction in section 3. To

begin with we develop the complementary construction in a general way, for complementary
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sets, so as to emphasise that we can seed with any MUB of any dimension. But, for the
general case, it remains open to develop formulae for the size of the array and sequence
sets, and for the magnitude of the pairwise inner product between members of the sets. So,
for this paper, we only develop in detail the case where we seed our construction with an
optimal MUB of dimension 2, i.e. we construct complementary pairs. Nevertheless this is
an important case, and it serves to illustrate more general principles. In section 4 we give
the exact enumeration of the complementary arrays and sequences we construct, as well
as sketch an algorithm to generate the sequences uniquely. The maximum pairwise inner
product between sequences in our set is determined in section 5. In section 6, we give our
codebook construction. Section 7 concludes with some open problems.

2 Preliminaries

2.1 Mutually unbiased bases

Denote the magnitude of the normalised pairwise inner product of two equal-length complex
vectors, u and v, by

∆(u, v) =
|〈u, v〉|
|u| · |v|

.

A pair of bases u0, · · · , uδ−1 and v0, · · · , vδ−1 in Cδ is said to be mutually unbiased if they
are both orthonormal and there is a constant a such that ∆2(ui, vj) = |〈ui, vj〉|2 = a, ∀i, j.
A set of bases is then called a set of mutually unbiased bases (MUB) if any pair of them is
mutually unbiased. It is known that a MUB contains at most δ + 1 bases in Cδ, in which
case the MUB is referred to as an optimal MUB. Such optimal MUBs exist if δ is a prime
power [14], in which case a = 1

δ
. We refer to an optimal MUB asMδ

1 . Specifically, in this
paper, we focus on a particular matrix form of M2, where the 3 bases are the rows of the 3
unitary matrices, I, H, and N , where I =

(
1 0
0 1

)
, H = 1√

2

(
1 1
1 −1

)
, and N = 1√

2

(
1 i
1 −i

)
,

where i =
√
−1.

The properties of a matrix MUB remain unchanged with respect to row/column re-
ordering and multiplication of a row/column by a unity phase shift, as summarised by the
following equivalence relationship between two S × S unitary complex matrices, M and M ′:

M ′ = OθPθMPγOγ,

where Oγ and Oθ are diagonal unitary matrices, and Pγ and Pθ are permutation matrices.
However there is no distance between two vectors whose elements differ only by a constant
phase shift, so to ensure that ∆ for our constructed sequence set is nonzero, we force Oθ =
Oγ = I and, therefore, only use the equivalence

M ′ = PθMPγ. (1)

In this paper we also make use of the Pauli matrices X =
(

0 1
1 0

)
and Z =

(
1 0
0 −1

)
.

1Up to trivial symmetries and, for a fixed δ, there may be more than one choice of Mδ.
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2.2 Complementary arrays and sequences

Let F (z) = (F0(z), F1(z), . . . , FS−1(z))T be a length S vector of polynomials, where Fk(z) =∑dk−1
i=0 Fk,iz

i, Fk,i ∈ C, ∀i, is a complex polynomial of degree dk − 1, 0 ≤ k < S. We also
associate with and refer to Fk(z) as the length dk sequence (Fk,0, Fk,1, . . . , Fk,dk−1). The
aperiodic autocorrelation of Fk is given by the coefficients of Fk(z)F ∗k (z−1), where ∗ means
complex conjugate. Let

λF (z) = 〈F (z), F (z)〉 = F †(z−1)F (z),

be the inner-product of F with itself, where † means ‘transpose-conjugate’ 2 . For S ≥ 2,
we desire to find S degree d − 1 polynomials, Fk(z), such that λF (z) = λF , a constant
independent of z, in which case the set F(z) = {F0(z), F1(z), . . . , FS−1(z)} is called a size S
complementary set of length d sequences.

Example: Let S = 2, F0(z) = 1+z+z2−z3, F1(z) = 1+z−z2 +z3. Then 〈F (z), F (z)〉 =
λF (z) = (−z−3 + z−1 + 4 + z− z3) + (z−3− z−1 + 4− z+ z3) = 8, so F(z) = {F0(z), F1(z)} is
a size 2 complementary set of length 4 sequences, where the sequences are (1, 1, 1,−1) and
(1, 1,−1, 1).

The complementary set property can be interpreted in the Fourier domain by evaluating
z on the unit circle. If F is a complementary set of size S, then

λF = F †(α−1)F (α), |α| = 1.

It follows that
Fk(α)F ∗k (α−1) ≤ λF , |α| = 1, 0 ≤ k < S. (2)

(2) states that the Fourier power spectrum of each sequence Fk, 0 ≤ k < S, is upper-bounded
by λF . If ‖Fk‖2 =

∑
0≤i<n Fk,iF

∗
k,i = 1, 0 ≤ k < S, i.e. if each of the S sequences has its

power normalised to 1, then λF = S and we say that the peak-to-average power ratio (PAPR)
of each sequence in F is upper-bounded by S.

We can generalize further by replacing z with z = (z0, z1, . . . , zn−1), where Fk(z) is of
degree dk,j − 1 in variable zj, 0 ≤ j < n, in which case Fk(z) is associated with and referred
to as an n-dimensional dk,0 × dk,1 × . . . dk,n−1 complex array. The aperiodic autocorrelation
of Fk is given by the coefficients of Fk(z)F ∗k (z−1), where z−1 = (z−10 , z−11 , . . . , z−1n−1) and, as
before, F(z) is a complementary set of size S if

λF = λF (z) = 〈F (z), F (z)〉 = F †(z−1)F (z).

Example: Let S = 2, F0(z) = 1 + z0 + z1 − z0z1, F1(z) = 1 + z0 − z1 + z0z1. Then
〈F (z), F (z)〉 = λF (z) = (−z−10 z−11 + z0z

−1
1 + 4 + z−10 z1− z0z1) + (z−10 z−11 − z0z−11 + 4− z−10 z1 +

z0z1) = 8, so F(z) = {F0(z), F1(z)} is a size 2 complementary set of 2× 2 arrays, where the
arrays are

(
1 1
1 −1

)
and

(
1 1
−1 1

)
.

2 Comparing Fk(z)F ∗k (z−1) with F †(z−1)F (z), we see that, whilst z−1 is on the right for the former it is
on the left for the latter. This is simply because F is a S × 1 vector - there is no deeper meaning.
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Section 3 introduces the construction for complementary sets, i.e. general S, and this
construction can be seeded with an optimal MUB, Mδ, where δ = S. But we subsequently
only develop formulae for the case where δ = S = 2 so, for that case, dk,j = dj = 2,
0 ≤ j < n, ∀k, and therefore Fk(z) ∈ (C2)⊗n, i.e. the coefficients of Fk(z) form an array
∈ (C2)⊗n. We shall then recursively construct a set of complementary pairs of arrays, F(z).
The set of distinct complementary arrays obtained from F(z) is called Bn. Then, by applying

projections zi = z2
π(i)

, 0 ≤ i < n, over all permutations, π, in the symmetric group Sn, we
shall construct, from F(z), a set of complementary pairs of sequences, F(z). The set of
complementary sequences obtained from F(z) is called B↓,n. We shall compute values for
|Bn| and |B↓,n| in terms of n, and then develop theoretical formulae for these two parameters
that agree with our computations. We shall also determine, theoretically, that, when seeded
with M2 = {I,H,N},

∆2(B↓,n) = max{∆2(u, v)|u 6= v, u, v ∈ B↓,n} =
1

2
.

Example: The array Fk(z) = 1 + z0 − z1 + z0z1 can be projected down to the sequence
Fk(z) = 1 + z − z2 + z3 by the assignment z1 = z2, z0 = z, and to Fk(z) = 1 − z + z2 + z3

by the assignment z0 = z2, z1 = z.

As well as expressing our arrays and sequences as the coefficients of polynomials Fk(z)
and Fk(z), respectively, we can, for the case S = 2, and where we seed our construction with
M2 = {I,H,N}, further express them as generalized Boolean functions, fk(x) : Fn2 → A,
where A = {0, 1, i,−1,−i}, i =

√
−1, and Fk(z) = c

∑
x∈Fn2

fk(x)zx, where c is some normal-

ising constant, chosen so that the associated array, Fk, satisfies ‖Fk(z)‖2 =
∑

0≤i<n Fk,iF
∗
k,i =

1. When we refer to fk(x) as an array or sequence, we mean that the 2n elements of the
array or sequence are the 2n evaluations of fk(x) for x ∈ Fn2 . These elements are also the
2n coefficients of Fk(z) or Fk(z), respectively. The interpretation of fk(x) as one of a set of
n! sequence projections, depending on π ∈ Sn, as opposed to the parent array, is implicitly
made and should be clear from the context of the discussion.

Example: The array Fk(z) = c(1 + z0 + iz1z2 − iz0z1z2), where c = 1
2
, may be represented

by fk(x) = (x1 + x2 + 1)i2x0x2+x2 , and fk may also refer, via projection, to one of 3! = 6
sequences, e.g. with z2 = z, z0 = z2, z1 = z4, we project to Fk(z) = c(1 + z2 + iz5 − iz7),
which is then one of the 6 sequences represented by fk

3 .

In section 3, after presenting the general complementary set construction, we explicitly
seed the construction with M2 = {I,H,N} and, thereby, recursively construct a set of
complementary arrays, Bn, and project the arrays down to a set of sequences, B↓,n, where
the sequence PAPR upper bound of S = δ = 2 follows from the unitarity of I, H, and N ,
and where the value of ∆2(B↓,n) = 1

2
follows from the value of ∆ for M2.

3More accurately, we should write fk(π(x)) to indicate one of 6 possible permutations but, to reduce
notation, we make such a mapping implicit in this paper.
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3 The complementary set construction

3.1 The general construction

Let w = (w0, w1, . . . , wm−1) ∈ Cm, and y = (y0, y1, . . . , ym′−1) ∈ Cm′ , be disjoint vectors
of m and m′ complex variables, respectively, and let z = w ∪ y ∈ Cm+m′ be the vector
of variables formed from the union of variables in w and y, with some ordering on the
variables. Let Fj(w) : Cm → C be of degree dj − 1 in variable wj, 0 ≤ j < m. Let
F (w) = (F0(w), F1(w), . . . , FS−1(w))T , and let U(y) = (uij(y), 0 ≤ i, j < S) be an S × S
unnormalised unitary matrix with elements being complex polynomials uij(y) : Cm′ → C.
By unnormalised unitary we mean that U(y)U †(y) = λU(y)I, where I is the S × S identity
matrix.

Let λF (w) =
∑S−1

k=0 Fk(w)Fk
∗(w−1), and define F ′(z) by

F ′(z) = U(y)F (w). (3)

It follows from the unitarity of U , and from (3), that

λF ′(z) =
S−1∑
k=0

F ′k(z)F ′k
∗
(z−1) = λU(y)λF (w). (4)

If λF (w) = cF , a constant, independent of w, and λU(y) = cU , a constant, independent
of y then λF ′(z) = cF ′ = cUcF is a constant, independent of z. If so, then (3) defines a step
in the construction of generalised |z|-dimensional complementary array sets of size S from
|w|-dimensional complementary array sets of size S, and (4) characterises the complemen-
tary property that the sum of the S aperiodic array autocorrelations, F ′k(z)F ′k

∗(z−1), is a
constant, independent of z. In this paper we only consider the case where wi 6= yj, ∀i, j, but
complementarity holds even when this is not true.

Example: Let F (w) = (1 + w, 1 − w)T and U(y) =
(

1 y
1 −y

)
. Then F ′(z) = F ′(y, w) =

U(y)F (w) = (1 + w + y − wy, 1 + w − y + wy)T . As λF (w) = F (w−1)†F (w) = 4, and
λU(y) = 2, then λF ′(z) = 8. So the arrays comprising the coefficients of 1 +w + y −wy and
1 + w − y + wy are a complementary set of size S = 2, i.e. a complementary pair.

We can recurse (3). With notational changes, the j’th recursive step of (3) is described
by,

Fj(zj) = Uj(yj)Fj−1(zj−1), (5)

where yj = (zµj , zµj+1, . . . , zµj+mj−1), zj = (z0, z1, . . . , zµj+mj−1), µj =
∑j−1

i=0 mj, µ0 = 0,
Fj(zj) = (Fj,0(zj), Fj,1(zj), . . . , Fj,S−1(zj))

T , and F−1 = 1√
S

(1, 1, . . . , 1). (5) is a very general
recursive equation for the construction of complementary sets of arrays of size S.

We argue, in this paper, that it is natural, for (5), to choose Uj from a MUB,Mδ, where
δ = S, at each stage of the recursion. More precisely, we seed with Uj(yj) where Uj is taken
from Mδ, and the variables, yj, are introduced via another matrix. This is made clear in
the next subsection. The complementary properties, (i.e. PAPR ≤ S = δ) are guaranteed
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because every member of Mδ is a unitary matrix. Moreover, the pairwise inner-product
between arrays or sequences generated will be small because ∆ is minimised forMδ. At the
same time, the size of the sequence set is maximised because we can choose Uj to be one
of δ + 1 unitaries (for δ a prime power). Finally the size of the projected sequence set can
be further increased by choosing one of δ! permutations of the rows of the unitaries at each
stage of the recursion.

For general S = δ it remains open to develop theoretical formulae for the size of our
constructed array and sequence sets, and for the ∆ value for the sets. But we do solve
these issues for the special case where S = δ = 2, and this is the topic of the rest of this
paper. Note, however, that our choice ofM2 allows us express things in terms of generalised
Boolean functions, and this facilitates our theoretical development. It is likely that such
functional methods do not, in general, extend to S = δ > 2.

3.2 Seeding with M2 to generate complementary pairs

We now consider the special case where Uj is selected from M2 = {I,H,N} at each stage
of the recursion, i.e. we focus on the case where δ = S = 2, and generate complementary
pairs. Moreover we let mj = 1, ∀j, so µj = j and Uj(yj) = Uj(zj), ∀j.

From (5), let F ′j(zj) = U ′j(zj)F ′j−1(zj−1) where, using the equivalence of (1), we set

U ′j(zj) = Pθj+1
Uj(zj)Pγj . Let Fj(zj) = P−1θj+1

F ′j(zj). Then

Fj(zj) = Uj(zj)PγjPθjFj−1(zj−1).

Without loss of generality we simplify PγjPθj to Pj, and obtain

Fj(zj) = Uj(zj)PjFj−1(zj−1).

We now separate Uj(zj) into MUB and variable parts:

Uj(zj) = UjPUjVj(zj),

where PUj is a permutation unitary (the diagonal unitary, OUj , is set to I for the reason
given in subsection 2.1), Vj(zj) =

(
1 0
0 zj

)
and Uj ∈M2. So

Fj(zj) = UjPUjVj(zj)PjFj−1(zj−1).

As PUj ∈ {I,X}, HX = ZH, and NX = iZXN , we swap Uj and PUj , replace Pj+1PUj by
Pj, and obtain

Fj(zj) = PjUjVj(zj)Fj−1(zj−1), (6)

where Pj ∈ {I,X}. (We ignore global constants such as ‘i =
√
−1’ as they have no effect on

our final construction).
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Let U = (U0,U1, . . . ,Un−1) ∈Mn
2 . Then we recurse (6) n times so as to construct

Fn−1(z) =

(
Fn−1,0(z)
Fn−1,1(z)

)
,

where Fn−1,k(z) = c
∑

x∈Fn2
fn−1,k(x)zx, k ∈ {0, 1},

(7)

zx =
∏n−1

j=0 z
xj
j , and c is some real constant such that Fn−1,k(z) is normalised as an array

(sum of element square-magnitudes is 1). It remains to characterise fn−1,k.

To begin with, let Uj = H and Pj = I, ∀j. Then we construct

fn−1,k(x) : Fn2 → {1,−1} = i2(kxn−1+
∑n−2
j=0 xjxj+1).

These are binary complementary sequences, as constructed in [8]. This function is illustrated
by (1) in Fig 1, and is given by

U = (H,H,H,H)⇒ f3,0(x) = i2(x0x1+x1x2+x2x3).

More generally, let Uj ∈ {H,N} and let l = (j,Uj = N). Then we construct

fn−1,k(x) : Fn2 → {1, i,−1,−i} = i2(kxn−1+
∑n−2
j=0 xjxj+1)+

∑|l|−1
j=0 xl(j) .

These are quaternary complementary sequences, as constructed in [8]. An example of this
function for l = (1, 3) is illustrated by (2) in Fig 1, and is given by

U = (H,N,H,N)⇒ f3,0(x) = i2(x0x1+x1x2+x2x3)+x1+x3 .

More generally, let Uj ∈M2 = {I,H,N}, where Un−1 6= I, and let p = (j,Uj ∈ {H,N}),
s = (j,Uj = I) and let q(v) = j if Uj 6= I and Ui = I, ∀i, v < i < j, j < n, j 6= v, and let
q(v) = n otherwise. Then we construct

fn−1,k(x) : Fn2 → A = (

|s|−1∏
j=0

(xs(j) + xq(s(j)) + 1))i2(kxp(|p|−1)+
∑|p|−2
j=0 xp(j)xp(j+1))+

∑|l|−1
j=0 xl(j) ,

where p(−1) = n, xn = 0, and A = {0, 1, i,−1,−i}. An example of this function for
p = (0, 3, 5), l = (3, 5), s = (1, 2, 4), and q = (3, 3, 3, 5, 5, 6), is illustrated by (3) in Fig 1,
and is given by

U = (H, I, I,N, I,N)⇒ f5,0(x) = (x1 + x3 + 1)(x2 + x3 + 1)(x4 + x5 + 1)i2(x0x3+x3x5)+x3+x5 .

More generally, let Uj ∈M2 = {I,H,N}. Moreover, if, for some t, Un−1 = Un−2 = · · · =
Un−t = I, 0 ≤ t ≤ n, and Un−t−1 6= I, then define b such that b(j) = 1 for j ≥ n − t,
and b(j) = 0 otherwise. Then we construct (8). An example of this function for p = (0, 2),

8
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Figure 1: Graph Representations of Example Functions

l = (0), s = (1, 3, 4), q = (2, 2, 5, 5, 5), and b = (0, 0, 0, 1, 1), is illustrated by (4) in Fig 1,
and is given by

U = (N, I,H, I, I)⇒ f4,k(x) = (x1 + x2 + 1)(x3 + k + 1)(x4 + k + 1)i2(kx2+x0x2)+x0 .

We summarise the previous discussion with the following definition.

Definition 1 Let p = (j,Uj ∈ {H,N}), l = (j,Uj = N), and s = (j,Uj = I) be vectors of
integers ordered by magnitude. Let q(v) = j if Uj 6= I and Ui = I, ∀i, v < i < j, j < n,
j 6= v, and let q(v) = n otherwise. If, for some t, Un−1 = Un−2 = · · · = Un−t = I, 0 ≤ t ≤ n,
and Un−t−1 6= I, then define b such that b(j) = 1 for j ≥ n− t, and b(j) = 0 otherwise.

Then we can construct (7), where

fn−1,k(x) : Fn2 → A = (

|s|−1∏
j=0

(xs(j)+xq(s(j))+kb(s(j))+1))i2(kxp(|p|−1)+
∑|p|−2
j=0 xp(j)xp(j+1))+

∑|l|−1
j=0 xl(j) ,

(8)
where p−1 = n, xn = 0, and A = {0, 1, i,−1,−i}.

The graphical language of Fig 1 generalises the path graph of [8, 22] whilst, at the same
time, making a precise mathematical connection with factor graph notation [16], and to
quantum graph states [13] and their generalisations [23].

As mentioned previously, we interpret the coefficients of Fn−1,k(z) as an array in (C2)⊗n,
i.e. an n-dimensional 2× 2× . . .× 2 complex array. However, from (7), Fn−1,k(z) is wholly
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dependent on fn−1,k(x) and, in the following, much of the exposition will be developed in
terms of f rather than F , so we also refer to f as an array, where the array elements are
the 2n evaluations of f at x ∈ Fn2 . The subsequent projections of F , from array to sequence,
then carry over to f in an obvious way.

In (8), we have, for ease of exposition, set Pj = I, ∀j. More generally, let r =
(r(0), r(1), . . . , r(n− 1)) ∈ Fn2 be such that Pj = Xr(j), ∀j. Moreover, let
w = (w(0), w(1), . . . , w(n− 1)) ∈ Fn2 , where

w(i) =

q(i)−1∑
i

r(i).

Our later enumerations multiply by 2n to take into account that r ∈ Fn2 , and this multiplicity
carries over to w as the mapping from r → w is one-to-one. We then generalise (8) to:

fn−1,k(x) : Fn2 → A =

(
∏|s|−1

j=0 (xs(j) + xq(s(j)) + kb(s(j)) + w(s(j)) + 1))×
i2(kxp(|p|−1)+

∑|p|−1
j=0 w(p(j))xp(j)+

∑|p|−2
j=0 xp(j)xp(j+1))+

∑|l|−1
j=0 xl(j) ,

(9)

From (9), the set of complementary arrays is Bn = {fn−1,0(x)|U ∈ Mn
2 , r ∈ F n

2 }. In the
next section we evaluate |Bn| where, evidently, |Bn| ≤ 6n.

The arrays constructed in Theorem 1 of [3] are a subset of those described by (9), corre-
sponding to the case where U ∈ {I,H}n, with t = 0. [3, Conjecture 1] can, consequently, be
improved to

Conjecture 1 For any n, each type-I complementary array over the alphabet {0, 1,−1} is
of the form

fn−1,0(x) = (

|s|−1∏
j=0

(xs(j) + xq(s(j)) + w(s(j)) + 1))(−1)
∑|p|−1
j=0 w(p(j))xp(j)+

∑|p|−2
j=0 xp(j)xp(j+1) . (10)

(‘Type-I’ complementarity is just the form of complementarity discussed in this paper for
arrays over (C2)⊗n).

4 Enumerations

In this section we evaluate |Bn|. We also evaluate |B↓,n|, which is the number of comple-
mentary sequences of length 2n that can be obtained from arrays in Bn by the projections,
zi = z2

π(i)
, π ∈ Sn, from the n-dimensional arrays down to 1 dimensional sequences of length

2n. Clearly there are an infinite number of other projections one could choose, e.g. zi = z3
π(i)

,
π ∈ Sn, and for which complementarity would be preserved, but we do not consider such
variations in this paper.

10



4.1 Number of arrays in Bn
We associate U with a length n binary sequence a = (a0, a1, · · · , an−1), where 0 represents I
and 1 represents H or N . Let

B′n = {Bn|Un−1 6= I}.

Theorem 1

|B′n| =


2n ·

n−1∑
k=0

(

(
n− 1

k

)
2n−k−1 +

(n
2
− 1

bk
2
c

)
· 2d

n−k
2
e−1) = 2n · 3n−1 + 2n+1 · 3

n
2
−1, for n even,

2n ·
n−1∑
k=0

(

(
n− 1

k

)
2n−k−1 +

(n−1
2
k
2

)
· 2d

n−k
2
e−1) = 2n · 3n−1 + 2n · 3

n−1
2 , for n odd,

(11)

where
(
n
t

)
= 0, if t is not an integer.

Proof. There are
(
n−1
k

)
binary sequences of length n−1 with k zeros. Let

(
n−1
k

)
= Sk+Ak,

where Sk (or Ak) is the number of symmetric (or asymmetric) length n− 1 binary sequences
with k zeros. We have that

Sk =


(n−1

2
k
2

)
, for n− 1 even,(bn−1

2
c

bk
2
c

)
, for n− 1 odd.

Let 2n−k = S ′k + A′k, where S ′k (or A′k) is the number of symmetric (or asymmetric) binary

sequences of length n − k. Note that S ′k = 2d
n−k
2
e and an−1 = 1. Let a have k zeros. Then,

when (a0, a1, · · · , an−2) is symmetric, there are S ′k +
A′k
2

=
2S′k+A

′
k

2
=

2n−k+S′k
2

choices for the
n − k 1′s to be H or N . When (a0, a1, · · · , an−2) is asymmetric there are 2n−k choices for
the n− k 1′s to be H or N . Then

|B′n| = 2n ·
n−1∑
k=0

(Sk ·
2n−k + S ′k

2
+
Nk

2
· 2n−k)

= 2n ·
n−1∑
k=0

((Sk +Nk) ·
2n−k

2
+
Sk
2
· S ′k)

= 2n ·
n−1∑
k=0

(

(
n− 1

k

)
· 2n−k−1 +

Sk
2
· S ′k)

=


2n ·

n−1∑
k=0

(

(
n− 1

k

)
2n−k−1 +

(n
2
− 1

bk
2
c

)
· 2d

n−k
2
e−1), for n even,

2n ·
n−1∑
k=0

(

(
n− 1

k

)
2n−k−1 +

(n−1
2
k
2

)
· 2d

n−k
2
e−1), for n odd,

(12)

�
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Corollary 1 The number of arrays in Bn is

|Bn| =
n∑

m=0

|B′m| · 2n−m

=

{
2n−1 · (3n + 3 · 3

n
2 − 2), for n even,

2n−1 · (3n + 5 · 3
n−1
2 − 2), for n odd,

(13)

where |B′0| = 1.

In [8] the authors construct the set of standard quaternary complementary sequences,
DJ n, being Z4-linear offsets of the F2 ‘path graph’ [22]. Using our terminology this trans-
lates to the construction of (9) under the restriction U ∈ {H,N}n, i.e. where |s| = 0.
Although [8] only viewed their objects as complementary sequences they are, more generally,
complementary arrays over (C2)⊗n [19, 20, 17, 15, 10, 21]. As n gets large, |Bn| approaches
6n, whereas the size of the construction of [8] approaches 4n. The larger size of our set is
achieved by enlarging the alphabet from {1, i,−1,−i} in [8] to {0, 1, i,−1,−i} in this pa-
per, more accurately, by selecting our unitaries from M2 = {I,H,N} instead of from the
sub-optimal MUB {H,N}. (A sub-optimal MUB is a set of mutually unbiased bases where
the number of bases is less than the maximum possible. When δ is a prime power, then
the maximum possible number of bases is δ + 1 and, for M2, δ + 1 = 3.) But, crucially, as
discussed later, the increase in set size for the set of sequence projections is achieved without
any increase in ∆, i.e. ∆(B↓,n) = ∆(DJ n).

4.2 An algorithm for generating all sequences in B↓,n, and the cor-
responding enumeration

Many practical applications of our construction would exploit the length 2n sequences ob-
tained from the arrays in Bn by projection. Such sequences comprise the set B↓,n. By
projection we mean the following. We have that Fn−1,0(z) = c

∑
x∈Fn2

fn−1,0(x)zx, for fn−1,0
as defined in (9). The coefficients of this polynomial form an n-dimensional array, and
can be projected down to a 1-dimensional array by the assignments zj = z2

j
. Such a

projection produces a polynomial in z of degree 2n − 1 whose coefficients form a length
2n sequence with elements from A = {0, 1, i,−1,−i}. More generally, for each Fn−1,0(z),

we generate the n! projections obtained by assigning zj = z2
π(j)

, ∀π ∈ Sn, where Sn is
the group of permutations of n objects. These projections can be obtained by generating
B↓,n = {fn−1,0(xπ),∀U ∈ Mn

2 , r ∈ Fn2 ,∀π ∈ Sn}, where xπ = (xπ(0), xπ(1), . . . , xπ(n−1)). Not
all these projections are unique when taken over all polynomials in Bn. We sketch out, in
a stepwise fashion, a recursive algorithm that generates sequences in B↓,n uniquely, firstly
when U ∈ {I,H}n, and then for U ∈ Mn

2 . In each case we implemented the algorithm,
obtained computational results, and then proved the results. It should be noted that the
theoretical developments were greatly helped by us first plugging our computational results
into the On-Line Encyclopedia of Integer Sequences (OEIS) [18].
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We refer to U ∈ {I,H}n as an ‘IH string’ and U ∈ Mn
2 as an ‘IHN string’. Moreover

we abbreviate vectors, e.g. (I,H, I,H,H) is shortened to IHIHH, and (N,H,H, I,N, I) to
NHHINI, and abbreviate fn−1,0(x) to f(x) or f .

4.2.1 An algorithm for U ∈ {I,H}n

We set Pj = I, ∀j, and choose U ∈ {I,H}n. It is possible that two IH strings generate the
same sequence, so we must consider three uniqueness criteria, as follows.

Criterion A: Consider, as an example, that we generate the sequence associated with
U = HIIHIHII, i.e. we generate f = (x1 + x3 + 1)(x2 + x3 + 1)(x4 + x5 + 1)(x6 + 1)(x7 +
1)(−1)x0x3+x3x5 . The projection down to a sequence depends on the ordering, π, of the
8 variables in x, i.e. π(x) = (xπ(0), xπ(1), xπ(2), xπ(3), xπ(4), xπ(5), xπ(6), xπ(7)), π ∈ S8. The
number of sequences generated in this way is 8!.

The form of f implies that x1 = x2 = x3 and x4 = x5. Moreover x6 and x7 can be
swapped without changing the function. So permuting 1, 2, and 3, and/or swapping 4
and 5, and/or swapping 6 and 7, has no effect on the function, and reduces the function
enumeration to 8!

3!2!2!
. In order to avoid these repetitions we only allow π ∈ S8 under the

conditions π(1) < π(2) < π(3), π(4) < π(5), and π(6) < π(7).

Criterion B: Consider the sequence generated by IHIIHHII. This generates f ′ =
(x0 + x1 + 1)(x2 + x4 + 1)(x3 + x4 + 1)(x6 + 1)(x7 + 1)(−1)x1x4+x4x5 . For the example of f
discussed for criterion A, f(π(x)) = f ′(x) for some π ∈ S8. This is because IHIIH is the
reversal of HIIHI. So, to ensure unique generation, only one of f or f ′ should be generated.
Ignoring the rightmost HII, one can interpret the IH strings, HIIHIHII and IHIIHHII,
as binary strings 10010 and 01001, respectively. With the least significant bit on the left,
we equate these strings with integers 9 and 18, respectively, and throw away, arbitrarily, the
IH string associated with the largest number, namely IHIIHHII.

Criterion C: The symmetry of criterion B does not occur if the IH substring is sym-
metric under reversal. For instance, consider the string IHHIHI. Then, ignoring the
rightmost HI, we see that IHHI is symmetric. So there is no f ′ to throw away. However,
this symmetric condition leads, instead, to an alternative restriction on the allowed permu-
tation π. For instance, for this example, we allow only one of the permutations (354120)
and (124350), (which are both valid under previous conditions on π) as they both lead to
f = (x1 + x2 + 1)(x3 + x5 + 1)(x0 + 1)(−1)x2x4+x4x5 . Ignoring all integers to the right of the
position of the rightmost H, i.e. in this case ignoring ‘0’, we choose, arbitrarily, to throw
away the permutation with the lowest integer on the right-hand side - in this case we throw
away (354120) as ‘1’ is on the right-hand side of (35412). One needs to refine this decision
process. Consider the string IHIHIHI, and permutations (4602351) and (3502461), which
are both valid under previous conditions on π. We see that IHIHI is symmetric. Then,
ignoring ‘1’, the lowest integer, ‘0’, is in the centre of (460235), as x0 = x2, so we choose
to decide between the two permutations on the next lowest off-centre integer. In this case,
we decided based on integer ‘3’ and throw away (4602351) as ‘3’ is right of centre in this
permutation.
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n 1 2 3 4 5 6 7 8 9 10

EIH(n) 2 5 17 83 557 4715 47357 545963 7087517 102248075

ẼIH(n) 2 6 26 150 1082 9366 94586 1091670 14174522 204495126

log2(EIH(n)) 1 2.32 4.09 6.38 9.12 12.20 15.53 19.06 22.76 26.61

log2(
n!
2 ) 0 0 1.58 3.58 5.91 8.49 11.30 14.30 17.47 20.79

Table 1: EIH(n) = #Unique IH Sequences, Pj = I, ∀j - A032262[18]

We have implemented a recursive algorithm based on criteria A, B, and C, and obtain
the enumerations shown in Table 4.2.1. Let us call this number EIH(n). We show that
EIH(n) is sequence A032262 of [18].

We make use of the following combinatoric numbers:

Stirling’s number of the second kind:

S2(n, k) =

{
n
k

}
= 1

k!

∑k
j=0(−1)k−j

(
k
j

)
jn.

generalized ordered Bell numbers:

B(r, n) = r
∑n

k=1

(
n
k

)
B(r, n− k) =

∑n
k=0 r

kk!

{
n
k

}
, B(r, 0) = 1.

(14)

B(r, n) is A094416 of [18]. The case when r = 1 generates the ordered Bell numbers.

Theorem 2 The enumeration of IH strings of length n, taking into account criteria A, B,
and C, is given by

EIH(n) = 2n−1 +
n∑
k=0

k!

{
n
k

}
.

Proof. (of theorem 2) We first enumerate ẼIH(n), which only takes criterion A into
account. Ignoring criteria B and C causes a double count of unique IH strings except for
III . . . I, HII . . . I, IHI . . . I, IIH . . . I, . . . , III . . . H, i.e. the exceptions are all IH strings
of H weight less than 2, for which neither the symmetry of criterion B or of C is possible.
These exceptions contribute an additive correction factor of 2n to ẼIH(n). We, thereby,
obtain a relationship between EIH(n) and ẼIH(n):

ẼIH(n) = 2EIH(n)− 2n. (15)

We show that ẼIH(n) is A000629 of [18], and include ẼIH(n) in table 4.2.1.

Theorem 3 The enumeration of IH strings, based only on criterion A, is given by

ẼIH(n) = 2B(1, n), n > 0, ẼIH(0) = 1.
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Proof. (of theorem 3) Consider all IH strings of length n − 1 of the form . . . H, i.e.
with a rightmost H. Taking into account only criterion A, then let us say that there are
B(n − 1) unique strings of this type. Let sn−1 be any such IH string of length n − 1.
Now consider all IH strings of length n of the form sn−1I = . . . HI, i.e. with a rightmost
HI. Considering all variable index permutations, π ∈ Sn, the single rightmost I can be
associated with one of n indices. So there are

(
n
1

)
B(n − 1) unique strings of the form

sn−1I = . . . HI. More generally, consider all IH strings of length n− k of the form . . . H.
There are B(n− k) unique strings of this type. Let sn−k be any such IH string of length
n − k, and consider all IH strings of length n of the form sn−kII . . . I = . . . HII . . . I,
i.e. with k rightmost I’s. Considering all variable index permutations, π ∈ Sn, the k
rightmost Is can be associated with

(
n
k

)
indices. So there are

(
n
k

)
B(n− k) unique strings

of the form sn−kII . . . I, i.e. with k rightmost Is. With initial conditions B(0) = 1, we
have that the number of unique IH strings of length n and with at least one rightmost
I, taking into account only criterion A, is given by

B′(n) =
n∑
k=1

(
n

k

)
B(n− k), B(0) = 1. (16)

We are left with enumerating the number, B(n), of unique IH strings with a rightmost
H, taking into account only criterion A. We find that

B(n) = B′(n). (17)

Proof. (of (17)) Let sn = vH and tn = vI be two IH strings of length n with
a rightmost H and I, respectively, and where v is an IH string of length n − 1.
Let v have r rightmost Is. Then, using criterion A, permutation of the rightmost
r + 1 indices of sn is a symmetry. Similarly, permutation of the rightmost r + 1
indices of tn is also a symmetry. It follows that the enumeration for IH strings with
a rightmost H is identical to that for IH strings with a rightmost I. �

Theorem 3 follows from (16) and (17). �

Combining (14), for r = 1, with theorem 3 and (15) yields theorem 2. �

An asymptotic formula for EIH(n) can be derived from known results on the asymptote
of ordered Bell numbers [1, 33] and A000670 of [18]:

EIH(n)n→∞ =
n!

2
log2(e)

n+1. (18)

In table 4.2.1 we also compare log2(EIH) with log2 of the number of binary standard
Golay sequences, where Pj = I, ∀j (i.e. ignoring linear offsets).

4.2.2 The IHN strings

Having sketched out an algorithm to generate all sequences uniquely from IH strings,
and derived associated enumeration formulae, we now extend to IHN strings. Consider
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n 1 2 3 4 5 6 7 8 9

EIHN (n) 3 11 63 563 6783 99971 1724943 34031603 755385183

ẼIHN (n) 3 15 111 1095 13503 199815 3449631 68062695 1510769343

log2(EIHN (n)) 1.58 3.46 5.98 9.14 12.73 16.61 20.72 25.02 29.49

log2(n!2n−1) 0 2 4.58 7.58 10.91 14.49 18.30 22.30 26.47

Table 2: EIHN(n) = #Unique IHN Sequences, Pj = I, ∀j

HIIHIHII. If we now include the possibility ofN then, once we have generatedHIIHIHII,
along with a specified permutation, we must also generate NIIHIHII, HIINIHII,
NIINIHII, HIIHINII, NIIHINII, HIININII, and NIININII, i.e. 8 IHN strings
in total, all with the same permutation. Criteria A, B, and C have already been tackled in
generating the initial IH string, so need not be re-considered.

We have extended our recursive algorithm to IHN strings, and obtain the enumerations
shown in Table 4.2.2. Let us call this number EIHN(n), where |B↓,n| = 2nEIHN(n). The 2n

factor occurs because we must, more generally, consider Pj ∈ {I,X}, ∀j.

Theorem 4 The enumeration of IHN strings of length n, taking into account criteria A,
B, and C, is given by

EIHN = 3
n∑
k=0

2k−2k!

{
n
k

}
+ 2n − 1

2
.

Proof. (of theorem 4) We first enumerate ẼIHN(n), which only takes criterion A into
account. Ignoring criteria B and C causes a double count of unique IHN strings except
those with H or N of weight less than 2, which contribute an additive correction factor of
2n+1 − 1 to ẼIHN(n). We, thereby, obtain a relationship between EIHN(n) and ẼIHN(n):

ẼIHN(n) = 2EIHN(n)− 2n+1 + 1. (19)

We show that ẼIHN(n) is A201339 of [18], and include ẼIHN(n) in table 4.2.2.

Theorem 5 The enumeration of IHN strings, based only on criterion A, is given by

ẼIHN(n) =
3

2
B(2, n), n > 0, ẼIHN(0) = 1.

Proof. (of theorem 5) Let R ∈ {H,N}. Consider all IHN strings of length n − k of
the form . . . R. Taking into account criterion A, let us say that there are C(n− k) unique
strings of this type. Let sn−k be any such IHN string of length n − k, and consider all
IHN strings of length n of the form sn−kII . . . I = . . . RII . . . I, i.e. with k rightmost I’s.
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Considering all variable index permutations, π ∈ Sn, the k rightmost Is can be associated
with

(
n
k

)
indices. So there are

(
n
k

)
C(n − k) unique strings of the form sn−kII . . . I, i.e.

with k rightmost Is. With initial conditions C(0) = 1, we have that the number of unique
IHN strings of length n and with at least one rightmost I, taking into account only
criterion A, is given by

C ′(n) =
n∑
k=1

(
n

k

)
C(n− k), C(0) = 1. (20)

We are left with enumerating the number, C(n), of unique IHN strings with a right-
most H or N , taking into account only criterion A. We find that

C(n) = 2C ′(n). (21)

Proof. (of (21)) Let sn = vR and tn = vI be two IHN strings of length n with a
rightmost H or N , and I, respectively, and where v is an IHN string of length n−1.
Let v have r rightmost Is. Then, using criterion A, permutation of the rightmost
r + 1 indices of sn is a symmetry. Similarly, permutation of the rightmost r + 1
indices of tn is also a symmetry, irrespective of whether the rightmost element is H
or N . It follows that the enumeration for IHN strings with a rightmost H or N is
exactly twice that for IH strings with a rightmost I. �

Theorem 5 follows from (20), (21), and (14). �

Combining (14), for r = 2, with theorem 5 and (19) yields theorem 4. �

An asymptotic formula for EIHN(n) can be derived from known results on the asymptote
for B(2, n) [7]:

EIHN(n)n→∞ =
n!

4 ln(3
2
)n+1

. (22)

In table 4.2.2 we also compare log2(EIHN) with log2 of the number of Z4 standard Golay
sequences, where Pj = I, ∀j (i.e. ignoring linear offsets).

4.2.3 The IHN strings plus binary linear offsets

Once we have generated the IHN strings uniquely, the more general choice of Pj ∈ {I,X},
∀j, replaces EIHN(n) with |B↓,n| = 2nEIHN(n), so all values in table 4.2.2 are multiplied by
2n (n is added to all log values).

5 Pairwise inner-product

In this section we consider ∆2(B↓,n), where

∆2(B↓,n) = max{∆2(f, f ′)|f 6= f ′, f, f ′ ∈ B↓,n}.
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It is worth re-iterating that each f represents one of n! sequences, obtained from each
F (z) = c

∑
x f(x)zx by projection to F (z), where the sequence, F , is formed from the

coefficients of F (z). Moreover the normalising constant, c, is chosen so that ‖F‖2 =∑
0≤i<n FiF

∗
i = 1 (see (9) for more details).

Theorem 6 ∆2(B↓,n) = 1
2
.

Proof. Let f, f ′ ∈ B↓,n. Assume that f and f ′ have 2n−e and 2n−e
′

elements which are not
zero, respectively. Then h = f ·f ′ has 2n−u elements which are not zero, where max {e, e′} ≤
u ≤ e+ e′. We obtain the bound

∆2(f, f ′) ≤ (2n−u)2

2n−e2n−e′
= 2e+e

′−2u. (23)

There are three cases, where the bound of (23) suffices for cases 2 and 3.

Case 1: e = e′, and f, f ′ have the same positions that are non-zero. Let f̂ and f̂ ′ be
the compressed length 2n−e sequences obtained by deleting the zeros in f and f ′, respectively.
Let f̂ = if̃ , f̂ ′ = if̃

′
, where f̃ , f̃ ′ : Fn−e2 → Z4 are generalized Boolean functions. If the linear

terms of f̃ and f̃ ′ are the same, then the Hamming distance between f̃ and f̃ ′ is at least
2n−e−2, and 2n−e−2 ≤ N2 ≤ 3 · 2n−e−2, 2n−e−2 ≤ N0 ≤ 3 · 2n−e−2, N1 = N3 = 0, where

Nj = |{x|f̃(x)− f̃ ′(x) = j,x ∈ F n−e
2 }|, j ∈ Z4.

Then
|〈f, f ′〉|2 = |

∑
x∈Fn−e2

if̃(x)−f̃
′(x)|2 = |N2 −N0|2 + |N3 −N1|2 ≤ |2n−e−1|2,

and

∆2(f, f ′) =
|〈f, f ′〉|2

2n−e · 2n−e
≤ |2n−e−1|2

2n−e · 2n−e
=

1

4
.

If the linear terms of f̃ and f̃ ′ are different then, since (f̃ − f̃ ′) mod 2 is a balanced
Boolean function over Z2, then N0 +N2 = N1 +N3 = 2n−e−1. Then

|〈f, f ′〉|2 = |
∑

x∈Fn−e2

if̃(x)−f̃
′(x)|2 = |N2 −N0|2 + |N3 −N1|2 ≤ 2 · |2n−e−1|2,

∆2(f, f ′) =
|〈f, f ′〉|2

2n−e · 2n−e
≤ 2 · |2n−e−1|2

2n−e · 2n−e
=

1

2
.

Case 2: e = e′, but the non-zero positions of f and f ′ are different. Then e+ 1 ≤ u
and, from (23),

∆2(f, f ′) ≤ 1

4
.

Case 3: e 6= e′. Wlog assume e < e′. Then e′ ≤ u, and, from (23),

∆2(f, f ′) ≤ 1

2
.
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It remains to exhibit a pair of sequences a, a′ ∈ B↓,n satisfying ∆2(a, a′) = 1
2
. For example,

a = (−1)
∑n−2
i=0 xixi+1 , a′ = a · ixn−1 . �

For the set, DJ n, of standard quaternary Golay sequences, ∆2(DJ n) = 1
2
, because

DJ n ⊂ B↓,n and a, a′ ∈ DJ n.

6 A codebook from a subset of B↓,n
In this section we give a construction for a codebook, C, over A that is a subset of B↓,n.
The maximum magnitude of inner products between distinct codewords is approximately√

3
2

times the Welch bound for large n.

An (N ,K) codebook, C = {c0, c1, · · · , cN−1}, is a set of N distinct codewords in a K-
dimensional vector space where K ≤ N . Each code vector ch = (ch,0, ch,1, · · · , ch,K−1), 0 ≤
h < N , has unit-norm, i.e., ‖ch‖ =

√∑K−1
i=0 |ch,i|2 = 1. Welch [32] gave a well-known lower

bound on ∆(C) :

∆(C) = max0≤h6=m<N |chc†m| ≥ ∆welch(C) =

√
N −K
K(N − 1)

.

If ∆(C) = ∆welch(C), then C is called a maximum-Welch-bound-equality (MWBE) codebook.
Abbreviate fn−1,0(x) by f , let f = fU for some fixed U ∈ Mn

2 , and construct the codeset

CU = {fU | r ∈ Fn2}.

Then CU comprises 2n pairwise orthogonal sequences.

Let R = {R0,R1,R2}, Rj = (Rj,0,Rj,1, . . . ,Rj,n−1) ∈Mn
2 , 0 ≤ j ≤ 2, such that

R1,i = I iff R0,i 6= I, 0 ≤ i < n. (24)

Let pj, j ∈ {0, 1}, be the vector, p, as defined in Definition 1, for U = Rj, with border
conditions p0(−1) = p1(−1) = −1. We also require auxiliary vectors u = R0 · R1 ∈ {H,N}n
and w ∈ Zn. We construct w and R2 element-by-element, i.e. wi then R2,i then wi+1 then
R2,i+1, etc, starting with wpj(ij) = w0, where

wpj(ij) = |{h | R2,pj(ij−1)+h = N, 0 < h < pj(ij)− pj(ij − 1)}|, 0 ≤ ij < |pj|, j ∈ {0, 1},
R2,i = H iff (wi odd , u(i) = H) or (wi even , u(i) = N),

= N otherwise.
(25)

For instance, if R0 = (I, I,N, I, I,H, I, I) and R1 = (H,N, I,H,H, I,N,N) then p0 =
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(2, 5), p1 = (0, 1, 3, 4, 6, 7), and u = (H,N,N,H,H,H,N,N). Then

wp1(0) = w0 = |{h | R2,p1(0−1)+h = N, 0 < h < 0− (−1) = 1}| = 0 R2,0 = N
wp1(1) = w1 = |{h | R2,p1(1−1)+h = N, 0 < h < 1− 0 = 1}| = 0 R2,1 = H
wp0(0) = w2 = |{h | R2,p0(0−1)+h = N, 0 < h < 2− (−1) = 3}| = 1 R2,2 = N
wp1(2) = w3 = |{h | R2,p1(2−1)+h = N, 0 < h < 3− 1 = 2}| = 1 R2,3 = H
wp1(3) = w4 = |{h | R2,p1(3−1)+h = N, 0 < h < 4− 3 = 1}| = 0 R2,4 = N
wp0(1) = w5 = |{h | R2,p0(1−1)+h = N, 0 < h < 5− 2 = 3}| = 1 R2,5 = H
wp1(4) = w6 = |{h | R2,p1(4−1)+h = N, 0 < h < 6− 4 = 2}| = 0 R2,6 = H
wp1(5) = w7 = |{h | R2,p1(5−1)+h = N, 0 < h < 7− 6 = 1}| = 0 R2,7 = H.

So w = (0, 0, 1, 1, 0, 1, 0, 0) and R2 = (N,H,N,H,N,H,H,H). As another example, if R0 =
(H, I, I, I, N) and R1 = (I,H,H,H, I) then p0 = (0, 4), p1 = (1, 2, 3), u = (H,H,H,H,N).
Then w = (0, 1, 0, 0, 3), and R2 = (N,N,N,N,N).

The codebook, C, is then constructed as

C = CR0 ∪ CR1 ∪ CR2 = {fU | U ∈ R, r ∈ Fn2}. (26)

C is actually a codebook of arrays ∈ (C2)⊗n, being ⊂ Bn, but we further view C as a codebook
of sequences ⊂ B↓,n by subsequent projections, as discussed previously.

Theorem 7 C, as constructed in (26), is a (3 × 2n, 2n) codebook, where ∆(C) =
√

2−n,

∆welch(C) =
√

1
3.2n−1 , ∆(C)→

√
3
2
∆welch(C), as n→∞.

Proof. Let pj, sj, lj, and rj be the vectors p, s, l, r, respectively, for U = Rj, as defined in
Definition 1. (24) implies that fR0 and fR1 are both nonzero at only one element, for any

r0, r1 ∈ Fn2 . Moreover ‖fRj‖ =
√

2n−|pj |, and p0+p1 = n. It follows that ∆(fR0 , fR1) =
√

2−n.
For ∆(fR0 , fR2) and ∆(fR1 , fR2) we require the following identity:

For any a ∈ Fn2 ,
|
∑

x∈Fn2
i2a·x+b·x|2 = 2n, b = (1, 1, . . . , 1)T . (27)

Proof. (of (27)) is straightforward and is omitted. �
From (9), fn−1,0 can be written as

fn−1,0(x) = χ(x)iP(x),

where χ(x) ∈ Fn2 is a product of linear constraints, and P(x) = 2Q(x) + L(x) is the sum
of a binary quadratic term, Q, and a Z4-linear term, L. Let fRj = χj(x)iPj(x), where
Pj = 2Qj + Lj.

To prove for ∆(fR0 , fR2) we first set r0 = r2 = 0. Then

fR0fR2 = χ0(x)iP0(x)χ2(x)iP2(x) = χ0(x)iP0(x)iP2(x) (as χ2 = 1)
= χ0(x)iP0(x)χ0(x)iP2(x)

= χ0(x)i2Q0(x)+L0(x)i2(Q0(x)+L′(x))+L2(x) for some binary linear L′

(as χ0 restricts Q2 to Q0 + L′)
= χ0(x)i2L

′(x)+L0(x)+L2(x).

(28)
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The key point in (28) is that the quadratic terms, Q0, cancel. χ0 equates subsets of the
variables in x as follows:

yi = xp0(i−1)+1 = xp0(i−1)+2 = . . . = xp0(i), 0 ≤ i < |p0|. (29)

We re-express (28) as

fR0fR2 = i2L
′(y)+L0(y)+L2(y), y ∈ F|p0|2 .

Then
〈fR0 , fR2〉 =

∑
y∈F|p0|2

i2L
′(y)+L0(y)+L2(y).

It follows, using (27), that |〈fR0 , fR2〉|2 = 2|p0| iff

L0(y) + L2(y) = 2L′′(y) + 1 · y, (30)

for some binary linear term, L′′. Our construction satisfies (30) because the conditions of
(25) on R2 ensure the contribution of an odd number of N terms for each yi, i.e. the addition
of an odd number of Z4 linear terms, yi, ∀i, 0 ≤ i < |p0|, giving yi or 3yi = 2yi + yi, where

2yi contributes to L′′. It follows that ∆2(fR0 , fR2) =
|〈fR0

,fR2
〉|2

2|p0|2n
= 2−n.

The generalisation to any r0, r1 ∈ F n
2 simply adds more binary linear terms to L′ in (28)

and/or changes xp0(i−1)+h to xp0(i−1)+h + 1 for one or more h. Neither modification affects
the result.

The proof for ∆(fR1 , fR2) is identical to that for ∆(fR0 , fR2). �

Lemma 1 There are 2n−1(2n−1) distinct codebooks, C ∈ Bn, of arrays that can be generated
by (26).

Proof. (sketch) There are 2n ways to share out the I’s between R0 and R1. For each
one of these, there are 2n choices for {H,N}n. But R0 and R1 could be swapped so, to
avoid this symmetry, set the first element of R0 equal to I, which halves our count so we
get 22n−1. However this includes the possibility that R0 = (I, I, I, . . . , I), in which case
R1,R2 ∈ {H,N}n and there is a double count as R1 and R2 could be swapped, so we must
subtract 2n−1 from 22n−1. �

We leave open the problem of enumerating the number of distinct codebooks, C ∈ B↓,n,
of sequences, as generated by (26).

We can further construct a codebook that is a subset of C and that approaches
√

2∆welch

for large n, as follows.

Let R = {R0,R1}, Rj ∈ {I,H}n, 0 ≤ j ≤ 1, and let

CIH = {fU | U ∈ R, r ∈ Fn2}, (31)

under the condition
R1,i = I iff R0,i 6= I, 0 ≤ i < n.
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Theorem 8 CIH is a (2n+1, 2n) codebook, where ∆(CIH)→
√

2∆welch(CIH), as n→∞.

Proof. Omitted - a simple subcase of the previous construction. �

By mapping I → 0, N → 1, H → 2, one can interpret R as a code over F3, i.e. a
ternary code. For instance, one choice of R is {II . . . I, NN . . . N,HH . . .H} which can be
interpreted as the ternary repetition code {00 . . . 0, 11 . . . 1, 22 . . . 2} so, in a sense, we are
constructing a codebook from a ternary code. It would be interesting, in future work, to
construct codebooks from other, larger, ternary codes, both linear and nonlinear.

In [2] a codebook that asymptotes to
√

6 times the Welch bound is constructed. It
is interesting because of the way it is constructed from complementary sequences, and is
motivated, in particular, by application to compressed sensing. However, unlike B↓,n, the
codebook members are not designed to satisfy an upper bound on PAPR, so the codebook
of [2] is not comparable in this sense to B↓,n.

7 Conclusion

We have described a construction for complementary sets of arrays and sequences using
a recursive matrix notation, and then proposed to seed the construction with an optimal
MUB. Specifically, we focused on the M2 case to construct complementary pairs. Thereby,
we constructed a set, Bn, of complementary arrays over (C2)⊗n, and have projected Bn down
to a set, B↓,n, of length 2n complementary sequences that is a superset of the quaternary set
of standard complementary sequences, DJ n, constructed in [8]. Whilst |B↓,n| is significantly
larger than |DJ n|, the PAPR upper bound remains at 2, and the magnitude of the pairwise
inner-product between set members remains at 1√

2
, i.e. ∆(B↓,n) = ∆(DJ n).

Unlike most constructions for QAM complementary sequences in the literature, the se-
quences in B↓,n all possess the same power, i.e. ‖F, F‖2 = 1, ∀F ∈ B↓,n. So the upper
bound on PAPR for the sequence carries over to the upper bound on PAPR for the set. The
QAM constructions in the literature typically propose sets of sequences with varying powers
- this could be a disadvantage in some applications. This ‘equal power’ property for B↓,n
would carry over to complementary constructions using more general Mδ. However, this
‘equal power’ property also has a downside when M2 is used. For example, consider the
size 2n subset of B↓,n sequences constructed using U = (I, I, I, . . . , I), r ∈ Fn2 . These are 2n

spikes or pulses of very large relative magnitude and, in some contexts, it may be practically
undesirable to generate such sequences. So, in some contexts, one might choose to generate
the subset of B↓,n, generated from U ∈ M⊗n

2 , where the number of I’s in U is not too big.

We also extracted a codebook from B↓,n that achieves
√

3
2

times the Welch bound for

large n. It is of interest because every member of the codebook also satisfies PAPR ≤ 2.

The primary aim of this paper is to advertise the central role played by the optimal
MUB in our construction. Although the method is applicable to an optimal MUB of any
dimension, we focused onM2 = {I,H,N}, of dimension δ = 2, so as to recursively construct
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the complementary sequence set, B↓,n. The parameters ofM2 control the parameters of B↓,n
in that the sequences of B↓,n satisfy a PAPR upper-bound of δ = 2 precisely because I, H,
and N are δ× δ unitary, the value of |B↓,n| is large because |M2| = 3 = δ+ 1, the maximum
value possible, and the value of ∆(B↓,n) is small because ∆ = 1

δ
= 1

2
forM2 is the minimum

possible.

7.1 Some open problems

When δ is a prime power then we know that |Mδ| = δ + 1. If, in (5), we assign the non-
variable part of {Uj(yj)} to Mδ then we generalise the results of this paper to δ ≥ 2. One
expects the complementary set of arrays, BMδ,n, and sequences, BMδ,↓,n, constructed from
the recursion of (5), to have very good properties. We know that the PAPR for BMδ,n and
BMδ,↓,n, is upper-bounded by δ, but

• Can one develop expressions for |BMδ,n| and |BMδ,↓,n| in terms of just δ and n?

• Can one develop expressions for ∆(BMδ,↓,n) in terms of just δ and n?

The use of M2 in our construction ensures that our arrays and sequences have elements
drawn from the alphabet {0, 1, i,−1,−i} (up to normalisation), and this facilitates our de-
velopment of expressions for |B↓,n| and ∆(B↓,n). There exist similar optimal Fourier-based
MUBs,Mδ, for δ a prime power, where the functional approach used in this paper seems to
generalise naturally. But not all optimal MUBs are of this form so, for general MUBs, we
propose the following challenge:

• Design an algorithm for the receiver, based on the matrix alphabet,Mδ, to decode re-
ceived sequences that have been generated at the transmitter using the complementary
construction seeded by Mδ.

In section 6, we suggest that it is somewhat natural to map from the ternary alphabet
{0, 1, 2} to M2 = {I,N,H}. Thus ‘strong’ codes over {0, 1, 2} might be used to select
relatively strong subsets of Bn and B↓,n. It would be interesting to investigate, not just
the ternary case, but more general mappings from codes over {0, 1, . . . , δ} to subsets of the
complementary array/sequence sets that have been seeded using Mδ.

We constructed a codebook that meets
√

3
2

times the Welch bound as n→∞. Although

the codebook does not meet the Welch bound with equality, it does have the extra rather
strict constraint that every sequence in the set satisfies PAPR ≤ 2. This extra constraint
is well-motivated for, for instance, spread-spectrum applications, and suggests the following
challenge:

• We wish to find an infinite construction for a codebook, C, where every sequence in
C satisfies PAPR ≤ T . Then how close can C get to the Welch bound? One expects
that the answer depends on T . The problem also clearly depends on the relative sizes
of K and N . For instance, let C be the subset of B↓,n where U = (H,H, . . . , H) and
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r ∈ Fn2 . Then N = |C| = 2n, K = 2n, so the Welch bound is 0 and is met with equality
by C as the sequences in C are pairwise orthogonal. Moreover PAPR(C) ≤ 2. So the
interesting cases occur for K > N .

Finally, we have focused on recursive complementary constructions seeded by optimal
MUBs such as M2. More generally, it would be interesting to seed our construction with
other unitary matrix sets that are not necessarily MUBs. Moreover, we could even seed with
sets of non-unitary matrices, in which case we could obtain larger sets at the price of PAPR
rising with n, and larger ∆. For instance, it would be interesting to seed with the single
δ2 × δ matrix whose δ2 rows comprise an equiangular tight frame of dimension δ, where ∆
for the frame is 1

δ+1
.
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paper.
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