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Abstract. In this paper we investigate some new problems in additive combi-

natorics. Our problems mainly involve permutations (or circular permutations)
a1, . . . , an of n distinct numbers or elements of an additive abelian group with

adjacent sums ai + ai+1 (or differences ai − ai+1 or distances |ai − ai+1|) pair-

wise distinct. For any subset A of an additive torsion-free abelian group G with
|A| = n > 3, we show that there is a numbering a1, . . . , an of the elements of A

such that

a1+a2+a3, a2+a3+a4, . . . , an−2+an−1+an, an−1+an+a1, an+a1+a2

are pairwise distinct. We pose 18 open conjectures for further research; for

example, we conjecture that the above assertion holds for any abelian group G.

1. Introduction

Additive combinatorics is an active field involving both number theory and
combinatorics. For an excellent introduction to problems and results in this
fascinating field, one may consult Tao and Vu [TV]. See also Alon [A] for a
useful tool called Combinatorial Nullstellensatz. In this paper we study some
new problems in additive combinatorics, they involve some special kinds of
permutations or circular permutations.

Now we present our basic results.

Theorem 1.1. Let a1, . . . , an be a monotonic sequence of n distinct real num-
bers. Then there is a permutation b1, . . . , bn of a1, . . . , an with b1 = a1 such
that

|b1 − b2|, |b2 − b3|, . . . , |bn−1 − bn|

are pairwise distinct.

Remark 1.1. Theorem 1.1 is the starting point of our topics in this paper.
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Corollary 1.1. There is a circular permutation q1, . . . , qn of the first n primes
p1, . . . , pn with q1 = p1 = 2 and qn = pn such that the n distances

|q1 − q2|, |q2 − q3|, . . . , |qn−1 − qn|, |qn − q1|

are pairwise distinct.

Proof. This holds trivially in the case n = 1. For n > 1, by Theorem 1.1 there is
a permutation −qn,−qn−1, . . . ,−q2 of −pn,−pn−1, . . . ,−p2 with qn = pn such
that |− qn + qn−1|, . . . , |− q3+ q2| are pairwise distinct. Set q1 = p1 = 2. Then
q1, q2, . . . , qn is a permutation of p1, p2, . . . , pn and it meets our requirement
since q1−q2 = 2−q2 and qn−q1 = pn−2 are both odd while those qi−qi+1 (1 <
i < n) are even. �

Theorem 1.2. (i) For any integer n > 3, there is a circular permutation
i0, . . . , in of 0, . . . , n with i0 = 0 and in = n such that all the n + 1 adjacent
differences i0 − i1, i1 − i2, . . . , in−1 − in, in − i0 are pairwise distinct.

(ii) An integer n > 1 is even if and only if there is a permutation i1, . . . , in
of 1, . . . , n with

i1 − i2, i2 − i3, . . . , in−1 − in

pairwise distinct modulo n.

Remark 1.2. In contrast with Theorem 1.2(i), for any n > 2 distinct integers
a1 < . . . < an we clearly have

a1 + a2 < a2 + a3 < . . . < an−1 + an.

On Sept. 13, 2013 the author asked his students the following question: When
an+a1 = ai+ai+1 for some 1 6 i < n, how to construct a suitable permutation
b1, . . . , bn of a1, . . . , an such that b1 + b2, b2 + b3, . . . , bn−1 + bn, bn + b1 are
pairwise distinct ? The author’s PhD student Dianwang Hu suggested that
it suffices to take (b1, . . . , bn) = (a1, . . . , ai, ai+2, ai+1, ai+3, . . . , an). But this
does not work for i = n − 2. If i > 2, then the permutation (b1, . . . , bn) =
(a1, . . . , ai−2, ai, ai−1, ai+1, ai+2, . . . , an) meets the requirement. The case n =
3 is trivial. For n = 4, the permutation (a1, a2, a4, a3) works for our purpose
since a1 + a2 < a3 + a1 < a2 + a4 < a4 + a3.

Theorem 1.3. For any n > 3 distinct elements a1, a2, . . . , an of a torsion-free
abelian group G, there is a permutation b1, . . . , bn of a1, . . . , an such that all
the n sums

b1 + 2b2, b2 + 2b3, . . . , bn−1 + 2bn, bn + 2b1

are pairwise distinct.
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Theorem 1.4. For any n > 3 distinct elements a1, a2, . . . , an of a torsion-free
abelian group G, there is a permutation b1, . . . , bn of a1, . . . , an such that all
the n sums

b1 + b2 + b3, b2 + b3 + b4, . . . , bn−2 + bn−1 + bn, bn−1 + bn + b1, bn + b1 + b2

are pairwise distinct.

Theorem 1.5. For any odd prime power n > 1, there are integers a1, a2, . . . , aϕ(n)
such that both {a1, . . . , aϕ(n)} and

{a1 − a2, a2 − a3, . . . , aϕ(n)−1 − aϕ(n), aϕ(n) − a1}

are reduced systems of residues modulo n, where ϕ is Euler’s totient function.

Remark 1.3. We conjecture that this holds for any odd number n > 1.

Theorem 1.6. Let Fq be a finite field with q = 2n + 1 > 266. Set S = {a2 :
a ∈ F∗

q = Fq \ {0}} and T = F∗

q \ S. Then, there is a circular permutation
a1, . . . , an of all the n elements of S such that

{a1 + a2, a2 + a3, . . . , an−1 + an, an + a1} = S (or T ).

Also, there is a circular permutation b1, . . . , bn of all the n elements of S such
that

{b1 − b2, b2 − b3, . . . , bn−1 − bn, bn − b1} = S (or T ).

Remark 1.4. Via a complicated reasoning, the number 266 in Theorem 1.6 can be
reduced to 13. In the initial version of this paper, the author posed the following
conjecture weaker than Theorem 1.6 which was later confirmed by N. Alon and
J. Bourgain [AB]: For any prime p = 2n+1 > 13, there is a circular permutation
a1, . . . , an of the (p− 1)/2 = n quadratic residues modulo p such that all the n
adjacent sums a1+a2, a2+a3, . . . , an−1+an, an+a1 are quadratic residues (or
quadratic nonresidues) modulo p. Also, for any prime p = 2n+1 > 5, there is a
circular permutation b1, . . . , bn of the (p− 1)/2 = n quadratic residues modulo
p such that all the n adjacent differences b1 − b2, b2 − b3, . . . , bn−1 − bn, bn − b1
are quadratic residues (or quadratic nonresidues) modulo p.

We are going to prove Theorem 1.1-1.6 in the next section, and pose some
conjectures in Section 3 for further research. We have posted to OEIS some
sequences (cf. [S13]) related to our conjectures.
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2. Proofs of Theorems 1.1-1.4

Proof of Theorem 1.1. If a1 > a2 > . . . > an, then −a1 < −a2 < . . . < −an.
So we may assume that a1 < a2 < . . . < an without loss of generality.

If n = 2k is even, then the permutation

(b1, . . . , bn) = (a1, a2k, a2, a2k−1, . . . , ak−1, ak+2, ak, ak+1)

meets our purpose since

a2k−a1 > a2k−a2 > a2k−1−a2 > . . . > ak+2−ak−1 > ak+2−ak > ak+1−ak.

When n = 2k − 1 is odd, the permutation

(b1, . . . , bn) = (a1, a2k−1, a2, a2k−2, . . . , ak−1, ak+1, ak)

meets the requirement since

a2k−1 − a1 > a2k−1 − a2 > a2k−2 − a2 > . . . > ak+1 − ak−1 > ak+1 − ak.

This concludes the proof. �

Proof of Theorem 1.2. (i) We first assume that n = 2k is even. If k is even,
then the circular permutation

(i0, . . . , in) = (0, 2k − 1, 1, 2k− 2, 2, . . . , k + 1, k − 1, k, 2k)

meets the requirement since

−(2k − 1), 2k − 2, −(2k − 3), 2k − 4, . . . , 2, −1, −k, 2k

are pairwise distinct. If k is odd, then it suffices to choose the circular permu-
tation

(i0, . . . , in) = (0, 1, 2k− 1, 2, 2k− 2, . . . , k − 1, k + 1, k, 2k)

since
−1, −(2k − 2), 2k − 3, −(2k − 4), . . . , −2, 1, −k, 2k

are pairwise distinct.
Now we handle the case n = 2k + 1 ≡ 1 (mod 2). If k is even, then the

circular permutation

(i0, . . . , in) = (0, 2k, 1, 2k− 1, 2, 2k− 2, . . . , k − 1, k + 1, k, 2k+ 1)

meets the requirement since

−2k, 2k − 1, −(2k − 2), 2k − 3, −(2k − 4), . . . , −2, 1, −(k + 1), 2k + 1
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are pairwise distinct. If k is odd, then it suffices to choose the circular permu-
tation

(i0, . . . , in) = (0, k, k+2, k+1, k−1, k+3, k−2, k+4, k−3, . . . , 2k−1, 2, 2k, 1, 2k+1)

since

−k, −2, 1, 2, −4, 5, . . . , −(2k − 2), 2k − 1, −2k, 2k + 1

are pairwise distinct.
(ii) Suppose that i1, . . . , in is a permutation of 1, . . . , n with the n−1 integers

ik − ik+1 (0 < k < n) pairwise distinct modulo n. Then

{ik − ik+1 mod n : k = 1, . . . , n− 1} = {r mod n : r = 1, . . . , n− 1}

and also

{ik+1 − ik mod n : k = 1, . . . , n− 1} = {r mod n : r = 1, . . . , n− 1}.

Therefore

n−1∑

k=1

(ik − ik+1) ≡
n−1∑

r=1

r ≡
n−1∑

k=1

(ik+1 − ik) (mod n)

and hence n | 2(i1 − in) which implies that n is even.
Now assume that n > 1 is even. Write n = 2m. Then

(i1, . . . , in) = (m,m− 1, m+ 1, m− 2, m+ 2, . . . , 2, 2m− 2, 1, 2m− 1, 2m)

is a permutation of 1, . . . , n with the required property.
In view of the above, we have completed the proof of Theorem 1.2. �

Proof of Theorem 1.3. The subgroup of G generated by a1, . . . , an is a finitely
generated torsion-free abelian group. So we may simply assume that G = Zr

for some positive integer r without any loss of generality. It is well known that
there is a linear ordering 6 on G = Zr such that for any a, b, c ∈ G if a < b then
−b < −a and a+c < b+c. For convenience we suppose that a1 < a2 < . . . < an
without any loss of generality.

Clearly a1 + 2a2 < a2 + 2a3 < . . . < an−1 + 2an. Thus the permutation
(b1, . . . , bn) = (a1, . . . , an) meets the requirement if an + 2a1 6= ai + 2ai+1 for
all i = 1, . . . , n− 1.

Below we assume that an + 2a1 = ai + 2ai+1 for some 0 < i < n. Note that
1 6 i 6 n− 2 since an−1 + 2an − (an + 2a1) = an−1 + an − 2a1 > 0.

Case 1. i = 1.
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In this case, an + 2a1 = a1 + 2a2 and hence a1 + a3 < a1 + an = 2a2. The
permutation (b1, . . . , bn) = (a1, a3, a2, a4, . . . , an) meets our purpose since

an + 2a1 = a1 + 2a2 < a1 + 2a3 < a3 + 2a2 < a2 + 2a4 < . . . < an−1 + 2an.

Case 2. i > 1 and n = 4.
In this case, a4+2a1 = a2+2a3 and we may take the permutation (b1, b2, b3, b4) =

(a2, a1, a3, a4) since

a2 + 2a1 < a1 + 2a3 < a2 + 2a3 = a4 + 2a1 < a4 + 2a2 < a3 + 2a4.

Case 3. i > 2, n > 5, and ai−1, ai, ai+1 don’t form an AP (arithmetic
progression).

In this case, the permutation

(b1, . . . , bn) = (a1, . . . , ai−1, ai+1, ai, ai+2, . . . , an)

works for our purpose since

min{ai−1 + 2ai+1, ai+1 + 2ai}

<max{ai−1 + 2ai+1, ai+1 + 2ai} < ai + 2ai+1 = an + 2a1

<ai + 2ai+2 < . . . < an−1 + 2an.

Case 4. 2 6 i < n− 2 and ai − ai−1 = ai+1 − ai 6= ai+2 − ai+1.
In this case, the permutation

(b1, . . . , bn) = (a1, . . . , ai−1, ai, ai+2, ai+1, ai+3, . . . , an)

works for our purpose since

ai−1 + 2ai <ai + 2ai+1 = an + 2a1

<min{ai + 2ai+2, ai+2 + 2ai+1} < max{ai + 2ai+2, ai+2 + 2ai+1}

<ai+1 + 2ai+3 < . . . < an−1 + 2an.

Case 5. 2 6 i < n− 2, and ai−1, ai, ai+1, ai+2 form an AP.
In this case, the permutation

(b1, . . . , bn) = (a1, . . . , ai−1, ai+2, ai+1, ai, ai+3, . . . , an)

works for our purpose since

ai+1 + 2ai <ai + 2ai+1 = an + 2a1

<ai−1 + 2ai+2 (since ai − ai−1 = ai+2 − ai+1 < 2(ai+2 − ai+1))

<ai+2 + 2ai+1 = ai + 2ai+2 < ai + 2ai+3 < . . . < an−1 + 2an.
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Case 6. i = n− 2 > 3 and ai+1 − ai = ai − ai−1 6= ai−1 − ai−2.
In this case, the permutation

(b1, . . . , bn) = (a1, . . . , ai−2, ai, ai−1, ai+1, ai+2)

works for our purpose since

min{ai−2 + 2ai, ai + 2ai−1}

<max{ai−2 + 2ai, ai + 2ai−1} < ai−1 + 2ai

<ai−1 + 2ai+1 < ai + 2ai+1 = an + 2a1

<ai+1 + 2ai+2 = an−1 + 2an.

Case 7. i = n− 2 > 3, and ai−2, ai−1, ai, ai+1 form an AP.
In this case, the permutation

(b1, . . . , bn) = (a1, . . . , ai−2, ai+1, ai, ai−1, ai+2)

works for our purpose since

ai−2 + 2ai−1 <ai + 2ai−1

<ai−2 + 2ai+1 (since ai − ai−2 = ai+1 − ai−1 < 2(ai+1 − ai−1))

<ai+1 + 2ai = ai−1 + 2ai+1 < ai + 2ai+1 = an + 2a1

<ai−1 + 2ai+2 = an−3 + 2an.

Combining the above we have finished the proof of Theorem 1.3. �

Proof of Theorem 1.4. As in the proof of Theorem 1.3, we may simply assume
that G = Zr for some positive integer r without any loss of generality. It is well
known that there is a linear ordering 6 on G = Zr such that for any a, b, c ∈ G
if a < b then −b < −a and a + c < b + c. For convenience we suppose that
a1 < a2 < . . . < an without any loss of generality.

If n = 4, then the permutation (b1, b2, b3, b4) = (a1, a2, a3, a4) meets the
requirement since

a1 + a2 + a3 < a4 + a1 + a2 < a3 + a4 + a1 < a2 + a3 + a4.

Below we assume n > 5.
Clearly

a1 + a2 + a3 < a2 + a3 + a4 < . . . < an−2 + an−1 + an.

For convenience we set

S := {ai−1 + ai + ai+1 : i = 2, . . . , n− 1}.
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Note that

minS = a1+a2+a3 < an+a1+a2 < an−1+an+a1 < maxS = an−2+an−1+an.

If {an + a1 + a2, an−1 + an + a1}∩S = ∅, then the permutation (b1, . . . , bn) =
(a1, . . . , an) meets the requirement. Obviously

−an < −an−1 < . . . < −a2 < −a1 and (−a2)+(−a1)+(−an) = −(a1+a2+an).

So, it suffices to find a desired permutation b1, . . . , bn of a1, . . . , an under the
condition that an−1 + an + a1 ∈ S.

Case 1. n = 5.
As a4 + a5 + a1 ∈ S, we have a4 + a5 + a1 = a2 + a3 + a4 and we may take

(b1, . . . , b5) = (a1, a2, a3, a5, a4) since

a1+a2+a3 < a4+a1+a2 < a2+a3+a4 = a5+a4+a1 < a2+a3+a5 < a3+a5+a4.

Case 2. n = 6.
As a5 + a6 + a1 ∈ S, the number a5 + a6 + a1 is equal to a2 + a3 + a4 or

a3 + a4 + a5. If a5 + a6 + a1 = a2 + a3 + a4, then we may take (b1, . . . , b6) =
(a1, a2, a5, a3, a4, a6) since

a1 + a2 + a5 <a6 + a1 + a2 < a4 + a6 + a1 < a5 + a6 + a1 = a2 + a3 + a4

<a2 + a5 + a3 < a5 + a3 + a4 < a3 + a4 + a6.

If a5 + a6 + a1 = a3 + a4 + a5, then a6 + a1 = a3 + a4 and we may take
(b1, . . . , b6) = (a1, a2, a3, a4, a6, a5) since

a1 + a2 + a3 <a5 + a1 + a2 < a6 + a1 + a2 = a2 + a3 + a4

<a3 + a4 + a5 = a6 + a5 + a1 < a3 + a4 + a6 < a4 + a6 + a5.

Case 3. n = 7.
As a6 + a7 + a1 ∈ S, the number a6 + a7 + a1 is equal to a2 + a3 + a4 or

a3+a4+a5 or a4+a5+a6. If a6+a7+a1 = a4+a5+a6, then a7+a1 = a4+a5
and we may take (b1, . . . , b7) = (a2, a1, a4, a5, a3, a6, a7) since

a2 + a1 + a4 <a1 + a4 + a5 = a1 + a1 + a7 < a7 + a2 + a1

<a7 + a1 + a3 = a4 + a5 + a3 < a5 + a3 + a6

<a4 + a5 + a6 = a1 + a6 + a7 < a2 + a6 + a7 < a3 + a6 + a7.

If a6+a7+a1 = a2+a3+a4, then we may take (b1, . . . , b7) = (a1, a2, a3, a5, a4, a6, a7)
since

a1 + a2 + a3 <a7 + a1 + a2 < a5 + a7 + a1 < a6 + a7 + a1 = a2 + a3 + a4

<a2 + a3 + a5 < a3 + a5 + a4 < a5 + a4 + a6 < a4 + a6 + a7.
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If a6+a7+a1 = a3+a4+a5 and a5+a6+a1 6= a2+a3+a4, then a6+a1 < a3+a4
and we may take (b1, . . . , b7) = (a1, a2, a3, a4, a7, a5, a6) since

a1 + a2 + a3 <a6 + a1 + a2 < min{a5 + a6 + a1, a2 + a3 + a4}

<max{a5 + a6 + a1, a2 + a3 + a4} < a1 + a6 + a7 = a3 + a4 + a5

<a3 + a4 + a7 < a4 + a7 + a5 < a7 + a5 + a6.

If a6+a7+a1 = a3+a4+a5 and a5+a6+a1 = a2+a3+a4, then a7+a1 < a3+a4
and we may take (b1, . . . , b7) = (a1, a2, a3, a4, a6, a5, a7) since

a1 + a2 + a3 <a7 + a1 + a2 < a5 + a6 + a1 = a2 + a3 + a4

<a5 + a7 + a1 < a3 + a4 + a5 = a6 + a7 + a1

<a3 + a4 + a6 < a4 + a6 + a5 < a6 + a5 + a7.

Case 4. n > 7 and an + a1 + a2 6∈ S.
In this case, there is a unique 2 < i < n − 1 with ai−1 + ai + ai+1 =

an−1 + an + a1. If i < n− 3, then we may take

(b1, . . . , bn) = (a1, . . . , ai−2, ai−1, ai, ai+2, ai+1, ai+3, . . . , an)

because

ai−2 + ai−1 + ai <ai−1 + ai + ai+1 = an−1 + an + a1 < ai−1 + ai + ai+2

<ai + ai+2 + ai+1 < ai+2 + ai+1 + ai+3

<ai+1 + ai+3 + ai+4 < . . . < an−2 + an−1 + an.

When i ∈ {n−2, n−3}, we have i > n−3 > 4, hence in the case a1+a2+an 6=
ai−4 + ai−3 + ai−1 we may take

(b1, . . . , bn) = (a1, . . . , ai−4, ai−3, ai−1, ai−2, ai, ai+1, ai+2, . . . , an)

because

ai−4 + ai−3 + ai−2 <ai−4 + ai−3 + ai−1 < ai−3 + ai−1 + ai−2

<ai−1 + ai−2 + ai < ai−2 + ai + ai+1

<ai−1 + ai + ai+1 = an−1 + an + a1

<ai + ai+1 + ai+2 < . . . < an−2 + an−1 + an

and

an + a1 + a2 <(ai−2 + an−1 − ai+1) + an + a1

<ai−2 − ai+1 + (ai−1 + ai + ai+1) = ai−1 + ai−2 + ai.
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If i ∈ {n− 2, n− 3} and a1 + a2 + an = ai−4 + ai−3 + ai−1, then we may take

(b1, . . . , bn) = (a1, . . . , ai−4, ai−3, ai, ai−2, ai−1, ai+1, ai+2, . . . , an)

because

an + a1 + a2 =ai−4 + ai−3 + ai−1

<ai−4 + ai−3 + ai < ai−3 + ai + ai−2 < ai + ai−2 + ai−1

<ai−2 + ai−1 + ai+1 < ai−1 + ai + ai+1 = an−1 + an + a1

<ai−1 + ai+1 + ai+2 < . . . < an−2 + an−1 + an.

Case 5. n > 7 and an + a1 + a2 ∈ S.
In this case, for some 2 < j < i 6 n− 2 we have

an−1 + an + a1 = ai−1 + ai + ai+1 > aj−1 + aj + aj+1 = an + a1 + a2.

If j + 1 = i, then

an−1 − a2 =(an−1 + an + a1)− (an + a1 + a2)

=ai−1 + ai + ai+1 − (ai + ai−1 + ai−2) = ai+1 − ai−2

which is impossible since i > 4 and n > 6.
If i− j > 5, then the permutation (b1, . . . , bn) given by

(a1, . . . , aj−1, aj, aj+2, aj+1, aj+3, . . . , ai−3, ai−1, ai−2, ai, ai+1, . . . , an)

meets the requirement since

aj−1 + aj + aj+1 = an + a1 + a2 < aj−1 + aj + aj+2

< aj + aj+2 + aj+1 < aj+2 + aj+1 + aj+3

< . . . < ai−3 + ai−1 + ai−2 < ai−1 + ai−2 + ai

< ai−2 + ai + ai+1 < ai−1 + ai + ai+1 = an−1 + an + a1

< ai + ai+1 + ai+2 < . . . < an−2 + an−1 + an.

If i− j = 5, then j + 4 = i− 1 and the permutation

(a1, . . . , aj−1, aj, aj+2, aj+1, ai−1, ai−2, ai, ai+1, . . . , an)

meets the requirement. If i− j = 4, then the permutation

(a1, . . . , aj−1, aj, aj+2, aj+3, aj+1, ai, ai+1, . . . , an)
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meets the requirement since

aj−1 + aj + aj+1 =an + a1 + a2

<aj−1 + aj + aj+2 < aj + aj+2 + aj+3

<aj+2 + aj+3 + aj+1 < aj+3 + aj+1 + ai

<aj+1 + ai + ai+1 < ai−1 + ai + ai+1 = an−1 + an + a1

<ai + ai+1 + ai+2 < . . . < an−2 + an−1 + an.

If i− j = 3, then the permutation

(a1, . . . , aj−1, aj, aj+2, aj+1, ai, ai+1, . . . , an)

meets the requirement since

aj−1 + aj + aj+1 =an + a1 + a2

<aj−1 + aj + aj+2 < aj + aj+2 + aj+1

<aj+2 + aj+1 + ai = ai−1 + ai−2 + ai < ai−2 + ai + ai+1

<ai−1 + ai + ai+1 = an−1 + an + a1

<ai + ai+1 + ai+2 < . . . < an−2 + an−1 + an.

If j > 4 and i = j + 2, then the permutation (b1, . . . , bn) given by

(a1, . . . , aj−3, aj−1, aj−2, aj+1, aj, ai, ai+1, ai+2, . . . , an)

meets the requirement since

aj−4 + aj−3 + aj−1 < aj−3 + aj−1 + aj−2 < aj−1 + aj−2 + aj+1

< aj−2 + aj+1 + aj < aj−1 + aj + aj+1 = an + a1 + a2

< aj+1 + aj + ai < aj + ai + ai+1

< ai−1 + ai + ai+1 = an−1 + an + a1 < ai + ai+1 + ai+2.

If i = j + 2 6 n− 4, then the permutation (b1, . . . , bn) given by

(a1, . . . , aj−2, aj−1, aj, ai, ai−1, ai+2, ai+1, ai+3, ai+4, . . . , an)

meets the requirement since

aj−2 + aj−1 + aj < aj−1 + aj + aj+1 = an + a1 + a2

< aj−1 + aj + ai < aj + ai + ai−1

< ai−1 + ai + ai+1 = an−1 + an + a1

< ai + ai−1 + ai+2 < ai−1 + ai+2 + ai+1

< ai+2 + ai+1 + ai+3 < ai+1 + ai+3 + ai+4

< . . . < an−2 + an−1 + an.
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If i > n−3, j 6 4 and i−j = 2, then 2 = i−j > n−3−4 and hence n ∈ {8, 9}.
For n = 8, we need to consider the case i = 6 and j = 4. As a8 + a1 + a2 =

a3 + a4 + a5 and a7 + a8 + a1 = a5 + a6 + a7, we have a8 + a1 = a5 + a6 =
a3 + a4 + a5 − a2. If 2a5 6= a4 + a7, then a5 + a8 + a1 = 2a5 + a6 6= a4 + a6 + a7
and hence we may take the permutation

(b1, . . . , b8) = (a1, a2, a3, a4, a6, a7, a5, a8)

since

a1 + a2 + a3 < a2 + a3 + a4 < a3 + a4 + a5 = a8 + a1 + a2 < a3 + a4 + a6

< min{a4 + a6 + a7, a5 + a8 + a1} < max{a4 + a6 + a7, a5 + a8 + a1}

< a6 + a7 + a5 = a7 + a8 + a1 < a7 + a5 + a8.

If 2a5 = a4 + a7, then a6 + a8 + a1 = a5 +2a6 > a4 + a5 + a7 and we may take
the permutation

(b1, . . . , b8) = (a1, a2, a3, a4, a5, a7, a8, a6)

since

a1 + a2 + a3 < a1 + a3 + a4 = a1 + a2 + a6 < a2 + a3 + a4

< a3 + a4 + a5 = a8 + a1 + a2 < a4 + a5 + a7 < a6 + a8 + a1

< a5 + a7 + a8 < a7 + a8 + a6.

When n = 8, i = 5 and j = 3, it suffices to apply the result for i = 6 and j = 4
to the sequence

a′1 = −a8 <a′2 = −a7 < a′3 = −a6 < a′4 = −a5

<a′5 = −a4 < a′6 = −a3 < a′7 = −a2 < a′8 = −a1

since a′7 + a′8 + a′1 = −(a1 + a2 + a8) = −(a2 + a3 + a4) = a′5 + a′6 + a′7 and
a′8 + a′1 + a′2 = −(a1 + a7 + a8) = −(a4 + a5 + a6) = a′3 + a′4 + a′5.

Now it remains to consider the last case where n = 9, i = 6 and j = 4.
As a3 + a4 + a5 = a9 + a1 + a2 and a5 + a6 + a7 = a8 + a9 + a1, we have
a3 + a4 < a9 + a1 and hence a3 + a4 + a6 < a3 + a4 + a7 < a7 + a9 + a1. If
a7 + a9 + a1 = a4 + a5 + a6, then

a8−a7 = (a8+a9+a1)−(a7+a9+a1) = a5+a6+a7−(a4+a5+a6) = a7−a4.

When 2a7 6= a8 + a4, we have a7 + a9 + a1 6= a4 + a5 + a6 and hence we may
take the the permutation

(b1, . . . , b9) = (a1, a2, a3, a4, a6, a5, a8, a7, a9)
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since

a1 + a2 + a3 < a2 + a3 + a4 < a3 + a4 + a5 = a9 + a1 + a2 < a3 + a4 + a6

< min{a4 + a5 + a6, a7 + a9 + a1} < max{a4 + a5 + a6, a7 + a9 + a1}

< a6 + a5 + a7 = a8 + a9 + a1 < a6 + a5 + a8

< a5 + a8 + a7 < a8 + a7 + a9.

If 2a7 = a8 + a4, then a5 + a6 + a7 < 2a7 + a6 = a4 + a6 + a8 and hence we
may take the the permutation

(b1, . . . , b9) = (a1, a2, a3, a4, a6, a8, a5, a7, a9)

since

a1 + a2 + a3 < a2 + a3 + a4 < a3 + a4 + a5 = a9 + a1 + a2 < a3 + a4 + a6

< a9 + a1 + a6 < a7 + a9 + a1 < a8 + a9 + a1 = a5 + a6 + a7

< a4 + a6 + a8 < a6 + a8 + a5 < a8 + a5 + a7 < a5 + a7 + a9.

In view of the above, we have completed the proof of Theorem 1.4. �

Proof of Theorem 1.5. When n > 1 is an odd prime power pa with p prime
and a a positive integer, we take a primitive root g modulo n. Clearly, both
{gi : i = 1, . . . , ϕ(n)} and

{gi − gi+1 = gi(1− g) : i = 1, . . . , ϕ(n)}

are reduced systems of residues modulo n. (Note that gϕ(n)+1 = g and g 6≡ 1
(mod p).) So it suffices to take ai = gi for i = 1, . . . , ϕ(n). �

Proof of Theorem 1.6. Let ε ∈ {±1}, and let R = S or T . Choose a ∈ T . By [H,
Corollary 3], there exists a primitive root g of Fq with 1+εg2 (or a+εag2) also a
primitive root of Fq. Note that T contains all the primitive roots of Fq. So there
is a primitive root g of Fq with 1 + εg2 ∈ R. Clearly, {g2i : i = 1, . . . , n} = S

and g2i + εg2(i+1) = g2i(1 + εg2) ∈ R for all i = 1, . . . , n. Therefore

{g2 − g4, g4 − g6, . . . , g2n−2 − g2n, g2n − g2 = g2n − g2(n+1)} = R.

This concludes the proof. �

3. Some open conjectures

Conjecture 3.1 (2013-09-01). Let a1, a2, . . . , an be n distinct real numbers.
Then there is a permutation b1, . . . , bn of a1, . . . , an with b1 = a1 such that the
n− 1 numbers

|b1 − b2|, |b2 − b3|, . . . , |bn−1 − bn|

are pairwise distinct.

Remark 3.1. By Theorem 1.1, this conjecture holds when a1 is the least element
or the largest element of {a1, . . . , an}.
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Conjecture 3.2 (2013-08-31). Let a1 < a2 < . . . < an be n distinct real
numbers. If there is a circular permutation b1, . . . , bn of a1, . . . , an with the n
adjacent distances

|b1 − b2|, |b2 − b3|, . . . , |bn−1 − bn|, |bn − b1|

pairwise distinct, then there is such a circular permutation b1, . . . , bn with a1
and an adjacent (i.e, we may require additionally that b1 = a1 and bn = an).

Remark 3.2. For the 6 consecutive primes 11, 13, 17, 19, 23, 29, the circular
permutation (11, 13, 29, 17, 23, 19) has distinct adjacent distances but the least
element 11 and the largest element 29 are not adjacent on the circle. However,
the circular permutation (11, 19, 17, 13, 23, 29) with 11 and 29 adjacent on the
circle also has distinct adjacent distances.

Conjecture 3.3 (2013-09-02). Let a1, . . . , an be n distinct elements of a finite
additive abelian group G. Suppose that n ∤ |G|, or n is even and the Sylow 2-
subgroup of G is cyclic. Then there exists a permutation b1, . . . , bn of a1, . . . , an
with b1 = a1 such that the n − 1 elements bi − bi+1 (0 < i < n) are pairwise
distinct.

Remark 3.3. By Theorem 1.2(ii), this holds when {a1, . . . , an} = G = Z/nZ
with n even. For the Klein quaternion group

G = Z/2Z⊕ Z/2Z = {(0, 0), (0, 1), (1, 0), (1, 1)},

if {a1, a2, a3, a4} = G then we have a1 − a2 = a3 − a4.

Conjecture 3.4 (2013-09-03). Let A be an n-subset of a finite additive abelian
group G with 2 ∤ n or n ∤ |G|.

(i) There always exists a numbering a1, a2, . . . , an of all the n elements of A
such that the n sums

a1 + a2, a2 + a3, . . . , an−1 + an, an + a1

are pairwise distinct.
(ii) In the case 3 < n < |G|, there is a numbering a1, a2, . . . , an of all the n

elements of A such that the n differences

a1 − a2, a2 − a3, . . . , an−1 − an, an − a1

are pairwise distinct.

Remark 3.4. A conjecture of Snevily [Sn] states that for any two n-subsets A
and B of an additive abelian group of odd order there is a numbering a1, . . . , an
of the elements of A and a numbering b1, . . . , bn of the elements of B such that
the n sums a1 + b1, . . . , an + bn are pairwise distinct. This was proved by
Arsovski [A] in 2009. Note that part (i) of Conjecture 3.4 is stronger than
Snevily’s conjecture in the case A = B.
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Conjecture 3.5 (2013-09-20). Let A be a finite subset of an additive abelian
group G with |A| = n > 3.

(i) If G is finite with |G| 6≡ 0 (mod 3), then there is a numbering a1, . . . , an
of all the elements of A such that the n sums

a1 + 2a2, a2 + 2a3, . . . , an−1 + 2an, an + 2a1

are pairwise distinct.
(ii) There always exist two numberings a1, . . . , an and b1, . . . , bn of all the

elements of A such that the n sums

a1 + 2b1, a2 + 2b2, . . . , an−1 + 2bn−1, an + 2bn

are pairwise distinct.

Remark 3.5. (i) When A = {a1, . . . , an} forms an abelian group of the form
(Z/3Z)r, the n elements

a1+2a2 = a1−a2, a2+2a3 = a2−a3, . . . , an−1+2an = an−1−an, an+2a1 = an−a1

cannot be pairwise distinct.
(ii) The author has proved part (ii) for n 6 4.

Conjecture 3.6 (2013-09-04). Let A be a finite subset of an additive abelian
group G with |A| = n > 3. Then there is a numbering a1, . . . , an of all the
elements of A such that the n sums

a1+a2+a3, a2+a3+a4, . . . , an−2+an−1+an, an−1+an+a1, an+a1+a2

are pairwise distinct.

Remark 3.6. By Theorem 1.4, Conjecture 3.6 holds for any torsion-free abelian
group G. In 2008 the author [S08] proved that for any three n-subsets A,B,C
of an additive abelian group with cyclic torsion subgroup, there is a numbering
a1, . . . , an of the elements of A, a numbering b1, . . . , bn of the elements of
B and a numbering c1, . . . , cn of the elements of C such that the n sums
a1 + b1 + c1, . . . , an + bn + cn are pairwise distinct. Note that Conjecture
3.6 holds in the case A = G = Z/nZ with 3 ∤ n since the natural circular
permutation (0, 1, . . . , n − 1) of the elements of Z/nZ meets the requirement.
We even think that Conjectures 3.5 and 3.6 might hold for any group G.

Conjecture 3.7 (joint with Qing-Hu Hou). (i) (2013-09-05) Let Fq be the
finite field with q > 7 elements. Then there is a numbering a1, . . . , aq of the
elements of Fq such that all the q sums

a1 + a2, a2 + a3, . . . , aq−1 + aq, aq + a1
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are generators of the cyclic group F∗

q = Fq \{0} (i.e., primitive elements of Fq).
(ii) (2013-09-07) Let p = 2n + 1 be an odd prime. If p > 19, then there is

a circular permutation i1, . . . , in of 1, . . . , n such that all the n adjacent sums
i1+ i2, i2+ i3, . . . , in−1+ in, in+ i1 are primitive roots modulo p. When p > 13,
there is a circular permutation i1, . . . , in of 1, . . . , n such that all the n adjacent
differences i1 − i2, i2 − i3, . . . , in−1 − in, in − i1 are primitive roots modulo p.

Remark 3.7. (a) We have verified part (i) for all primes q < 545, and part (ii)
for all primes p < 545. For the circular permutation

(a1, a2, . . . , a11) = (0, 6, 7, 1, 5, 3, 10, 8, 9, 4, 2)

of 0, 1, . . . , 10, the 11 sums a1 + a2, a2 + a3, . . . , a10 + a11, a11 + a1 are all
primitive roots modulo the prime 11.

(b) If g is a primitive root of the field Fq with q > 2 and ai = gi−1 for all i =
1, . . . , q−1, then it is easy to see that a1−a2, a2−a3, . . . , aq−2−aq−1, aq−1−a1
are pairwise distinct and that a1 + a2, a2 + a3, . . . , aq−2 + aq−1, aq−1 + a1 are
also pairwise distinct.

Conjecture 3.8. Let p = 2n + 1 be an odd prime. If p > 19, then there is
a circular permutation a1, . . . , an of all the (p − 1)/2 = n quadratic residues
modulo p such that all the n adjacent sums a1+a2, a2+a3, . . . , an−1+an, an+a1
are primitive roots modulo p. If p > 13, then there is a circular permutation
b1, . . . , bn of all the (p− 1)/2 = n quadratic residues modulo p such that all the
n differences b1 − b2, b2 − b3, . . . , bn−1 − bn, bn − b1 are primitive roots modulo
p.

Remark 3.8. Compare this conjecture with Theorem 1.6.

Conjecture 3.9 (2013-09-15). Let p = 2n+ 1 > 11 be a prime.
(i) There is a circular permutation i1, . . . , in of 1, . . . , n such that all the n

numbers i21 + i2, i22 + i3, . . . , i2n−1 + in, i2n + i1 are quadratic residues modulo
p. Also, there is a circular permutation j1, . . . , jn of the 1, . . . , n such that all
the n numbers j21 − j2, j22 − j3, . . . , j2n−1 − jn, j2n − j1 are quadratic residues
modulo p.

(ii) If p > 13, then there is a circular permutation i1, . . . , in of the 1, . . . , n
such that all the n numbers

i21 + i2, i22 + i3, . . . , i2n−1 + in, i2n + i1

are primitive roots modulo p. Also, there is a circular permutation j1, . . . , jn
of the 1, . . . , n such that all the n numbers

j21 − j2, j22 − j3, . . . , j2n−1 − jn, j2n − j1

are primitive roots modulo p.
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Remark 3.9. For example, (i1, . . . , i11) = (1, 6, 7, 11, 4, 5, 3, 8, 10, 9, 2) is a cir-
cular permutation of 1, . . . , 11 for which all the sums i21 + i2, i

2
2 + i3, . . . , i

2
10 +

i11, i
2
11 + i1 are primitive roots modulo 23. Also,

(j1, . . . , j11) = (1, 9, 7, 5, 11, 10, 3, 2, 6, 8, 4)

is a circular permutation of 1, . . . , 11 for which all the sums j21 − i2, j
2
2 −

i3, . . . , j
2
10 − j11, j

2
11 − i1 are primitive roots modulo 23.

Conjecture 3.10 (2013-09-17). Let Fq be a finite field with q > 7 elements and
let a0 be any element of Fq. Then there is a circular permutation a1, . . . , aq−1

of all the nonzero elements of Fq such that all the q−1 elements a0+a1a2, a0+
a2a3, . . . , a0 + aq−2aq−1, a0 + aq−1a1 are primitive roots of the filed Fq.

Remark 3.10. For the circular permutation (i1, . . . , i10) = (1, 9, 2, 4, 5, 8, 10, 3, 6, 7)
of 1, . . . , 10, all the 10 integers i1i2−1, i2i3−1, . . . , i9i10−1, i10i1−1 are prim-
itive roots modulo 11.

Conjecture 3.11 (2013-09-07). For any positive integer n 6= 2, 4, there exists
a permutation i0, i1, . . . , in of 0, 1, . . . , n with i0 = 0 and in = n such that all
the n+ 1 adjacent sums

i0 + i1, i1 + i2, . . . , in−1 + in, in + i0

are coprime to both n− 1 and n+ 1.

Remark 3.11. (i) Note that there is no circular permutation i0, . . . , i7 of 0, . . . , 7
with i0 + i1, i1 + i2, . . . , i6 + i7, i7 + i0 all relatively prime to 7× 13− 1 = 90.
We also guess that n± 1 in Conjecture 3.11 can be replaced by 2n± 1.

(ii) Now we explain why Conjecture 3.11 holds for any positive odd integer
n. If n ≡ 1, 3 (mod 6), then n− 2 and 2n− 1 are relatively prime to both n− 1
and n+ 1, and hence the circular permutation

(i0, . . . , in) = (0, n− 2, 2, n− 4, 4, . . . , 1, n− 1, n)

meets the requirement. If n ≡ 3, 5 (mod 6), then n + 2 is relatively prime to
both n− 1 and n+ 1, and hence the circular permutation

(i0, . . . , in) = (0, 1, n− 1, 3, n− 3, . . . , n− 2, 2, n)

suffices for our purpose.

Conjecture 3.12 (2013-09-22). (i) Let A be a set of n > 2 distinct nonzero real
numbers. Then there is a circular permutation a1, a2, ..., an of all the elements
of A such that the n adjacent sums a1 + a2, a2 + a3, ..., an−1 + an, an + a1 are
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pairwise distinct, and that the n adjacent products a1a2, a2a3, ..., an−1an, ana1
are also pairwise distinct, except for the following three cases:

(a) |A| = 4 and A has the form {±s,±t}.
(b) |A| = 5 and A has the form {r,±s,±t}.
(c) |A| = 6 and A has the form {±r,±s,±t}.

(ii) For any set A of n > 3 distinct nonzero real numbers, there is a circular
permutation a1, a2, ..., an of all the elements of A such that the n adjacent dif-
ferences a1 − a2, a2 − a3, ..., an−1 − an, an − a1 are pairwise distinct, and that
the n adjacent products a1a2, a2a3, ..., an−1an, ana1 are also pairwise distinct,
except for the case where |A| = 4 and A has the form {±s,±t}.

Remark 3.12. For the set A = {1, 2, . . . , n} with n an odd prime power, obvi-
ously 1+2, 2+3, . . . , (n−1)+n, n+1 are pairwise distinct since n+1 is even,
and 1× 2, 2× 3, . . . , (n− 1)n, n× 1 are also pairwise distinct since n is an odd
prime power.

Conjecture 3.13 (2013-09-08). For any positive integer n, there is a circular
permutation i0, i1, . . . , in of 0, 1, . . . , n such that all the n + 1 adjacent sums
i0 + i1, i1 + i2, . . . , in−1 + in, in + i0 are among those integers k with 6k − 1
and 6k + 1 twin primes.

Remark 3.13. Clearly this conjecture implies the twin prime conjecture. Qing-
Hu Hou has verified this conjecture for all n 6 100. We also have similar
conjectures for cousin primes, sexy primes, and primes of the form 4k − 1 or
4k + 1 or 6k + 1 (cf. [S13, A228917]). In 1982 A. Filz [F] (see also [G, p. 160])
conjectured that for any n = 2, 4, 6, . . . there is a circular permutation i1, . . . , in
of 1, . . . , n such that all the n adjacent sums i1+i2, i2+i3, . . . , in−1+in, in+i1
are prime.

Conjecture 3.14 (2013-09-08). For any integer n > 2, there exists a circular
permutation i0, i1, . . . , in of 0, 1, . . . , n such that all the n + 1 adjacent sums
i0 + i1, i1 + i2, . . . , in−1 + in, in + i0 are of the form (p + 1)/6, where p is a
Sophie Germain prime.

Remark 3.14. A prime p with 2p + 1 also prime is called a Sophie Germain
prime. It is conjectured that there are infinitely many Sophie Germain primes.

Conjecture 3.15. (i) (2013-09-09) For any positive integer n, there exists a
circular permutation i0, i1, . . . , in of 0, 1, . . . , n such that all the 2n+2 numbers

|i0 ± i1|, |i1 ± i2|, . . . , |in−1 ± in|, |in ± i0|

are of the form (p− 1)/2, where p is an odd prime.
(ii) (2013-09-10) For any positive integer n 6= 2, 4, there exists a circular

permutation i0, i1, . . . , in of 0, 1, . . . , n such that all the n+ 1 numbers

|i20 − i21|, |i21 − i22|, . . . , |i2n−1 − i2n|, |i2n − i20|
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are of the form (p− 1)/2, where p is an odd prime.

Remark 3.15. Here are two suitable circular permutations: (0, 1, 2, 3, 5, 4, 7, 8, 6, 9)
for n = 9 in part (i), and (i0, . . . , i5) = (0, 1, 4, 5, 2, 3) for n = 5 in part (ii).

Conjecture 3.16 (2013-09-13). For any positive integer n 6= 4, there exists
a circular permutation i0, i1, . . . , in of 0, 1, . . . , n with i0 = 0 and in = 1 such
that all the n+ 1 numbers

i20 + i1, i21 + i2, . . . , i2n−1 + in, i2n + i0

are of the form (p− 1)/2, where p is an odd prime.

Remark 3.16. For i, j ∈ {0, . . . , n} with i + j > 1, if j is a multiple of 3 and
2(i2 + j) + 1 is a prime then 2i2 + 1 6≡ 0 (mod 3) and hence 3 | i. So, if
i0, i1, . . . , in is a permutation of 0, 1, . . . , n with i0 = 0 such that all the n+ 1
numbers i20 + i1, i

2
1 + i2, . . . , i

2
n−1 + in, i

2
n + i0 are of the form (p− 1)/2 with

p an odd prime, then we must have in = 1 (otherwise, in, in−1, . . . , i1 are all
divisible by 3 which is impossible). To illustrate Conjecture 3.16, we give a
desired permutation for n = 20:

(i0, . . . , i20) = (0, 3, 12, 9, 15, 18, 6, 20, 19, 14, 13, 4, 2, 7, 16, 17, 11, 10, 5, 8, 1).

Conjecture 3.17 (2013-09-16). Let n by any positive integer. Then there
exists a circular permutation i0, i1, . . . , in of 0, 1, . . . , n such that all the n+ 1
numbers

i20 + i1, i21 + i2, . . . , i2n−1 + in, i2n + i0

are of the form (p− 1)/4 with p a prime congruent to 1 modulo 4. Also, there
is a circular permutation j0, j1, . . . , jn of 0, 1, . . . , n with j0 = 0 and jn = 1
such that all the n+ 1 numbers

j20 + j1, j21 + j2, . . . , j2n−1 + jn, j2n + j0

are of the form (p+ 1)/4 with p a prime congruent to 3 modulo 4.

Remark 3.17. For i, j ∈ {0, . . . , n} with i+j > 1, if j is a multiple of 3 and 4(i2+
j)− 1 is a prime then 4i2 − 1 6≡ 0 (mod 3) and hence 3 | i. So, if j0, j1, . . . , jn
is a permutation of 0, 1, . . . , n with j0 = 0 such that all the n + 1 numbers
j20 + j1, j

2
1 + j2, . . . , j

2
n−1 + jn, j

2
n+ j0 are of the form (p+1)/4 with p a prime

congruent to 3 modulo 4, then we must have jn = 1 (otherwise, jn, jn−1, . . . , j1
are all divisible by 3 which is impossible). To illustrate Conjecture 3.17, we
give two desired permutations for n = 9:

(i0, . . . , i9) = (0, 1, 2, 3, 4, 6, 9, 7, 8, 5) and (j0, . . . , j9) = (0, 3, 6, 9, 2, 4, 5, 8, 7, 1).
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Conjecture 3.18 (2013-09-17). For any positive integer n > 5 with n 6= 13,
there is a circular permutation i1, i2, . . . , in of 1, . . . , n such that i1i2−1, i2i3−
1, . . . , in−1in − 1, ini1 − 1 are all prime. Also, for any positive integer n > 1
(resp. n 6= 4), there is a circular permutation i1, i2, . . . , in of 1, . . . , n such
that 2i1i2 − 1, 2i2i3 − 1, . . . , 2in−1in − 1, 2ini1 − 1 (resp. 2i1i2 + 1, 2i2i3 +
1, . . . , 2in−1in + 1, 2ini1 + 1) are all prime.

Remark 3.18. For the circular permutation

(i1, . . . , i23) = (1, 6, 23, 10, 9, 22, 11, 18, 13, 14, 21, 2, 15, 4, 17, 16, 5, 12, 7, 20, 19, 8, 3),

all the 23 numbers i1i2 − 1, i2i3 − 1, . . . , i22i23 − 1, i23i1 − 1 are primes.
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