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COUNTING UNLABELED k-TREES

ANDREW GAINER-DEWAR AND IRA M. GESSEL

Abstract. We count unlabeled k-trees by properly coloring them in k+1 colors and then
counting orbits of these colorings under the action of the symmetric group on the colors.

1. Introduction

The class of k-trees may be defined recursively: a k-tree is either a complete graph on k
vertices or a graph obtained from a smaller k-tree by adjoining a new vertex together with k
edges connecting it to a k-clique. Thus a 1-tree is an ordinary tree. Figure 1 shows a 2-tree.

Figure 1. A 2-tree

Labeled k-trees may be counted by extensions of the same methods that can be used to
count labeled trees. (See, for example, Beineke and Pippert [2], Moon [20], and Foata [9].)
However, counting unlabeled k-trees is considerably more difficult.

Harary and Palmer [12] counted unlabeled 2-trees in 1968 (see also Harary and Palmer
[13, section 3.5]) and unlabeled 2-trees were counted in a different way, using the theory of
combinatorial species, by Fowler et al. in [10]. Many variations of 2-trees have also been
counted [4, 8, 12, 14, 15, 16].

The enumeration of unlabeled k-trees for k > 2 was a long-standing unsolved problem until
the recent solution by Gainer-Dewar [11], also using the theory of combinatorial species. We
present here an alternative approach which results in a simpler description of the generating
function for unlabeled k-trees; this is given in Theorem 7. The asymptotic growth of the
number of k-trees has been analyzed by Drmota and Jin in [7] using our results.

Table 1 gives the number Kn,k of k-trees with n + k vertices for small values of n and k;
larger tables can be found in [11]. The stability of these numbers for fixed n as k increases and
a relation concerning those stable numbers will be explained in section 3; these “stable k-tree
numbers” are shown in the last row of the table. These sequences are given to many more
terms as [1, A000055, A054581, A078792, A078793, A201702, A224917] (for k = 1, 2, 3, 4, 5
and the stable k-tree numbers respectively).
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k\n 0 1 2 3 4 5 6 7 8 9

1 1 1 1 2 3 6 11 23 47 106
2 1 1 1 2 5 12 39 136 529 2171
3 1 1 1 2 5 15 58 275 1505 9003
4 1 1 1 2 5 15 64 331 2150 15817
5 1 1 1 2 5 15 64 342 2321 18578

“stable” 1 1 1 2 5 15 64 342 2344 19137

Table 1. The number of k-trees with n+ k vertices

The usual approach to counting unlabeled trees or tree-like graphs consists of two steps.
(See, for example, Bergeron, Labelle, and Leroux [3, chapters 3 and 4], and Harary and
Palmer [13, chapter 3].)

First, one converts the problem to one of counting certain rootings of these graphs. To do
this, Otter [21] introduced the method of “dissimilarity characteristic theorems” in counting
unlabeled trees. His theorem relates the numbers of orbits of vertices and edges under
the automorphism group of the tree. We will instead use a “dissymmetry theorem” in the
style of those introduced by Leroux [17] (see also Leroux and Miloudi [18]); these describe
isomorphisms of species and thus may be used to study labeled and unlabeled structures
simultaneously. (We will discuss dissimilarity characteristic theorems for trees and 2-trees
in sections 6 and 7.)

Next, once the problem is reduced through a dissymmetry or dissimilarity characteristic
theorem to one of counting rooted graphs, one finds recursive decompositions for the rooted
graphs that give functional equations for their generating functions.

A dissymmetry theorem for k-trees is fairly straightforward, and it reduces the problem to
counting k-trees rooted at a (k + 1)-clique, k-trees rooted at a k-clique, and k-trees rooted
at both a (k + 1)-clique and a k-clique that it contains. (The dissimilarity characteristic
approach to k-trees is more complicated.)

For classical (1-)trees, the decomposition step is easy: removing the root of a vertex-rooted
tree yields a set of trees, each rooted at the vertex which was adjacent to the original root,
and similar decompositions are available for trees rooted in other ways. However, for k > 1,
this straightforward procedure is no longer sufficient. For example, consider the two distinct
edge-rooted 2-trees of Figure 2.

Figure 2. Two edge-rooted 2-trees
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We can decompose each of these 2-trees by first separating the triangles containing the
root edge, and then from each of these triangles, removing the root edge and separating the
two remaining edges, as shown in Figure 3.

Figure 3. Decomposition of edge-rooted 2-trees

We would like to recover the original 2-trees from these collections of components. However,
it will not suffice (as in the case of 1-trees) to treat each collection of components as simply
a set; in particular, this would fail to distinguish between the two 2-trees in the example.
In fact, each pair of 2-trees is ordered (so the two decompositions in Figure 3 really are
different), but switching the order of all pairs simultaneously does not change the 2-tree.

To deal with this problem, we may orient the root edge. Extending the orientation of
the root edge to an orientation of the triangles containing it orients the root edges of the
component 2-trees, as shown in Figure 4.

Figure 4. Decomposition of edge-rooted 2-trees

Then 2-trees rooted at an oriented edge can be counted easily. The two-element group
acts on these oriented rooted 2-trees by reversing the orientation, and 2-trees rooted at
an unoriented edge are obtained as orbits under this group action. This is essentially the
approach taken by Fowler et al. [10]. Gainer-Dewar [11] took a similar approach to counting
k-trees by cyclically orienting the (k + 1)-cliques in a k-tree. This is significantly more
complicated than in the case of 2-trees, since there is no simple analogue in this context of
reversing the cyclic order of a triangle.

Here we take a somewhat different, though related approach. We color the vertices of a
k-tree in k + 1 colors, with all the vertices in each (k + 1)-clique colored differently. This
coloring breaks the symmetry of the k-tree, allowing the decomposition to work. Then we
take orbits under the symmetric group Sk+1 acting on colors.

2. Enumerative lemmas

In this section we describe two enumerative tools that we will need for counting k-trees.
The reader may skip this section for now and come back to it when it is needed.
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Suppose that a finite group G acts on a weighted set S. We do not require S to be finite,
but we do require that the sum of the weights of all the elements of S is well-defined as a
formal power series, and we require that weights are constant on orbits. Thus we may define
the weight of an orbit to be the weight of any of its elements. For each g ∈ G we denote by
fix(g) the sum of the weights of the elements of S fixed by g. Then Burnside’s lemma (also
called the Cauchy-Frobenius theorem) asserts that the sum of the weights of the orbits of G
is equal to

(1)
1

|G|

∑

g∈G

fix(g).

Since fix(g) depends only on the conjugacy class of g, the sum in (1) may be rewritten
as a sum over conjugacy classes. We will be applying Burnside’s lemma to the case of a
symmetric group Sm, where the conjugacy classes correspond to cycle types, which may be
described by partitions of m: a permutation with li cycles of length i for each i corresponds
to the partition in which the multiplicity of i as a part is li. The number of permutations of
cycle type λ = (1l12l2 · · ·mlm) is m!/zλ, where zλ = 1l1l1! 2

l2l2! · · ·m
lmlm!. Using the notation

λ ⊢ m to mean that λ is a partition of m, we may restate Burnside’s lemma for symmetric
groups in the following way.

Lemma 1. Let the symmetric group Sm act on the weighted set S so that weights are

constant on orbits. For each partition λ of m let fλ be the sum of the weights of the elements

of S fixed by a permutation of cycle type λ. Then the sum of the weights of the orbits of S
under Sm is

∑

λ⊢m fλ/zλ.

For our second lemma, we return to the general case of a finite group G acting on a
weighted set S (though we will only apply it to symmetric groups). We now assume that
each weight is a product of powers of variables. (In our application each weight will be a
power of x.)

Let M(S) be the set of multisets of elements of S. The action of G on S extends naturally
to an action on M(S). We define the weight of a multiset in M(S) to be the product of the
weights of its elements. As before, for any g ∈ G, we denote by fix(g) the sum of the weights
of the elements of S fixed by g. For any formal power series u in the variables that occur in
the weights, we denote by pn[u] the result of replacing each variable in u by its nth power.

Lemma 2. Let g be an element of G. Then the sum of the weights of the elements of M(S)
fixed by g is

(2) exp

( ∞
∑

m=1

pm[fix(g
m)]

m

)

.

Proof. Let Fg(S) be the sum of the weights of the elements of M(S) fixed by g and let Eg(S)
be the expression in (2). A multiset of elements of S is fixed by g if and only if it is a
multiset union of orbits of S under g (i.e., orbits of the subgroup of G generated by g). Thus
Fg(S) =

∏

O Fg(O) where O runs over the orbits of S under g, and it is easy to check that
Eg(S) =

∏

O Eg(O).
Thus it is sufficient to prove the lemma in the case in which g acts transitively on S. We

may assume without loss of generality that g acts as an n-cycle on the n-element set S, where
every weight is x. Then fix(gm) = nx if n divides m and fix(gm) = 0 otherwise. In this case
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we have

Eg(S) = exp

( ∞
∑

i=1

pni[fix(g
ni)]

ni

)

= exp

( ∞
∑

i=1

xni

i

)

=
1

1− xn
= Fg(S). �

3. Coding Trees

Following the terminology introduced in [11], we call a (k + 1)-clique in a k-tree a hedron

and we call a k-clique in a k-tree a front. We may think of a k-tree as made up of hedra
joined along fronts. A k-tree with n hedra has n+ k vertices, so we will count k-trees by the
number of hedra rather than the number of vertices.

A colored k-tree is a k-tree in which the vertices are colored in the colors 1, 2, . . . , k + 1
so that adjacent vertices are colored differently. Thus the k + 1 vertices of any hedron are
colored with all k+ 1 colors, and the k vertices of any front are colored in all but one of the
colors. It is not hard to see that a coloring of a k-tree is determined by its restriction to any
one of its hedra. (See Figure 5.) Then the symmetric group Sk+1 acts on colored k-trees by

1

2

2

3

2 1

Figure 5. A colored 2-tree

permuting the colors, and k-trees may be identified with orbits of colored k-trees under this
action.

We will label the hedra of k-trees. More precisely, a colored hedron-labeled k-tree with
hedron-label set L is a colored k-tree together with a bijection from the set of its hedra
to L. It is not hard to see that the only automorphism of a colored hedron-labeled k-tree
that preserves hedra and colors is the identity automorphism. (This is because any vertex is
determined by its color and a hedron that contains it.) Therefore we may ignore the labels
on the vertices.

We will encode colored hedron-labeled k-trees by certain (ordinary) trees that we call
coding trees (or k-coding trees if k needs to be specified). Coding trees have two kinds of
vertices: black vertices and colored vertices. Every edge joins a black vertex and a colored
vertex. Each colored vertex is colored in one of the colors 1, 2, . . . , k + 1 but is otherwise
unlabeled, and the black vertices are labeled. (The colored vertices correspond to the white
vertices of [11], which uses a related but different construction under the same name.) Every
black vertex has k + 1 colored neighbors, one of each color, but a colored vertex may have
any number of neighbors.

To construct a coding tree from a colored k-tree, we first color each front of the k-tree
with the unique color not assigned to any of its vertices. The coding tree then has a black
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vertex for each hedron of the k-tree (from which it takes its label) and a colored vertex for
each front of the k-tree (from which it takes its color), and a black vertex is adjacent to a
colored vertex if and only if the corresponding hedron contains the corresponding front.

Figure 6 shows colored versions of the 2-trees previously shown in Figure 2. Their associ-

1 1

2

3 3
1

2

1

2

1 1

2

3 3

3

2

1

2

Figure 6. Two colored 2-trees

ated 2-coding trees may be seen to be distinct in Figure 7.

2

1

31

2

1

3 1

2

21

3

2

3

1

3 1

2

Figure 7. The corresponding coding trees

It is not hard to see that this encoding is a bijection from colored hedron-labeled k-trees
to k-coding trees; the proof is essentially identical to that of Theorem 3.4 of [11].

The symmetric group Sn acts on colored hedron-labeled k-trees with hedron-label set [n]
by permuting the labels of the hedra, and Sn acts on k-coding trees with black vertex set
[n] by permuting the labels of the black vertices, and these actions are compatible with the
encoding of colored k-trees as coding trees. The orbits under the action of Sn are unlabeled

colored k-trees and coding trees. The symmetric group Sk+1 acts compatibly on colored k-
trees and on coding trees by permuting the colors. These actions of Sn and Sk+1 commute,
so Sk+1 acts compatibly1 on unlabeled colored k-trees and on coding trees, and the orbits
of unlabeled colored k-trees, which are simply unlabeled k-trees, are in bijection with orbits
of unlabeled coding trees under the action of Sk+1. Our goal then is to count orbits under
Sk+1 of unlabeled coding trees, which we call color-orbits of coding trees.

1This ‘equivariance’ of the action of Sk+1 can also be exploited for species-theoretic analysis; cf. [11].
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Before proceeding with the enumeration, we show how coding trees give a simple way to
explain the stability property for the numbers Kn,k apparent in Table 1.

Proposition 3. Let Kn,k be the number of k-trees with n+ k vertices. Then Kn,k−1 = Kn,k

for k ≥ n− 1.

Proof. We first note that Kn,k is the number of k-trees with n hedra, and is thus the number
of color-orbits of coding trees with n black vertices.

From any coding tree we may obtain a “pruned coding tree” by deleting its leaves, all
of which are colored vertices. In a pruned k-coding tree every leaf is black and every black
vertex has at most k+1 colored neighbors, whose colors are distinct integers from 1 to k+1.

From a pruned k-coding tree we can recover the original k-coding tree by adding a leaf of
color i adjacent to every black vertex with no neighbor of color i, for i from 1 to k + 1. But
every pruned (k− 1)-coding tree is also a pruned k-coding tree, so there is an injection from
color-orbits of (k − 1)-coding trees to color-orbits of k-coding trees. The only color-orbits
of k-coding trees not in the image of this injection will be those corresponding to pruned
coding trees with at least k + 1 different colors. In order for a pruned coding tree to have
k+1 different colors, it must have at least k+1 colored vertices. Now suppose that a pruned
coding tree has c colored vertices, where c ≥ k + 1. Since the colored vertices of a pruned
coding tree are not leaves, each has degree at least 2, and since every edge of the tree is
incident with one colored vertex, the tree has at least 2c edges, and therefore at least 2c+ 1
vertices. Since c vertices are colored, at least c + 1 ≥ k + 2 are black. Thus Kn,k−1 = Kn,k

unless n ≥ k + 2. �

It seems unlikely that there is any simple formula for the “stable k-tree numbers” 1, 1, 1,
2, 5, 15, 64, 342, 2344, . . . , which are listed in [1, A224917]. It seems to be a coincidence
that the second through sixth terms of this sequence are the first five Bell numbers.

We also note that coding trees explain the differences between the “stable k-tree numbers”
and the final non-stable number in the columns of Table 1.

Proposition 4. For n ≥ 4 we have

Kn,n−2 −Kn,n−3 = Kn−1,1.

Proof. In the terminology of the proof of Proposition 3, Kn,n−2 −Kn,n−3 counts color-orbits
of pruned (n− 2)-coding trees with n black vertices in which there are colored vertices of all
colors from 1 to n− 1.

In the proof of Proposition 3 we showed that a pruned coding tree with c colored vertices
must have at least c + 1 black vertices, with equality if and only if every colored vertex
has degree 2. It follows that the pruned coding trees whose color-orbits are counted by
Kn,n−2−Kn,n−3 have exactly n−1 colored vertices, all of degree 2, and all of different colors.

Since the colored vertices all have different colors, we can ignore colors in constructing the
color-orbits, and since each colored vertex has degree two, we can merge every colored vertex
with its two incident edges to obtain an ordinary unlabeled tree on the n black vertices; the
number of such objects is Kn−1,1 and the desired equality follows. �

4. A dissymmetry theorem

We now prove a dissymmetry theorem that reduces the problem of counting unlabeled
coding trees to that of counting rooted unlabeled coding trees.
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Lemma 5. Let n be a positive integer and let Wn be the set of coding trees with black vertex

set [n]. Let W ◦
n be the set of rooted coding trees obtained by rooting a tree in Wn at a colored

vertex, let W •
n be the set of rooted coding trees obtained by rooting a tree in Wn at a black

vertex, and let W ◦ •
n be the set of rooted coding trees obtained by rooting a tree in Wn at

an edge. Then there is a bijection Θ from W ◦
n ∪W •

n to Wn ∪W ◦ •
n that commutes with the

actions of Sn on vertex labels and of Sk+1 on colors.

Proof. Every coding tree has a unique center vertex, either black or colored, which is the
midpoint of every longest path in the tree, and the center is fixed by both group actions.
Let T be a rooted tree in W ◦

n ∪W •
n . If T is rooted at its center then we define Θ(T ) to be

the underlying unrooted tree of T . Otherwise, there is a unique path from the root r of T
to the center, and we take Θ(T ) to be the underlying tree of T rooted at the first edge on
the path from r to the center. It is easily seen that Θ is a bijection that commutes with the
actions of Sn and Sk+1. �

Since the bijection Θ of Lemma 5 commutes with the action of Sn on vertices, it is well-
defined on unlabeled coding trees, and its application to coding trees commutes with the
action of Sk+1, so it gives a corresponding bijection for color-orbits of coding trees, which
are equivalent to k-trees.

5. Counting unlabeled coding trees

From now on we work with unlabeled (but colored) coding trees. We define the weight of
a coding tree with n black vertices to be xn; then the generating function for a set of trees
is the sum of the weights of its elements.

We call a coding tree rooted at a black vertex a black-rooted tree and we call a coding tree
rooted at a colored vertex a colored-rooted tree. We call a colored-rooted tree with root of
color j a j-rooted tree.

Our next lemma follows directly from Lemma 5.

Lemma 6. Let U be the generating function for (unlabeled) color-orbits of coding trees, let

B be the generating function for color-orbits of black-rooted trees, let C be the generating

function for color-orbits of colored-rooted trees, and let E be the generating function for

color-orbits of coding trees rooted at an edge. Then

U = B + C −E.

It is clear that B, C, and E may also be interpreted in terms of rooted unlabeled k-trees.
Our goal in the remainder of this section is to compute the generating functions B, C,

and E appearing in Lemma 6.
Let us introduce some notation. For each π ∈ Sk+1 let Bπ = Bπ(x) be the generating

function for black-rooted trees that are fixed by π. It is clear that Bπ depends only on the
cycle type of π, so for any partition λ of k+1 we may set Bλ = Bπ, where π is a permutation
of cycle type λ.

For our decompositions we will need to consider a variation of black-rooted trees. If we
delete the root from a j-rooted tree, we obtain trees rooted at black vertices that are like
black-rooted trees, but in which the roots have neighbors of all colors except j. We call
these trees j-reduced black-rooted trees. If a j-reduced black-rooted tree is fixed by π then j
must be a fixed point of π, but as long as j is a fixed point of π, the generating function for
j-reduced black-rooted trees fixed by π depends only on the cycle type of π, and is zero if



COUNTING UNLABELED k-TREES 9

π has no fixed points. So for any permutation π ∈ Sk+1, we define Bπ = Bπ(x) to be the
generating function for j-reduced black-rooted trees fixed by π, where j is any fixed point of
π (and Bπ = 0 if π has no fixed points). For any partition λ of k + 1, we may define Bλ to
be Bπ where π is a permutation of [k + 1] of cycle type λ.

Similarly, if a colored-rooted tree with root of color j is fixed by π then j must be a fixed
point of π. For a permutation π of [k + 1], we define Cπ = Cπ(x) to be the generating
function for colored-rooted trees fixed by π with root of color j, where j is any fixed point
of π (and Cπ = 0 if π has no fixed points). For any partition λ of k + 1, we define Cλ to be
Cπ where π is a permutation of [k + 1] of cycle type λ. Note that Bλ and Cλ are zero if 1
is not a part of λ. It will be convenient in the subsequent discussion to define Bµ and Cµ

for µ a partition of k by Bµ = Bλ and Cµ = Cλ where λ is obtained from µ by adding an
additional part 1.

If λ is a partition, then by λi we mean the cycle type of πi, where π is a permutation of
cycle type λ. We note that each p-cycle of π contributes (p, i) cycles, each of length p/(p, i)
to πi, where (p, i) is the greatest common divisor of p and i.

We may now state our final result. Although our formula for U consists of functional
equations for a number of different power series, it is fairly easy to compute the coefficients
of these series by successive substitution.

Theorem 7. The generating function U for unlabeled k-trees is given by

U = B + C −E,

where

B =
∑

λ⊢k+1

Bλ/zλ,(3a)

C =
∑

µ⊢k

Cµ/zµ,(3b)

E =
∑

µ⊢k

BµCµ/zµ,(3c)

Bλ = x
∏

i

Cλi(xi),(3d)

Bµ = x
∏

i

Cµi(xi),(3e)

Cµ = exp

( ∞
∑

m=1

Bµm(xm)

m

)

.(3f)

In (3d), λ is a partition of k+1 and in (3e) and (3f), µ is a partition of k. In the products

in (3d) and (3e), i runs through the parts of λ and µ with multiplicities; i.e., if i occurs m
times as a part then i is taken m times in the product.

Proof. Formula (3a) follows directly from Lemma 1 (Burnside’s lemma).
The generating function C for color-orbits under Sk+1 of colored-rooted trees is the same

as the generating function for color-orbits under the action of Sk, permuting the colors 1
through k, of k + 1-rooted trees, since every color-orbit of colored-rooted trees contains a
k + 1-rooted tree. Then (3b) follows from Lemma 1.
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Similarly, the generating function E for color-orbits under Sk+1 of coding trees rooted
at an edge is the same as the generating function for color-orbits under the action of Sk,
permuting the colors 1 through k, of coding trees rooted at an edge incident with a vertex of
color k+1. Removing the root edge from such a tree leaves a k+1-rooted tree together with
a k+1-reduced black-rooted tree. Thus, if π ∈ Sk+1 fixes k+ 1, the generating function for
such pairs fixed by π is CπBπ, so (3c) follows.

Next, for π ∈ Sk+1 we find an equation for Bπ, which counts black-rooted trees fixed by π.
The root of such a tree has k + 1 children, one of each of the colors from 1 to k + 1. If we
delete the root, we are left with trees T1, . . . , Tk+1, where tree Tj is rooted at a vertex of
color j. Now suppose that j is in a cycle of π of length i. Then the orbit of Tj under π
consists of Tj , Tπ(j) = π(Tj), . . . , Tπi−1(j) = πi−1(Tj), and we must have πi(Tj) = Tj . Thus
to determine a black-rooted tree fixed by π, we choose from each cycle of π an arbitrary
element j, and take Tj to be a j-rooted tree that is fixed by πi, where i is the length of the
cycle of π containing j. Then Tπ(j), . . . , Tπi−1(j) are determined and all have the same weight
as Tj . The generating function for j-rooted trees fixed by πi is Cπi(x) (independently of the
choice of j), so the contribution to Bπ from a cycle of π of length i is Cπi(xi). Thus

(4) Bπ = x
∏

c

Cπ|c|(x|c|)

where c runs over the cycles of π and |c| is the size of the cycle c. Thus (3d) follows, and a
similar argument gives (3e).

Next we need to find a formula for Cπ. Since Cπ = 0 if π has no fixed points, we may
assume without loss of generality that k + 1 is a fixed point of π. Suppose that T is a
k + 1-rooted tree that is fixed by the permutation π. Removing the root from T leaves a
multiset of k + 1-reduced black-rooted trees that is fixed by π. Thus Cπ is the generating
function for these multisets, and applying Lemma 2 gives

Cπ = exp

( ∞
∑

m=1

Bπm(xm)

m

)

,

and (3f) follows. �

6. Counting trees

Here we consider in detail the case k = 1, where we are counting ordinary trees by the
number of edges. There are only two elements of S2, and two partitions of k + 1 = 2, only
one of which has 1 as a part.

We have

B1,1 = xC1(x)
2

B2 = xC1(x
2)

B1 = xC1(x)

C1 = exp

( ∞
∑

m=1

B1(x
m)

m

)

B =
x

2

(

C1(x)
2 + C1(x

2)
)

C = C1(x)
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E = xC1(x)
2.

Here everything can be expressed in terms of C1, which is the generating function for vertex-
rooted unlabeled trees by the number of edges, and we can simplify the result to

C1 = exp

( ∞
∑

m=1

xmC1(x
m)

m

)

,(5a)

U = C1(x)−
x

2

(

C1(x)
2 − C1(x

2)
)

,(5b)

which is equivalent to the well-known formula found by Otter [21]. (Unlabeled trees had
been counted earlier using different methods by Cayley [5, 6].)

We sketch here a version of Otter’s dissimilarity characteristic interpretation of (5b), as in
the next section we will discuss a related, but more complicated, dissimilarity characteristic
formula for 2-trees.

We define a symmetry edge of a tree to be an edge e such that some automorphism of
the tree reverses the endpoints of e. We say that two vertices u and v of a tree are similar

if there is some automorphism of the tree that takes u to v, and similar edges are defined
analogously. Otter’s dissimilarity characteristic theorem is the following.

Lemma 8. The number of dissimilar vertices of a tree (i.e., the number of equivalence classes

under similarity) is one more than the number of dissimilar edges that are not symmetry

edges.

Proof. Let T be a tree. Then T has a center which is either a vertex or an edge and is
fixed by every automorphism of T . To each vertex v that is neither a center vertex nor an
endpoint of a center edge we associate the first edge on the path from v to the center. This
is an equivariant bijection (with respect to the automorphism group of the tree) from the
vertices of T to the edges of T other than center vertices, center edges, and vertices of center
edges, and so among the paired vertices and edges there are as many dissimilar vertices as
edges. Then the unpaired vertices and edges consist of one of the following: (i) a center
vertex; (ii) a center edge which is not a symmetry edge, and its two dissimilar endpoints;
(iii) a center edge which is a symmetry edge, and its two similar endpoints. In each case,
among the unpaired vertices and edges the number of dissimilar vertices is one more than
the number of dissimilar non-symmetry edges. �

As a consequence, for any unlabeled tree, the number of dissimilar ways to root it at a
vertex is one more than the number of dissimilar ways to root it at a non-symmetry edge.
The generating function for unlabeled rooted trees is C1(x) and the generating function for
unlabeled trees rooted at a non-symmetry edge is 1

2
x(C1(x)

2 − C1(x
2)), so their difference

counts every (unrooted) tree once.
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7. Counting 2-trees

Next we look in detail at the case k = 2. Here we have

B1,1,1 = xC3
1,1

B2,1 = xC2(x)C1,1(x
2)

B3 = xC1,1(x
3)

B1,1 = xC1,1(x)
2

B2 = xC1,1(x
2)

C1,1 = exp

( ∞
∑

m=1

B1,1(x
m)

m

)

C2 = exp

(

∑

m odd

B2(x
m)

m
+

∑

m even

B1,1(x
m)

m

)

B =
x

6

(

C1,1(x)
3 + 3C1,1(x

2)C2(x) + 2C1,1(x
3)
)

C = 1
2
C1,1 +

1
2
C2

E =
x

2

(

C1,1(x)
3 + C1,1(x

2)C2(x)
)

.

These formulas simplify to

(6) U = C − 1
3
x
(

C3
1,1 − C1,1(x

3)
)

, with C = 1
2
(C1,1 + C2),

where

C1,1 = exp

( ∞
∑

m=1

xm

m
C1,1(x

m)2
)

and

C2 = exp

(

∑

m odd

xm

m
C1,1(x

2m) +
∑

m even

xm

m
C1,1(x

m)2
)

.

We can also interpret (6) by a dissimilarity theorem, and this approach could be used to
give a shorter self-contained derivation of the generating function for 2-trees. It is not hard
to see that C counts (unlabeled) 2-trees rooted at an edge (by the number of triangles) and
that C1,1 counts 2-trees rooted at a directed edge.

For any (labeled) 2-tree T , a directed triangle of T is a cyclic orientation of a triangle
of T . A symmetry triangle is a directed triangle whose directed edges are all in the same
orbit under the automorphism group of T . A nonsymmetry triangle is a directed triangle
that is not a symmetry triangle. The generating function for 2-trees rooted at a symmetry
triangle is xC1,1(x

3), so the generating function for 2-trees rooted at a nonsymmetry triangle
is 1

3
x(C3

1,1 − C1,1(x
3)). (See Figure 8.)

Then just as Otter’s formula (5b) follows from Lemma 8, formula (6) follows from a
dissimilarity characteristic theorem for 2-trees:

Lemma 9. The number of dissimilar edges of a 2-tree is one more than the number of

dissimilar nonsymmetry triangles.
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Figure 8. A nonsymmetry-triangle-rooted 2-tree

Proof. Let T be a 2-tree. Then T has a center which is either an edge or a triangle and is
fixed by every automorphism of T . Let e be an edge of T that is neither a center edge nor
an edge of a center triangle. We will associate to e a nonsymmetry triangle of T .

There is a “path” from e to the center passing alternatingly through edges and triangles
that starts at e, enters a triangle ∆ containing e and then visits another edge f of ∆ (which
may be the center). Then we associate to e the triangle ∆ oriented so that edge e is followed
by edge f . (See Figure 9 for an example in which the center is the edge f .)

f

e

f e

Figure 9. Edges to directed triangles (with centers labeled f)

The only unpaired edges and directed triangles are center edges, edges of center triangles,
and center triangles. We consider four cases: (i) the center is an edge; (ii) the center is a
triangle in which all three edges are similar; (iii) the center is a triangle with two dissimilar
edges; and (iv) the center is a triangle with three dissimilar edges. In each case the number of
dissimilar unpaired edges is one more than the number of dissimilar unpaired nonsymmetry
triangles: In case (i) there is one unpaired edge and no unpaired directed triangle; in case
(ii) there are three unpaired edges, all of which are similar, and thus one dissimilar unpaired
edge, and no unpaired nonsymmetry triangles; in case (iii) there are two dissimilar unpaired
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edges and two unpaired nonsymmetry triangles which are similar; and in case (iv) there are
three dissimilar unpaired edges and two dissimilar unpaired directed triangles. �

Harary and Palmer [12] counted 2-trees with the help of the following dissimilarity charac-
teristic theorem: In a 2-tree, let q∗ be the number of dissimilar edges, let r∗ be the number
of dissimilar triangles, let s1 be the number of dissimilar triangles with two similar edges,
let s2 be the number of dissimilar triangles with all three edges similar, and let s = s1 + 2s2.
Then q∗ + s− 2r∗ = 1.

It is not difficult to see that the number of dissimilar nonsymmetry triangles in a 2-tree
is 2r∗ − s, so Harary and Palmer’s dissimilarity characteristic theorem is equivalent to ours.
They applied their dissimilarity characteristic theorem to derive a more complicated formula
for the generating function for 2-trees:

L(x) + s1(x) + 2s2(x)− 2△(x),

which is equal to our U(x)−1, where in our notation, L(x) = C(x)−1, s1(x) = x
(

C1,1(x
2)C2(x)−

C2(x
3)
)

, s2(x) = xC(x3), and △(x) = B(x). They expressed these series in terms of aux-
iliary series M1(x), N1(x), M(x), and N(x), which in our notation are M1(x) = xC1,1(x

2),
N1(x) =

1
2
x
(

C1,1(x)
2 − C1,1(x

2)
)

, M(x) = C2(x)− 1, and N(x) = 1
2

(

C1,1(x)− C2(x)
)

.

There are formulas similar to (5b) and (6) for all k, which we can find by expressing U in
terms of the Cµ. For k = 3 the formula is

U = C − x
(

1
8
C1,1,1(x)

4 + 1
4
C1,1,1(x

2)C2,1(x)
2 − 1

8
C1,1,1(x

2)2 − 1
4
C1,1,1(x

4)
)

and for k = 4 it is

U = C − x
(

1
30
C1,1,1,1(x)

5 + 1
6
C1,1,1,1(x

3)C3,1(x)
2 + 1

6
C1,1,1,1(x

2)C2,1,1(x)
3

− 1
6
C2,1,1(x

3)C3,1(x
2)− 1

5
C1,1,1,1(x

5)
)

.

Although (6), as noted earlier, can be used to give a shorter proof of the formula for 2-trees,
it does not seem likely that these formulas can be used to simplify the counting of k-trees
for k > 2.

We note that a dissimilarity characteristic theorem for 3-trees, analogous to that of Harary
and Palmer [12] for 2-trees, has been given by Liang and Liu [19], but they did not use it to
count 3-trees.
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