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The Enumeration of Permutations

Avoiding 3124 and 4312

Jay Pantone
Department of Mathematics

University of Florida

Gainesville, Florida

We find the generating function for the class of all permutations that avoid the

patterns 3124 and 4312 by showing that it is an inflation of the union of two

geometric grid classes.

1. Preliminaries

We consider permutations in one-line notation so that a permutation of length n is treated as a linear
ordering of the symbols of {1, 2, . . . , n}. For permutations τ and π with lengths k and n respectively, we
write τ ≤ π (or “π contains τ”) if there is a set of indices 1 ≤ i1 < i2 < · · · < ik ≤ n such that the sequence
π(i1), π(i2), . . . , π(ik) is in the same relative order as τ . For example, 4312 ≤ 4756231 because the entries
7523 in 4756231 have the same relative order as 4312.

A permutation class is a set of permutations that is closed downward under this order, i.e., if C is a permu-
tation class and if π ∈ C and τ ≤ π, then τ ∈ C. We can describe a permutation class by specifying a list of
permutations that it avoids. As an example, the set of all strictly increasing permutations may be denoted
Av(21). This paper studies the class of permutations that avoid both 3124 and 4312, denoted Av(3124, 4312).
In particular, we derive its generating function

∑

anx
n, where an is the number of permutations of length

n in this class.

A permutation class is called a 2×4 class if the minimal elements in the set of permutations not in the class
consist exactly of two permutations of length four. Up to symmetries of the permutation containment order
— the group generated by the symmetries reverse, complement, and group-theoretic inverse — there are 56
different 2×4 classes. Some of these have the same enumeration; it has been shown that there are precisely
38 different enumerations for the 2×4 classes [6,12,13,14,15]. This paper will bring the number of different
enumerations that have been found to 29. See Wikipedia [19] for a list of currently known enumerations.

Albert, Atkinson, and Vatter [5] enumerated three of the 2×4 classes by studying inflations of geometric
grid classes. We show that Av(3124, 4312) is also amenable to the same techniques despite its significantly
more complicated structure. Furthermore, in Section 9 we show that these methods cannot be applied to
any other unenumerated 2×4 classes.
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τ = 31468572 ρ = 63814725

Figure 1: The permutation τ is not simple because it contains a nontrivial interval. The permutation
ρ is simple because it contains no nontrivial intervals.

2. Simple Permutations and Inflations

An interval of a permutation is a nonempty set of consecutive indices {i, i + 1, . . . , i + k} such that the
entries {π(i), π(i + 1), . . . , π(i + k)} form a set of consecutive integers. A permutation of length n is said
to be simple if its only intervals are those of length 1 and n. In Figure 1, the permutation 31468572 is
not simple because it contains a nontrivial interval at the indices {4, 5, 6, 7} with entries {5, 6, 7, 8}, and the
permutation 63814725 is simple because it contains no nontrivial intervals. We say that the permutations 1,
12, and 21 are simple. We use Si(C) to denote the set of simple permutations of a class C.
Simple permutations are the foundation from which we can build all other permutations. The inflation of a
permutation π of length n by a sequence of nonempty permutations τ1, . . . , τn, denoted π [τ1, . . . , τn], is the
permutation that results from taking each entry π(i) and replacing it with an interval that is order-isomorphic
to τi such that the intervals themselves are order-isomorphic to π. For example

3142 [231, 21, 123, 1] = 564 21 789 3.

Inflations of the permutations 12 and 21 are given their own names. The sum σ ⊕ τ is defined to be the
inflation 12 [σ, τ ], while the skew sum σ ⊖ τ is defined to be the inflation 21 [σ, τ ]. A permutation π is said
to be sum decomposable if π = σ ⊕ τ for some σ and τ ; otherwise π is said to be sum indecomposable.
Analogously, a permutation π is said to be skew decomposable if π = σ⊖τ for some σ and τ , and is otherwise
skew indecomposable.

Each element of a permutation class can be expressed as an inflation of a unique simple permutation in the
class, as given by the following lemma.

Lemma 2.1 (Albert and Atkinson [2]). For every permutation π there is a unique simple permutation σ

such that π = σ[τ1, . . . , τk]. When σ 6= 12 and σ 6= 21, the intervals of π that correspond to τ1, . . . , τk are
uniquely determined. When σ = 12 (respectively, σ = 21), the intervals are unique so long as we require the
first of the two intervals to be sum (respectively, skew) indecomposable.

3. Geometric Grid Classes

Let M be a matrix whose entries are from the set {−1, 0,+1, •}. To be consistent with plots of permutations,
we index matrices with Cartesian coordinates: first by column (left to right) and then by row (bottom to
top), starting at 1. Define the standard figure of M to be the drawing on the Cartesian plane that consists
of:
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Figure 2: The permutation 827546319 is in the class of permutations that can be drawn on an X,

denoted Geom

(

−1 1
1 −1

)

. The permutation 578219364 is in the class of permutations that can be

drawn on a diamond, denoted Geom

(

1 −1
−1 1

)

.

a b

c d
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b c
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f

e
a b
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d

Figure 3: The geometric grid classes of interest are G1, G2, and G3, whose standard figures are shown
above from left to right. Note that G1 also appears in [5, Figure 11].

⋄ the line segment from (k − 1, ℓ− 1) to (k, ℓ), if Mk,ℓ = +1,

⋄ the line segment from (k − 1, ℓ) to (k, ℓ− 1), if Mk,ℓ = −1, and

⋄ the point
(

k − 1

2
, ℓ− 1

2

)

, if Mk,ℓ = •.

Informally, each entry of the matrix becomes a cell that is either empty or contains an increasing line segment,
a decreasing line segment, or a single point, depending on the corresponding matrix entry. Herein, we require
that if a cell contains a •, then the remaining cells in its row and its column are empty.

A permutation class C is a geometric grid class if there exists a matrix M such that every permutation in C
can be drawn on the standard figure of M by placing entries anywhere on the line segments, with at most
one entry placed in each • cell. In this case, we say that C = Geom(M). Some well-studied geometric grid
classes are, for example, those permutations that can be drawn on an X [17,18] and those permutations that
can be drawn on a diamond [9, 18]. See Figure 2.

A consistent orientation of a geometric grid class is a way of assigning a direction to each line segment in
the standard figure such that in any row either all arrows point upward or all arrows point downward and
in any column either all arrows point leftward or all arrows point rightward. The base point of a cell is the
beginning endpoint of its directed line segment, if it has one.

Figure 3 shows the three geometric grid classes studied in this paper, along with the consistent orientations
that we use for each. It also shows the cell alphabet for each class, which is described below.

Let C = Geom(M) be a geometric grid class, and let Σ be a set (an alphabet) that contains one letter for
each nonempty cell of M , called the cell alphabet. As usual with languages, let Σ∗ be the set of words formed
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by the alphabet Σ. Let w = w1w2 · · ·wn ∈ Σ∗. We now describe how to map this word to a permutation in
C.
Pick distances 0 < d1 < d2 < · · · < dn < 1. The actual values of these distances does not matter, so long
as no two are equal. For each letter wi in the word w, if the cell corresponding to wi has a directed line
segment, then place a permutation entry in cell wi on the line segment at (infinity-norm) distance di from
the base point of that cell. If the cell corresponding to wi has just a single point, place the permutation
entry at this point; there can be at most one entry per point. (Note that, as a cell with a • must lie in an
otherwise empty row and column, we may ignore di and put wi in the center of its cell.)

The result is a permutation drawn on the standard figure which we can read by labeling the entries in
ascending order from bottom to top and then recording these labels from left to right.

Consider the leftmost geometric grid class in Figure 3. The cell alphabet is Σ = {a, b, c, d}. Let
w = bacddb ∈ Σ∗. Then (using distances that are evenly spaced), the placement of entries onto the standard
figure is as follows.

a b

c d

Numbering the entries in ascending order from bottom to top and then recording these entries from left to
right gives the permutation 234165. Given a geometric grid class C, the map described above is a surjection
ϕ : Σ∗ → C.
Geometric grid classes are especially tractable because for any given geometric grid class C we can construct
a regular language L such that there is a length-preserving bijection from L to C. It is well-known that the
generating function for the words in any regular language (by length) is rational. (See, for instance, Flajolet
and Sedgewick [10, Section I.4 and Appendix A.7].) This fact is crucial in the proof of the following theorem.

Theorem 3.1 (Albert, Atkinson, Bouvel, Ruškuc, and Vatter [3, Theorem 8.1]). Every geometric grid class
has a rational generating function.

Furthermore, this result extends to certain subsets of permutations in a geometrically grid class.

Theorem 3.2 (Albert, Atkinson, Bouvel, Ruškuc, and Vatter [3, Theorem 9.1]). The simple, sum indecom-
posable, and skew indecomposable permutations in every geometric grid class each have rational generating
functions.

In [3], the authors describe the two obstacles which must be overcome in order to restrict the domain of ϕ
to some regular language L ⊆ Σ∗ such that ϕ

∣

∣

L
is a bijection.

(1) There are pairs of cells whose letters “commute”, resulting in two words that map to the same permu-
tation. These are the pairs that share neither a row nor a column. In the example above, since the
cells b and d commute, the words bacdbd and bacbdd map to the same permutation. Such words have
their entries in the same cells, but the entries are shifted around within each cell.

(2) We can sometimes move entries between cells to produce the same word. In the example above, we
can move the first three entries corresponding to bac all into cell a to yield the same permutation, i.e.,
ϕ(bacddb) = ϕ(aaaddb).
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The first obstacle is easily dealt with: for each pair of commuting cells, we pick a preferred order, e.g., bd
instead of db, and we forbid all words that have any consecutive occurrence of a non-preferred order. The
second issue is more delicate. In [3], a non-constructive proof is given to show that eliminating such duplicate
words leaves a regular language. Since this proof does not lead to the construction of the regular language,
we are required to find each of the regular languages by hand. Then, using the Automata [8] package of
GAP [11], we recover the rational generating function that counts each regular language. The code used to
generate the results in this paper can be found on the author’s website1.

In Section 4 we show that the simple permutations of Av(3124, 4312) are exactly the simple permutations
in the union of G1 and G2. In Sections 5, 6, and 7 we construct the regular languages which are in bijection
with all permutations and the simple permutations in each class G1, G2, and G3, respectively. Then, we
determine exactly how the simple permutations in each class may be inflated to yield permutations still in
Av(3124, 4312).

Section 8 proves the following theorems about the rational generating function for Si(Av(3124, 4312)) and
the algebraic generating function for Av(3124, 4312).

Theorem 8.1. The simple permutations in Av(3124, 4312) are counted by the generating function

S(x) =
x− 2x2 − 5x3 + 12x4 + x5 − 8x6 − 3x7

(1− 2x)(1− x− x2)
2

.

Theorem 8.2. The permutations in Av(3124, 4312) are counted by the generating function

f(x) =

(

8x5 − 16x4 + 28x3 − 26x2 + 9x− 1
)

+
√
1− 4x

(

2x4 − 8x3 + 14x2 − 7x+ 1
)

2x2(1− 6x+ 9x2 − 4x3)
.

Lastly, in Section 9 we explore the applicability of this method to other permutation classes.

4. The Simple Permutations of Av(3124, 4312)

Consider the three geometric grid classes G1, G2, and G3 whose standard figures are shown in Figure 3. It is
clear that G3 is the intersection G1∩G2. This will be useful when we count the permutations in Av(3124, 4312);
those that arise as inflations of simple permutations that lie in both G1 and G2 will be double-counted, and
hence in order to compensate, those that arise as inflations of simple permutations that lie in G3 must be
subtracted.

Whereas simple permutations of the classes examined by Albert, Atkinson, and Vatter [5] were each contained
in a single geometric grid class, the class studied here has simple permutations contained in the union of two
geometric grid classes. This fact considerably lengthens both the proof of our upcoming Theorem 4.1 and
the subsequent analysis. Classes with this property have been enumerated before – for example, by Albert,
Atkinson, and Brignall [4] – though the exact techniques have differed.

In the following arguments, we make frequent use of Albert’s PermLab application [1] to help us determine
valid permutation configurations. We use permutation diagrams, comprised of a permutation plotted on top
of a grid of cells. A cell is white if we are allowed to insert a new entry into that cell without creating an
occurrence of 3124 or 4312. A cell is shaded dark gray if insertion into that cell would create a forbidden
pattern, i.e., a 3124 or 4312. A cell is shaded light gray if we have specifically forbidden insertion into that

1At the time of publication, the author’s website is located at http://jaypantone.com.

http://jaypantone.com
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n

πL πR

Figure 4: The decomposition of π around
the entry n into πL and πR.

Figure 5: One class of wedge permutations,
denoted Av(132, 312).

cell as part of an argument, e.g., if we assume a particular entry is the maximal entry, then we can forbid
insertion into all cells above it.

In order to talk about certain regions in a permutation diagram, we define the rectangular hull of a set S of
points to be the smallest axis-parallel rectangle in the plane that contains all points of S. In particular, the
rectangular hull of S frequently contains additional points not in S. In our case, the points are entries in a
permutation diagram.

Theorem 4.1. The simple permutations of Av(3124, 4312) coincide with the simple permutations of G1∪G2.

Proof. It is clear by inspection that the permutations 3124 and 4312 cannot be drawn on the standard figures
of G1 or G2. Therefore, Si(G1 ∪ G2) ⊆ Si(Av(3124, 4312)). The reverse inclusion is much harder to show.
Though the ideas in the proof are not particularly deep, we need to consider many cases.

Let π ∈ Si(Av(3124, 4312)) have length n. Let πL be the entries to the left of n and let πR be the entries
to the right of n, as in Figure 4. In order to avoid both 3124 and 4312 patterns, πL and πR must avoid 312
patterns. Also, both πL and πR must be nonempty; otherwise π begins or ends with n and is not simple.

Case 1: Assume πR does not contain the pattern 132. Then, πR ∈ Av(132, 312) which implies that πR is a
wedge permutation of the shape shown in Figure 5.

Case 1a: πR contains only the entry π(n)
In order for π to be simple, the rectangular hull of n and π(n) must be split to the left in the cell marked
A in Figure 6(a). We claim that any entries in cell A must be increasing. To see this, assume there is a
descent (a 21 pattern) in cell A and choose the ‘2’ to be the topmost possible entry and the ‘1’ to be the
bottommost possible entry for the chosen 2. This gives the diagram in Figure 6(b). The rectangular hull of
the 21 pattern formed by the leftmost two entries shown in Figure 6(b) must be split to the left. Assume the
separating entry is as far to the left as possible. Then, as seen in Figure 6(c), there exists an interval that
cannot be split. Hence, any entries in cell A must be increasing. The argument that we just made relating
to the unsplittable 21 pattern will be used many times in this proof. For its remainder, we will simply refer
to an “unsplittable 21 pattern” to mean that if we choose the ‘2’ to be as high as possible and the ‘1’ to
be as low as possible, and then choose a separating entry as far to the left as possible, we get an interval of
length 3 that cannot be split.

In addition to being increasing, cell A must also be nonempty. Consider an entry in cell A that is as low as
possible as possible, yielding Figure 6(d). Cell B is empty because cell A was assumed to be increasing. If C
has any descent, then there is an unsplittable 21 pattern. If cell D has an ascent, then there is a 3124 patten.
Hence, B is empty, C is increasing, and D is decreasing. This leaves us with the diagram in Figure 6(e). It
is clear that any permutation drawn on this figure lies in both G1 and G2.

Case 1b: πR has more than one entry, but is strictly decreasing
In this case, we have the diagram in Figure 6(f). The rectangular hull of πR must be split with an entry
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A

(a) (b) (c)

B

DC

(d) (e)

(f)

A

C
B

D

E

(g) (h)

F
G H

I

J K

(i) (j)

Figure 6: Permutation diagrams corresponding to steps in the proof of Theorem 4.1.

to the left. Choose the leftmost possible entry to get the diagram in Figure 6(g). If cell A contains an
entry, then the interval contained in the rectangular hull of all entries in cell A together with the leftmost
three entries shown in Figure 6(g) cannot be split. Hence, cell A is empty. Cells B and C together must
be decreasing to avoid a 3124 pattern. To avoid an unsplittable interval contained entirely with cell D, cell
D must be increasing. For the same reason, cell E must also be increasing. Thus, we have the situation in
Figure 6(h).

Now, the rectangular hull of n and the entry to its immediate right must be split to the left. The result is
Figure 6(i). To avoid a 3124 pattern, cells F , G, H , and I (which came from cells B and C) must together
form one decreasing block. If cell K is nonempty, then there is an unsplittable interval that contains all
entries in cell K, the entry n, the entry just to the right of n, the monotone increasing cell just below and to
the left of n, and possibly (if cell F is empty) the leftmost entry shown in Figure 6(i) along with any entries
in cells G, H , and J . Hence, cell K is empty. Suppose that cell H has an entry. Then, π is represented by
Figure 6(j), and it is clear that any permutation drawn on this diagram must have the form 1⊕ τ or τ ⊖ 1
(for some τ) and thus cannot be simple. If cell G has an entry, then an almost identical situation occurs.
Therefore, π has the form shown in Figure 7(a).

If J contains a descent, then (as can be seen in Figure 7(b)), the monotone increasing interval containing n

cannot be split. Thus J must be increasing, as shown in Figure 7(c), and is now clear that π ∈ Si(G1).

Case 1c: πR is not strictly decreasing
First we rule out a form of π that cannot occur. We know that πR has the shape of a wedge permutation as
shown in Figure 5. We now show that if πR is not strictly decreasing then its rightmost entry, π(n), lies on
the top part of the wedge permutation, not the bottom part. Assume otherwise. Then, we have the picture
in Figure 7(d), where the three rightmost entries shown are (from left to right) the leftmost entry in the
wedge, the topmost entry in the wedge, and the rightmost (and bottommost) entry in the wedge.

If cell L of Figure 7(d) were empty, then we would have π(n) = 1, which contradicts the simplicity of π. As
such, cell L must be nonempty, yielding Figure 7(e). The entry in π following the leftmost entry of πR (the
second leftmost entry of the wedge) is either above or below the leftmost entry of πR (note that we are not
talking about the second leftmost entry of πR shown on the diagram, but the second leftmost entry of πR in
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Figure 7: Permutation diagrams corresponding to steps in the proof of Theorem 4.1.

any permutation drawn on the diagram, i.e., this entry may, and probably will, lie in one of the white cells).
We describe the first case in detail; the second case follows by an almost identical argument. Figure 7(f)
shows π under the assumption that the second leftmost entry in the wedge lies above the leftmost entry in
the wedge. The two leftmost entries of πR must be separated by an entry in the white cell to their left;
suppose this splitting entry is as leftmost as possible, as shown in Figure 7(g). We can now show that the
uppermost five entries shown in Figure 7(g) are part of an interval that cannot be split. There are two open
cells in which a splitting entry could lie: cells A and B. Obviously, if both cells A and B are empty, then
the interval in question cannot be split. In fact, B must contain at least one entry in order to split the
monotone increasing interval above it. Suppose the entry in B is drawn as bottommost as possible, as in
Figure 7(h). If cell C has an entry, then the rectangular hull of its leftmost entry together with all entries
shown in Figure 7(h) except the leftmost and rightmost is an interval. Since cell C is thus empty, cell A
must contain an entry. Placing an entry in cell A has a similar effect as the entry that we previously placed
in cell C, and thus we reach a contradiction to the assumption that the rightmost entry in πR lies on the
bottom leg of the wedge.

Hence, we can now assume that π(n) is in the upper part of the wedge. Assume that πR has at least two
entries, and let the second entry be as low as possible. Thus, we have the diagram in Figure 7(i). If E has a
descent, then there is a 4312 pattern. If F is empty, then G must have an entry, and it follows by the usual
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Figure 8: Permutation diagrams corresponding to steps in the proof of Theorem 4.1.

arguments that the rectangular hull of G together with the bottommost entry of πR forms an interval. Hence
E is increasing and there must be an entry in F . Select the leftmost possible entry of F . See Figure 7(j).

Any entry in H has no entry above it and to its left, since there would then be a 3124 pattern. This implies
that cell H is actually empty because otherwise the rectangular hull of cell H is itself an interval of π. The
cells I and J together must be decreasing to avoid a 3124 pattern. Cell K must be increasing, because of the
known wedge shape of πR. Hence, we have the diagram in Figure 7(k). Suppose that cell L has some entry.
Place it as far to the left as possible. This gives us the diagram in Figure 7(l). Any permutation drawn on
this figure must lie in G2.

Now suppose instead that cell L in Figure 7(k) is actually empty. This yields the diagram in Figure 8(a).
If cell M is empty, we get the diagram in Figure 8(b). Any permutation drawn on Figure 8(b) must lie in
G2. So, suppose instead that cell M has an entry, and place it as high as possible. This gives us Figure 8(c).
Cell N must be empty to avoid an unsplittable interval contained in the rectangular hull of π(1) and cell N .
Additionally, any entry of O must be to the left of any entry in P , otherwise a 3124 pattern occurs. By the
usual monotonicity arguments, we get the diagram in Figure 8(d). Any permutation drawn on this figure
lies in the class G2. This completes the first case.

Case 2: Assume πR contains a 132 pattern. Let the ‘1’ be the bottommost possible entry, let the ‘3’ be the
topmost possible entry for the chosen ‘1’, and let the ‘2’ be the rightmost possible entry for the chosen ‘1’
and ‘3’. This yields the diagram in Figure 8(e). Any entry in cell B leads to an unsplittable interval inside
the rectangular hull formed by any entries in cell B together with the entry just above and to the right of
cell B. Hence, there must be an entry in cell A to split the rectangular hull of the last two entries shown in
the figure. Pick this entry to be as far to the left as possible. To avoid 3124 and 4312 patterns, we have the
monotone conditions shown in Figure 8(f).

We now show that cell E is empty. Assume it has some entry. Then, the rectangular hull of the leftmost
five entries of π shown in Figure 8(g) must be split in order for π to be simple. There is only one place (cell
F ) where we could possibly have a separating element. However, considering the leftmost entry in cell F , it
is now clear that the rectangular hull of cell F together with the previously considered interval cannot be
split. Hence, cell E is empty.
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Lastly, any entries in the cells C andD of Figure 8(f) together must be increasing, since any descent contained
in these two cells would form an unsplittable interval inside of cells C and D. So, we have shown that in this
case, π can be drawn on the diagram in Figure 8(h). Thus, π can be drawn on the standard figure of G1.

This completes the proof that Si(Av(3124, 4312)) = Si(G1 ∪ G2).

5. The Regular Language and Inflations of G1

The standard figure for G1 is shown in Figure 3, along with the directional arrows corresponding to a
consistent orientation.

Albert, Atkinson, and Vatter [5, Section 5] determined the regular languages that are in bijection with G1

and Si(G1). We repeat this derivation here because it is a good introduction to the following two sections.

Recall the standard notation for regular languages: if x is a letter (or a set of letters), then “x∗” means zero
or more occurrences of x and “x+” means one or more occurrences of x.

As discussed in Section 3, there are two impediments to the bijectivity of the map ϕ : Σ∗ → G1. Firstly,
we prevent duplicate words that arise as a result of commuting pairs of cells. In this geometric grid class,
the set of commuting pairs is {(a, c), (a, d), (b, d)}. Therefore, to prevent these duplicate words, we forbid all
occurrences of ca, da, and db.

Next, we must prevent duplicate words that arise from moving some entry to a different cell. Among all
such duplicate words, we choose to prefer the word that has the most entries in the first column, then the
most entries in the second column, and then the most entries in the first row.

We define L1 to be the regular language consisting of all words Σ∗, with the following restrictions.

⋄ As above, we forbid all words that contain ca, da, or db.

⋄ If a word begins with b, then the corresponding entry could be moved to cell a. Hence, we forbid all
words that begin with b.

⋄ If a word begins with a∗c, then entry corresponding to the c could be moved into cell a. Hence, we
forbid all words that begin with a∗c.

⋄ If a word ends with d, then the entry corresponding to the d could be moved into cell c. Hence, we
forbid all words that end with d.

⋄ If a word starts with d, has no c, and has no other d, then the entry corresponding to the d could be
moved into cell c. Hence, we forbid all words of the form d{a, b}∗.

⋄ If a word is of the form a∗{c, d}+, then all entries corresponding to c and d could be moved into cells
a and b. Hence, we forbid all words of this form.

Then, L1 is in (length-preserving) bijection with the geometric grid class G1. We compute the multivariate
generating function for this regular language (either by hand using the techniques of [10, Section I.4], or
using a computer algebra system), in which each letter a, b, c, d is represented by a variable xa, xb, xc, xd and
the coefficient of the term xp1

a x
p2

b xp3

c x
p4

d is the number of words in L1 that have p1 occurrences of the letter
a, p2 occurrences of the letter b, etc. This multivariate generating function is

xa − x2
a − 2xaxc − 2xaxd + 2x2

d + 2x2
axc + xbxcxd − x2

ax
2
c − 2x2

axcxd − x2
ax

2
d − xbxcx

2
d

(1− xa)(1− xc − xd)(1− xa − xb − xc − xd + xaxc + xaxd + xbxd)
.
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a b

c d

a b

c d

a b

c d

Figure 9: The three regions in which an interval containing entries from at least two cells can occur.
This figure also appears in [5, Figure 12].

We can find the univariate generating function for G1 by setting all four variables to x. The univariate
generating function is:

x− 4x2 + 5x3

(1 − x)(1 − 2x)(1− 3x)
.

We will now restrict L1 to a new regular language S1 that is in bijection with Si(G1). Permutations that are
not simple arise due to either repeated letters (an interval in one cell) or one of the shaded regions involving
two or more cells shown in Figure 9. So, we make the following restrictions.

⋄ We exclude any words that contain consecutive occurrences of any letter: aa, bb, cc, or dd.

⋄ To avoid intervals of the first type, we forbid all words that begin with two or more occurrences of
{a, b, c}.

⋄ To avoid intervals of the second type, we forbid all words that end with ca∗da∗ or d{a, b}∗ca∗.

⋄ To avoid intervals of the third type, we require that the last a is followed by a b, i.e., we forbid all
words that end with a{c, d}∗.

⋄ Lastly, we explicitly forbid the word dcb, which does not correspond to a simple permutation but is
not forbidden by any of the previous rules.

From these rules, we can find the multivariate generating function of S1:

S1(xa, xb, xc, xd) =
xbxcxd(1 + xb)(xa + xc + xaxc + xcxd)

1− xaxb − xbxc − xcxd − xaxbxc − xbxcxd

.

In particular, this shows that every simple permutation of G1 has at least one entry in each of cells b, c, and d.
Note that this multivariate generating function excludes the permutation of length 1 and both permutations
of length 2. This is because we don’t need to consider inflations of the permutation 1 and we will handle
inflations of 12 and 21 separately.

We can see that the univariate generating function of Si(G1) of length at least 4 is thus:

M1(x) =
2x4

1− 2x
.

Lastly, we must determine the ways in which we can inflate a simple permutation of G1 to yield a permutation
in Av(3124, 4312). For the remainder of the paper, we define the two functions

m =
x

1− x
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to be the generating function for nonempty increasing (or decreasing) permutations, and

c =
1− 2x−

√
1− 4x

2x

to be the generating function for nonempty permutations in Av(312), which are counted by the Catalan
numbers. Additionally, we will let f denote the generating function for Av(3124, 4312).

In order to find the allowed inflations of a simple permutation in G1, we need to split the letter c into two
letters c1 and c2. A c is a c1 if there is any b following it, and a c2 otherwise. By simplicity, there is at most
one c2. Additionally, we must split Si(G1) into two types of permutations. Let a permutation π ∈ Si(G1) be
Type A if its corresponding word meets the following criteria:

⋄ there is no c after any b,

⋄ there is no d after any c,

⋄ the first b is before any a.

There is one simple permutation of each odd length in Si(G1) that meets these criteria (the first few are
25314, 2475316, and 246975318). By construction, there is no c2 in any Type A permutation; every c is a c1.

It follows that the multivariate generating function for the Type A permutations in Si(G1) is

S1,1 (xa, xb, xc1 , xc2 , xd) =
xax

2
bxc1xe

1− xaxb

.

The remainder of the simple permutations of length at least 4 in G1 (we will call them Type B) thus have
multivariate generating function

S1,2 = S1 − S1,1.

In Type A permutations, we can inflate any entry in cell a by any permutation in Av(312). We can inflate
any entries in cell b by any decreasing permutation except for the first entry in cell b, which can be inflated
by any permutation in Av(312). Any entry in cell c (which must be a c1) may be inflated by any increasing
permutation. Entries in cell d may be inflated by permutations in Av(312). Therefore, the generating
function for inflations of simple permutations of Type A that are still in Av(3124, 4312) is

c

m
· S1,1 (c,m,m, 0, c) .

In Type B permutations, we consider two cases. In both cases, entries in cell a can be inflated by permutations
in Av(312), entries in cell b can be inflated by decreasing permutations, and the c1 entries in cell c can be
inflated by increasing permutations. If a c2 entry in cell c is inflated only by an increasing permutation,
then the first entry in cell d may be inflated by a permutation in Av(312) while all other entries in cell d can
only be inflated by decreasing permutations. Otherwise, if the c2 entry is inflated by a permutation with a
descent (i.e., a permutation in Av(3124, 4312)r Av(21)), then this forces all entries in cell d to be inflated
by only decreasing permutations.

Define S1,3 = S1,2−
(

S1,2

∣

∣

xc2
=0

)

, so that S1,3 is the multivariate generating function of Type B permutations

that contain a c2 entry. Now, the generating function for inflations of simple permutations of Type B that
are still in Av(3124, 4312) is

c

m
· S1,2 (c,m,m,m,m) + S1,3 (c,m,m, f −m,m) .
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Combining the above results, the (univariate) generating function for the inflations of simple permutations
of length at least 4 from G1 that lie in Av(3124, 4312) is

I1(x) =
c

m
· S1,1 (c,m,m, 0, c) +

c

m
· S1,2 (c,m,m,m,m) + S1,3 (c,m,m, f −m,m) .

6. The Regular Language and Inflations of G2

The standard figure for G2 is shown in Figure 3, along with the directional arrows corresponding to a
consistent orientation. In this geometric grid class, the set of commuting pairs is

{(a, b), (a, c), (a, d), (a, f), (b, d), (b, e), (b, f), (c, e), (c, f), (d, e), (d, f)}.

We note that the three letters a, e, and f commute with the three letters b, c, and d. So, we forbid all words
in which any b, c, or d comes before any a, e, or f . This handles all commuting pairs except for (a, f) and
(b, d), so we further forbid all words containing either fa or db.

Next, we must prevent duplicate words that arise from moving some entry to a different cell. Among all such
duplicate words, we prefer the word that has the most entries in the first column, then the second column,
then the third column, then the first row, then the second row, and then the third row.

We define L2 to be the regular language consisting of all words {a, b, c, d, e, f}∗, with the following restrictions.

⋄ As above, we forbid all words that contain the factor {b, c, d}{a, e, f} as well as all words containing
either fa or db.

⋄ If a word begins with e, then the corresponding entry can be moved to the end of cell c. Hence, we
forbid all words that start with e.

⋄ We can move an entry in cell d to cell b if the d has no c or f before it and no f after it. Hence, we
forbid all words of the form {a, b, d, e}∗d{a, b, c, d, e}∗.

⋄ If a word has no f , then any entry in cell b can be moved to cell a (by also moving some entries from
cell c to cell e and some entries from cell d to cell f , as needed). Hence, we forbid words of the form
{a, b, c, d, e}∗b{a, b, c, d, e}∗.

⋄ Consider a word that ends in the form b{a, e, f}∗d∗{a, b, c, e, f}∗. Then, the entry in cell b can be
moved into cell a (by also moving some entries in cell c to cell e as needed). Hence, we forbid all words
that end with b{a, e, f}∗d∗{a, b, c, e, f}∗.

⋄ If a word has an f which has no b, c, or e before it and no b or c after it, then the first f can be moved
to cell c. Hence, we forbid words of the form {a, d, f}∗f{a, d, e, f}∗.

⋄ If a word starts with the prefix {a, e, f}∗c, then the entry in cell c can be moved to cell b. Hence, we
forbid words that start with {a, e, f}∗c.

The language L2 is in (length-preserving) bijection with the geometric grid class G2. We can compute the
multivariate generating function for this regular language, but it is too long to display here. We find the
univariate generating function for G2 by setting all six variables to x. The univariate generating function is

x− 7x2 + 19x3 − 22x4 + 9x5 − x6

(1− x)(1− 2x)(1− 3x+ x2)
2

.
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Figure 10: The five regions that are not already forbidden by previous rules in which an interval
containing entries from at least two cells can occur.

We now restrict L2 to a new regular language S2 that is in bijection with Si(G2) (excluding the permutations
1, 12, and 21). Permutations that are not simple arise due to either repeated letters (an interval in one cell)
or one of the shaded regions involving two or more cells shown in Figure 10. So, we make the following
restrictions.

⋄ We exclude any words that contain consecutive occurrences of any letter: aa, bb, cc, dd, ee, or ff .

⋄ To avoid intervals of the first type, we require that words do not end with a{a, b, c, d, f}∗.

⋄ To avoid intervals of the second type, we require that words do not end with e{b, c, d, e}∗.

⋄ To avoid intervals of the third type, we forbid words of the form {a, b, c, e, f}∗f{a, b, c}∗.

⋄ To avoid intervals of the fourth type, we must exclude any words that begin with
{a, b, c, e, f}∗b{a, b, c, e, f}∗c.

⋄ To avoid intervals of the last type, we forbid all words of the form {a, d, f}∗f{a, d, e, f}∗c{a, c, e, f}∗.

From these rules, we can find the multivariate generating function of S2:

xdxf (1 + xc)(xaxe + xcxd + xbxcxd − xaxbxcxe − xaxcxdxe − xaxbxcxdxe)

(1− xbxc − xcxd − xbxcxd)(1− xaxe − xexf − xaxexf )
.

The univariate generating function of Si(G2) of length at least 4 is thus

M2(x) =
x4 (1− x)(2 + x)

(1− x− x2)
2

.

In order to find the allowed inflations of a simple permutation in G2, we need to split the letters c and d

each into two letters. We say that a c is a c2 if there is no b or c before it and it does not simultaneously
have a d both before and after it. It is a c1 otherwise. We say that a d is a d2 if the word has no e,
the word has at most one f , and the d has no c after it. It is a d1 otherwise. By simplicity, a word can
have at most one d2. The multivariate generating function for S2 with these new letters will be denoted
S2 (xa, xb, xc1 , xc2 , xd1

, xd2
, xe, xf ).

We handle three separate cases. In all cases, entries corresponding to a, b, and c2 can be inflated by any
permutation in Av(312), while entries corresponding to c1 and e can be inflated by decreasing permutations
and entries corresponding to d1 can be inflated by increasing permutations. The three cases below specify
how entries corresponding to d2 and f may be inflated.
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In the case that the word has no d2, all entries in cell f can be inflated by permutations in Av(312). The multi-
variate generating function for the words in S2 that have no d2 is defined to be
S2,1 = S2

∣

∣

xd2
=0

.

In the case that the word has a d2 and this d2 is inflated by an increasing permutation, entries in cell f may
be inflated by any permutation in Av(312). If this d2 contains a descent (i.e., is inflated by a permutation in
Av(3124, 4312)rAv(12)), then entries in cell f may only be inflated by decreasing permutations. The multi-
variate generating function for the words in S2 that have a d2 is
S2,2 = S2 − S2,1.

Combining the above results, the (univariate) generating function for the inflations of simple permutations
of length at least 4 in G2 is

I2(x) = S2,1 (c, c,m, c,m, 0,m, c) + S2,2 (c, c,m, c,m,m,m, c) + S2,2 (c, c,m, c,m, f −m,m,m) .

7. The Regular Language and Inflations of G3

The standard figure for G3 is shown in Figure 3, along with the directional arrows corresponding to a
consistent orientation. The set of commuting pairs is {(a, c), (a, d), (b, d), (c, d)}. Thus, we forbid words that
contain ca, da, db, or dc.

Next, we must prevent duplicate words that arise from moving some entry to a different cell. Among all such
duplicate words, we prefer the word that has the most entries in the first column, then the second column,
then the first row, and then the second row.

We construct L3 to be the regular language consisting of all words {a, b, c, d}∗, with the following restrictions.

⋄ To conform to the definition of a “•” entry in a geometric grid class, we forbid all words that contain
more than one d.

⋄ As above, to avoid duplicate permutations due to commuting pairs, we forbid words that contain ca,
da, db, or dc.

⋄ If a word starts with b, then the corresponding entry could be moved to cell a. Hence, we forbid words
that begin with b.

⋄ If a word has no d and starts with a∗c, then the entry corresponding to the c could be moved into cell
a. Thus, we forbid words of the form a∗c{a, b, c}∗.

⋄ If a word has no b and at least one c or d, then the entry corresponding to a c could be moved to cell
a or the entry corresponding to a d could be moved to cell b. Thus, we forbid all words of the form
{a, c, d}∗{c, d}{a, c, d}∗.

⋄ If a word has no c and has a d, then the entry corresponding to the d can be moved into cell c. Thus,
we forbid words of the form {a, b, d}∗d{a, b, d}∗.

The language L3 is then in (length-preserving) bijection with the geometric grid class G3. We can compute
the multivariate generating function for this regular language, but again it is far too long to display here.
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Figure 11: The two regions that are not already forbidden by previous rules in which an interval
containing entries from at least two cells can occur.

We can find the univariate generating function for G3 by setting all four variables to x. The univariate
generating function is:

x− 5x2 + 10x3 − 8x4 + x6

(1− x)2(1− 2x)(1− 3x+ x2)
.

We will now restrict L3 to a new regular language S3 that is in bijection with Si(G3). Permutations that are
not simple arise due to either repeated letters (an interval in one cell) or one of the shaded regions involving
two or more cells shown in Figure 11. So, we make the following restrictions.

⋄ We exclude any words that contain consecutive occurrences of any letter: aa, bb, cc. (We already can’t
have dd.)

⋄ To prevent intervals of the first type, we require that there is a b after the last a. Hence, we forbid
words that end in a{c, d}∗.

⋄ To prevent intervals of the second type, we forbid words that begin with ab.

⋄ Lastly, we explicitly forbid the word cbd, which does not correspond to a simple permutation but is
not forbidden by any previous rule.

From these rules, we can find the multivariate generating function of S3:

xbxcxd (1 + xb)(xa + xc + xaxc)

1− xaxb − xbxc − xaxbxc

.

The univariate generating function of Si(G3) of length at least 4 is thus

M3(x) =
2x4 + x5

1− x− x2
.

In order to find the allowed inflations of a simple permutation in G3, we need to split the letters b and c

each into two letters. A b is a b2 if there is no a, b, or c2 before it and no c after it. It is a b1 otherwise.
There is at most one b2. A c is a c2 if there is no b after it. It is a c1 otherwise. By simplicity, a word
has at most one c2. The multivariate generating function for S3 using these new letters will be denoted
S3 (xa, xb1 , xb2 , xc1 , xc2 , xd).

We handle three separate cases. In all cases, entries corresponding to a and b2 can be inflated by any
permutation in Av(312), while entries corresponding to b1 can be inflated by decreasing permutations and
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entries corresponding to c1 can be inflated by increasing permutations. The three cases below specify how
entries corresponding to c2 and d may be inflated.

In the case that the word has no c2, an entry in cell d can be inflated by permutations in Av(312). The multi-
variate generating function for the words in S3 that have no c2 is defined to be
S3,1 = S3

∣

∣

xc2
=0

.

If the word has a c2 and that c2 is inflated by an increasing permutation, then an entry in cell d can
be inflated by permutations in Av(312). If the word has a c2 and that c2 is inflated by a permutation
containing a descent (i.e., a permutation in Av(3124, 4312)r Av(21)), then an entry in cell d can only be
inflated by decreasing permutations. The multivariate generating function for the words in S3 that have a
c2 is S3,2 = S3 − S3,1.

Combining the above results, the (univariate) generating function for the inflations of simple permutations
of length at least 4 in G3 is

I3(x) = S3,1 (c,m, c,m, 0, c) + S3,2 (c,m, c,m,m, c) + S3,2 (c,m, c,m, f −m,m) .

8. Computing the Generating Function of Av(3124, 4312)

Theorem 4.1 proves that Si(Av(3124, 4312)) = Si(G1 ∪G2). Therefore, we can count the simple permutations
in Av(3124, 4312) using the results from Sections 5, 6, and 7.

Theorem 8.1. The simple permutations in Av(3124, 4312) are counted by the generating function

S(x) =
x− 2x2 − 5x3 + 12x4 + x5 − 8x6 − 3x7

(1− 2x)(1− x− x2)
2

.

Proof. We start by counting the permutation of length 1, the two permutations of length 2, the simple
permutations in G1, and the simple permutations in G2. However, this double-counts the simple permutations
that lie in both G1 and G2. Since G1 ∩ G2 = G3, we correct for this subtracting the generating function for
the simple permutations in G3. From this we see that the generating function for the simple permutations
in Av(3124, 4312) is

S(x) = x+ 2x2 + (M1(x) +M2(x)−M3(x)) =
x− 2x2 − 5x3 + 12x4 + x5 − 8x6 − 3x7

(1− 2x)(1− x− x2)
2

,

completing the proof.

The enumeration of Av(3214, 4312) is now derived.

Theorem 8.2. The permutations in Av(3124, 4312) are counted by the generating function

f(x) =

(

8x5 − 16x4 + 28x3 − 26x2 + 9x− 1
)

+
√
1− 4x

(

2x4 − 8x3 + 14x2 − 7x+ 1
)

2x2(1− 6x+ 9x2 − 4x3)
.
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Proof. The previous three sections have detailed the allowed inflations of simple permutations of length
at least 4. By Lemma 2.1, it remains to determine the inflations of the permutations 12 and 21. To
assure uniqueness, we require that the first component in the inflations of 12 (respectively, 21) be sum
indecomposable (respectively, skew indecomposable).

Let π = σ ⊕ τ ∈ Av(3124, 4312) be sum decomposable. We must have σ ∈ Av(312) and for uniqueness, we
assume that σ itself is sum indecomposable. For this, we use the notation σ ∈ Av 6⊕(312). Then, τ can be any
permutation in Av(3124, 4312). It is well-known that every permutation in Av 6⊕ (312) is of the form α ⊖ 1
for α ∈ Av(312). Therefore, the class Av 6⊕ (312) is enumerated by the shifted Catalan numbers, which have
the generating function xc+ x. Now we see that the sum decomposable permutations in Av(3124, 4312) are
equal to

Av 6⊕(312)⊕Av(3124, 4312)

and are enumerated by
f⊕ = (xc+ x)f.

Let π = σ ⊖ τ ∈ Av(3124, 4312) be skew decomposable. There are two possibilities. If σ is increasing, then
we must have τ ∈ Av(312). Otherwise, if σ ∈ Av 6⊖ (4312, 3124) has a descent, then we must have τ ∈ Av(12).
Hence, the skew decomposable permutations in Av(3124, 4312) are equal to

(Av(21)⊖Av(312)) ∪ (Av 6⊖(3124, 4312)⊖Av(12)) .

We enumerate this class by adding the enumerations of each component of the union and then subtracting
the intersection of the two parts (which is Av(21)⊖Av(12)). Let f⊖ be the generating function for the skew
decomposable permutations in Av(3124, 4312). Then, by the above reasoning, f⊖ = mc+ (f − f⊖)m−m2

which has the solution

f⊖ =
m (f + c−m)

1 +m
.

The permutation class Av(3124, 4312) contains the single permutation of length 1, the sum and skew de-
composable permutations, and the inflations of simple permutations of length at least 4. Therefore, the
generating function f of Av(3124, 4312) satisfies the equation

f = x+ (xc+ x)f +
m (f + c−m)

1 +m
+ (I1 + I2 − I3) .

We solve this for f to find that

f(x) =

(

8x5 − 16x4 + 28x3 − 26x2 + 9x− 1
)

+
√
1− 4x

(

2x4 − 8x3 + 14x2 − 7x+ 1
)

2x2(1− 6x+ 9x2 − 4x3)
.

The first few terms of the expansion of f(x) are

f(x) = x+ 2x2 + 6x3 + 22x4 + 88x5 + 363x6 + 1507x7 + 6241x8 + 25721x9 + 105485x10 + · · · ,

sequence A165534 in the OEIS [16].2

2We may now compute the number of sum decomposable and skew decomposable permutations in Av(3124, 4312):

f⊕ = (xc+ x) f = x2 + 3x3 + 10x4 + 37x5 + 146x6 + 595x7 + 2456x8 + 10167x9 + · · ·

(sequence A226434 in the OEIS [16]) and

f⊖ =
m (f + c−m)

1 +m
= x2 + 3x3 + 10x4 + 35x5 + 129x6 + 494x7 + 1935x8 + 7670x9 + · · ·

(sequence A228769 in the OEIS [16]).

http://oeis.org/A165534
http://oeis.org/
http://oeis.org/A226434
http://oeis.org/
http://oeis.org/A228769
http://oeis.org/
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···

Figure 12: The increasing oscillating se-
quence, plotted in the style of a permuta-
tion plot. Note that there is no index that
has entry 2.

···

···

Figure 13: A permutation in an infinite fam-
ily of simple permutations.

9. Applicability to Other 2×4 Classes

One may wonder whether these methods apply to any of the nine remaining 2×4 classes that have not yet
been enumerated. The key property of Av(3124, 4312) that makes these arguments possible is that its simple
permutations lie in a geometric grid class. It is easy to see that a permutation class is not geometrically
griddable if it contains either arbitrarily long sums of the permutation 21 or arbitrarily long skew sums of
the permutation 12.

To this end, we show that each of the remaining 2×4 classes contains a family of simple permutations that
contains arbitrarily long sums of 21 or skew sums of 12. A natural candidate is the family of increasing
oscillations. The increasing oscillating sequence is the infinite sequence

4, 1, 6, 3, 8, 5, . . . , 2k + 2, 2k − 1, . . . ,

plotted in Figure 12. An increasing oscillation is any simple permutation that is contained in the increasing
oscillating sequence.

Brignall, Ruškuc, and Vatter [7] showed that the class of all permutations contained in all but finitely many
increasing oscillations is Av(321, 2341, 3412, 4123). To show that a class C = Av(B) contains the family of all
increasing oscillations, we need to show that Av(321, 2341, 3412, 4123) ⊆ C. This amounts to checking that
each β ∈ B contains some permutation in {321, 2341, 3412, 4123}. The following seven 2×4 classes contain
the family of increasing oscillations and hence their simple permutations are not geometrically griddable:

Av(3214, 4231), Av(1432, 4213), Av(3214, 4312), Av(4231, 4321),

Av(4123, 4231), Av(3412, 4123), Av(4123, 4312).

This leaves only the two classes Av(2143, 4213) and Av(2413, 3412), which contain neither the family of
increasing oscillations nor the analogously defined family of decreasing oscillations.

Consider instead the family of simple permutations depicted in Figure 13. No permutation in this family
contains either a 2143 or a 4213 pattern. Hence this infinite family, which cannot be geometrically gridded,
lies in Av(2143, 4213). The last class in question, Av(2413, 3412), does not contain this infinite family, but
it is symmetric (by a 90◦ rotation) to Av(2143, 2413) which does contain this infinite family.

Acknowledgments: The author is very grateful to his advisor, Vince Vatter, for introducing him to this
problem and for advice that significantly improved the presentation of this paper. Additionally, the author
would like to thank Michael Albert for providing code which was useful in developing these arguments.
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