
ar
X

iv
:1

30
9.

34
08

v3
  [

m
at

h.
L

O
] 

 2
8 

Fe
b 

20
15

ON THE SHARE OF CLOSED IL FORMULAS WHICH ARE ALSO IN GL

VEDRAN ČAČIĆ AND VJEKOSLAV KOVAČ

Abstract. Normal forms for wide classes of closed IL formulas were given in [4]. Here
we quantify asymptotically, in exact numbers, how wide those classes are. As a con-
sequence, we show that the “majority” of closed IL formulas have GL-equivalents, and
by that, they have the same normal forms as GL formulas. Our approach is entirely
syntactical, except for applying the results of [4]. As a byproduct we devise a convenient
way of computing asymptotic behaviors of somewhat general classes of formulas given
by their grammar rules. Its applications do not require any knowledge of the recurrence
relations, generating functions, or the asymptotic enumeration methods, as all these are
incorporated into two fundamental parameters.

1. Motivation

Gödel’s incompleteness theorems were a big breakthrough for mathematical logic.
With time, logicians started to wonder how they can be generalized, and what else,
based on some simple facts we knew, could be deduced about provability predicates.
Formalizing provability over some base theory T as a unary modal operator � led to the
theory GL (named after Gödel and Löb), which we know today as the provability logic
of many base theories.
Provability is a valuable tool for judging absolute strength of some formula against a

theory, but what about its relative strength? For some base theory T and two formulas
F and G we can ask if T +F is interpretable in T +G. In other words: can we find a way
of reinterpreting symbols of T , and restricting quantifiers using some definable predicate,
preserving provability of whole T , but such that (reinterpreted) formula F becomes a
theorem if we add G as an axiom? Here we do not just divide formulas into black and
white, but try to order them in various shades of gray. In fact, various colors would be
a better analogy, since the ordering is usually not total.
We can obtain logics of interpretability in a manner quite analogous to provability

logic. Formalizing interpretability in the above sense as a binary modal operator ⊲,
we are led to various interpretability logics, most basic of which is probably IL. Many
detailed definitions and explanations concerning IL can be found in [11]. Unfortunately,
IL itself is, unlike GL, just a “nice minimal fragment” of those interpretability logics,
and different base theories add to IL different principles of interpretability, extending
it in diverse ways. The intersection of interpretability logics of various “reasonable”
arithmetical theories is still searched for; see [7] for some results.
However, we can still consider properties of GL and ask ourselves if IL has something

analogous. One well-known property of GL is that its closed formulas have very regular
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normal forms: Every GL formula without variables is equivalent to a Boolean combina-
tion of formulas ⊥, �⊥, ��⊥, and so on. That Boolean combination can be further
normalized, taking into account that �n⊥ → �m⊥ whenever n ≤ m. See [1] for details.
Do IL formulas have something similar? Even before this question, we are faced with

another one: What are the basic blocks in the closed fragment of IL? In GL it was
easy — repeating � before ⊥ gives a natural single-parameter countable family acting as
“propositional variables” and these terms are to be connected into Boolean combinations.
The only thing analogous in IL is that same family. Namely, it is easily seen that �

can be emulated in IL, �A being equivalent to ¬A⊲⊥. Note that ⊥ is invariant under
interpretation and T+¬A is inconsistent iff T ⊢ A. Thus the same family {�n⊥ : n ∈ N}
is also available in IL.
Some strengthenings of IL actually have the property that all their closed formulas

have GL-equivalents, which particularly implies that they have the same normal forms
as GL formulas. For example, that property is proved for any logic containing ILF in [8].
However, this is not the case with plain IL. In [4] we showed that many, but not all,
IL formulas have GL-equivalents. Here we count those formulas and find their exact
share in the whole closed fragment of IL. An interesting but probably very difficult open
problem would be to classify all the exceptional formulas. Justification of our heavily
computational approach lies precisely in a desire to at least quantify their portion, and
to see to what extent IL “comes close” to GL.

2. Introduction

The formulas of the closed fragment of IL (which we will hereinafter call IL0), due
to their inductive formation, naturally form a structural hierarchy with respect to their
complexity, i.e. the number of logical connectives. That complexity certainly depends on
a set of symbols we decide to use. One possibility is to take a minimal set of symbols,
consisting only of ⊥, →, and ⊲. It is not hard to see that these are sufficient: Negation
of A can be expressed as A → ⊥; it is well known that all Boolean connectives can be
expressed with → and ¬; we have already discussed �; and ♦ can be expressed with �

and ¬ in the usual way. However, many other choices of the alphabet are possible, such
as those including � or ⊤.
In order to make the combinatorial part of this paper generally applicable, we leave IL

for a moment and work in the following setting. Suppose that we are given p unary con-
nectives ⋄1, . . . , ⋄p, q binary connectives ∗1, . . . , ∗q, and s primitive symbols ♣1, . . . ,♣s,
where p ≥ 0, q ≥ 1, s ≥ 1. We consider closed formulas on this alphabet and let Fn

denote the set of all such formulas of complexity n, that is, with n connectives ⋄i and ∗j
in total. For any property P of closed formulas we can define

µ(P) := lim
n→∞

#{F ∈ Fn : P(F )}
#Fn

. (1)

Here # denotes the number of elements in a finite set. The quantity µ(P) could be
called the share or the asymptotic density of formulas with property P. Note that the
limit in (1) does not have to exist. For example, formulas of even complexity do not
have a share, as the corresponding sequence in (1) alternates: 1, 0, 1, 0, 1, . . .. However,
properties defined “independently” of complexity usually have a share. Also note that if
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only finitely many formulas have property P, then µ(P) = 0, but the converse does not
hold.
There is an auxiliary quantity associated with P, which is closely linked to µ(P), but

does not have an immediately obvious interpretation. Let us first denote

r =
1

p+ 2qs+ 2
√

(p+ qs)qs
. (2)

This number captures the rate of the exponential growth of the total number of formulas
with complexity n. More precisely, in Lemma 1(d) we will show lim

n→∞
#Fn+1/#Fn = 1/r.

Next, for a property P we can define

λ(P) :=

∞∑

n=0

rn+1#{F ∈ Fn : P(F )}.

As a consequence of Lemma 1(a) we will conclude that λ(P) always exists as a finite
nonnegative number. Its vague interpretation is that it constitutes an exponentially
weighted total number of formulas with property P, but the true meaning will be revealed
in Sections 4 and 5. Our motivation for its definition is simply that µ(P) will often be
expressed in terms of λ(P). Obviously, λ(P) = 0 if and only if there are no formulas
satisfying property P.
If some uppercase letter, such as W , denotes a generic formula with property P, then

we will also simply write µW and λW in place of µ(P) and λ(P). Let us also agree to
use the corresponding calligraphic letter indexed by n, such as Wn, to denote the set of
those formulas of complexity n.
If the letter F stands for an arbitrary closed formula, then we can schematically write

the production rules as

F ::= ♣1 | · · · | ♣s | ⋄1F | · · · | ⋄pF | F ∗1F | · · · | F ∗qF.
Each occurrence of the letter F on the right hand side can represent a different closed
formula, having strictly smaller complexity than the one on the left hand side. We
are interested in calculating shares of certain subclasses of formulas given by similar
production rules.
Let us now state our main combinatorial result in such a way that it can even be used

as a “black box” for quantifying various classes of formulas, such as those appearing in
IL.

Theorem 1. (a) Suppose that a class of formulas W is given by the productions

W ::= U | V,
where U and V represent two classes of formulas such that Un and Vn are disjoint
for each n. If µU and µV both exist, then µW also exists and we have

λW = λU + λV , µW = µU + µV .

(b) Suppose that a class of formulas W is given by the productions

W ::= U | ⋄1W | · · · | ⋄p′W | W ∗1W | · · · | W ∗q′W |
| (V \W ) ∗1W | · · · | (V \W ) ∗q′′W.
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Here p′, q′, q′′ are integer parameters such that 0 ≤ p′ ≤ p, 0 ≤ q′ ≤ q, 0 ≤ q′′ ≤ q,
and (p′, q′, q′′) 6= (p, q, 0), while U and V represent two classes of formulas. We
additionally require that Un does not contain any other formulas of complexity n
appearing on the right hand side, that U0 contains at least one primitive symbol,
and that Wn is a subset of Vn. If µU and µV both exist, then µW also exists and
we have

λW =
2λU

1− p′r − q′′λV +
√

(1− p′r − q′′λV )2 − 4(q′ − q′′)λU
,

µW =
µU + q′′λWµV

1− p′r − q′′λV − 2(q′ − q′′)λW
.

(c) Suppose that a class of formulas W is given by the productions

W ::= ♣1 | · · · | ♣s′ | ⋄1T | · · · | ⋄p′T | U ∗1V | · · · | U ∗q′V.
Here p′, q′, s′ are integer parameters such that 0 ≤ p′ ≤ p, 0 ≤ q′ ≤ q, and
0 ≤ s′ ≤ s, while T , U , V represent three classes of formulas. If µT , µU , and µV

all exist, then µW also exists and we have

λW = rs′ + p′rλT + q′λUλV , µW = p′rµT + q′λV µU + q′λUµV .

(d) Suppose that a class of formulas W is given by the productions

W ::= U | ⋄1W | · · · | ⋄p′W | ♣1 ∗1(⋄1W ) | · · · | ♣q′ ∗q′ (⋄q′W ).

Here p′ and q′ are integer parameters such that 0 ≤ p′ ≤ p and 0 ≤ q′ ≤ q, while
U represents some class of formulas such that Un does not contain any other
formulas of complexity n appearing on the right hand side. If µU exists, then µW

also exists and we have

λW =
λU

1− p′r − q′r2
, µW =

µU

1− p′r − q′r2
.

It is worthwhile noting that one is allowed to alter the productions in the above theorem
in ways that do not change the cardinalities of the corresponding sets of formulas with
complexity n, and keep the sets of formulas coming from different productions disjoint.
For instance, (V \W ) ∗1W in Part (b) can be replaced with its “reflected” counterpart
W ∗1(V \W ). Also, ♣1 ∗1(⋄1W ) can be replaced with ♣1 ∗1(♣1 ∗1W ), ⋄1(♣1 ∗1W ), or
⋄1(⋄1W ), as long as it never coincides with any of ⋄iW for i = 1, . . . , p′. Finally, the
unary connectives ⋄i can be interchanged arbitrarily throughout the theorem, and the
same is true for the binary connectives ∗j, or the primitive symbols ♣k.
The proof of Theorem 1 will span over the Sections 4 and 5. Let us remark that Part

(b) will be the most difficult result to prove, while Part (a) is an immediate consequence
of the definitions. Even though there already exists a vast amount of combinatorial
literature on the enumeration techniques, in Section 5 we come up with a simple trick
that allows us to compare asymptotic behaviors of certain recursively defined sequences.
Our technique is a more practical alternative to the well-known method of computing
sequence asymptotics from the expression for its generating function, which can be found
in [6, Chapters IV–VIII]. Due to multiple-recursive nature of the definitions to follow,
the latter method would be computationally very hard to apply, leading to multiple-page
expressions for generating functions. The only exception is the total class of formulas
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F , where we will resort to that heavy machinery just to derive the asymptotics of #Fn.
However, we believe that the main novelty of Theorem 1 lies in its elementary formulation
and ready applicability to counting problems.

In Section 3 we will define certain classes of formulas to which the results of [4] can
be applied and in Section 6 we will repeatedly apply Theorem 1 to evaluate their shares.
This will result in a lower bound on the share of formulas in IL0 that are equivalent to a
formula in GL. The exact numerical value of this bound depends on the set of symbols
we agree to work with. We work with three reasonable alphabet choices in order to argue
that the “GL-like” formulas we consider constitute a “majority” of IL.

Theorem 2. (a) If the alphabet is {⊥,→,⊲}, then µ(GL-like) = 0.93771 . . ..
(b) If the alphabet is {⊥,→,⊲,�}, then µ(GL-like) = 0.86653 . . ..
(c) If the alphabet is {⊥,⊤,→,⊲,�}, then µ(GL-like) = 0.90519 . . ..

Intuitively, according to Part (a), if we pick an IL0 formula of large enough complexity
at random, there is less than 7% chance that it does not have a normal form as some
closed GL formula. Of course, the true probability can be much smaller. What we will call
“GL-like formulas” will be just the ones that are syntactically simple enough that they
can be easily seen to have GL-equivalents. But even so, the result is quite surprising in our
opinion, especially because it is obtained by an almost entirely syntactical approach. Let
us also remark that Theorem 1 will guarantee the existence of the limits in Theorem 2.
Their exact values are quite complicated numerical expressions; see Section 6.
The fact that the limit µ(GL-like) is so close to 1 is also interesting from a complexity

point of view: In [3] it is proved that establishing whether an IL0 formula is a theorem is
PSPACE-hard. This means that even if there were a normal form theorem for the IL0, it
would be practically useless, since it must be very difficult to find a normal form for an
arbitrary IL formula. However, this article shows that “practicality” can be understood
differently: the great majority of instances of theoremhood problem are actually very
easy and solvable in polynomial time. A small number of them are very hard, although
they are easily recognizable.

3. Defining our classes

Let us review the main result of [4]. First we will state the definitions in the equivalent
form that fits better in the context of this article.

Definition 1. In IL0 with a minimal syntax, the classes of all formulas (F ), affirmative
formulas (A), negative formulas (N), direct formulas (M) and cross formulas (X) are
given by the following productions:

F ::= A | N,
A ::= F ⊲ F | N → F | F → A,
N ::= ⊥ | A→ N,
M ::= A⊲N,
X ::=M → ⊥.

In words, any IL0 formula is either affirmative or negative. Each negative formula is
either ⊥, or is of the form A→ N ′, where A is an affirmative formula and N ′ is a smaller
negative formula; and so on.
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Theorem 3 (from [4]). Let F be an IL0 formula, A an affirmative formula, N a negative
formula, M a direct formula, and X a cross formula. Then we have:

⊥⊲F ⇐⇒ ⊤,
F ⊲A ⇐⇒ ⊤,
A⊲⊥ ⇐⇒ �⊥,
N ⊲X ⇐⇒ ⊤,
X ⊲⊥ ⇐⇒ ��⊥,

N
globally⇐⇒ ⊥,

M
globally⇐⇒ �⊥.

Next, we say that an IL0 formula is basic locally GL-like if it belongs to at least one of
the five classes of formulas having locally equivalent GL formulas according to Theorem 3,
namely

⊥⊲ F, F ⊲A, A⊲⊥, N ⊲X, X ⊲⊥.
We say that an IL0 formula is locally GL-like if it is ⊥, or it is basic locally GL-like, or
it is a Boolean combination L′ → L′′ of smaller locally GL-like formulas L′ and L′′. We
denote basic locally GL-like formulas by the letter B and locally GL-like formulas by the
letter L. Obviously, all locally GL-like formulas, not just the basic ones, have normal
forms in GL: If F has normal form F1 and F ′ has normal form F ′

1, then F → F ′ has
normal form equivalent to F1 → F ′

1.
We have not yet taken negative and direct formulas into account, as they only possess

global GL-equivalents. Working with non-locally GL-like formulas is harder, since we
do not have the substitution property we had for locally GL-like formulas: A Boolean
combination of two formulas having global GL-equivalents does not necessarily have a
global GL-equivalent. If it were true, then since every affirmative formula is equivalent to
negation of a negative formula, we would have global GL-equivalents for all IL0 formulas,
which is known not to be the case; see [4, Section 3].
However, there is a way to get larger GL-like formulas from smaller ones, and that

is the � operator from GL, or more precisely, its IL-equivalent. It is easily seen that
(F → ⊥) ⊲⊥ is locally equivalent to �F , and if F has a global GL-equivalent F1, then
(F → ⊥)⊲⊥ has a global GL-equivalent (that is equivalent to) �F1. This motivates the
following definition.

Definition 2. We say that an IL0 formula is GL-like if it is locally GL-like, or negative,
or direct, or of the form (G′ → ⊥)⊲⊥, where G′ is a smaller GL-like formula. We denote
GL-like formulas by the letter G.

Our ultimate goal is to compute the share of GL-like formulas. To achieve this we
will obviously need to progress gradually through the simpler classes of formulas defined
above. Before attempting to evaluate shares of these classes, we insert two sections
devoted to establishing asymptotic behaviors of some recursively defined sequences.

4. Statements of the results on sequence asymptotics

In this section we state three auxiliary lemmas that constitute a purely combinatorial
reformulation of Theorem 1. Their proofs will be postponed to the next section. This
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material can be skipped without hurting the understanding of the “logical” part of the
article.
Let p ≥ 0, q ≥ 1, and s ≥ 1 be three integer parameters; they can be interpreted as

in Section 2. Let fn = #Fn denote the total number of closed formulas of complexity
n ≥ 0. Observe that the only formulas of complexity 0 are the primitive symbols, so
f0 = s. Moreover, each formula of complexity n ≥ 1 is composed either by applying the
main unary connective to a formula of complexity n− 1, or is divided by its main binary
connective into two formulas whose complexities add up to n− 1. That way we arrive at
the recurrence relation that enumerates the total number of closed formulas,

f0 = s, fn = pfn−1 + q
n−1∑

k=0

fkfn−k−1 for n ≥ 1. (3)

For some choices of the parameters the obtained sequence (fn)
∞
n=0 is standard and named.

Take s = 1 for simplicity. If p = 0 and q is arbitrary, then fn = qnCn, where (Cn)
∞
n=0

stands for the Catalan numbers, see entry A000108 in [9]. For p = 1, q = 1 the sequence
(fn)

∞
n=0 becomes the Large Schröder numbers, entry A006318, for p = 1, q = 2 we obtain

sequence A103210, while for p = 2, q = 1 we get sequence A047891 in the encyclopedia
[9]. Let us remark that a closed expression for fn does not seem to exist in the cases
when p ≥ 1.
We will need some of the standard asymptotic enumeration techniques to extract the

desired growth properties of fn. Consider the ordinary generating function of the shifted
sequence (fn−1)

∞
n=1, which is given by the formula

f(z) =
∞∑

n=1

fn−1z
n =

∞∑

n=0

fnz
n+1

for any complex number z for which the above series converges. Since this is a particular
case of a power series, it is a well known fact (see [10, Chapter 3]) that there exists a
number 0 ≤ R ≤ ∞, called the radius of convergence, such that the series converges
absolutely when |z| < R and diverges for |z| > R. Observe that nothing is claimed
for complex numbers on the circle |z| = R. An excellent introductory course to the
generating functions with the required prerequisites can be found in [2, Chapters 10–11]
or [12].
Take z ∈ C such that the series defining f(z) converges absolutely. Multiplying (3) by

zn+1 and summing over n ≥ 1 we get

∞∑

n=1

fnz
n+1 = pz

∞∑

n=1

fn−1z
n + q

∞∑

n=1

n−1∑

k=0

fkz
k+1fn−k−1z

n−k.

Substituting l = n− k− 1 we see that both k and l range over the nonnegative integers.
Rearranging the terms and using f0 = s we obtain

f(z)− sz = pzf(z) + qf(z)2,

which is a quadratic equation for f(z) and can be solved as

f(z) =
1− pz ±

√

(1− pz)2 − 4qsz

2q
. (4)
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Recall that the square root function above is taken from a complex number and so can
be defined as

√
ζ := e(1/2) Log ζ , where Log stands for the principal branch of the complex

logarithm, i.e. Log(ρeiφ) = log ρ+ iφ for ρ > 0 and φ ∈ (−π, π). Inspecting the obtained
formula we suspect that the “smallest singularity” of the generating function is at z = r,
where r is the smaller of the two positive solutions of the equation (1− pz)2 = 4qsz, i.e.
it is given by Formula (2). Let us remark that we have chosen to write the expression for
r in a slightly nonstandard form (with a radical in the denominator), in order to handle
both the quadratic case p 6= 0 and the linear case p = 0. The latter case is indeed trivial
because r is then the solution of 1 = 4qsz.

Lemma 1. Suppose that the number r is defined by (2) and the sequence (fn)
∞
n=0 is given

by (3).

(a) The series
∑∞

n=1 fn−1r
n converges and its sum equals 1−pr

2q
=

√
rs
q
.

(b) The radius of convergence of the power series
∑∞

n=1 fn−1z
n equals r and its sum is

given by f(z) =
1−pz−

√
(1−pz)2−4qsz

2q
for each complex number z such that |z| < r.

(c) fn ∼ (1 + pr)1/2s

(1− pr)3/2
√
π

(1/r)n

n3/2
as n→ ∞.

(Here an ∼ bn means that the ratio an/bn approaches 1 in the limit.)

(d) For any fixed positive integer k the limit lim
n→∞

fn−k

fn
exists and equals rk.

Let wn equal the number of formulas with property P having exactly n connectives,
so that clearly 0 ≤ wn ≤ fn. The two numerical quantities associated with P that we
introduced in Section 2 can now be written in terms of the sequence (wn)

∞
n=0 as

µ(P) = µW = lim
n→∞

wn

fn

and

λ(P) = λW =

∞∑

n=0

wnr
n+1 =

∞∑

n=1

wn−1r
n.

By Part (b) of Lemma 1 we know

∞∑

n=1

wn−1r
n ≤

∞∑

n=1

fn−1r
n <∞,

so λW is actually the value of the generating function of (wn−1)
∞
n=1 at the point z = r.

In particular,

λF =
1− pr

2q
, (5)

where the letter F represents an arbitrary closed formula, i.e. λF corresponds to the
sequence (fn)

∞
n=0. Recall once again that the limit defining µW might not exist. We are

indeed primarily interested in µW , but the quantity λW will naturally appear in formulas
that follow. In general we will have 0 ≤ λW ≤ λF and 0 ≤ µW ≤ 1 whenever the share
µW exists.
Equations (7)–(10) in the following lemmas will relate λ-values and µ-values of se-

quences connected through quite special recurrence equations. Let us consider three
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sequences (un)
∞
n=0, (vn)

∞
n=0, (wn)

∞
n=0 counting certain classes of formulas denoted respec-

tively by letters U, V,W . Consequently, 0 ≤ un, vn, wn ≤ fn for each n ≥ 0.
We can state the principal result of this section.

Lemma 2. Take three parameters α, β, γ satisfying

α, β ≥ 0, γ ∈ R, αr + βλF < 1, αr + (β + 2γ)λF < 1,

where λF can be substituted from (5). Suppose that the sequences (un)
∞
n=0, (vn)

∞
n=0, and

(wn)
∞
n=0 are related by the recurrence relation

w0 = u0, wn = un + αwn−1 +

n−1∑

k=0

(βvk + γwk)wn−k−1 for n ≥ 1. (6)

Also assume u0 > 0 and βvn + γwn ≥ 0 for each n.

(a) Quantity λW can be expressed in terms of λU and λV as

λW =
2λU

1− αr − βλV +
√

(1− αr − βλV )2 − 4γλU
. (7)

(b) If both µU and µV exist, then µW also exists and it is given by

µW =
µU + βλWµV

1− αr − βλV − 2γλW
. (8)

Let us remark that 0 ≤ un, vn, wn ≤ fn actually imposes more restrictive conditions
on α, β, γ, but we do not need to perform a detailed discussion of all possible values of
the given parameters.
Now we formulate the second auxiliary result.

Lemma 3. Suppose that the sequence (wn)
∞
n=0 is defined using sequences (un)

∞
n=0 and

(vn)
∞
n=0 as

w0 = 0, wn =

n−1∑

k=0

ukvn−k−1 for n ≥ 1.

(a) Quantity λW can be expressed in terms of λU and λV as

λW = λUλV . (9)

(b) If both µU and µV exist, then µW also exists and it is given by

µW = λV µU + λUµV . (10)

After computing µW for some particular class W , one can additionally combine the
numerical result with Part (c) of Lemma 1 to obtain the asymptotics

wn ∼ cW
(1/r)n

n3/2
, as n→ ∞

for some nonnegative constant cW . However, we believe that the relative quantity µW

gives a more meaningful measure of size of the class W than the actual numbers wn.
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5. Proofs of the combinatorial results

Proof of Lemma 1. (a) Denote λ =
√

rs/q, so that the equality (1 − pr)2 = 4qrs gives
λ = (1− pr)/2q, and it is also straightforward to verify

rs+ prλ+ qλ2 = λ. (11)

Let Sm =
∑m

n=1 fn−1r
n denote the m-th partial sum of the series in question. From (3)

we immediately get
m∑

n=1

fnr
n+1 ≤ pr

m∑

n=1

fn−1r
n + q

( m∑

j=1

fj−1z
j
)2

,

so that Sm+1 ≤ rs + prSm + qS2
m. Now an easy mathematical induction in m using

(11) proves the inequality Sm ≤ λ for each nonnegative integer m. Taking the limit as
m→ ∞ we establish the convergence of

∑∞

n=1 fn−1r
n. The calculation of the generating

function f(z) specialized to z = r gives f(r) = (1 − pr)/2q = λ, which completes the
proof of Part (a).
(b) Convergence of the power series for z = r implies that its radius of convergence is

at least r. Let us specialize the variable z to the real values from the interval (r, 1/p2r)
if p 6= 0 and (r,+∞) if p = 0. The endpoints of this interval are the solutions of
(1 − pz)2 = 4qsz and the expression (4) is not a real number for any such z. Therefore
the series does not converge on this whole interval, which implies that its radius of
convergence is at most r. We still need to decide about the sign before the square root
in (4). Since f is defined as a sum of the power series

∑∞

n=1 fn−1z
n, it constitutes a

complex-analytic function on the open disk around 0 of radius r and it is also clear that
f(0) = 0. The quadratic polynomial (1 − pz)2 − 4qsz does not have any zeroes on that
same disk, so simply by continuity of f we must keep the same sign in (4) on the whole
disk. Plugging in z = 0 we see that only the negative sign is possible. This proves Part
(b) of the lemma.
(c) For this part we need to use a more advanced result from complex analysis. Using

the Viète formulas for the quadratic polynomial with roots r and 1
p2r

we can write

(1− pz)2 − 4qsz = p2(z − r)
(

z − 1

p2r

)

=
(

1− z

r

)

(1− p2rz),

so the expression for the generating function can be rewritten as

f(z) =
−1

2q
(1− p2rz)1/2

(

1− z

r

)1/2

+
1− pz

2q
. (12)

Now we use the following result.

Theorem 4 (from [5]). Suppose that the generating function a of a sequence (an)
∞
n=0 has

r > 0 as the radius of convergence and that it is complex-analytic in the domain

Ω :=
{
z ∈ C \ {r} : |z| < r + ǫ, |Arg(z − r)| > ψ

}

for some ǫ > 0 and 0 < ψ < π/2. Here Arg denotes the principal argument function
defined by Arg(ρeiφ) := φ for ρ > 0 and φ ∈ (−π, π]. Also suppose that

a(z) = b(z)
(

1− z

r

)θ

+ c(z)
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for some θ ∈ R \ {0, 1, 2, . . .} and for some complex-analytic functions b and c on a
neighborhood of z = r. If

K := lim
Ω∋z→r

b(z) 6= 0,

then

an ∼ K(1/r)n

Γ(−θ)nθ+1
as n→ ∞.

This result is merely a reformulation of [5, Corollary 2]: One handles the term b(z)(1−
z/r)θ by applying Part (i) with α = θ, while the term c(z) is handled using Part (ii) with
α = 0. Actually, the results in [5] are formulated for r = 1 only, which is not a loss of
generality by rescaling.
Applying Theorem 4 to (12) with θ = 1/2 we get

fn−1 ∼
−(1/2q)(1− p2r2)1/2(1/r)n

Γ(−1/2)n3/2
as n→ ∞.

The last expression easily transforms into the one stated in the lemma by replacing n
with n+ 1 and using Γ(−1/2) = −2

√
π, q = (1− pr)2/4rs, (n + 1)3/2 ∼ n3/2.

(d) This part is an immediate consequence of Part (c) and (n−k)3/2 ∼ n3/2 as n→ ∞:

fn−k

fn
∼ (1/r)n−k(n− k)−3/2

(1/r)nn−3/2
∼ rk.

�

The generating functions of the sequences in question will be denoted using the same
lowercase letters. From Lemma 1(a) we know that they converge absolutely on the
interval [0, r].

Proof of Lemma 2. (a) This part is once again quite standard, but we include it for
completeness. Suppose γ 6= 0 as the other case is straightforward. Let us multiply the
recurrence relation in (6) by zn+1 and sum over n ≥ 1. That way we obtain

∞∑

n=1

wnz
n+1 =

∞∑

n=1

unz
n+1 + αz

∞∑

n=1

wn−1z
n

+

∞∑

n=1

n−1∑

k=0

(βvkz
k+1 + γwkz

k+1)wn−k−1z
n−k.

Adding u0z to both sides, this equality can be rewritten as

w(z) = u(z) + αzw(z) +
(
βv(z) + γw(z)

)
w(z). (13)

Solving the quadratic equation for w(z) and specializing to the real values of the variable
z, more precisely z = t ∈ [0, r], gives

w(t) =
1− αt− βv(t)±

√

(1− αt− βv(t))2 − 4γu(t)

2γ
. (14)

Similarly as in the previous lemma we have to decide about the sign before the square
root in the above formula for w, but the argument will be slightly more complicated, as
the function under the square root sign need not be a polynomial anymore.
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Recall that we have

0 ≤ u(t) =

∞∑

n=0

unt
n+1 ≤

∞∑

n=0

fnr
n+1 = λF for t ∈ [0, r]

and

u′(t) =
∞∑

n=0

nunt
n > 0 for t ∈ (0, r),

since the power series can be differentiated term-by-term on its disk of convergence; see
[10, Chapter 8]. The same is true for v and w. If γ < 0, then only the negative sign in
(14) will yield nonnegative values of w(t), so we do not really have a choice. Therefore
we assume γ > 0. Taking t = 0 and using u(0) = v(0) = w(0) = 0, we see that only
the minus sign in (14) is possible in a neighborhood of t = 0. We claim that the same
formula holds for all 0 ≤ t ≤ r. By continuity of w, the sign before the square root could
only change at a point t0 ∈ (0, r) such that ϕ(t0) = 0, where

ϕ(t) :=
(
1− αt− βv(t)

)2 − 4γu(t).

Since the quadratic equation for w(t) must have a real solution, we know that its discrimi-
nant is nonnegative, i.e. ϕ(t) ≥ 0 for 0 ≤ t ≤ r. However, ϕ extends to a complex-analytic
function on a disk around 0 with radius r and t0 is its root of even order, which implies
ϕ′(t0) = 0. On the other hand, from the expression for ϕ we obtain

ϕ′(t) = −2
(
1− αt− βv(t)
︸ ︷︷ ︸

>0

)(
α+ βv′(t)
︸ ︷︷ ︸

≥0

)
− 4γ u′(t)

︸︷︷︸
>0

< 0

for each 0 < t < r, which is a contradiction. Note that we have used

αt+ βv(t) < αr + βλF < 1.

We conclude that only the minus sign is possible in (14). Equation (7) is obtained by
letting t = r and rewriting (14) so that the square root ends up in the denominator. It
is trivial to verify the same formula when γ = 0, by solving the linear equation (13) for
w(z) and plugging in z = r.
(b) The main difficulty is that we do not yet know the existence of the limit lim

n→∞
wn/fn.

However the limit inferior and the limit superior of a bounded sequence can be defined
as the smallest and the largest cluster point of the sequence (see [10, Chapter 3]) and
they are always well-defined real numbers. For that reason we denote

µ
W

:= lim inf
n→∞

wn

fn
, µW := lim sup

n→∞

wn

fn
. (15)

From 0 ≤ wn ≤ fn we know that 0 ≤ µ
W

≤ µW ≤ 1. Our goal is to show µ
W

= µW and
to evaluate this common value.



ON THE SHARE OF CLOSED IL FORMULAS WHICH ARE ALSO IN GL 13

Let us take positive integers m,n such that n > 2m and split the sum in the defining
recurrence relation (6) into three parts:

wn = un + αwn−1 +
m−1∑

k=0

wn−k−1(βvk + γwk)

︸ ︷︷ ︸
am,n

+
m−1∑

k=0

(βvn−k−1 + γwn−k−1)wk

︸ ︷︷ ︸

bm,n

+
n−2m−1∑

k=0

(βvm+k + γwm+k)wn−m−k−1

︸ ︷︷ ︸
cm,n

.

Informally, we extract m summands from each side of the summation range to constitute
“dominant parts” am,n and bm,n, while the remainder cm,n will be estimated as comparably
small.
Dividing by fn we obtain the splitting

wn

fn
=
un
fn

+
αwn−1

fn
+
am,n

fn
+
bm,n

fn
+
cm,n

fn
. (16)

Using Part (d) of Lemma 1 and basic properties of lim inf and lim sup we obtain

lim inf
n→∞

wn−k−1

fn
= lim inf

n→∞

(fn−k−1

fn

wn−k−1

fn−k−1

)

= lim
n→∞

fn−k−1

fn
lim inf
n→∞

wn−k−1

fn−k−1

= rk+1µ
W
,

lim sup
n→∞

wn−k−1

fn
= rk+1µW ,

lim inf
n→∞

βvn−k−1 + γwn−k−1

fn
=

{
rk+1(βµV + γµW ) if γ < 0,
rk+1(βµV + γµ

W
) if γ ≥ 0,

lim sup
n→∞

βvn−k−1 + γwn−k−1

fn
=

{
rk+1(βµV + γµ

W
) if γ < 0,

rk+1(βµV + γµW ) if γ ≥ 0.

Consequently,

αrµ
W

≤ lim inf
n→∞

αwn−1

fn
≤ lim sup

n→∞

αwn−1

fn
≤ αrµW (17)

and

µ
W

m−1∑

k=0

(βvk + γwk)r
k+1 ≤ lim inf

n→∞

am,n

fn

≤ lim sup
n→∞

am,n

fn
≤ µW

m−1∑

k=0

(βvk + γwk)r
k+1. (18)
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Similarly, for γ < 0 we have

(βµV + γµW )

m−1∑

k=0

wkr
k+1 ≤ lim inf

n→∞

bm,n

fn

≤ lim sup
n→∞

bm,n

fn
≤ (βµV + γµ

W
)

m−1∑

k=0

wkr
k+1, (19)

while for γ > 0

(βµV + γµ
W
)

m−1∑

k=0

wkr
k+1 ≤ lim inf

n→∞

bm,n

fn

≤ lim sup
n→∞

bm,n

fn
≤ (βµV + γµW )

m−1∑

k=0

wkr
k+1. (20)

It remains to estimate cm,n

fn
using the recurrence relation (3) as

0 ≤ cm,n

fn
≤ β + |γ|

fn

n−2m−1∑

k=0

fm+kfn−m−k−1

=
β + |γ|
qfn

(

fn − pfn−1 − 2q

m−1∑

k=0

fkfn−k−1

)

=
β + |γ|
q

(

1− pfn−1

fn
− 2q

m−1∑

k=0

fn−k−1

fn
fk

)

,

so from Lemma 1(d)

lim sup
n→∞

cm,n

fn
≤ β + |γ|

q

(

1− pr − 2q
m−1∑

k=0

fkr
k+1

)

. (21)

Now we distinguish two cases.
Case γ < 0. Combining (16), (17), (18), (19), and (21) gives us

µW ≤ µU + lim sup
n→∞

αwn−1

fn
+ lim sup

n→∞

am,n

fn
+ lim sup

n→∞

bm,n

fn
+ lim sup

n→∞

cm,n

fn

≤ µU + αrµW + µW

m−1∑

k=0

(βvk + γwk)r
k+1 + (βµV + γµ

W
)
m−1∑

k=0

wkr
k+1

+
β + |γ|
q

(

1− pr − 2q
m−1∑

k=0

fkr
k+1

)

and similarly

µ
W

≥ µU + αrµ
W

+ µ
W

m−1∑

k=0

(βvk + γwk)r
k+1 + (βµV + γµW )

m−1∑

k=0

wkr
k+1.
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From (5) we get

1− pr − 2q
∞∑

k=0

fkr
k+1 = 1− pr − 2qλF = 0,

so letting m→ ∞ we end up with a system of inequalities:

µW ≤ µU + αrµW +
(
βλV + γλW

)
µW + λW (βµV + γµ

W
),

µ
W

≥ µU + αrµ
W

+
(
βλV + γλW

)
µ
W

+ λW (βµV + γµW ),

which can in turn be rewritten as
(
1− αr − βλV

)
µW ≤ µU + λW

(
βµV + γµ

W
+ γµW

)
≤

(
1− αr − βλV

)
µ
W
.

One of the conditions on the coefficients α, β gives

1− αr − βλV ≥ 1− αr − βλF > 0,

so dividing by this number we conclude µW ≤ µ
W
, i.e. µW = µ

W
, and also that the

above inequalities become equalities. Therefore the share µW exists and it satisfies the
equation

µW = µU + αrµW +
(
βλV + γλW

)
µW + λW (βµV + γµW ),

which easily transforms into (8).
Case γ > 0. In exactly the same way as in the previous case inequalities (17), (18),

(20), and (21) imply

µW ≤ µU + αrµW +
(
βλV + γλW

)
µW + λW (βµV + γµW ),

µ
W

≥ µU + αrµ
W

+
(
βλV + γλW

)
µ
W

+ λW (βµV + γµ
W
).

If we rewrite these estimates as
(
1− αr − βλV − 2γλW

)
µW ≤ µU + βλWµV ≤

(
1− αr − βλV − 2γλW

)
µ
W
,

then with an aid of

1− αr − βλV − 2γλW ≥ 1− αr − (β + 2γ)λF > 0

we arrive at µW = µ
W

and (8) once again. �

The proof of Lemma 3 is much shorter, but it follows the same basic idea.

Proof of Lemma 3. (a) This part is a direct consequence of

w(z) =
∞∑

n=1

n−1∑

k=0

ukz
k+1vn−k−1z

n−k =
( ∞∑

k=0

ukz
k+1

)( ∞∑

l=0

vlz
l+1

)

= u(z)v(z).

(b) Imitating the proof of Lemma 2 we split

n−1∑

k=0

ukvn−k−1 =
m−1∑

k=0

un−k−1vk

︸ ︷︷ ︸
am,n

+
m−1∑

k=0

vn−k−1uk

︸ ︷︷ ︸

bm,n

+
n−2m−1∑

k=0

um+kvn−m−k−1

︸ ︷︷ ︸
cm,n

.
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Once again we have denoted dominant parts of the sum by am,n and bm,n and the re-
mainder by cm,n. Exactly as before we easily derive:

lim
n→∞

un−k−1

fn
= µUr

k+1, lim
n→∞

vn−k−1

fn
= µV r

k+1,

lim
n→∞

am,n

fn
= µU

m−1∑

k=0

vkr
k+1, lim

n→∞

bm,n

fn
= µV

m−1∑

k=0

ukr
k+1,

lim sup
n→∞

cm,n

fn
≤ 1

q

(

1− pr − 2q
m−1∑

k=0

fkr
k+1

)

,

which in turn implies

lim sup
n→∞

wn

fn
≤ µU

m−1∑

k=0

vkr
k+1 + µV

m−1∑

k=0

ukr
k+1 +

1

q

(

1− pr − 2q

m−1∑

k=0

fkr
k+1

)

,

lim inf
n→∞

wn

fn
≥ µU

m−1∑

k=0

vkr
k+1 + µV

m−1∑

k=0

ukr
k+1.

By letting m → ∞ we obtain that the common value of the lower limit and the upper
limit of (wn/fn)

∞
n=0 equals

µU

∞∑

k=0

vkr
k+1 + µV

∞∑

k=0

ukr
k+1 = µUλV + µV λU .

�

Finally, we can return to our rather general result on classes of formulas generated by
certain production rules.

Proof of Theorem 1. Throughout the proof we will denote tn = #Tn, un = #Un, vn =
#Vn, wn = #Wn.
(a) This part is an immediate consequence of wn = un + vn.
(b) The production rules lead to the recurrence relation

wn = un + p′wn−1 + q′
n−1∑

k=0

wkwn−k−1 + q′′
n−1∑

k=0

(vk − wk)wn−k−1

with the initial condition w0 = u0 ≥ 1. We want to apply Lemma 2 with α = p′, β = q′′,
and γ = q′ − q′′. Since the condition q′′vn + (q′ − q′′)wn ≥ 0 is obvious, we only need to
verify the requirements on the coefficients α, β, γ. We have

αr + βλF = p′r + q′′
1− pr

2q
≤ pr +

1− pr

2
< 1

and

αr + (β + 2γ)λF = p′r + (2q′ − q′′)
1− pr

2q
≤ pr + 2q

1− pr

2q
= 1.

The last inequality is strict unless (p′, q′, q′′) = (p, q, 0), which was not allowed in the
statement of Theorem 1. Therefore, Lemma 2 applies and we simply need to use Formu-
las (7) and (8).



ON THE SHARE OF CLOSED IL FORMULAS WHICH ARE ALSO IN GL 17

(c) This time the productions give

w0 = s′, wn = p′tn−1 + q′
n−1∑

k=0

ukvn−k−1 for n ≥ 1

and we are going to use Lemma 3. Writing

∞∑

n=0

wnr
n+1 = s′r + p′r

∞∑

n=1

tn−1r
n + q′

∞∑

n=1

( n−1∑

k=0

ukvn−k−1

)

rn+1

and applying (9) to the last term we obtain

λW = s′r + p′rλT + q′λUλV .

Also, applying Lemma 1(d) to the first and Formula (10) to the second term in

wn

fn
= p′

fn−1

fn

tn−1

fn−1
+ q′

1

fn

n−1∑

k=0

ukvn−k−1

we conclude that µW exists and

µW = p′rµT + q′(λV µU + λUµV ).

(d) From the production rules we know w0 = u0, w1 = u1 + p′w0, and

wn = un + p′wn−1 + q′wn−2 for n ≥ 2.

Summing in n we obtain
∞∑

n=2

wnr
n+1 =

∞∑

n=2

unr
n+1 + p′r

∞∑

n=2

wn−1r
n + q′r2

∞∑

n=2

wn−2r
n−1,

i.e.
λW − u0r − (u1 + p′u0)r

2 = λU − u0r − u1r
2 + p′r(λW − u0r) + q′r2λW ,

which in turn simplifies as
(1− p′r − q′r2)λW = λU .

We are allowed to divide by 1− p′r − q′r2 because

p′r + q′r2 < (p+ q)r < (p+ q)
1

p+ 2q
< 1.

Finally, utilizing
wn

fn
=
un
fn

+ p′
fn−1

fn

wn−1

fn−1

+ q′
fn−2

fn

wn−2

fn−2

and Lemma 1(d) we derive

µW ≤ µU + p′rµW + q′r2µW ,

µ
W

≥ µU + p′rµ
W

+ q′r2µ
W
,

where we use the notation (15) once again. Analogously as in the proof of Lemma 2 we
conclude

µ
W

= µW =
µU

1− p′r − q′r2
.

�
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For the purposes of applications it will sometimes be useful to interpret Theorem 1(a)
as:

λV = λW − λU , µV = µW − µU .

6. Calculating the shares

Proof of Theorem 2. (a) In this case p = 0, q = 2, s = 1, and consequently r = 1/8,
λF = 1/4, µF = 1 by Formulas (2) and (5).
Negative, direct, and cross formulas. We begin by discussing negative formulas N ,

which are given by

N ::= ⊥ | (F \N) → N,

so we can apply Theorem 1(b) with

p′ = 0, q′ = 0, q′′ = 1, U = {⊥}, V = F.

Since λU = r = 1/8, µU = 0, λV = λF = 1/4, µV = µF = 1, we obtain

λN =
2r

1− λF +
√

(1− λF )2 + 4r
=

1

3 +
√
17

= 0.14038 . . . ,

µN =
λNµF

1− λF + 2λN
=

1

2
− 3

2
√
17

= 0.13619 . . . .

Therefore, approximately 14% of all IL0 formulas are negative. It is interesting to remark
that the analogues of negative formulas when p = 0, q = 1, s = 1 constitute the sequence
A055113 in [9] and are “counted” in Examples 11.3 and 11.31 of the textbook [2]. The
reader can compare our technique with explicit manipulations with a quite complicated
generating function presented in [2].
Direct formulas M are really similar to negative ones, in the sense that M0 = ∅ and

Mn = Nn for n ≥ 1. Therefore,

λM = λN − r =
8λN − 1

8
= 0.01538 . . . ,

µM = µN = 0.13619 . . . .

Finally, cross formulas X are of the formM → ⊥ for some direct formulaM and count-
ing them is the same as counting ⋄M for some unary operator ⋄. Thus, Theorem 1(c)
applies with

p′ = 1, q′ = 0, s′ = 0, T =M, U = V = ∅
and gives

λX = rλM =
8λN − 1

64
= 0.00192 . . . ,

µX = rµM =
µN

8
= 0.01702 . . . .

Basic locally GL-like formulas. Let us compute shares of each of the five classes of
formulas mentioned in Theorem 3.

• Formulas of the form ⊥⊲ F . We apply Theorem 1(c) with

p′ = 1, q′ = 0, s′ = 0, T = F, U = V = ∅
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to get

λ(⊥⊲ F ) = rλF =
1

32
and µ(⊥⊲ F ) = rµF =

1

8
.

• Formulas of the form F ⊲ A. This time we can make use of Theorem 1(c) by
choosing

p′ = 0, q′ = 1, s′ = 0, T = ∅, U = F, V = A = F \N,
so

λ(F ⊲A) = λF
(
λF − λN

)
=

1− 4λN
16

,

µ(F ⊲A) = (λF − λN)µF + λF (µF − µN) =
2− 4λN − µN

4
.

• Formulas of the form A⊲⊥. Theorem 1(c) with

p′ = 1, q′ = 0, s′ = 0, T = A = F \N, U = V = ∅
gives

λ(A⊲⊥) = r(λF − λN) =
1− 4λN

32
, µ(A⊲⊥) = r(µF − µN) =

1− µN

8
.

• Formulas of the form N ⊲X . Theorem 1(c) applies again, this time with

p′ = 0, q′ = 1, s′ = 0, T = ∅, U = N, V = X,

so

λ(N ⊲X) = λNλX =
λN(8λN − 1)

64
,

µ(N ⊲X) = λXµN + λNµX =
(16λN − 1)µN

64
.

• Formulas of the form X ⊲⊥. Finally, we take

p′ = 1, q′ = 0, s′ = 0, T = X, U = V = ∅
in Theorem 1(c):

λ(X ⊲⊥) = rλX =
8λN − 1

83
and µ(X ⊲⊥) = rµX =

µN

64
.

Unfortunately, counting basic locally GL-like formulas is not just summing the car-
dinalities of classes from Theorem 3, because those classes are not disjoint. However,
they are almost disjoint: The only pairs having nonempty intersection are ⊥ ⊲ F and
F ⊲A, and ⊥⊲F and N ⊲X . There are no triple intersections. (It helps to first observe
that all direct formulas are affirmative and that all cross formulas are negative.) More-
over, counting those intersections is easy, and we have already done all the necessary
calculations.

• Intersecting ⊥ ⊲ F and F ⊲ A we get ⊥ ⊲ A. Counting those is the same as
counting A⊲⊥, which we have already done:

λ(⊥⊲ F and F ⊲ A) = λ(A⊲⊥), µ(⊥⊲ F and F ⊲ A) = µ(A⊲⊥).
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• Intersecting ⊥ ⊲ F and N ⊲ X we get ⊥ ⊲ X . Counting those is the same as
counting X ⊲⊥, so

λ(⊥⊲ F and N ⊲X) = λ(X ⊲⊥), µ(⊥⊲ F and N ⊲X) = µ(X ⊲⊥).

Now we can enumerate the basic locally GL-like formulas by subtracting the formulas
we counted twice (i.e. using the so-called inclusion-exclusion principle), and in doing so
we can even cancel out some terms. This finally leads us to the following quantities:

λB = λ(basic locally GL-like) = λ(⊥⊲ F ) + λ(F ⊲A) + λ(N ⊲X)

=
8λ2N − 17λN + 6

64
= 0.05892 . . . ,

µB = µ(basic locally GL-like) = µ(⊥⊲ F ) + µ(F ⊲ A) + µ(N ⊲X)

=
16λNµN − 64λN − 17µN + 40

64
= 0.45321 . . . .

Locally GL-like formulas. Now we tackle all locally GL-like formulas L, which are given
by the productions

L ::= ⊥ | B | L→ L.

Once again, Theorem 1(b) is tailored for this situation and we need to choose

p′ = 0, q′ = 1, q′′ = 0, U = {⊥} ∪ B, V = ∅
and observe λU = λB + r, µU = µB in order to evaluate

λL =
2(λB + r)

1 +
√

1− 4(λB + r)
= 0.24294 . . . ,

µL =
µB

1− 2λL
= 0.88155 . . . .

GL-like formulas. So far we know that more than 88% of IL0 formulas, in the sense
we described, have normal forms from GL. If we want to calculate the share of general
GL-like formulas, as they are defined in Section 3, we have to consider a few more cases
and use the principle of inclusion and exclusion once again. Fortunately, many of the
intersecting cases are either empty or already covered. For example, there are no formulas
that are both negative and direct, since the main connective is different. For the same
reason no formula can be both negative and of the form (G→ ⊥)⊲⊥.
As the first instance of an already covered case we will investigate locally GL-like

formulas that are also of the form (G → ⊥) ⊲ ⊥ for some smaller GL-like formula G.
First, we realize that we only need to consider basic locally GL-like formulas, since other
locally GL-like formulas do not have ⊲ as the main connective. Then, of those, we only
need to consider A ⊲ ⊥ and X ⊲ ⊥ forms, since other forms either have ⊥ on the left,
which is not a conditional, or have A or X on the right, which cannot be ⊥.
Thus, we have reduced the problem to finding formulas that are either affirmative or

cross, and at the same time of the form G→ ⊥, and we append “⊲⊥” at the end. Cross
formulas are already of the form M → ⊥, and we know that direct formulas are GL-like,
so all of them are counted. Looking at the possible forms for affirmative formulas, we
find that they can only be of the form N → ⊥. Summing it up, we see that the desired
formulas are either of the form (N → ⊥)⊲⊥, or of the form (M → ⊥)⊲⊥. The number
of such formulas with complexity n is #Nn−2 +#Mn−2.
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Similarly, locally GL-like formulas that are also direct can only belong to the basic
locally GL-like class A⊲⊥, and there are #Fn−1−#Nn−1 such formulas. Next, the only
direct formulas of the form (G → ⊥) ⊲ ⊥ are (N → ⊥) ⊲ ⊥ for some negative N , and
there are #Nn−2 of them.
In fact, the only case left to do is formulas that are both locally GL-like and negative;

let us denote those formulas by P . These are either ⊥ or formed as A→ N , where both
A and N are locally GL-like, so the production rules are

P ::= ⊥ | (L \ P ) → P.

With the choice of parameters

p′ = 0, q′ = 0, q′′ = 1, U = {⊥}, V = L

Theorem 1(b) gives

λP =
2r

1− λL +
√

(1− λL)2 + 4r
= 0.13943 . . . ,

µP =
λPµL

1− λL + 2λP
= 0.11865 . . . .

The only nonempty triple intersection consists of formulas that are locally GL-like,
direct, and of the form (G→ ⊥)⊲⊥. We have already observed that such formulas can
only be (N → ⊥) ⊲ ⊥ and their number is #Nn−2. We will need to add this number
back, due to undercounting.
Observe that we can write

G ::= Q | (G→ ⊥)⊲⊥,

for some class of formulas Q such that the above two productions yield disjoint sets of
formulas of complexity n. We are ready to apply the inclusion-exclusion principle:

#Qn = #Ln +#Nn +#Mn − (#Nn−2 +Mn−2)

− (#Fn−1 −#Nn−1)−#Nn−2 −#Pn +#Nn−2

for n ≥ 2, so by repeated applications of Theorem 1, we easily derive

µQ = µL + µN + µM − (r2µN + r2µM)− (rµF − rµN)− µP

= 0.92305 . . . .

Finally, Theorem 1(d) with

p′ = 0, q′ = 1, U = Q

concludes

µG =
µQ

1− r2
= 0.93771 . . . .

This completes the proof of Part (a). The “counting procedure” for all of the mentioned
classes of IL0 formulas can be summarized in the following table.
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letter class grammar rules µ

F all IL0 formulas ⊥ | F → F | F ⊲ F 1
N negative ⊥ | A → N ≈ 0.14
A affirmative N → F | F → A | F ⊲ F ≈ 0.86
M direct A⊲N ≈ 0.14
X cross M → ⊥ ≈ 0.02
B basic locally GL-like ⊥⊲ F | F ⊲A | A⊲⊥ | N ⊲X | X ⊲⊥ ≈ 0.45
L locally GL-like ⊥ | B | L → L ≈ 0.88
P negative locally GL-like both L and N ≈ 0.12
G GL-like L | N | M | (G → ⊥)⊲⊥ ≈ 0.94

The exact numerical expression for µG can be obtained as an output of Mathematica
[13] using the command Simplify,

µG = 2

63
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.

We envisage no practical use of this radical expression, but we included it in order to
emphasize that our techniques are exact.

(b) Once we add � to the alphabet, the basic parameters change to p = 1, q = 2,
s = 1. The calculation is very similar; we only provide the table of approximate shares.

letter class grammar rules µ

F all IL0 formulas ⊥ | �F | F → F | F ⊲ F 1
N negative ⊥ | A → N ≈ 0.11
A affirmative �F | N → F | F → A | F ⊲ F ≈ 0.89
M direct �N | A⊲N ≈ 0.12
X cross M → ⊥ ≈ 0.01
B basic locally GL-like �N | �M |

⊥⊲ F | F ⊲A | A⊲⊥ | N ⊲X | X ⊲⊥ ≈ 0.44
L locally GL-like ⊥ | B | L → L ≈ 0.74
P negative locally GL-like both L and N ≈ 0.08
G GL-like L | N | M | �G | (G → ⊥)⊲⊥ ≈ 0.87

(c) If we also allow ⊤ as a primitive symbol, then we have p = 1, q = 2, s = 2, and
the table becomes:
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letter class grammar rules µ

F all IL0 formulas ⊥ | ⊤ | �F | F → F | F ⊲ F 1
N negative ⊥ | A → N ≈ 0.07
A affirmative ⊤ | �F | N → F | F → A | F ⊲ F ≈ 0.93
M direct �N | A⊲N ≈ 0.08
X cross M → ⊥ ≈ 0.004
B basic locally GL-like �N | �M |

⊥⊲ F | F ⊲A | A⊲⊥ | N ⊲X | X ⊲⊥ ≈ 0.45
L locally GL-like ⊥ | ⊤ | B | F → ⊤ | L → L ≈ 0.82
P negative locally GL-like both L and N ≈ 0.06
G GL-like L | N | M | �G | (G → ⊥)⊲⊥ | ⊤ → G ≈ 0.91

�
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