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LAURENT PHENOMENON SEQUENCES

JOSHUA ALMAN, CESAR CUENCA, JIAOYANG HUANG

Abstract. In this paper, we undertake a systematic study of recurrences xm+nxm = P (xm+1, . . . , xm+n−1)
which exhibit the Laurent phenomenon. Some of the most famous among these sequences come from the
Somos and the Gale-Robinson recurrences. Our approach is based on finding period 1 seeds of Laurent
phenomenon algebras of Lam-Pylyavskyy. We completely classify polynomials P that generate period 1
seeds in the cases of n = 2, 3 and of mutual binomial seeds. We also find several other interesting families of
polynomials P whose generated sequences exhibit the Laurent phenomenon. Our classification for binomial
seeds is a direct generalization of a result by Fordy and Marsh, that employs a new combinatorial gadget
we call a double quiver.

1. Introduction

The goal of this paper is to understand the Laurent phenomenon ([FZ1]) appearing in Somos type recur-
rence relations, i.e., sequences x0, x1, x2, . . . defined by recurrences of the form

xmxm+n = P (xm+1, xm+2, . . . , xm+n−1), m = 0, 1, 2, . . .(1.1)

where P is a polynomial. The prototypical example of such a sequence is the Somos-n sequence, given by
the recurrence

xmxm+n =
∑

1≤i≤n
2

xm+ixm+n−i

Another key example is the Gale-Robinson sequence, which is given by the recurrence

xm+nxm = αxm+rxm+n−r + βxm+pxm+n−p + γxm+qxm+n−q,(1.2)

for some p, q, r > 0 with p+ q + r = n.

It is clear that terms of these sequences can be written as rational functions of the first n terms. Remarkably,
in a Somos-n sequence, for 1 ≤ n ≤ 7, or any Gale-Robinson sequence, each term can, in fact, be written
as a Laurent polynomial in the first n terms. This Laurent phenomenon for Gale-Robinson sequences was
first proven in [FZ1]. They initated a study of Somos-type recurrences related to cluster algebras.

In [FM], these types of sequences are studied as exchange relations in cluster mutation-periodic quivers. If
mutating at a vertex v in a quiver Q results in a rotation of Q, then the exchange polynomial P associated
with v yields a sequence of the form (1.1) exhibiting the Laurent phenomenon. It is found in [FM] that
2-term Gale Robinson sequences, which are of the form (1.2) with γ = 0, are exactly the polynomials P
we can obtain in this way.
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However, there are limitations to what the exchange polynomials can be in a cluster algebra; they need to
be binomials which come from a quiver. Gale-Robinson sequences and other natural examples show that
the Laurent phenomenon can hold when P has other forms. Lam and Pylyavskyy introduced in [LP] a
generalization of cluster algebras that removes these constraints called Laurent phenomenon algebras, or
LP algebras. They showed that LP algebras exhibit the Laurent phenomenon, which will imply that a
period 1 LP algebra yields a Laurent phenomenon sequence.

In this paper, we study LP algebras arising from period 1 seeds to find more far-reaching results than
[FM]. We prove classification results for period 1 seeds when n = 2, 3. For n = 2, we find, by comparing
our seeds with the classification of Laurent phenomenon sequences by Speyer and Musiker [Mu], that
a polynomial generates a period 1 LP seed if and only if it generates a Laurent phenomenon sequence.
We also classify mutual binomial period 1 seeds. As exchange polynomials in a cluster algebra are all
binomials, this result will generalize the classification theorem in [FM] by taking advantage of the lessened
constraints of LP algebras. In fact, our classification is described using a generalization of quivers that we
introduce, called double quivers, which operates within the machinery of LP algebras. We also give large
families of polynomials that generate period 1 seeds. For many of these, to the best of our knowledge, the
Laurent phenomenon had not been proven. Similar to [FM, §9], we also investigate conserved quantities,
k-invariants and (multi)linearizations of these families, which yields insights into their integrability.

The remainder of the paper is organized as follows. In Section 2, we introduce the relevant notions of LP
algebras. We give an algorithm that, given a polynomial P , finds the unique candidate for a period 1 LP
algebra, and would show that (1.1) has the Laurent phenomenon. We also link to our implementation
of the algorithm in Sage. In Section 3, we summarize our results. In Sections 4 and 5, we prove our
results about mutual binomial seeds and small n, respectively. In Section 6, we give the period 1 seeds
corresponding to our families of examples. Finally, in Section 7 we investigate the conserved quantities
and integrability of some of these recurrences.

2. Laurent Phenomenon Algebras

Before we state our main results, we introduce period 1 Laurent phenomenon algebra seeds and their
important properties.

2.1. Seeds and Mutations. In this subsection, we define Laurent phenomenon (LP) algebras and related
notions from [LP].

Let F be the field of rational functions in n independent variables over Q. A seed t is a pair (x,P)
where:

• x = {x0, . . . , xn−1} is a trascendence basis for F over Q.

• P = {P0, . . . , Pn−1} is a collection of polynomials in P = Z[x0, . . . , xn−1] satisfying:

(LP1) Pi ∈ P is irreducible and is not divisible by any xj.

(LP2) Pi does not depend on xi.

Equivalently, if we denote by Pi the polynomials in P that satisfy (LP1) and (LP2), then we say that a
seed (x,P) consists of a collection of pairs (xi, Pi), 0 ≤ i ≤ n− 1, such that Pi ∈ Pi for all i.
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Borrowing terminology from the theory of cluster algebras, the set {x0, . . . , xn−1} is called a cluster, each
of x0, . . . , xn−1 is called a cluster variable, and the polynomials P0, . . . , Pn−1 are the associated exchange
polynomials.

We now define mutation in LP algebras. For k ∈ {0, . . . , n − 1}, we say that a seed (x′,P′) is obtained
from (x,P) by mutation at k, which we denote µk(x,P) = (x′,P′), if t′ = (x′,P′) comes from t = (x,P)
via the following sequence of steps:

(1) Let L(t) = Z[x±10 , . . . , x±1n−1] be the Laurent polynomial ring in the cluster variables. Define the

exchange Laurent polynomials {P̂0, . . . , P̂n−1} ⊂ L(t) to be the unique set of Laurent polynomials
satisfying:

• For each j ∈ {0, . . . , n − 1} there are a1, . . . , aj−1, aj+1, . . . , an−1 ∈ Z≤0 such that P̂j =

xa11 . . . x
aj−1

j−1 x
aj+1

j+1 . . . x
an−1

n−1 Pj

• For each i, j ∈ {0, . . . , n− 1} with i 6= j, if we let Lj(t) = Z[x±10 , . . . , x±1j−1, x
±1, x±1j+1, . . . x

±1
n−1],

then we have P̂i|xj←Pj/x ∈ Lj(t) and P̂i|xj←Pj/x is not divisible by Pj in Lj(t).

(2) The new cluster x′ = {x′0, . . . , x
′
n−1} is given by:

x′i =

{
xi if i 6= k,

P̂k/xk if i = k.

(3) Define the polynomial

Gj = Pj

∣∣∣∣∣∣xk←
P̂k|xj←0

x′
k

.

(4) Define Hj to be the result of removing all common factors with P̂k|xj←0 from Gj (in the unique
factorization domain Z[x0, . . . , xk−1, xk+1, . . . , xj−1, xj+1, . . . xn−1]).

(5) Define the new exchange polynomial P ′j = MjHj, where Mj is the unique Laurent monomial in

x′0, . . . , x
′
n−1 for which MjHj is not divisible by any Laurent monomial.

(6) The new seed is given by µk(x,P) = (x′,P′) = ({x′0, . . . , x
′
n−1}, {P

′
0, . . . , P

′
n−1}).

Remark 2.1. If Pj does not depend on xk, then Gj = Hj = Pj and Mj = 1, implying that P ′j = Pj.

All the necessary existence and uniqueness conditions to show that the above mutation gives a unique
valid seed can be found in [LP, §2]. We will often abuse notation and write:

µ0({x0, . . . , xn−1}, {P0, . . . , Pn−1}) = ({x1, . . . , xn}, {P
′
1, . . . , P

′
n}),

where xn = x′0 and Pn = P ′0, since x′i = xi for all 0 < i ≤ n− 1. More generally, we will write:

µi({xi, . . . , xn+i−1}, {Pi, . . . , Pn+i−1}) = ({xi+1, . . . , xn+i}, {P
′
i+1, . . . , P

′
n+i}),
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where xn+i = x′i and P ′n+i = P ′i . For any seed t, the Laurent phenomenon algebra A(t) is the commutative
subring of Q generated by the cluster variables of the seeds that can be obtained after a finite sequence
of mutations from t. We call t the initial seed of A(t). The importance of this definition has much to do
with the next theorem.

Theorem 2.1. [LP, Theorem 5.1] Let A be a Laurent phenomenon algebra and t = (x,P) a seed of
A. If x = {x0, . . . , xn−1}, then any cluster variable of A belongs to the Laurent polynomial ring L(t) =
Z[x±10 , . . . , x±1n−1].

2.2. Period 1 Seeds. In this paper, we are primarily interested in period 1 seeds that will be defined
shortly.

Definition 2.2. For any polynomial P ∈ Q[x−1, x0, x1, x2, . . .], the upshift of P is the polynomial

Q = P |xi←xi+1 ∀i ∈ Q[x0, x1, x2, . . .].

If P does not depend on x−1, then the downshift is defined analogously:

R = P |xi←xi−1 ∀i ∈ Q[x0, x1, . . .].

Example 2.3. The upshift and downshift of x2x
2
3 + x7 − 3x9 are x3x

2
4 + x8 − 3x10 and x1x

2
2 + x6 − 3x8,

respectively.

Definition 2.4. Let t = ({x0, . . . , xn−1}, {P0, . . . , Pn−1}) be a seed and µ0(t) = ({x1, . . . , xn}, {P
′
1, . . . , P

′
n})

be its mutation at x0 (xn = x′0 and P ′n = P ′0). Then t is a period 1 seed if Pi is the downshift of P ′i+1 for
all 0 ≤ i < n− 1, and Pn−1 is the downshift of P ′0 (or equivalently of P0).

Period 1 seeds are interesting in light of Theorem 2.1, as they provide the machinery to prove that some
recurrence sequences satisfy the Laurent phenomenon:

Corollary 2.5. Let P ∈ Z[x1, . . . , xn−1] be any irreducible polynomial, not divisible by any xj . If there
exists a period 1 seed t = ({x0, . . . , xn−1}, {P0, . . . , Pn−1}) with P0 = P , then the sequence {xi}i≥0 of
rational functions of x0, . . . , xn−1, defined by

xm+n =
P (xm+1, . . . , xm+n−1)

xm
for all m ≥ 0,

consists entirely of Laurent polynomials.

Proof. The sequence {xi}i≥0 consists of the cluster variables we get by applying the mutations µ0, µ1, . . .
in order to t. �

Example 2.6. For n = 3, the polynomial P = x1x2 + 1 is in the period 1 seed {(x0, x1x2 + 1), (x1, x0 +
x2), (x2, x0x1 + 1)} and generates the sequence

x0, x1, x2,
x1x2 + 1

x0
,
x1x

2
2 + x0 + x2
x0x1

,
(x1x2 + 1)(x1x

2
2 + x0 + x2) + x20x1
x20x1

,

(x1x
2
2 + x0 + x2)

2 + x20x1(x0 + x2)

x20x
2
1x2

, . . .
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Corollary 2.7. If P ∈ Z[x1, . . . , xn−1] satisfies the conditions in Corollary 2.5, then the sequence {xi}i≥0
defined by

xm+n =
P (xm+1, . . . , xm+n−1)

xm
for all m ≥ 0,

with initial values xi = 1, for all 0 ≤ i < n, consists entirely of integers. If the coefficients of P are
positive, then the sequence consists entirely of positive integers.

Definition 2.8. For a period 1 seed t = ({x0, . . . , xn−1}, {P0, . . . , Pn−1}), we will say that t is the period 1
seed generated by P0, or that P0 generates t. We call P0 a period 1 polynomial, or say that P0 is 1 periodic.

At this point, it is worth noting that the converse of Corollary 2.5 is not true. For instance, consider n = 3
and P (x1, x2) = x1 + x2 + 1. After reading the next section, the reader should be able to easily confirm
that P does not generate a period 1 seed. However, the sequence generated by P is periodic and satisfies
the Laurent phenomenon:

x1, x2, x3,
x2 + x3 + 1

x1
,
x1x3 + x1 + x2 + x3 + 1

x0x1
,
x1x2 + x22 + x1x3 + x2x3 + x1 + 2x2 + x3 + 1

x1x2x3
,

x1x3 + x1 + x2 + x3 + 1

x0x1
,
x2 + x3 + 1

x1
, x1, x2, x3, . . .

2.3. Generation of period 1 seeds. In this section, we propose a method for obtaining period 1 seeds
generated by particular polynomials, using a variant of the method in [FZ1].

Given a polynomial P ∈ P0 = Z[x1, . . . , xn−1], we define a map τ = τP : P → P, which takes polynomials
in Pi to polynomials in Pi−1, for all i > 0. If Q ∈ Pi, then τP (Q) ∈ Pi−1 is computed according to the
following algorithm:

(1) Let G = G(x1, . . . , x̂i, . . . , xi) = Q

∣∣∣∣∣x0←
P |xi=0

xn+1

∈ P[x±1n+1].

(2) If d is the factor of G shared with P
∣∣
xi=0

i.e., d = gcd(G, (P |xi=0)
k) in Z[x1, . . . , x̂i, . . . , xn−1] for

some sufficiently large k ∈ N, then let H = G/d.

(3) Finally, define τP (Q) to be the downshift of MH, where M ∈ L(x1, . . . , x̂i, . . . , xn) is such that
MH ∈ Z[x1, . . . , x̂i, . . . , xn] and MH is not divisible by any xj .

Remark 2.9. If Q does not depend on x0, then H = G = Q, M = 1 and so τP (Q) is simply the downshift
of Q.

It is not immediately clear that τ maps polynomials from Pi to Pi−1 for all i. The two propositions below
show that this is the case.

Proposition 2.10. If Q ∈ Pi, then R = τP (Q) does not depend on xi−1.

Proof. If Pi does not depend on x1, the statement follows because Pi−1 = τ(Pi) is the downshift of Pi.
If Pi depends on x1, then in the computation of τ(Pi), we define G as the Laurent polynomial resulting
from replacing x0 in Q by an expression wherein we made the substitution xi = 0. In particular, G does
not depend on xi. Then, H does not contain xi and neither does M , by definition. Hence, Pi−1 = τ(Pi),
which is the downshift of MH, does not contain xi−1. �



6 JOSHUA ALMAN, CESAR CUENCA, JIAOYANG HUANG

Proposition 2.11. If Q ∈ Pi, then R = τP (Q) is irreducible in P and is not divisible by any of the xj .

Proof. From the definition of τ , it is clear that R = τ(Q) is not divisible by any xj. It then suffices to
show R is irreducible. This is clear if Q does not depend on x0, so assume Q depends on x0. Write

Q =
∑

k

fkx
k
0 ,

where fk ∈ Z[x1, . . . , x̂i, . . . , xn−1] for all k. Then,

G = Q
∣∣
x0←

P |xi=0

xn

=
∑

k

fk

(
P |xi=0

xn

)k

,

and H is G divided by all common factors it shares with P0|xi←0. Finally, R is the downshift of MH
for some Laurent monomial M . As M is a unit in P, it will suffice to show H is irreducible. Let d be a
nonunit factor of H. From the definition of H, d is not a factor of P |xi=0.

If d is independent of xn then d | fk for all k, which implies d | Q, contradicting the irreducibility of Q.

If d depends on xn, write d = d(xn), so,

d

(
P0|xi←0

xn

)
divides G

(
P0|xi←0

xn

)
= Q(xn).

This again contradicts that Q is irreducible. �

Given an irreducible polynomial P = P (x1, . . . , xn−1) ∈ P, we generate a seed (x,P) by letting P0 = P ,
Pn−1 be the downshift of P , and recursively defining Pi = τP (Pi+1) for i = n − 1, n − 2, . . . , 1. From
Propositions 2.10 and 2.11, it is clear that (x,P) is a valid seed. For example, for n = 3, the polynomial
P = x1x2 + x23 generates the seed {(x0, x1x2 + x23), (x1, x

3
2 + x0x

2
3), (x2, x

2
0 + x1x3), (x3, x0x1 + x22)}. The

following proposition gives a sufficient condition for asserting that (x,P) is a period 1 seed.

Proposition 2.12. Let P̂0 be the exchange Laurent polynomial of P0 for the generated seed (x,P). If

P0 = τP (P1) and P̂0 = P0 = P (x1, . . . , xn−1), then (x,P) is a period 1 seed. In particular, P generates a
Laurent phenomenon sequence.

Proof. We remarked above that (x,P) is a valid seed. It is also clear that Pn−1 is the downshift of P0.

Finally, observe that if P̂0 = P0, then the definitions of τP and µ0 coincide. Therefore, the seed (x,P) is
a period 1 seed, as desired. �

If t = (x,P) is a seed generated by P ∈ P0 and is such that P0 = τP (P1), we say t has pseudoperiod

1. Proposition 2.12 can then be rephrased as saying that if P̂0 = P0, then t has period 1. The following
conjecture, in conjunction with Proposition 2.12, would show that period and pseudoperiod are equivalent
definitions in this context.

Conjecture 2.13. Let P̂0 be the exchange Laurent polynomial of P0 for the generated seed (x,P). Then

P̂0 = P0.
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In the rest of this paper, we classify certain families of polynomials that generate pseudoperiod 1 seeds.
In addition, we find many examples of pseudoperiod 1 seeds. In all cases, we can show that the seeds are,
indeed, period 1 seeds, using the Lemma below and Proposition 2.12.

For simplicity of terminology, in cases where the Lemma below is satisfied, we will simply say period 1
instead of pseudoperiod 1.

Lemma 2.14. P̂0 = P0 if either of the two conditions holds

(1) Pj depends on x0 whenever P0 depends on xj.

(2) All polynomials Pj , 0 ≤ j ≤ n− 1, have the same number d of terms.

Proof. From the construction of the Pj , it is clear that P0

∣∣
xj←Pj/x

∈ Z[x±10 , . . . , x±1j−1, x
±1, x±1j+1, . . . , x

±1
n−1].

It then suffices to show that P0

∣∣
xj←Pj/x

is not divisible by Pj , or equivalently that P0

∣∣
xj=0

is not divisible

by Pj .

(1) If P0 depends on xj , then Pj depends on x0 by assumption. From Proposition 2.10, P0 does not depend
on x0 and therefore neither does P0

∣∣
xj=0

. Then Pj cannot divide P0

∣∣
xj=0

.

If P0 does not depend on xj , then P0

∣∣
xj=0

= P0. As both P0 and Pj are irreducible and not divisible

by any xk, we only need that Pj 6= P0 for j > 0. Let m,M be the minimum and maximum indices i
such that P0 depends on xi. We claim that Pj either does not depend on xM or it depends on some xk
with k < m; this immediately implies Pj 6= P0 for j > 0. If there is no intermediate polynomial Pj′ with
j′ > j that depends on x0, then Ps is the downshift of Ps+1 for all s ≥ j. Since the maximum index upon
which Pn−1 = P (x0, . . . , xn−2) depends is M − 1, then the maximum index upon which Pj depends is also
smaller than M ; in particular Pj does not depend on xM . If there is some intermediate polynomial Pj′

with j′ > j that depends on x0, let j0 be the smallest such index j0 > j (so Ps is the downshift of Ps+1

for all j ≤ s < j0). Recall tht the polynomial Pj0−1 comes from

Pj0

∣∣∣∣∣x0←
P |xj0

=0

xn

.

Hence, Pj0−1 depends on xm−1 unless Pj0

∣∣
x0=0

is divisible by P = P0. Since Pj0 depends on x0, P0 depends

on xj0 . From Proposition 2.10, Pj0 does not depend on xj0 ; therefore P0 cannot divide Pj0 |x0=0. Therefore
Pj0−1 depends on xm−1. The polynomial Pj, which is the result of j0 − j − 1 downshifts from Pj0−1, then
depends on xm′ for some m′ < m.

(2) If P0 depends on xj, then P0

∣∣
xj=0

has at most d− 1 terms. Thus Pj , which has d terms, cannot divide

it.

If P0 does not depend on xj, then P0|xj←Pj/x = P0. As both P0 and Pj are irreducible and not divisible

by any xk, we only need to show Pj 6= P0 for j > 0. The argument is the same as in part (1) except for
the reason why P0 does not divide Pj0 |x0=0. In this case, it is because Pj0 |x0=0 has at most d − 1 terms
(as j0 was defined as an index for which Pj0 depends on x0) and P0 has d terms. �

Remark 2.15. One can see that if P generates some period 1 seed, then such seed must be the one described
in Proposition 2.12. If we begin with P ∈ P and follow the process mentioned above (recursively obtain
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the intermediate polynomials Pj , 0 < j < n − 1), we may have that one of the conditions in Proposition
2.12 is not satisfied; in that case, P is not a period 1 polynomial.

We next use [LP, Proposition 2.10], which says that if (x′,F′) = µi(x,F), then (x,F) = µi(x
′,F′), to

devise an analogue of τ that instead takes polynomials from Pi−1 to polynomials in Pi.

We define the mapping κ = κP , that is the inverse of τ as follows.

Given a polynomial P ∈ P0 = Z[x1, . . . , xn−1], let P
′ = P (x0, x1, . . . , xn−2) ∈ Pn−1 and κ : P → P a map

which takes polynomials from Pi to polynomials in Pi+1 for all i ≥ 0. If Q ∈ Pi, then κP (Q) ∈ Pi+1 is
computed according to the following rules.

(1) Let G′ = G′(x−1, x1, . . . , x̂i, . . . , xn−1) = Q
∣∣
xn−1←

P ′|xi=0

x−1

∈ P[x±1−1].

(2) If d′ be the factor of G′ shared with P ′
∣∣
xi=0

, i.e., d′ = gcd(G′, (P ′|xi=0)
k) in Z[x1, . . . , x̂i, . . . , xn−1]

for some sufficiently large k ∈ N, then let H ′ = G′/d′.

(3) Finally, let R = κP (Q) be the upshift of M ′H ′, where M ′ ∈ L(x−1, x1, . . . , x̂i, . . . , xn−1) is such
that M ′H ′ ∈ Z[x−1, x1, . . . , x̂i, . . . , xn−1] and is not divisible by any xj .

Remark 2.16. If Q does not depend on xn−1, then H ′ = G′ = Q, M ′ = 1 and so κP (Q) is simply the
upshift of Q.

The proof that κ is a well defined map comes from the analogous statements of Propositions 2.10 and 2.11
to κ. Given an irreducible polynomial P , choose 0 < k < n − 1. We generate a seed (x,P) by letting
P0 = P , Pn−1 = P ′ be the downshift of P and recursively defining Pi = τP (Pi+1) for all k < i < n and
Pi = κP (Pi−1) for all 0 < i < k. A refinement of Proposition 2.12 is then

Proposition 2.17. Let P̂0 be the exchange Laurent polynomial of P0 for the generated seed (x,P). If

Pk = κ(Pk−1), or equivalently Pk−1 = τ(Pk), and P̂0 = P0, then (x,P) is a period 1 seed.

Remark 2.18. We have implemented the above algorithm (with k = ⌊n/2⌋) in Sage at http://sage.lacim.uqam.ca/hom
This can be used to test whether a given polynomial P is period 1.

3. Statements of results and conjectures

In this section, we present our main results. Their proofs will be presented in the remaining sections. In the
first subsection, we give our classification theorems, while in the second subsection, we give a proposition
asserting that several large families of polynomials are 1 periodic.

3.1. Classification theorems. We first classify all period 1 polynomials when n = 2, 3.

Theorem 3.1. For n = 2, the only period 1 polynomials P are

(1) Irreducible polynomials that are monic and palindromic, i.e., that satisfy xdeg(P ) · P ( 1x) = P (x).

(2) Irreducible polynomials of even degree that are monic and antipalindromic, i.e., that satisfy xdeg(P ) ·
P ( 1x) = −P (x).

http://sage.lacim.uqam.ca/home/pub/23/
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(3) Monic irreducible polynomials of degree 2.

Remark 3.2. Gregg Musiker showed in [Mu] that the only polynomials P that generate Laurent phenom-
enon sequences are the ones in the above theorem. Thus Theorem 3.1 shows that when n = 2, period 1
polynomials are exactly the polynomials that generate Laurent phenomenon sequences.

Theorem 3.3. For n = 3, the only period 1 polynomials P are

(1) P = x1x2 + ax1 + ax2, for any a ∈ Z, a 6= 0,

(2) P = x1x2 + ax1 − ax2, for any a ∈ Z, a 6= 0,

(3) P = x1 − x2 − 1,

(4) P = −x1 + x2 − 1,

(5) P = x1x2 + ax1 + ax2 + b, for any a, b ∈ Z, not both of which are 0,

(6) P = x21 + x22 + ax1x2 + bx1 + bx2 + c, for any a, b, c ∈ Z,

(7) P = −x21 − x22 + ax1x2 + b, for any a, b ∈ Z,

(8) P = ±x1x2 + a, for any a ∈ Z, a 6= 0,

(9) P = 1 + xm1 xn2 +
∑

0<i<m

0<j<n

Ci,j(x
i
1x

j
2 + xm−i1 xn−j2 ), for any Ci,j ∈ Z, m,n ∈ N>0,

(10) P = −1+(−1)m+1xm1 xn2 +
∑

0<i<m

0<j<n

Ci,j(x
i
1x

j
2+(−1)m+j+ixm−i1 xn−j2 ) for any Ci,j ∈ Z, m,n ∈ N>0,

m ≡ n mod 2.

Remark 3.4. The arbitrary coefficients and exponents in Theorem 3.3 must be such that P is irreducible
and not divisible by any xj.

Our final classification theorem comes from our own definition of Double Quivers. The family of polyno-
mials we found includes those that are classified by the main theorem in [FM].

Theorem 3.5. The binomial P generates a period 1 seed which corresponds to a double quiver if and only
if it is of the form

P =
∏

1≤i≤n

xaii +
∏

1≤i≤n

xbii ,

where ai, bi ∈ Z≥0 are such that ai = 0 ⇐⇒ an−i = 0 and bj = 0 ⇐⇒ bn−j = 0.

Finally, the families of polynomials we have found, and that we present in the next subsection, give rise
to the following conjectures:

Conjecture 3.6. If P is a multilinear polynomial with positive coefficients that generates a period 1 seed,
then P (x1, x2, . . . , xn) = P (xn, xn−1, . . . , x1).

Conjecture 3.7. If n is odd, no linear polynomial with positive coefficients generates a period 1 seed. If
n is even, the only linear polynomial P with positive coefficients that generates a period 1 seed is xn/2 +1.
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Conjecture 3.8. The only symmetric polynomials P with positive coefficients that generate period 1 seeds
are either of the form

P =

n−1∑

i=1

x2i +M(x1, . . . , xn−1),

where M is any multilinear symmetric polynomial, or of the form

P =
∑

1≤i<j≤n−1

xixj +A

n−1∑

i=1

xi +B,

for odd n.

3.2. Families of period 1 polynomials.

Theorem 3.9. The following families of polynomials P are 1 periodic.

(1) Symmetric with second powers polynomial.

P = S +A1E1 + . . . An−1En−1 +A,

for any coefficients A,A1, . . . , An−1 ∈ Z, where Ek =
∑

1≤i1<...<ik≤n−1
xi1 . . . xik for all 1 ≤ k ≤ n

and S =
∑n−1

i=1 x2i .

For example, P = x21 + x22 + 2x1x2 + 5 when n = 3.

(2) Sink-type binomial.

P = xa11 xa22 . . . x
an−1

n−1 + 1,

where ai = 0 ⇐⇒ an−i = 0 for all i. For example, P = x21x
3
3x5 + 1 when n = 6.

(3) Extreme polynomial.

P = x1xn−1 +A ·
n−1∑

i=1

xi +B,

for any coefficients A,B ∈ Z. For example, P = x1x3 + 3(x1 + x2 + x3) + 2 when n = 4.

(4) Singleton polynomial. If n ∈ N is even, let P is a single variable monic irreducible polynomial

that is palindromic (xdeg(P ) · P (1/x) = P (x)), or antipalindromic (xdeg(P ) · P (1/x) = −P (x)), or
P = x2n/2 +Axn/2 +B for any A,B ∈ Z. For example, P = x22 + 2x2 − 7 when n = 3.

(5) Chain polynomial. If n ∈ N, n > 2 is odd,

P =

n−2∑

i=1

xixi+1 +A ·
n−1∑

i=1

xi +B,

for any coefficients A,B ∈ Z. For example, P = x1x2 + x2x3 + x3x4 + 2(x1 + x2 + x3 + x4) + 3
when n = 5.
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(6) Multilinear symmetric polynomial. If n ∈ N, n > 2,

P = E2 +A · E1 +B,

for any coefficients A,B ∈ Z, where the Ei are the elementary symmetric polynomials. For example,
P = x1x2 + x2x3 + x1x4 + x2x3 + x2x4 + x3x4 − 3(x1 + x2 + x3 + x4) + 1 when n = 5.

(7) r-Jumping polynomial. If r, n ∈ N are such that n ≥ 2r + 1 and n ≡ 1 (mod r),

P =

n−1
r
−1∑

i=0

xri+1 · xri+r +A,

for any A ∈ Z. For example, P = x1x3 + x4x6 when n = 7.

(8) r-Hopping polynomial. If r, n ∈ N be such that n ≥ 2r + 2 and n ≡ 1 (mod r),

P =

n−1
r
−1∑

i=0

xri+1 · xri+r +A ·

n−1
r
−2∑

i=0

xri+r · xri+r+1 +B,

for any A,B ∈ Z. For example, P = x1x3 − 2x3x4 + x4x6 + 3 when n = 7.

Note: The r-Jumping polynomials are special cases of the r-Hopping polynomials (when A = 0).
We distinguish them because we found a conserved quantity for sequences generated by r-Jumping
polynomials, but not by r-Hopping polynomials (see Section 7).

(9) Flip-symmetric binomial. If L,R ⊂ [n− 1] are disjoint subsets such that i ∈ L ⇐⇒ n− i ∈ L and
i ∈ R ⇐⇒ n− i ∈ R, and if a : L ∪R → N is any map into the positive integers, then,

P =
∏

i∈L

x
a(i)
i +

∏

i∈R

x
a(i)
i .

For example, P = x31x
2
7 + x34x2x6 when n = 8.

Note: The Somos-4 and Somos-5 polynomials (x1x3 + x22 and x1x4 + x2x3) are particular cases
of flip-symmetric binomials. The family (2) of sink-type polynomials are also particular cases of
flip-symmetric polynomials (when R = ∅).

(10) Balanced polynomial. If L,R ⊂ [n − 1] are disjoint subsets such that i ∈ L ⇐⇒ n − i ∈ L and
i ∈ R ⇐⇒ n − i ∈ R, and a : L ∪ R → N is any map into the positive integers. Then for any

m > 1, write M1 =
∏

i∈L

x
a(i)
i ,M2 =

∏

i∈R

x
b(i)
i and,

P = Mm
1 +Mm

2 +

⌊m
2
⌋∑

i=1

Ai ·
(
M i

1M
m−i
2 +Mm−i

1 M i
2

)
,

for arbitrary coefficients Ai ∈ Z, 1 ≤ i ≤ ⌊m2 ⌋. For example, P = x123 x46 + x42x
8
7 + 2(x2x

9
3x

3
6x

2
7 +

x32x
3
3x6x

6
7) + 3x22x

6
3x

2
6x

4
7 when n = 9.
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(11) Vector sum polynomial. For a1, . . . , an−1 ∈ N and a finite set B of vectors (b1, . . . , bn−1) ∈ Nn−1

such that 0 < bi < ai for all i, then,

P = 1 + xa11 . . . x
an−1

n−1 +
∑

b∈B

(Cb · x
b1
1 . . . x

bn−1

n−1 + Cb · x
a1−b1
1 . . . x

an−1−bn−1

n−1 ),

for arbitrary coefficients Cb ∈ N. For example, P = 1 + x31x
2
2x

4
3x

2
4 + 2x1x2x

2
3x4 + 2x21x2x

2
3x4 when

n = 5.

(12) Little Pi polynomial. For k, n ∈ N such that n > 2k and n 6= 3k, then

P = Axk +Axn−k + x2kxn−2k,

for any A ∈ Z. For example, P = 2x2 + 2x5 + x4x3 when n = 7, k = 2.

(13) Pi polynomial. For k, n, a1, b1, a2, b2 ∈ N such that n > 2k, n 6= 3k and a1 + b1 = a2 + b2, then

P = Axa1k xbb1 +Bxa2k xb2n−k + x2kxn−2k

for any A,B ∈ Z. For example, P = −2x12x
4
6 + 3x22x

3
6 + x24 when n = 8, k = 2.

Remark 3.10. In each case of the theorem above, we omitted saying that the coefficients and exponents are
such that P is irreducible and not divisible by any xj. The following important corollary will also follow
easily from the proof of Theorem 3.9 and Theorem 2.14.

Remark 3.11. Recently, Hone and Ward found independently the Laurent phenomenon for extreme poly-
nomials (family (3) in Theorem 3.9). They do a thorough study of this family of polynomials in [HW].

Corollary 3.12. All polynomials P from Theorem 3.9 generate Laurent phenomenon sequences.

Conjecture 3.13. Let k, n, a1, b1, a2, b2 ∈ N be such that n > 2k, n 6= 3k and a1 + b1 = a2 + b2. Consider
the polynomial

P = (Axa1k xb1n−k +Bxa2k xb2n−k) ·M + x2kxn−2k,

for any A,B ∈ Z and monomial M =
n−1∏

i=1
i6=2k,n−2k

xcii , where ci = 0 ⇐⇒ cn−i = 0 for all i.

Then P is a period 1 polynomial and generates a Laurent phenomenon sequence.

We also will prove the following lemmas that can be applied to known period 1 polynomials to yield new
ones:

Lemma 3.14. (Expansion Lemma) If F = F (x1, x2, . . . , xn−1) generates a period 1 seed, then for
any k ∈ N, so does the polynomial G = G(x1, x2, . . . , xnk−1) = F (xk, x2k, . . . , x(n−1)k). We call G the
k-expansion of F .

Lemma 3.15. (Reflection Lemma) If F = F (x1, x2, . . . , xn−1) generates a period 1 seed, then so does
G = G(x1, x2, . . . , xn−1) = F (xn−1, xn−2, . . . , x1).

Remark 3.16. Observe that the reflection lemma, applied to the families of polynomials in Theorem 3.9,
always gives another member of the same family.
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4. Polynomials arising from double quivers

4.1. Binomial Seeds and Double Quivers. In this section we find all period 1 binomials with a mild
mutuality condition. To do this, we first introduce a new representation for binomial seeds, which we call
a double quiver. The main constraint of a normal quiver that our double quiver removes is that binomial
seeds represented by a quiver have to be mutual, i.e., if xi appears in Pj , then xj appears in Pi with the
same degree.

Definition 4.1. A double quiver Q is a finite set of vertices with directed half-edges between vertices.
Between each pair of vertices i and j, there can be edges between them attached at i, as well as edges
between them attached at j. We allow multiple half-edges at each vertex, but not 2-cycles, i.e., there
cannot be edges from i to j as well as edges from j to i all attached at i. We also do not allow self-loops.

The B-matrix B = (bi,j)n×n of a double quiver with n vertices is defined as follows. The magnitude |bi,j|
is the number of half-edges between vertex i and vertex j that are attached at i. If the edges are outgoing
from vertex i, then bi,j > 0; if the edges are incoming to i, then bi,j < 0. Conversely, each n × n integer
matrix with 0’s in its diagonal corresponds to a double quiver. For convenience, we will index the rows
and columns of B from 0 to n− 1. The (LP algebra) seed corresponding to a B-matrix B is (x,P), where
x = {x0, . . . , xn−1} and the intermediate polynomials are, for all i:

Pi =
∏

j:bi,j>0

x
bi,j
j +

∏

j:bi,j<0

x
−bi,j
j .

Example 4.2. Figure 1 shows a double quiver with 3 vertices. There is a half-edge from x1 to x0 attached
at x0, a half-edge from x1 to x0 attached at x1, two half-edges from x0 to x2 attached at x0, a half-edge
from x0 to x2 attached at x2, three half-edges from x2 to x1 attached at x1 and no half-edges from x1 to
x2 attached at x2.

Definition 4.3. A vertex i of a double quiver is mutable if, whenever there are half-edges between i and
j attached at j, then there are also half-edges between i and j attached at i. In terms of the B-matrix,
vertex i is mutable if for all other vertices j, bj,i 6= 0 implies bi,j 6= 0.

Example 4.4. In the double quiver of figure 1, x0 and x1 are mutable, but x2 is not mutable since there
are half-edges from x2 to x1 attached at x1, but no half-edges between x1 and x2 attached at x2.

x1

x0

x2✛✛✛

✻

✻❅
❅❘

❅
❅❘

❅
❅❘

{x0 : x1 + x22}

{x1 : x0 + x32}

{x2 : x0 + 1}

B=




0 −1 2
1 0 −3
−1 0 0




Figure 1. Example of a Double Quiver

Definition 4.5. We define mutation at a mutable vertex k of a double quiver Q with vertices {0, 1, . . . , n−
1} to be the application of the map τk that takes Q to a new double quiver τk(Q) via the following steps:
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(1) Add a half-edge i → j attached at i, for each pair of half-edges i → k attached at i and k → j
attached at k. Also add a half-edge j → i attached at i, for each pair of half-edges j → k attached
at k and k → i attached at i.

(2) Reverse the direction of half-edges between vertex k and node i, for all i 6= k.

(3) Successively pick 2-cycles and remove both half-edges until no 2-cycles remain.

The mutation of a double quiver corresponds to the mutation of the corresponding LP algebra seed. Let
(x,P) be the LP algebra seed associated to the double quiver Q and (x′,P′) the LP algebra seed associated
to Q′, the double quiver resulting from mutating Q at k. Then the intermediate polynomials P ′j are the

intermediate polynomials of the seed µk(x,P), where µk is seed mutation as defined in Section 2. We will be
able to find all period 1 binomials P that satisfy some mild conditions regarding their corresponding double
quiver Q. Observe that a period 1 seed whose exchange polynomials are all binomials has a corresponding
period 1 double quiver Q. However, it will be easier to work with period 1 B-matrices; next, we give the
corresponding definition of mutation for B-matrices.

Denote by 1S the indicator variable of S. Mutation at vertex k corresponds to a mutation of the B-matrix
of the double quiver that maps it to τk(B) = B̃ = (b̃i,j)n×n, such that

b̃i,j =

{
−bi,j i = k or j = k
bi,j + bi,k · |bk,j| · 1{bk,ibk,j<0} otherwise

(4.1)

Example 4.6. If we mutate the double quiver in Figure (1) at x0, we obtain the following double quiver

x1

x0

x2✛✛✛

✻

✻❅
❅❘

❅
❅❘

❅
❅❘

✲

x1

x0

x2✛ ✲❄

❄
❅

❅■

❅
❅■

❅
❅■

Figure 2. Double Quiver Mutation at x0

Remark 4.7. Double quivers are generalizations of (normal) quivers in the following sense:

(1) A quiver Q can be regarded as an example of a double quiver. Split each edge i → j into two
half-edges. Then attach one of them to i and the other to j. The mutation rules for double quivers
and for quivers agree with each other.

(2) The cluster algebra A defined by any skew-symmetrizable matrix B can be realized as a double
quiver. In fact, B is associated to a double quiver Q and to a seed t that gives rise to a LP algebra
A(t) that is identical to A and the mutation rules agree. Furthermore, if v is a vertex in the double

quiver Q̃, that is the result of mutating Q at v, then v is mutable in Q̃.

(3) Fomin and Zelevinsky defined cluster algebras in their foundamental paper [FZ2] by sign-skew-
symmetric matrices. In this definition, it was required that any sequence of mutations yields
another sign-skew-symmetric matrix. Our double quivers can be regarded as a direct generalization
of cluster algebras defined by sign-skew-symmetric matrices. For one thing, we do not require the
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matrix B to be sign-skew-symmetric. For another, we have fewer restrictions on the mutation
rules; we define mutability at a vertex, so that double quivers where some mutation sequences are
invalid but others are not can still be considered.

4.2. 1 Periodicity. In this section, we examine more precisely the notion of a period 1 double quiver.
We also prove a weaker version of Theorem 3.5.

Let Q be a double quiver and B be the matrix (not necessarily skew-symmetric) determined by Q. We say
that Q has period 1 if mutating at 0 and relabeling the vertices (0, 1, 2, . . . n− 1) → (n− 1, 0, 1, . . . n− 2)
gives back the original double quiver Q. In particular, if Q has period 1, then its vertex 0 is mutable,
meaning in terms of B-matrices that bk,0 6= 0 =⇒ b0,k 6= 0. Mutating at vertex 0 yields the nwe B-matrix

B̃ given by:

b̃i,j =

{
−bi,j i = 0 or j = 0
bi,j + bi,0 · |b0,j | · 1{b0,ib0,j<0} otherwise

The B-matrix of the mutated quiver τ(Q) is

τ(B) =




0 −b0,1 −b0,2 . . . −b0,n−1
−b1,0 0 b1,2 + ǫ1,2 . . . b1,n−1 + ǫ1,n−1
−b2,0 b2,1 + ǫ2,1 0 . . . b2,n−1 + ǫ2,n−1
...

...
...

. . .
...

−bn−1,0 bn−1,1 + ǫn−1,1 bn−1,2 + ǫn−1,2 . . . 0




where ǫi,j = bi,j + bi,0 · |b0,j| · 1{b0,ib0,j<0}. The double quiver Q has period 1 if τ(B) and µBµ−1 represent

the same binomial seed, where µ is the permutation matrix such that µBµ−1 corresponds to the seed after
the relabeling (0, 1, 2, . . . n− 1) → (n− 1, 0, 1, . . . n− 2),

µBµ−1 =




0 bn−1,0 bn−1,1 . . . bn−1,n−2
b0,n−1 0 b0,1 . . . b0,n−2
b1,n−1 b2,1 0 . . . b2,n−2

...
...

...
. . .

...
bn−2,n−1 bn−2,0 bn−2,1 . . . 0




Therefore Q is a period 1 double quiver if

τ(B) = µBµ−1.(4.2)

Equivalently, Q is a period 1 double quiver if

bn−1,i = −b0,i+1, 0 ≤ i ≤ n− 2,(4.3)

bi,n−1 = −bi+1,0, 0 ≤ i ≤ n− 2, and(4.4)

bi,j = bi+1,j+1 + ǫi+1,j+1, 0 ≤ i, j ≤ n− 2.(4.5)
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Solving these equations leads to the following equations

− bi+1,0 = bi,n−1 = bi−1,n−2 − ǫi,n−1

= bi−2,n−3 − ǫi−1,n−2 − ǫi,n−1
...

= b0,n−i−1 − ǫ1,n−i − ǫ2,n−i+1 − . . .− ǫi,n−1.(4.6)

−b0,i+1 = bn−1,i = bn−2,i−1 − ǫn−1,i

= bn−3,i−2 − ǫn−2,i−1 − ǫn−1,i
...

= bn−i−1,0 − ǫn−i,1 − ǫn−i+1,2 − . . .− ǫn−1,i.(4.7)

Using the same terminology as [FM] for quivers, vertex i of the double quiver Q is said to be a sink if all
the half-edges incident to i are directed inwards. A double quiver is said to be a period 1 sink-type double
quiver if vertex 0 is sink, and the double quiver has period 1. From above, we can obtain the following
theorem classifying all period 1 sink-type double quivers:

Theorem 4.8. Let B be the matrix of a sink-type double quiver Q. Then Q is a period 1 double quiver if
and only if the following conditions hold:

(1) b0,i and b0,n−i are either both negative, or both zero, for i = 1, 2 . . . n− 1.

(2) bi,0 = −b0,n−i, for i = 1, 2, . . . n− 1.

(3) bi,j = b0,j−i if 0 < i < j ≤ n− 1 and bi,j = −b0,n−i+j if 0 < j < i ≤ n− 1.

Proof. Since Q is of sink type, then b0,i ≤ 0 for all i. Therefore ǫi,j = 0 for all 0 < i, j ≤ n− 1.

If all three conditions above are satisfied, then (4.3), (4.4) and (4.5) are trivially satisfied.

Conversely, let us assume Q has period 1, so (4.3), (4.4) and (4.5) are satisfied. From (4.5), we have

bi,j = b0,j−i, if 0 < i < j ≤ n− 1,

bi,j = bi−j,0, if 0 < j < i ≤ n− 1.

Combining with (4.3) and (4.4), we have,

bi,n−1 = b0,n−i−1 = −bi+1,0,

bn−1,i = −b0,i+1 = bn−i−1,0.

It follows that b0,i+1 = 0 =⇒ bn−i−1,0 = 0. Since 0 is a mutable vertex, we have b0,n−i−1 = 0 for all i. �

The seed t = (x,p) corresponding to a sink-type double quiver Q is such that p0 is of the form
∏

j x
aj
j +1.

If Q has period 1, then ai = 0 ⇐⇒ an−i = 0 follows from (1) in the theorem above. Conversely, any
polynomial of this form generates a period 1 seed as item (2) of Theorem 3.9 shows. Thus Theorem 4.8
can be restated as:

Theorem 4.9. The only period 1 binomials such that the quiver corresponding to (x,P) is of sink-type
and has period 1 are those of the form P = xa11 xa22 · · · x

an−1

n−1 + 1, where ai = 0 ⇐⇒ an−i = 0, for all i.
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4.3. Mutual Double Quiver. In general, given a binomial seed (all the exchange polynomials are bi-
nomials), the corresponding double quiver is not unique. For example, if we reverse all the half-edges
attached at a certain vertex, the new double quiver represents the same seed. However, there is a canoni-
cal choice, which coincides with usual quivers (if we regard a quiver as a double quiver, as it was done in
(1) of Remark 4.7). From the mutability of vertex 0, if there are half-edges between 0 and i attached to i,
then there are half-edges between 0 and i attached to 0. We make all these half-edges point in the same
direction by reversing all the half-edges attached at i, if necessary. In terms of the B-matrix, the resulting
canonical quiver is such that b0,i and bi,0 are of opposite sign. A double quiver with this condition is said
to be mutual at vertex 0. Such double quiver is said to be the canonical double quiver associated to the
seed. In this subsection, we prove Theorem 4.10 regarding period 1 mutual (at 0) double quivers. By
translating this into the language of period 1 polynomials, this is equivalent to Theorem 3.5 in Section
3.

Theorem 4.10. Let B be the matrix associated to a canonical mutual double quiver Q. Then Q has period
1 if and only if the following conditions hold:

(1) bi,0 and b0,i are of opposite signs, or both zero, for 0 < i ≤ n− 1.

(2) bi,0 = −b0,n−i, for i = 1, 2, . . . n− 1.

(3) bi,j = −
∑i

k=0 ǫi−k,j−k + b0,j−i if 0 < i < j ≤ n− 1.

(4) bi,j = −
∑j

k=0 ǫi−k,j−k − b0,n−i+j if 0 < j < i ≤ n− 1.

Proof. We assume Q is a canonical mutual double quiver. If all four conditions above are satisfied, then
(4.3), (4.4) and (4.5) are trivially satisfied.

Conversely, let us assume Q has period 1, so (4.3), (4.4) and (4.5) are satisfied. We first prove by induction

b0,i = −bn−i,0 and bi,0 = −b0,n−i.(4.8)

Setting i = 0 in (4.6) and (4.7) gives the base cases b0,1 = −bn−1,0 and b1,0 = −b0,n−1. Now, assume that
(4.8) holds for i = 0, 1, 2 . . . k; we prove it for i = k + 1. Note that,

− bk+1,0 = b0,n−k−1 −
k∑

j=1

ǫj,n−k+j−1

= b0,n−k−1 −
k∑

j=1

bj,0 · |b0,n−k+j−1| · 1{b0,jb0,n−k+j−1<0}

= b0,n−k−1 −
1

2
·
( k∑

j=1

bj,0 · |b0,n−k+j−1| · 1{b0,jb0,n−k+j−1<0}(4.9)

+

k∑

j=1

bk−j+1,0 · |b0,n−j | · 1{b0,k−j+1b0,n−j<0}

)
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From the inductive hypothesis, bj,0 = b0,n−j and bk−j+1,0 = b0,n−k+j−1, so,

bj,0 · |b0,n−k+j−1| · 1{b0,jb0,n−k+j−1<0} + bk−j+1,0 · |b0,n−j| · 1{b0,k−j+1b0,n−j<0}

= b0,n−j · |b0,n−k+j−1| · 1{b0,jbk−j+1,0<0} + b0,n−k+j−1 · |b0,n−j | · 1{b0,k−j+1bj,0<0}(4.10)

From the mutuality assumption, 1{b0,k−j+1bj,0<0} = 1{b0,jbk−j+1,0<0}. If both of them are 0, then (4.10)

is zero. If both of them are 1, then b0,n−k+j−1 and b0,n−j are of opposite sign, therefore (4.10) is zero.
Substituting back into (4.9), we have −bk+1,0 = b0,n−k−1. From (4.7), by a similar argument, we obtain
−b0,k+1 = bn−k−1,0.

Finally, conditions (3) and (4) follow from equations (4.8) and (4.3). �

Remark 4.11. Theorem 3.5 generalizes the main theorem of [FM]. For example, the polynomial P =
xa1x

b
2 + 1, with a 6= b, produces Laurent phenomenon sequences; it is predicted by Theorem 3.5, but not

by [FM, Theorem 6.6].

Remark 4.12. A double quiver with a skew-symmetrizable matrix B-matrix is mutual at each vertex.
Hence, restricting B to be skew-symmetric, Theorem 4.10 provides a classification of period 1 cluster
algebras over the coefficient ring Z.

5. Classification of period 1 Seeds for Small n

In this section we prove the classifications stated in Section 3 of all period 1 seeds when n = 2 and
n = 3.

5.1. Proof of Theorem 3.1. Let P = P (x1) =
∑d

i=0 aix
i
1 be an (irreducible) polynomial of degree d > 0

that generates a period 1 seed. Since P is not divisible by x1, we know a0 6= 0 and P |x1=0 = a0 6= 0. From
the definition of τ , P generates a period 1 seed if and only if

P (x1) = a−10 xd1 ·
d∑

i=0

ai
(a0
x1

)i
=

d∑

i=0

(aia
i−1
0 )xd−i1 .(5.1)

For each 0 ≤ i ≤ d, by equating the coefficient of xi1 on both sides of (5.1), we see that

ai = ad−ia
d−i−1
0 for all i.(5.2)

In particular, when i = d, we obtain ad = 1, so P has to be monic.

If d > 2, we have that ai = ad−ia
d−i−1
0 = (aia

i−1
0 )ad−i−10 = aia

d−2
0 for all i. Setting i = d gives that

a0 = ±1. If a0 = 1 then (5.2) implies ai = ad−i for all i, or equivalently, P is palindromic, and all such
polynomials satisfy (5.1). If a0 = −1, then (5.2) implies ai = (−1)d−i−1ad−i for all i. When d is odd, these
relations when i = i0, d − i0 imply ai0 = 0 for all 1 ≤ i0 ≤ d− 1. But then P = xd1 − 1 is not irreducible.
When d is even, we find that ai = −ad−i for all i, or equivalently, P is antipalindromic.

If d = 2, (5.2) is trivially satisfied for any a1, a2.

If d = 1, (5.2) with i = 0 gives a0 = a1 = 1.

5.2. Proof of Theorem 3.3.
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5.2.1. Bounding Degrees. Assume the following is a period 1 seed
{
x0, P (x1, x2)

}
,

{
x1, Q(x0, x2)

}
,

{
x2, P (x0, x1)

}
,

where P is a two-variable irreducible polynomial not divisible by x1 or x2. By Proposition 2.11, Q(x0, x2)
is also irreducible and not divisible by x0 or x2. Then P (x0, 0) and P (0, x1) are not 0. It is not hard to
see that there do not exist period 1 polynomials P that do not depend on x0 or x1. Thus assume that P
depends on both of these variables. Let m be the degree of x0 in P (x0, x1); we can write

P (x0, x1) =
m∑

k=0

fk(x1)x
k
0 ,(5.3)

where the fk are single variable polynomials for k = 0, 1, . . . m. Let Q̃ be the intermediate polynomial G
at step (2) of applying τ to Q. Then

Q̃(x0, x2) = P

(
P (x0, 0)

x2
, x0

)
=

m∑

k=0

fk(x0) ·
P k(x0, 0)

xk2
.

Let d(x0) be the maximal factor of Q̃(x0, x2), which is in the form xs10 · p(x0), where f(x0) is a factor of
P (x0, 0)

K for some K. From the rules for computing τ , we have

Q(x0, x2) =

m∑

k=0

fk(x0)P
k(x0, 0)

d(x0)
xm−k2 .(5.4)

In view of (5.4), the coefficient of xm2 in Q is

f0(x0)

d(x0)
=

P (0, x0)

d(x0)
,

which is a non-vanishing polynomial. Therefore d(x0) divides f0(x0) = P (x0, 0), and x2 is of degree m in
Q(x0, x2).

We can similarly obtain P (x1, x2) fromQ(x0, x2). Let n be the degree of x0 inQ(x0, x2); we can write

P (x1, x2) =
n∑

k=0

gk(x1)P
k(0, x1)

t(x1)
xn−k2 .(5.5)

The coefficient of xn2 in P is

g0(x1)

t(x1)
=

P (x1, 0)

t(x1)
,

which is a nonzero polynomial. Therefore t(x1) divides g0(x1) = Q(0, x1) and the degree of x2 in P (x1, x2)
is n.

If we let x2 = 0 in (5.4), then

Q(x0, 0) =
fm(x0)P

m(x0, 0)

d(x0)
(5.6)
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and similarly

P (x0, 0) =
gn(x0)P

n(0, x0)

t(x0)
.(5.7)

Comparing the degree of both sides of (5.6) and (5.7) and recalling the divisibility relations d(x0) | P (0, x0),
t(x0) | Q(0, x0), we arrive at the inequalities

deg fm(x0) +m degP (x0, 0) =degQ(x0, 0) + deg d(x0) ≤ degQ(x0, 0) + degP (0, x0)(5.8)

deg gn(x0) + n degP (0, x0) =degP (x0, 0) + deg t(x0) ≤ degP (x0, 0) + degQ(0, x0)(5.9)

Summing (5.8) and (5.9), and noticing that degQ(0, x0) ≤ m, degQ(x0, 0) ≤ n, we obtain the following
inequality:

2 ≥ deg gn(x0) + deg fm(x0) + (m− 1)
(
degP (x0, 0) − 1

)
+ (n− 1)

(
degP (0, x0)− 1

)
.(5.10)

From this inequality, the classification of period 1 polynomials is decomposed into the following five
cases:

(1) degP (x0, 0) = 2 and degP (0, x0) = 1

(2) degP (x0, 0) = 1 and degP (0, x0) = 2

(3) degP (x0, 0) = degP (0, x0) = 1

(4) degP (x0, 0) = degP (0, x0) = 2

(5) Either degP (x0, 0) = 0 or degP (0, x0) = 0

Lemma 5.1. If P (0, 0) 6= 0, then the bound (5.9) can be refined to

deg gn(x0) + n degP (0, x0) =degP (x0, 0) + deg t(x0) ≤ 2 degP (x0, 0).(5.11)

Proof. Since d(x0) | P (0, x0) and x0 ∤ P (0, x0), we see that x0 ∤ d(x0).

We moreover claim that x1 ∤ t(x1). Assume otherwise that x1 | t(x1). From (5.5), t(x1) divides
gk(x1)P

k(0, x1) for all k = 0, 1, 2 . . . n and x1 ∤ P (0, x1). Therefore x1 | gk(x1) for all k = 0, 1, . . . n.
This implies that x1 | Q(x0, x1), which contradicts the irreducibility of Q(x0, x1).

Since P (x0, 0) =
∑m

k=0 fk(0)x
k
0 , then fk(0) = 0 if k > deg p(x0, 0). Hence

t(x1) | Q(0, x1) =

m∑

k=0

fk(0)P
k(0, 0)

d(0)
xm−k1

=




deg P (x0,0)∑

k=0

fk(0)P
k(0, 0)

d(0)
x
deg P (x0,0)−k
1


 · x

m−deg P (x0,0)
1 .

Therefore deg t(x1) ≤ degP (x0, 0) and (5.9) leads to the desired inequality

deg gn(x0) + n degP (0, x0) =degP (x0, 0) + deg t(x0) ≤ 2 degP (x0, 0).

�

Lemma 5.2. If fm(x1) has a nonzero constant term, then m = degP (x0, 0).
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Proof. In view of (5.5), P (x0, x1) contains the term fm(x1)x
m
0 . Since fm(x1) contains a nonzero constant

term, then fm(0) 6= 0. Thus, P (x0, 0) contains the term fm(0)xm0 . This implies degP (x0, 0) ≥ m and
since m is the degree of x0 in P (x0, x1), we have degP (x0, 0) ≤ m. Therefore m = degP (x0, 0). �

5.2.2. Analysis of Cases.

Case 1 degP (x0, 0) = 2 and degP (0, x0) = 1.

From (5.10), we either have m = 2 or m = 3.

If m = 3, we obtain deg f3(x1) = 0 from (5.10). However, Lemma 5.2 says that P (x0, 0) = 3, thus
implying f3(x1) 6= 0, a contradiction.

If m = 2, (5.8) tells us that deg f2(x0) + 4 = degQ(x0, 0) + deg d(x0) ≤ n + 1, thus n ≥ 3. From
(5.3), we have

P (x0, x1) = f2(x1)x
2
0 + f1(x1)x0 + f0(x1).

Since the degree of x1 in P (x0, x1) is n ≥ 3, deg f2(x1) ≤ 1 and deg f0(x1) = 2, we must have
deg f1(x1) = n. In view of (5.5),

Q(x0, x2) =
f0(x0)

d(x0)
x22 +

f1(x0)P (x0, 0)

d(x0)
x2 +

f2(x0)P
2(x0, 0)

d(x0)
.

As the degree of x0 in Q(x0, x2) is n, we have

n ≥ degx0

(
f1(x0)P (x0, 0)

d(x0)

Then

n ≥ deg f1(x0) + degP (x0, 0)− deg d(x0) ≥ n+ 2− 1 = n+ 1.

Therefore there are no period 1 polynomials in this case.

Case 2 degP (x0, 0) = 1 and degP (0, x0) = 2.

From (5.10), we either have n = 2 or n = 3.

If n = 3, we obtain deg fm(x1) = 0 from (5.10). From Lemma (5.2), we have m = degP (x0, 0) = 1.
Hence in (5.3),

P (x0, x1) = f1(x1)x0 + f0(x1).

However, deg f1(x1) = 0 and deg f0(x1) = 2, so the degree of x1 in P (x0, x1) is 2 6= n, a contradic-
tion.

If n = 2, inequalities (5.8) and (5.9) yield

deg fm(x0) +m ≤ 4,

deg gn(x0) + 3 ≤ m.

Thus m ≥ 3 > 1 = degP (x0, 0). From Lemma (5.2), we have deg fm(x1) ≥ 1. These inequalities
yield m = 3, deg f3(x1) = 1 and deg gn(x0) = 0. Moreover, from (5.9), deg t(x0) = 3. Since these
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values do not satisfy (5.11), Lemma (5.1) tells us that P (0, 0) = 0, i.e., P (x0, x1) does not have a
constant term. Taking m = 3 in (5.4) yields

Q(x0, x2) =
f0(x0)

d(x0)
x32 +

f1(x0)P (x0, 0)

d(x0)
x22 +

f2(x0)P
2(x0, 0)

d(x0)
x22 +

f3(x0)P
3(x0, 0)

d(x0)
.

From (5.8) and the values already found, we also have deg d(x0) = 2. Since f3(x0) and P (x0, 0)
are both linear polynomials without constant terms, f3(x0)P

3(x0, 0) = ax40 for some a ∈ Z. Since
d has degree 2 and divides (x0) | f3(x0)P

3(x0, 0), then d(x0) = bx20 for some b ∈ Z, b 6= 0. From
d(x0) | f0(x0) and d(x0) | f1(x0)P (x0, 0), we have x0 | f0(x0) and x0 | f1(x0). From equation (5.3),
we have

P (x0, 0) = f3(0)x
3
0 + f2(0)x

2
0 + f1(0)x0 + f0(0) = f3(0)x

3
0 + f2(0)x

2
0.

Since in this case, degP (x0, 0) = 1, then P (x0, 0) = 0. This contradicts the fact that P (x0, x1) is
not divisible by x1.

Case 3 degP (x0, 0) = degP (0, x0) = 1.

If P (x0, x1) contains no constant term, then we can write

P (x1, x2) = ax1 + bx2 + x1x2R(x1, x2),

where a, b ∈ Z are both nonzero and R(x1, x2) is a polynomial of degree m−1 in x1 and degree n−1
in x2. We next obtain τP (P (x0, x1)) by replacing x0 with ax1

x3
, downshifting and then multiplying

by a monomial M . This monomial has to be such that the resulting Q is a Laurent polynomial,
not divisible by any xi and its coefficients have greatest common divisor 1. Assume M̃ is M , but
with coefficient 1 and let Q̃ be the resulting polynomial. Thus Q̃ = cQ for some constant c. We
can write Q̃ as

Q̃(x0, x2) = a2xm−12 + bxm2 + ax0R(
ax0
x2

, x0)x
m−1
2

From this polynomial, we analogously obtain P̃ by omitting a constant factor for the adjusting
monomial

P̃ (x1, x2) = a2xk+1
2 + bx1x

k+1
2 + abx1R(

ab

x2
,
bx1
x2

)xk2 ,

where k is the least integer for which abx1R( abx2
, bx1
x2

)xk2 is a polynomial. In view of the above

equation, k + 1 = deg P̃ (0, x2) = P (0, x2) = 1. Therefore k = 0 and so R(x0, x1) is a contant;

write R = R(x0, x1). Then P̃ (x1, x2) = abRx1 + a2x2 + bx1x2 must be equal to λP (x1, x2) =
λax1 + λbx2 + λRx1x2, where λ is a nonzero integer. After equating coefficients, we obtain the
polynomials in items (1) and (2) of Theorem 3.3 whose generated seeds are

{x0, ax1 + ax2 + x1x2}, {x1, a+ x0 + x2}, {x2, ax0 + ax1 + x0x1}

and

{x0, ax1 − ax2 + x1x2}, {x1, a+ x0 − x2}, {x2, ax0 − ax1 + x0x1}.

If P (x0, x1) has a nonzero constant term, we can write

P (x0, x1) = c+ ax0 + bx1 + x0x1R(x0, x1).
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From Lemma 5.1, we have n ≤ 2. Substituting into (5.8),

deg fm(x0) +m ≤ deg d(x0) + 2.

If a 6= b, then gcd(P (x0, 0), P (0, x0)) = 1, so deg d(x0) = 0. We can then write constant d(x0) as
d. By the same argument as in Lemma 5.2, we have m = 1. Then (5.4) reads

Q(x0, x2) =
f1(x0)P (x0, 0)

d
+

f0(x0)

d
x2,

and since the degree of x0 in Q(x0, x2) is n ≤ 2, we must have deg f1(x0) ≤ 1. Then we can write
P (x0, x1) = c + ax0 + bx1 + Rx0x1 for some R ∈ Z and where a 6= b. By the same argument as
above, we obtain the period 1 polynomials in items (3) and (4) of Theorem 3.3 whose generated
seeds are

{x0, x1 − x2 − 1}, {x1,−x0x2 + x0 − x2 − 1}, {x2, x0 − x1 − 1}

and

{x0,−x1 + x2 − 1
}
, {x1, x0x2 + x0 − x2 + 1}, {x2,−x0 + x1 − 1}.

If a = b then m = 1 or 2. If m = 1, from (5.5) and (5.4),

Q(x0, x2) = f1(x0) + x2, P (x1, x2) =
xn2

t(x1)

(
f1(

f0(x1)

x2
) + x1

)
.

Since f1(x0) has constant term a, P (x1, x2) contains the term xn2 . Therefore n = 1 = deg f1(x0).
We can then write P (x0, x1) = c + ax0 + ax1 + Rx0x1. The same argument as above yields the
period 1 polynomials in (5) of Theorem 3.3, whose associated seed is

{
x0, x1x2 + ax1 + ax2 + c

}
,

{
x1, x0 + x2 + a

}
,

{
x2, x0x1 + ax0 + ax1 + c

}
.

If m = 2, then m 6= degP (x0, 0). From Lemma 5.1, fm does not contain constant term, so
deg fm ≥ 1. Since deg d ≤ degP (0, x0) = 1, plug them into (5.8), we get n = 2 and deg fm = 1.
Morover, from Lemma 5.2, deg t ≤ 1. Plug them into (5.9), we get deg gn = 0. From (5.3)

P (x0, x1) = f2(x1)x
2
0 + f1(x1)x0 + f0(x1),

and the degree of x1 is 2, it must be that deg f1 = 2. Mutating at x0 to obtain Q(x0, x2) gives
(notice P (x0, 0) = P (0, x0)),

Q(x0, x2) = f2(x0)P (x2, 0) + f1(x0)x2 + x22.

This contains the term x20x2, which contradicts that deg g2 = 0.

Case 4 degP (x0, 0) = degP (0, x0) = 2.

From (5.11), we see that m = n = degP (x0, 0) = degP (0, x0) = 2 and deg gn(x0) = deg fm(x0) =
0. Hence,

P (x0, x1) =f2(x1)x
2
0 + f1(x1)x0 + f0(x1),

Q(x0, x2) =
f2(x0)P

2(x0, 0)

d(x0)
+

f1(x0)P (x0, 0)

d(x0)
x2 +

f0(x0)

d(x0)
x22.(5.12)
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The first equation gives deg f0(x1) = degP (0, x1) = 2. From the second, by looking at the
coefficient of x22, we have deg d(x0) ≤ deg f0(x0) = 2. Moreover, remember we had Q(x0, x2) =
g2(x2)x

2
0+ g1(x2)x0+ g0(x2). Since deg g2(x0) = 0, Q does not contain terms divisible by x2x

2
0. By

looking at the coefficient of x2 in Q in equation (5.12), we have that deg f1(x0) + degP (x0, 0) −
deg d(x0) ≤ 1, from which deg f1(x0) ≤ 1. Since deg f2(x0) = 0, from (5.12) we have that d(x0) |
P 2(x0, 0).

If d(x0) ∤ P (x0, 0), then d(x0) = cr2(x0) for some monic linear factor r(x0) and constant c ∈ Z.
We will omit the constant c as it will factor later, so simply write d(x0) = r2(x0). In particular,
we have deg d(x0) = 2, from which deg f0(x0) = 2. Moreover, since d(x0) | f1(x0)P (x0, 0), then
deg f1(x0) = 1. From the divisibility relations, we can write

P (x0, 0) = t(x0)r(x0), f0(x0) = Ar2(x0),

f1(x0) = Br(x0), f2(x0) = C,

for some polynomial t and constants A,B,C ∈ Z. Expression (5.12) can then be simplified:

Q(x0, x2) = Ax22 +Bt(x0)x2 + Ct2(x0)

We also have

Ar2(x2) = P (0, x2) = Ax22 +Bt(0)x2 + Ct2(0).

From both equations, we have

t2(0)Q(x0, x2) = Ar2
(
x2t(0)

t(x0)

)
t2(x0).

Since Q(x0, x2) is irreducible, then t(0) = 0. From above, we have Ar2(x2) = Ax22 and so d(x0) =
r2(x0) = x20. Moreover, t(0) = 0 implies x0 | t(x0) and so d(x0) = x20 | t(x0)r(x0) = P (x0, 0). This
is a contradiction with our initial assumption.

Now assume d(x0) | P (x0, 0).

If P (x0, x1) has a nonzero constant term, then since d(x0) | P (x0, 0) and d(x0) | P (0, x0), we see
P (x0, 0) = P (0, x0). P (x0, x1) must be of the form P (x0, x1) = ax20 + ax21 + bx0x1 + cx0 + cx1 + d.
In this case, we obtain the period 1 polynomials in item (6) of Theorem 3.3, whose generated seeds
are

{x0, x
2
1 + x22 + ax1x2 + bx1 + bx2 + c},

{x1, x
2
0 + x22 + ax0x2 + bx0 + bx2 + c},

{x2, x
2
0 + x21 + ax0x1 + bx0 + bx1 + c},

and

{x0,−x21 − x22 + ax1x2 + c}, {x1, x
2
0 + x22 + ax0x2 − c}, {x2,−x20 − x21 + ax0x1 + c}.

If P (x0, x1) does not have a constant term, then d(x0) = ax20 + bx0 and P (x0, x1) is of form
P (x0, x1) = d1(ax

2
0+ bx0)+ d2(ax

2
1+ bx1)+ cx0x1. In this case, we obtain a special case of (6) and
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the general polynomial in (7) of Theorem 3.3. Their generated seeds are

{x0, x
2
1 + x22 + ax1x2 + bx1 + bx2},

{x1, x
2
0 + x22 + ax0x2 + bx0 + bx2},

{x2, x
2
0 + x21 + ax0x1 + bx0 + bx1}

and

{x0,−x21 − x22 + ax1x2}, {x1, x
2
0 + x22 − ax0x2}, {x2,−x20 − x21 + ax0x1}.

Case 5 Either degP (x0, 0) = 0 or degP (0, x0) = 0.

From Lemma (5.1), degP (x0, 0) = 0 =⇒ degP (0, x0) = 0. Thus, we only consider the case where
degP (0, x0) = 0, i.e., P (0, x0) is a nonzero constant a ∈ Z. Observe that d(x0) | P (0, x0) implies
that d(x0) is a constant d. Equation (5.5) can then be simplified to

P (x1, x2) =

n∑

k=0

gk(x1)a
k

t(x1)
xn−k2 ,(5.13)

from which t(x1) | gk(x1) for all k. Therefore t(x1) | Q(x0, x1). Since Q(x0, x1) is irreducible, t(x1)
is a constant t. Equation (5.13) with x2 = 0 and x1 = 0 yield

P (0, x2) = a =

n∑

k=0

gk(0)a
k

t(x1)
xn−k2 ,

P (x1, 0) =
angn(x1)

t
=

agn(x1)

gn(0)
.

From the first one, we have t = gn(0)a
n−1 and x1 | gk(x1) for 0 ≤ k ≤ n − 1. Now mutating

P (x1, x2) at x0 gives,

Q(x0, x2) =
xm2
d

P (
P (x0, 0)

x2
, x0)

=
xm2
td

n∑

k=0

gk(
agn(x0)

gn(0)x2
)akxn−k0(5.14)

=

n∑

k=0

gk(x2)x
k
0(5.15)

=

m∑

l=0

hk(x0)x
l
2.

Next we compute hm. Since x2 | gk(x2) for k = 0, 1, 2 . . . , n − 1, in (5.14), only the term
xm
2
td gn(

agn(x0)
gn(0)x2

)an contains term xm2 . Indeed,

hm(x0)x
m
2 =

gn(0)a
n

td
xm2 .
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Therefore hm(x0) is a constant, so only g0(x2) contains the term xm2 , say g0(x2) = bxm2 + . . .. Since
deg gk < m for k = 1, 2, . . . , n− 1,

x2 |
xm2
td

gk(
agn(x0)

gn(0)x2
)akxn−k0 , k = 1, 2, . . . n− 1.

Setting x2 = 0, the above expressions all vanish, so

Q(x0, 0) = h0(x0) =
b

td

(agn(x0)
gn(0)

)m
xn0 .

Since degQ(x0, 0) ≤ n, deg gn(x0) = 0 (or m = 0, then P (x0, x1) only depends on x0). (5.14) is
simplified as

xm2
td

n∑

k=0

gk(
a

x2
)akxn−k0 =

n∑

k=0

gn−k(x2)x
n−k
0 ,

Comparing coefficients on both sides, we see,

xm2
td

gk(
a

x2
)ak = gn−k(x2), k = 0, 1, 2 . . . n.

Taking k = 0 in above equation, and noticing that t = gn(0)a
n−1, we have n = 1 or a = ±1. We

thus obtain the period 1 polynomials in items (8), (9) and (10) of Theorem 3.3. Their generated
seeds are

{x0,±x1x2 + a}, {x1,±x0 + x2}, {x2,±x0x1 + a}

and

{x0, 1 + xm1 xn2 +
∑

0<i<m

0<j<n

Ci,j(x
i
1x

j
2 + xm−i1 xn−j2 )},

{x1, x
n
0 + xm2 +

∑

0<i<m

0<j<n

Ci,j(x
j
0x

m−i
2 + xn−j0 xi2)},

{x2, 1 + xm0 xn1 +
∑

0<i<m

0<j<n

Ci,j(x
i
0x

j
1 + xm−i0 xn−j1 )}.

When m ≡ n mod 2,

{x0,−1 + (−1)m+1xm1 xn2 +
∑

0<i<m

0<j<n

Ci,j(x
i
1x

j
2 + (−1)m+j+ixm−i1 xn−j2 )},

{x1,−xn0 − xm2 +
∑

0<i<m

0<j<n

Ci,j((−1)jxj0x
m−i
2 + (−1)ixn−j0 xi2)},

{x2,−1 + (−1)m+1xm0 xn1 +
∑

0<i<m

0<j<n

Ci,j(x
i
0x

j
1 + (−1)m+j+ixm−i0 xn−j1 )}.
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6. Examples of period 1 polynomials and seeds

In this section, we prove that several families of polynomials P = P (x1, . . . , xn−1) are 1 periodic. In our
first subsection, we prove the Expansion and Reflection Lemmas (Lemmas 3.14 and 3.15), which can be
applied to period 1 polynomials to generate more period 1 polynomials. In the second subsection, we prove
Theorem 3.9.

The proof that P is a period 1 polynomial for each item in Theorem 3.9 will simply consist of writing
down the intermediate polynomials Pi. In general, it is easy to verify that Pi−1 = τP (Pi) for all i (and
Pn−1 = τP (P0)), showing the seed is a period 1 seed.

The importance of period 1 polynomials stems from Theorem 2.12 that says that if P̂0 = P0, then P

generates a Laurent phenomenon sequence. Theorem 2.14 gives sufficient conditions for P̂0 = P0 to be
satisfied. In most of the seeds given below, the reader can easily verify that the intermediate polynomials
Pi that depend on x0 are the ones for which P = P0 depends on xi, and so condition (1) of Theorem 2.14
is satisfied. The only exceptions will be the families in Subsections 6.2.10 and 6.2.11, but these families
satisfy condition (2) of Theorem 2.14 instead. Hence, the truth of Corollary 3.12 will follow from the seeds
for the polynomials in Theorem 3.9 that we give below.

6.1. Proofs of the Expansion and Reflection Lemmas.

6.1.1. Proof of Lemma 3.14. Let t = (x,F) be the period 1 seed generated by F and let k ∈ N be any
positive integer. We prove that G(x1, x2, . . . , xnk−1) = F (xk, x2k, . . . , x(n−1)k) generates a period 1 seed.
Let G = (G1, . . . , Gkn), where Gk(i−1)+j(x1, . . . , x̂k(i−1)+j , . . . , xkn) = Fi(xj , . . . , x̂k(i−1)+j , . . . , xk(n−1)+j)
for all 1 ≤ i ≤ n, 1 ≤ j ≤ k. It is clear that t′ = (y,G) is a seed and Gkn = G. It will then
suffice to show that t′ = (y,G) has period 1. Observe that G1(x2, . . . , xkn) = F1(xk+1, . . . , xk(n−1)+1)
and Gkn(x1, . . . , xkn−1) = Fn(xk, . . . , xk(n−1)), so Gkn is the downshift of G1. We need to verify Gs =
τx1,G1(Gs+1) for all 1 ≤ s ≤ nk − 1.

If s 6= 0 (mod k), then s = k(i − 1) + j for some i and 1 ≤ j < k. In this case, observe that Gs is the
downshift of Gs+1 by definition of G. Moreover, the polynomial Gs+1 (and also ) only depends on the
variables xj+1, . . . , x̂k(i−1)+j+1, . . . , xk(n−1)+j+1, and in particular, not x1. Hence, τ(Gs+1) is the downshift
of Gs+1, which is Gs as remarked above.

If s = 0 (mod k), then s = k(i − 1) + k for some positive integer i, and so s + 1 = ki + 1. In this case,
Gs = Fi(xk, . . . , x̂s, . . . , xk(n−1)+1) and Gs+1 = Fi+1(x1, . . . , x̂s+1, . . . , xk(n−1)+1). Since (x,F) is a period
1 seed, we have that τx1,F1(Fi) = Fi−1. Hence, τx1,G1(Gs+1) = Fi−1(xk, . . . , x̂s, . . . , xn) = Gs.

6.1.2. Proof of Lemma 3.15. Let (x,F) be the period 1 seed whose intermediate polynomials are Fi, 0 ≤
i ≤ n− 1. Define Gi(x0, . . . , x̂i, . . . , xn−1) = Fn−i−1(xn−1, . . . , x̂i, . . . , x1) for all i, and G = (G1, . . . , Gn).
We show that (x,G) is also a period 1 seed generated by G.
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From the relation κF (Fn−i) = Fn−i+1, we have that replacing xn with
Fn−1|xn−i=0

x−1
in Fn−i and upshifting

yields

Fn−i

(
x1, . . . , x̂n−i+1, . . . , xn−1,

Fn−1(x1, . . . , xn−1)|xn−i+1=0

x0

)
.(6.1)

Then, Fn−i+1 comes from dividing (6.1) by the largest power of Fn−1(x1, . . . , xn−1)|xn−i+1=0 that divides
it, and adjusting by a monomial factor.

We show that (x,G) is a period 1 seed by verifying that τG(Gi) = Gi−1 for all i. Similar to before,

replacing x0 with
G0|xi=0

xn
in Gi and downshifting yields

Gi

(G0(x0, x1, . . . , xn−2)|xi−1=0

xn−1
, x0, x1, . . . , x̂i−1, . . . , xn−2

)

= Fn−i−1(xn−2, . . . , x̂i−1, . . . , x1, x0,
Fn−1(xn−2, . . . , x0)|xi−1=0

xn−1
).(6.2)

Then, τG(Gi) comes from dividing (6.2) by the largest power of G0(x0, . . . , xn−2)|xi−1=0 that divides it,
and adjusting by a monomial factor.

Notice that replacing xj by xn−j−1 for all j in (6.1) gives (6.2). Therefore,

τG(Gi) = Fn−i+1(xn−1, . . . , x̂i−1, . . . , x1) = Gi−1(x0, . . . , x̂i−1, . . . , xn−1) = Gi−1.

6.2. Period 1 polynomials and their generated seeds. As remarked at the beginning of the section,
we will show the seeds generated by the polynomials P in Theorem 3.9. In all cases, we obviously have
P0 = P and Pn−1 be the downshift of P , so it will suffice to show the intermediate polynomials Pi for
0 < i < n− 1.

6.2.1. Gale-Robinson seed. We begin with the Gale-Robinson polynomial P = Axpxn−p + Bxqxn−q +
Cxrxn−r, p < q < r and p+ q+ r = n. There are many cases to consider when writing the seed for P . As
the Laurent property for this polynomial is already well-known, we only write the seed in the case that
r < n/2 (the other cases q < n/2 < r, p < n/2 < r, n/2 < p and where there are some equalities among
some of these quantities, are similar).

We first give the intermediate polynomials Pi for i ∈ {p, q, r, n − p, n− q, n− r}:

• Pp = ABxqx2pxp+r +ACxrx2pxp+q + Cx0xp+rxn+p−r +Bx0xp+qxn+p−q.

• Pq = ABxq−pxpx2qxq+r +ABx0x2q−pxp+qxq+r +ACx0xr+q−pxp+qx2q+
BCxq−pxrxp+qx2q +Cx0xq−pxq+rxn+q−r.

• Pr = ABx0xr−pxp+r−qxq+rx2r +ACxr−pxpxr−qxq+rx2r +ABx0xq+r−pxr−qxp+rx2r+
BCxr−pxqxr−qxp+rx2r +ACx0xr−qx2r−pxp+rxq+r +BCx0xr−px2r−qxp+rxq+r.

• Pn−r = ABxqxp+q−rx2pxn+q−r +ACxqx2p+q−rxpxn+q−r + Cx0xp+q−rxn+p−rxn+q−r+
ABxp+q−rx2qxpxn+p−r +BCxqxn+q−2rxpxn+p−r.

• Pn−q = ABxrxpxn+p−2q +ACxrx2pxp+r−q +Bx0xp+r−qxn+p−q + Cxpxr−qxn+p−q.
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• Pn−p = Ax0xn−2p +Bxq−pxr + Cxr−pxq.

For the remaining polynomials Pj , pick the largest i < j in the set {0, p, q, r, n − p, n − q, n − r}, and let
Pj be Pi after upshifting j − i times.

6.2.2. Symmetric with second powers seed. If P is of the form (1) in Theorem 3.9, the intermediate poly-
nomials are Pi = P (x0, . . . , x̂i, . . . , xn−1) for all 0 < i < n− 1.

Example 6.1. When n = 3, these family of polynomials accounts for the family (6) in Theorem 3.3.

6.2.3. Sink-type binomial seed. If P is of the form (2) in Theorem 3.9, the intermediate polynomials are

Pi =

i−1∏

j=0

x
an−i−j

j +

n−i−1∏

j=1

x
aj
i+j for all 0 < i < n− 1.

Example 6.2. When n = 6, the polynomial P = x21x
3
3x5 + 1 generates the period 1 seed

{x0, x
2
1x

3
3x5 + 1}, {x1, x

2
2x

3
4 + x0}, {x2, x

2
3x

3
5 + x1}, {x3, x

3
0x2 + x24}, {x4, x

3
1x3 + x25}, {x5, x

2
0x

3
2x4 + 1}.

6.2.4. Extreme seed. If P is of the form (3) in Theorem 3.9, the intermediate polynomials are Pi =
xi−1 + xi+1 +A for all 0 < i < n− 1.

Example 6.3. When n = 4, the polynomial P = x1x3 + 3(x1 + x2 + x3) + 2 generates the period 1 seed

{x0, x1x3 + 3(x1 + x2 + x3) + 2}, {x1, x0 + x2 + 3}, {x2, x1 + x3 + 3}, {x3, x0x2 + 3(x0 + x1 + x2) + 2}.

6.2.5. Singleton seed. If P is a single variable polynomial of the form (4) in Theorem 3.9, the intermediate

polynomials are Pi = P
(
xi+n

2
(mod n)

)
.

Example 6.4. When n = 4, the polynomial P = x22 + 2x2 − 7 generates the period 1 seed

{x0, x
2
2 + 2x2 − 7}, {x1, x

2
3 + 2x3 − 7}, {x2, x

2
0 + 2x0 − 7}, {x3, x

2
1 + 2x1 − 7}, {x4, x

2
3 + 2x3 − 7}.

Remark 6.5. These polynomials correspond to (n2 )-expansions of the period 1 polynomials found in The-
orem 3.1.

6.2.6. Chain seed. If P is of the form (5) in Theorem 3.9, the intermediate polynomials are

P2j−1 = x0 + xn−1 +A, for all 0 < j ≤ (n− 1)/2

P2j = F (x0, . . . , x̂2j , . . . , xn−1), for all 0 < j < (n− 1)/2.

6.2.7. Multilinear symmetric seed. If P is of the form (6) in Theorem 3.9, the intermediate polynomials
are

P2j−1 = E1(x0, . . . , x̂2j−1, . . . , xn−1) +A, for all 0 < j ≤ (n − 1)/2

P2j = F (x0, . . . , x̂2j , . . . , xn−1), for all 0 < j < (n − 1)/2.
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6.2.8. r-Jumping seed. Let r, n,A ∈ N be constants and P a polynomial in the setup of (7) of Theorem
3.9. For any a ≥ 0 such that a+ r < n, define

Fa =

⌊n−a
r
⌋−1∑

k=0

xa+rk · xa+rk+r−1 +A.

With this definition, notice that P = F1. The intermediate polynomials are:

• Pj =
( j+1∑

i=1

aji · Fj+2−i

)∣∣
xj=0

and Pn−j−1 =
(
bj0 · F0 +

j∑

i=1

bji · Fr−i

)∣∣
xn−j−1=0

for all 1 ≤ j ≤ r − 2,

where aji =

j−i∏

k=0

xk ·
i−2∏

k=0

xn−r+j−k and bji =

j−i−1∏

k=0

xr−j+k ·
i∏

k=1

xn−k.

• Pj = (

r∑

i=1

ai · Fr−i+1)
∣∣
xj=0

for all r − 1 ≤ j ≤ n− r, where ai =

r−1−i∏

k=0

xk ·
i−2∏

k=0

xn−k−1.

Example 6.6. When n = 7, the polynomial P = x1x3 + x4x6 generates the period 1 seed

{x0, x1x3 + x4x6},

{x1, x0x2x4 + x4x5x6},

{x2, x0x1x3x5 + x1x3x5x6 + x4x5x
2
6},

{x3, x20x1x2 + x0x2x4x6 + x4x5x
2
6},

{x4, x20x1x2 + x0x1x3x5 + x1x3x5x6},

{x5, x0x1x2 + x2x4x6},

{x6, x0x2 + x3x5}

Observe that this is an example of a binomial that generates a period 1 seed whose intermediate polynomials
are not all binomials. Jumping polynomials are not classified by Theorem 3.5.

6.2.9. r-Hopping seed. Let r, n,A,B ∈ N be constants and P a polynomial in the setup of (8) of Theorem
3.9. For any 0 ≤ a < n− r, define

Fa =

⌊n−a
r
⌋−1∑

k=0

xa+rk · xa+rk+r−1 +A

⌊n−a
r
⌋−2∑

k=0

xa+rk+r−1 · xa+rk+r +B.

With this definition, notice that P = F1. The intermediate polynomials are:

• Pj =
( j+1∑

i=1

aji · Fj+2−i

)∣∣
xj=0

and Pn−j−1 =
(
bj0 · F0 +

j∑

i=1

bji · Fr−i

)∣∣
xn−j−1=0

for all 1 ≤ j ≤ r − 2,

where aji =

j−i∏

k=0

xk ·
i−2∏

k=0

xn−r+j−k and bji =

j−i−1∏

k=0

xr−j+k ·
i∏

k=1

xn−k.
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• Pj = (

r∑

i=1

ai · Fr−i+1)
∣∣
xj=0

for all r − 1 ≤ j ≤ n− r, where ai =

r−1−i∏

k=0

xk ·
i−2∏

k=0

xn−k−1.

Remark 6.7. In the definitions of aji , b
j
i and ai in the jumping and hopping seeds, a product

M∏

k=L

Xk is

defined to be 1 if M < L.

6.2.10. Flip-symmetric binomial seed. These are the seeds discussed on Section 4. We give an explicit
description here for consistency.

Let L,R ⊂ [n − 1] be disjoint subsets, a : L ∪ R → N a map and P a polynomial in the setup of (9) of
Theorem 3.9.

Let a = (a0, a1, . . . , an−1) ∈ Zn
≥0 be the vector with nonnegative entries such that ai = a(i+1) if i+1 ∈ L,

aj = −a(j + 1) if j + 1 ∈ R and ak = 0 for the remaining indices k. Define the vectors b(1), . . . ,b(n−1)

recursively as follows. Let b(i) = (b
(i)
0 , . . . , b

(i)
n−1), c

(i) = (c
(i)
0 , . . . , c

(i)
n−1) for all i and begin defining b(1) = a.

Then let c
(i)
0 = −b

(i−1)
0 and c

(i)
j = b

(i−1)
j + b

(i−1)
0 · |aj | · 1{an−iaj<0} for all 0 ≤ j ≤ n − 1 and i > 1 (the

indicator function 1{an−iaj<0} is 1 if an−iaj < 0 and is 0 otherwise). Finally, let b(i) be the vector that

comes from permuting c(i) with the permutation (0, 1, 2, . . . , n − 1) → (1, 2, . . . , n − 1, 0). We can now

show the intermediate polynomials Pi for 0 < i < n − 1. Polynomial Pi is derived from vector b(n−i) as

follows: let Li (resp. Ri) be the set of indices 0 ≤ k ≤ n− 1 such that b
(n−i)
k > 0 (resp. b

(n−i)
k < 0). Then

Pi =
∏

k∈Li

x
b
(n−i)
k

i +
∏

k∈Ri

x
−b

(n−i)
k

i .

From Theorem 4.10 and the definition of B-matrix mutation in (4.1), the resulting seed (x,P) is a period
1 seed.

Example 6.8. When n = 8, the polynomial P = x31x
2
7 + x34x2x6 generates the period 1 seed

{x0, x
3
1x7 + x2x

3
4x6}, {x1, x

2
0x3x

3
5x7 + x52x

6
4x

2
6}, {x2, x0x

5
3x

6
5 + x51x4x

3
6}, {x3, x1x

5
4x

6
6 + x52x5x

3
7},

{x4, x
3
0x2x

5
5 + x91x

5
3x6}, {x5, x

3
1x3x

5
6 + x92x

5
4x7}, {x6, x0x

3
2x4x

3
7 + x31x

9
3x

5
5}, {x7, x

3
0x6 + x1x

3
3x5}

We now demonstrate how to obtain b(5) from b(4). We have a = (0, 3,−1, 0,−3, 0,−1, 2) (corresponding

to polynomial P ) and b(4) = (3,−9, 1,−5, 0, 5,−1, 0) (corresponding to polynomial P4).

Notice that a5 = −3 implies a5aj < 0 if and only if aj > 0. The only indices j for which aj > 0 are 1 and 7.

Then c
(0)
1 = −b

(4)
1 , c

(5)
1 = b

(4)
1 +b

(4)
0 · |a1| = −9+(3)(3) = 0, c

(5)
7 = b

(4)
7 +b

(4)
0 · |a7| = 0+(3)(2) = 6 and c

(5)
j =

b
(4)
j for the remaining indices j. Thus c(5) = (−3, 0, 1,−5, 0, 5,−1, 6) and b(5) = (0, 1,−5, 0, 5,−1, 6,−3).

This corresponds to P3 = x1x
5
4x

6
6 + x52x5x

3
7.

6.2.11. Balanced seed. Let L,R ⊂ [n − 1] be disjoint subsets, a : L ∪ R → N a map, M1,M2 monomials,
m > 1 an integer and P a polynomial in the setup of (10) of Theorem 3.9.

Notice that P ′ = Mm
1 + Mm

2 is a binomial with flip-symmetry seed, so it generates a period 1 seed.
Let P ′j be the intermediate polynomials of this seed. From the analysis in 6.2.10, we see that each
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P ′i is a binomial of the form M
(i)
1 + M

(i)
2 , where each of the monomials M

(i)
1 ,M

(i)
2 is an m-th power

of a monomial. Say that (N
(i)
1 )m = M

(i)
1 and (N

(i)
2 )m = M

(i)
2 , then the intermediate polynomials are

Pi = (N
(i)
1 )m + (N

(i)
2 )m +

⌊m/2⌋∑

k=1

(Ai · (N
(i)
1 )k(N

(i)
2 )m−k +Ai · (N

(i)
1 )m−k(N

(i)
2 )k).

6.2.12. Vector sum seed. Let a1, . . . , an−1 ∈ N be constants, B a finite set of vectors Nn−1 and P a
polynomial in the setup of (11) in Theorem 3.9. For ease of notation, let B′ = B ∪ {(0, . . . , 0)} and
C(0,...,0) = 1. The intermediate polynomials are

Pi =
∑

b∈B′

(Cb · x
bn−i

0 . . . x
bn−1

i−1 xa1−b1i+1 . . . x
an−1−i−bn−1−i

n−1 )

+
∑

b∈B′

(Cb · x
an−i−bbn−i

0 . . . x
an−1−bn−1

i−1 xb1i+1 . . . x
bn−1−i

n−1 ), for all 0 < i < n− 1.

Example 6.9. The polynomial P = 1 + x31x
2
2x

4
3x

2
4 + 2x1x2x

2
3x4 + 2x21x2x

2
3x4 generates the period 1 seed

{x0, 1 + x31x
2
2x

4
3x

2
4 + 2x1x2x

2
3x4 + 2x21x2x

2
3x4},

{x1, x20 + x32x
2
3x

4
4 + 2x0x

2
2x3x

2
4 + 2x0x2x3x

2
4},

{x2, x33x
2
4 + x40x

2
1 + 2x20x1x

2
3x4 + 2x20x1x3x4},

{x3, x34 + x20x
4
1x

2
2 + 2x0x

2
1x2x

2
4 + 2x0x

2
1x2x4},

{x4, 1 + x30x
2
1x

4
2x

2
3 + 2x0x1x

2
2x3 + 2x20x1x

2
2x3}

6.2.13. Little Pi Seed. Let k, n ∈ N be constants and P a polynomial in the setup of (12) of Theorem 3.9.
We show the intermediate polynomials Pj for j ∈ {k, 2k, n − 2k, n − k}. For the general Pi, if j is the
largest integer with j < i and j ∈ J , then Pi comes from i− j upshifts to Pj .

Case 1: If n > 4k, so that k < 2k < n− 2k < n− k, then

• Pk = Ax0x2k +Ax2kxn−2k + x0x3kxn−k +A2xn−k

• P2k = x0x3k + xkx4k +A2

• Pn−2k = Axkxn−3k +Axn−3kxn−k + x0xn−4kxn−k +A2x0

• Pn−k = Ax0 +Axn−2k + xkxn−3k.

Case 2: If n = 4k, so that k < 2k = n− 2k = 2k < n− k = 3k, then

• Pk = Ax0x2k +Ax22k + x0x
2
3k +A2x3k

• P2k = Ax2k +Axkx3k + x20x3k +A2x0

• P3k = Ax0 +Ax2k + x2k.

Case 3: If 4k > n > 3k, so that k < n− 2k < 2k < n− k, then

• Pk = Ax0x2k +Ax2kxn−2k + x0x3kxn−k +A2xn−k

• Pn−2k = x0xn−3kxn−k + x0x2n−5kxn−k + xn−3kxkx2n−4k + xn−3kxn−kx2n−4k +Ax0x2n−4k
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• P2k = Axkx5k−n +Axkx3k + x0xkx3k +A2x4k−n

• Pn−k = Ax0 +Axn−2k + xkxn−3k.

Case 4: If 3k > n > 2k, so that n− 2k < k < n− k < 2k, then

• Pn−2k = x2n−4kxk + x2n−4kxn−k + x0x2k + x0x2n−3k

• Pk = x0xn−kx4k−n + x0xn−kx2k + x0x3k−nx2k + xn−2kx3k−nx2k +Ax3k−nxn−k

• Pn−k = xn−2kxk + x2n−3kxn−2k + x0x2n−3k + xkx2n−4k

• P2k = Ax3k−n +Axk + x0x4k−n.

6.3. Pi Seed. Let k, n, a, b ∈ N be constants and P a polynomial in the setup of (13) in Theorem 3.9. We
show the intermediate polynomials Pj for j ∈ {k, 2k, n−2k, n−k}. We obtain the remaining intermediate
polynomials Pi as before. Without loss of generality, assume a2 ≥ a1 and b1 ≥ b2.

Case 1: If n > 4k, so that k < 2k < n− 2k < n− k, then

• Pk = Axa2+b2
2k xb1n−2k +Bxa2+b2

2k xb2n−2kx
b1−b2
0 + xb10 x3kxn−k.

• P2k = x0x
a2+b2
3k + xa1+b1

k x4k.

• Pn−2k = Axa1k xa1+b1
n−3k x

a2−a1
n−k +Bxa2k xa2+b2

n−3k + x0xn−4kx
a2
n−k.

• Pn−k = Axa10 xb1n−2k +Bxa20 xb2n−2k + xkxn−3k.

Case 2: If n = 4k, so that k < 2k = n− 2k < n− k = 3k, then

• Pk = Axa2+b1+b2
2k +Bxa2+2b2

2k xa2−a10 + xb10 x23k.

• P2k = Ax2a1+b1
k xa2−a13k +Bx2a2+b2

k + x20x
a2
3k.

• P3k = Axa10 xb12k +Bxa20 xb22k + x2k.

Case 3: If 4k > n > 3k, so that k < n− 2k < 2k < n− k, then

• Pk = Axa2+b2
2k xb1n−2k +Bxa2−a10 xa2+b2

2k xb2n−2k + xb10 x3kxn−k.

• Pn−2k = Ax0x
a1
n−3kx

b1
2n−5kx

a2
n−k+Bx0x

b2
2n−5kx

a2
n−3kx

a2
n−k+Axb1n−3kx

a1
k x2n−4kx

a2−a1
n−k +Bxb1n−3kx

a2
k x2n−4k.

• P2k = Axa2−a13k xa15k−nx
a1+b1
k +Bxa2+b2

k xa25k−n + x0x4k−nx
a2
3k.

• Pn−k = Axa10 xb1n−2k +Bxa20 xb2n−2k + xkxn−3k.

Case 4: If 3k > n > 2k, so that n− 2k < k < n− k < 2k. Two cases will arise; for simplicity, let us only
do the case a1 ≤ b2.

• Pn−2k = Ax2n−4kx
a1
k xb1−a1n−k +Bx2n−4kx

a2
k xb1−a2n−k +Ax0x

b1
2n−3k +Bx0x

a2−a1
n−k xb22n−3k.

• Pk = Axb10 xa2−a12k xa14k−nxn−k +Bxb10 xn−kx
a2
4k−n +Ax3k−nx

b1
n−2kx

a2
2k +Bxa2−a10 xb2n−2kx

a2
2kx3k−n.

• Pn−k = Axa10 xb1−a1n−2k x2n−3k +Bxa20 x2n−3kx
b2−a1
n−2k +Axkx

b1
2n−4k +Bxa2−a1n−2k xb22n−4kxk.
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• P2k = Axa13k−nx
b1
k +Bxa23k−nx

b2
k + x0x4k−n.

Example 6.10. When n = 8, k = 2 (Case n = 4k), a = 3 and b = 2, the polynomial P = −2x32x
2
6 +

3x22x
3
6 + x24 generates the period 1 seed

{x0,−2x32x
2
6 + 3x22x

3
6 + x24}, {x1,−2x33x

2
7 + 3x23x

3
7 + x25}, {x2,−2x0x

7
4 + 3x84 + x30x

2
6},

{x3,−2x1x
7
5 + 3x85 + x31x

2
7}, {x4,−2x82 + 3x72x6 + x20x

3
6}, {x5,−2x83 + 3x73x7 + x21x

3
7},

{x6,−2x30x
2
4 + 3x20x

3
4 + x22}, {x7,−2x31x

2
5 + 3x21x

3
5 + x23}.

7. Conserved quantities and k-invariants

In this section, we examine the integrablity of the sequences generated by some period 1 polynomials. Our
general approach, for each sequence, is to find a conserved quantity, which we will denote by J , of the
recurrence. A conserved quantity is a rational polynomial function depending on any n consecutive terms of
the sequence, i.e., Jm,n = J(xm, xm+1, . . . , xm+n−1) is independent of m; in other words Jm+1,n = Jm,n =
J . Using this conserved quantity, we multilinearize the recurrence xm+n = P (xm+1, . . . , xm+n−1)/xm by
writing it in the equivalent form

xm+n = L(xm, xm+1, . . . , xm+n−1),

where L is a multilinear polynomial with coefficients in Q[x0, . . . , xn−1]. If L is linear, we say that the
recurrence has been linearized. Notice that when the coefficients of L are all Laurent polynomials in
x0, . . . , xn−1, this multilinearization provides an alternate proof of the Laurent phenomenon for these
sequences. In some cases, we find a k-invariant instead of a conserved quantity. This is a rational
polynomial function J such that Jm,n = J(xm, xm+1, . . . , xm+n−1) depends on the residue of m modulo k;
in other words Jm+k = Jm,n.

Since proving the integrablity of a sequence is technical and involves detailed discussion for each sequence,
we will only provide an integrability test analysis for the first sequence discussed and leave the rest to the
reader. For the relevant discussion on integrability of sequences, including cluster algebras and poisson
geometry, refer to [FO],[HO2] and [GSV].

7.1. Special case of symmetric with second powers polynomial. We obtain a conserved quantity
for the recurrence defined by

P =
n−1∑

i=1

x2i +A
n−1∑

i=1

xi +B.

The recurrence at indices m+ n and m+ n+ 1 are:

xm+nxn =

n−1∑

i=1

x2m+i +A

n−1∑

i=1

xm+i +B

xm+n+1xn+1 =

n−1∑

i=1

x2m+i+1 +A

n−1∑

i=1

xm+i+1 +B
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After subtracting the former from the latter and rearranging, we obtain

xm+1 + xm+n+1 +A
∏n−1

i=1 xm+i+1

=
xm + xm+n +A

∏n−1
i=1 xm+i

.

Therefore
xm + xm+n +A

∏n−1
i=1 xm+i

is a conserved quantity for our recurrence that we will write as Jm,n. By

multiplying the numerator and denominator by xm, and using xm+nxm = A
∑n−1

i=1 xi+B in the numerator,
we see that Jm,n can be written as

Jm,n =

∑n−1
i=0 x2m+i +A ·

∑n−1
i=0 xm+i +B

∏n−1
i=0 xm+i

.

Then we have

Jm+1,n = Jm,n = J =

∑n−1
i=0 x2i +A ·

∑n−1
i=0 xi +B

∏n−1
i=0 xi

,

and the mutilinear recurrence

xm+n = J ·
n−1∏

i=1

xm+i − xm −A, m = 0, 1, 2 . . .(7.1)

We show that the recurrence generated by P passes the singularity confinement test described in [HO1]. As-
sume we had a singularity at xm+n, i.e., xm+n = ǫ → 0. Then we have ǫxm = P (xm+1, xm+2, . . . xm+n−1) =

O(ǫ). From (7.1), xm+n = J ·
∏n−1

i=1 xm+i−xm−A, we can show inductively that xn+m+i = −xn+i−A+O(ǫ)
for i = 1, . . . ,m − 1. It is therefore clear that xn+2m = O(1), that is, the singularity is confined. It is
interesting to observe that, even though the sequence passes this singularity confinement test, it is not
Diophantine integrable, as shown in [HO1].

Another interesting fact is that the quadratic Diophantine equation

n−1∑

i=0

x2i +A ·
n−1∑

i=0

xi +B = (n(1 +A) +B) ·
n−1∏

i=0

xi

has infinitely many integer solutions (x0, x1, . . . , xn−1) that consist of the n-tuples (ym, ym+1, . . . , ym+n−1),
where the sequence (ym)∞m=0 is defined as y0 = y1 = . . . yn−1 = 1 and ym+n = F (ym+1, . . . , ym+n−1)/ym
for all m ≥ 0.

7.2. r-Jumping polynomial. A conserved quantity for the r-Jumping polynomial

P =

n−1
r
−1∑

i=0

xri+1 · xri+r +A,

when n ≥ 2r + 1 and n ≡ 1 (mod r), is

Jm,n =
xm+1 + xm+n+r∏n

i=r+1 xm+i
.

We then have

Jm+1,n = Jm,n = J =
x1 + xn+r∏n

i=r+1 xi
,
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as well as the multilinear recurrence

xm+n+r = J ·
n∏

i=r+1

xm+i − xm+1, m = 0, 1, 2 . . .

7.3. Special case of sink-type binomial. This is the first example of polynomial for which we find a
k-invariant instead of a conserved quantity. For the polynomial P = xkxn−k + 1, where 0 < k < n, there
is a (n− k)-invariant which is

Jm,n =
xm + xm+2k

xm+k
.

We then have

Jm+n−k,n = Jm,n.

The quantity Jm,n will depend on the residue of m modulo n− k; more specifically:

Jm,n = Ji =
xi + xi+2k

xi+k
if m ≡ i (mod n− k) and 0 ≤ i < n− k;

moreover, we obtain the linear recurrence

xm+2k = J(m mod n−k)xm+k − xm, m = 0, 1, 2 . . .

This recurrence is thoroughly discussed in [FM], where it is shown that the sequence is given by its initial
values and a recurrence xm+n = G(xm, xm+1, . . . , xm+n−1) for a linear function G. Moreover, it is shown
there that the sequence is complete integrable.

7.4. Extreme polynomial. A (n− 1)-invariant for

P = x1xn−1 +A ·
n−1∑

i=1

+B

is

Jm,n =
xm+2 + xm +A

xm+1
.

We then have

Jm+n−1,n = Jm,n.

The quantity Jm,n will depend on the residue of m modulo n− 1; more specifically:

Jm,n = Ji =
xi+2 + xi +A

xi+1
if m ≡ i (mod n− 1) and 0 ≤ i < n− 1;

moreover, we obtain the linear recurrence

xm+2 = J(m mod n−1)xm+1 − xm −A, m = 0, 1, 2 . . .
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7.5. Chain polynomial. A 2-invariant for

P =

n−2∑

i=1

xixi+1 +A ·
n−1∑

i=1

xi +B,

when n is odd, is

Jm,n =
xm+n−1 + xm +A
∏n−3

2
i=0 xm+2i+1

.

We then have

Jm+2,n = Jm,n = J0 =
xn−1 + x0 +A
∏n−3

2
i=0 x2i+1

, 2 | m

Jm+2,n = Jm,n = J1 =

∑n−2
i=1 xixi+1 +A

∑n−1
i=1 xi + x1 +A+B

∏n−3
2

i=0 x2i+2

, 2 ∤ m

and the mutilinear recurrence

xm+n−1 = J〈m mod 2〉 ·

n−3
2∏

i=0

xm+2i+1 − xm −A, m = 0, 1, 2 . . .

7.6. Multilinear symmetric polynomial. A 2-invariant for

P =
∑

1≤i<j≤n−1

xixj +A
n−1∑

i=1

xi +B,

when n is odd, is

Jm,n =

∑n−1
i=0 xm+i +A

∏n−3
2

i=0 xm+2i+1

.

We then have

Jm+2,n = Jm,n = J0 =

∑n−1
i=0 xi +A

∏n−3
2

i=0 x2i+1

, 2 | m

Jm+2,n = Jm,n = J1 =

∑
0≤i<j≤n−1 xixj +A

∑n−1
i=0 xi +B

∏n−1
2

i=1 x2i

, 2 ∤ m.

and the mutilinear recurrence

xm+n−1 = J〈m mod 2〉 ·

n−3
2∏

i=0

xm+2i+1 −
n−2∑

i=0

xm −A, m = 0, 1, 2, 3 . . .
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