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Abstract

A natural number n is said to be k- multiperfect number if σ(n) = k·n for some integer
k > 2. In this paper, I will provide a lower bound for τ(n) of any k- multiperfect numbers.
The lower bound for τ(n) will help in distinguishing if the number is k-multiperfect or
not.

1 Preliminary Concepts

The sum-of-positive divisor function σm(n) is defined as

σm(n) =
∑

d|n

dm

where d is a factor of n for natural numbers n and complex numbers m. In this definition, we
concentrate only for m = 0 and m = 1 and denote them as τ(n) and σ(n) respectively. It is
easy to see then that τ(n) counts the number of divisors of n and σ(n) gives the sum of the
divisors of n. It is a known theorem that for any natural number n =

∏n

i=1 p
α1

i ,

τ(n) =
n
∏

i=1

(αi + 1)

For σ(n), n is said to be perfect if σ(n) = 2n.But if σ(n) > 2n and σ(n) < 2n, it is said to be
abundant and deficient numbers respectively. In addition,a natural number n is said to be k-
multiperfect number if σ(n) = k ·n for some integer k > 2. It should be noted that for integer
k > 3 of k- multiperfect numbers, all these k- multiperfect numbers are abundant.

In studying perfect numbers, the abundancy index is helpful and defined as

I(n) =
σ(n)

n

. If n is k-multiperfect, then σ(n) = k · n and that implies I(n) = k.
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It is easy to see that

I(n) =
∑

d|n

1

d
= k

.

On the other hand, we know that the nth harmonic number denoted by Hn is defined as

Hn =
n

∑

i=1

1

i

. Clearly, I(n) ≤ Hn for all natural numbers n.

2 Some Results

Let us first consider some lemmas.

Lemma 1. For n ∈ N, the inequality

(

1 +
1

k(k + 2)

)k

≤ 1 +
1

k + 1
≤

(

1 +
1

k(k + 1)

)k

holds.

Proof. Consider first the inequality

1 +
1

k + 1
≤

(

1 +
1

k(k + 1)

)k

By binomial expansion on the RHS of the inequality, we have

(

1 +
1

k(k + 1)

)k

=

k
∑

i=0

(

k

i

)

1k−i
( 1

k(k + 1)

)i

= 1 +
1

k + 1
+

k
∑

i=2

(

k

i

)

1k−i
( 1

k(k + 1)

)i

.

Clearly,

0 ≤

k
∑

i=2

(

k

i

)

1k−i
( 1

k(k + 1)

)i

.

Adding both sides by 1+ 1
k+1

, we arrive on the desired inequality. On the other hand, consider
the inequality

(

1 +
1

k(k + 2)

)k

≤ 1 +
1

k + 1

Raising both sides by k + 2, we get

(

1 +
1

k(k + 2)

)k(k+2)

≤
(

1 +
1

k + 1

)k+2

⇔
(

1 +
1

x

)x

≤
(

1 +
1

y

)y+1

.

Since the
(

lim
x→+∞

(

1 +
1

x

)x

= e
)

∧
(

lim
y→+∞

(

1 +
1

y

)y+1

= e
)

from below and from above respectively, then that proves the inequality.
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Lemma 2. The inequality
n

∑

i=2

1

i
<

∫ n

1

1

x
dx <

n
∑

i=1

1

i

holds.

Proof. By lemma 1,
(

1 +
1

k(k + 2)

)k

≤ 1 +
1

k + 1

By some manipulations,
((k + 1)(k + 1)

k(k + 2)

)k

≤
k + 2

k + 1
⇒

(k + 1

k

)k

≤
(k + 2

k + 1

)(k + 2

k + 1

)k

=
(k + 2

k + 1

)k+1

.

Thus, we get
(

1 +
1

k

)k

≤
(

1 +
1

k + 1

)k+1

< e

Now, we consider the inequality

(

1 +
1

k

)k

< e ⇒ e
ln

(

1+ 1

k

)

< e
1

k ⇒ ln
(k + 1

k

)

<
1

k
.

Therefore,

ln
(k + 1

k

)

<
1

k
ln(k + 1)− ln(k) <

∫ k+1

k

1

x
dx <

n
∑

k=1

∫ k+1

k

1

x
dx <

n
∑

k=1

1

k
∫ n

1

1

x
dx <

n
∑

k=1

1

k

The other inequality can be solved in similar fashion.

The previous lemma can be written as

Hn − 1 < Hn − (γ + ǫ) < Hn

where γ is the Euler- Mascheroni constant and ǫ, a positive number that can be expressed as

∞
∑

m=2

=
ζ(n,m+ 1)

m

and where ζ(n,m + 1) is said to be the Hurwitz zeta function. From this inequality, we can
have a bound for γ.

−ǫ < γ < 1− ǫ

As n → +∞, ǫ → 0 and that will give us 0 < γ < 1. In fact, γ = 0.57721... ( see Sloane’s
A001620 at OEIS.org)
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3 Main Results

We can now rewrite Hn as
Hn = ln(n) + γ + ǫ

Since we know that ǫ < 1 − γ < 0.5, then the margin of error ǫ becomes minimal and can be
”ignored”.Before we proceed to the main result, let us have some necessary results.

Theorem 1. For nonnegative integers ki,

n
∑

i=1

1

ki
≤

n
∑

i=1

1

i

where for every ki and kj, ki 6= kj and for all ki and ki+1 , ki < ki+1.

Proof. It should be noted that equality holds if ki = i. Now suppose that there exists ki 6= i.
This would mean that in the set S = {1, 2, 3, ..., n}, there is ki /∈ S. Thus, ki > n. Now, we
have ki’s such that

1

ki
<

1

n
<

1

j

for all j ∈ S such that j 6= ki. Adding all unit fractions 1
j
for j 6= ki and j = ki, we get

∑

j 6=ki

1

ki
+

∑

j=ki

1

ki
≤

∑

j 6=ki

1

j
+

∑

j=ki

1

j

and thus,
n

∑

i=1

1

ki
≤

n
∑

i=1

1

i

Suppose that ki’s are not just any random natural numbers but rather all ki|n and the n
in the

∑n

i=1
1
ki

will be replaced with τ(n). From this, we can rewrite the above inequality as

k = I(n) =
∑

d|n

1

d
=

τ(n)
∑

i=1;di|n

1

di
≤ Hτ(n)

Theorem 2 (A Lower bound of τ(n)). For any natural n, the natural number n can be a k-
multiperfect if the property

ek−γ < τ(n)

is satisfied.

Proof. It was already established that

k < Hτ(n) = ln(τ(n)) + γ + ǫ

From here, we eliminate can eliminate ǫ and we have

k − γ < ln(τ(n)) ⇒ ek−γ < τ(n)
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4 Illustration of the Theorem

It is necessary to verify for some small natural numbers due to the effect if ǫ is not included.
The table below will provide numerical information up to k = 26, that is the least τ(n) for
every k-multiperfect numbers.

k ek−γ min(τ(n)) for Hτ(n) > k
1 1.526205112 1
2 4.148655621 4
3 11.27721519 11
4 30.65464912 31
5 83.32797566 83
6 226.5089221 227
7 615.7150868 616
8 1673.687132 1674
9 4549.553317 4550
10 12366.96811 12367
11 33616.90469 33617
12 91380.22114 91380
13 248397.1946 248397
14 675213.5803 675214
15 1835420.806 1835421
16 4989191.024 4989191
17 13562027.30 13562027
18 36865412.36 36865412
19 100210580.5 100210581
20 272400600.1 272400600
21 740461601.2 740461601
22 02012783315 2012783315
23 05471312310 5471312310
24 14872568831 14872568831
25 40427833596 40427833596

The table illustrates that suppose τ(n) = 2000000, then n can never be 16-multiperfect.
This helps us distinguish of a particular n can be k- multiperfect based on its τ(n). Although
the lower bound is not that tight for every k- multiperfect number, at the very least, it does
provide some information about it.
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