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Abstract. We show that any graph polynomial from a wide class of graph
polynomials yields a recurrence relation on an infinite class of families of

graphs. The recurrence relations we obtain have coefficients which themselves

satisfy linear recurrence relations. We give explicit applications to the Tutte
polynomial and the independence polynomial. Furthermore, we get that for

any sequence an satisfying a linear recurrence with constant coefficients, the

sub-sequence corresponding to square indices an2 and related sub-sequences
satisfy recurrences with recurrent coefficients.

1. Introduction

Recurrence relations are a major theme in the study of graph polynomials. As
early as 1972, N. L. Biggs, R. M. Damerell and D. A. Sands [4] studied sequences
of Tutte polynomials which are C-finite, i.e. satisfy a homogenous linear recur-
rence relation with constant coefficients (or equivalently, sequences of coefficients
of rational power series). More recently, M. Noy and A. Ribó [23] proved that over
an infinite class of recursively constructible families of graphs, which includes e.g.
paths, cycles, ladders and wheels, the Tutte polynomial is C-finite (see also [5]).
The Tutte polynomials of many recursively constructible families of graphs received
special treatment in the literature. Moreover, the Tutte polynomial can be defined
through its famous deletion-contraction recurrence relation.

Similar recurrence relations have been studied for other graph polynomials, e.g.
for the independence polynomial see e.g. [19, 29]. E. Fischer and J. A. Makowsky
[11] extended the result of Noy and Ribó to an infinite class of graph polynomials
definable in Monadic Second Order Logic (MSOL), which includes the matching
polynomial, the independence polynomial, the interlace polynomial, the domina-
tion polynomial and many of the graph polynomials which occur in the literature.
[11] applies to the wider class of iteratively constructible graph families. The class
of MSOL-polynomials and variations of it were studied with respect to their com-
binatorial and computational properties e.g. in [7, 16, 18, 22]. L. Lovász treats
MSOL-definable graph invariants in [20].

In this paper we consider recurrence relations of graph polynomials which go
beyond C-finiteness. A sequence is C 2-finite if it satisfies a linear recurrence relation
with C-finite coefficients. We start by investigating the set of C2-finite sequences.
The tools we develop apply to sparse sub-sequences of C-finite sequences. While
C-finite sequences have received considerable attention in the literature, cf. e.g.
[26, Chapter 4], and it is well-known that taking a linear sub-sequence aqn+r of
a C-finite sequence an yields again a C-finite sequence, it seems other types of
sub-sequences have not been systematically studied. We show the following:
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Theorem 1. Let an be a C-finite over C. Let c ∈ N+ and d, e ∈ Z. Then the
sequence

bn = ac(n2)+dn+e

is C 2-finite.

In particular, an2 and a(n2)
are C2-finite. The proof of Theorem 1 is given in

Section 3. As an explicit example, we consider the Fibonacci numbers in Section 4.
Next, we show MSOL-polynomials satisfy C2-recurrences on appropriate families

of graphs. In Section 5 we introduce the notion of bi-iteratively constructible graph
families, or bi-iterative families for short. In Section 6 we recall from the literature
the definitions of two related classes of MSOL-polynomials and introduce a powerful
theorem for them. The main theorem of the paper is:

Theorem 2 (Informal). MSOL-polynomials satisfy C 2-finite recurrences on bi-
iterative families.

Theorem 2 shows the existence of the desired recurrence relations. The exact
statement Theorem 2, namely Theorem 32, is given in Section 7 together with the
proof. In Section 8 we compute explicit C2-recurrences for the Tutte polynomial
and the independence polynomial. Finally, in Section 9 we conclude and discuss
future research.

2. C2-finite sequences

In this section we define the recurrence relations we are interested in and give
useful properties of sequences satisfying them.

Definition 3. Let F be a field. Let an : n ∈ N be a sequence over F.

(i) an is C-finite if there exist s ∈ N and c(0), . . . , c(s) ∈ F, c(s) 6= 0, such that
for every n ≥ s,

c(s)an+s = c(s−1)an+s−1 + · · ·+ c(0)an .

We may assume w.l.o.g. that c(s) = 1.

(ii) an is P-recursive if there exist s ∈ N and c
(0)
n , . . . , c

(s)
n which are polyno-

mials in n over F, such that for every n we have c
(s)
n 6= 0, and for every

n ≥ s,

c(s)n an+s = c(s−1)
n an+s−1 + · · ·+ c(0)

n an .(2.1)

(iii) an is C2-finite if there exist s ∈ N and C-finite sequences c
(0)
n , . . . , c

(s)
n , such

that for every n we have c
(s)
n 6= 0, and for every n ≥ s , Eq. (2.1) holds.

P-recursive (holonomic) sequences have been studied in their own right, but also
as the coefficients of Differentially finite generating functions [27], see also [24].

Example 4 (C2-finite sequences). Sequences with C2-finite recurrences emerge in
various areas of mathematics.

(i) The q-derangement numbers dn(q) are polynomials in q related to the set
of derangements of size n. A formula for computing them in analogy to
the standard derangement numbers was found by I. Gessel [15] and M. L.
Wachs [28]. This formula implies that the following C2-recurrence holds:

dn(q) = (qn + [n])dn−1(q)− qn[n]dn−2(q) ,

see also [10]. We denote here [n] = 1 + q + q2 + · · ·+ qn−1.
2



(ii) In knot theory, the colored Jones polynomial of a framed knot K in 3-space
is a function from such knots to polynomials. The colored Jones function
of the 0-framed right-hand trefoil satisfies the following C2-recurrence [12]:

JK(n) =
x2n−2 + x8y4n − yn − x2y2n

x(x2ny − x4yn)
JK(n− 1)

+
x8y4n − x6y2n

x4yn − x2ny
JK(n− 2)

with x = q1/2 and y = x−2. See [13] and [14] for more examples.
Lemma 5 (Properties).

(i) Every C-finite sequence is P-recursive.
(ii) Every P-recursive sequence is C2-finite.
(iii) For every C-finite sequence an, there exists α ∈ N such that an ≤ αn for

every large enough n.
(iv) For every P-recursive sequence an, there exists α ∈ N such that an ≤ n!α

for every large enough n.

(v) For every C 2-finite sequence an, there exists α ∈ N such that an ≤ αn
2

for every large enough n.

Proof. 1 and 2 follow directly from Definition 3. 3, 4 and 5 can be proven easily by
induction on n. �

The following will be useful, see e.g. [26]:

Lemma 6 (Closure properties). The C-finite sequences are closed under:

(i) Finite addition;
(ii) Finite multiplication;
(iii) Given a C-finite sequence an, taking sub-sequences atn+s, t ∈ N+ and

s ∈ Z.

The sets of C-finite sequences and P-recursive sequences form rings with respect
to the usual addition and multiplication. However, they are not integral domains.
For every i ≤ p and every n let

In≡i (mod p) =

{
1 n ≡ i (mod p)

0 n 6≡ i (mod p)

For every i ≤ p, In≡i (mod p) is C-finite. While each of In≡0 (mod 2) and In≡1 (mod 2) is
not identically zero, their product is. This obsticale complicates our proofs in the
sequel, and is overcome using a classical theorem on the zeros of C-finite sequences:

Theorem 7 (Skolem-Mahler-Lech Theorem). If an is C-finite, then there exist a
finite set I ⊆ N, n1, p ∈ N, and P ⊆ {0, . . . , p− 1} such that

{n | an = 0} = I ∪
⋃
i∈P
{n | n > n1, n ≡ i (mod p)} .

Remark 8. Recently J. P. Bell, S. N. Burris and K. Yeats [2] extended the Skolem-
Mahler-Lech theorem extends to a Simple P-recursive sequences, P-recursive se-
quences where the leading coefficient is a constant.

2.1. C-finite matrices. A notion of sequences of matrices whose entries are C-
finite sequences will be useful. We define this exactly and prove some properties of
these matrices sequences.

Definition 9. Let r ∈ N and let {An}∞n=1 be a sequence of r × r matrices over a
field F. We say {An}∞n=1 a C-finite matrix sequence if for every 1 ≤ i, j ≤ r, the
sequence An[i, j] is C-finite.

3



Lemma 10. Let r, n0 ∈ N and let {An}∞n=n0
be a C-finite matrix sequence of r× r

matrices over C. The following hold:

(i) The sequence
{
ATn
}∞
n=1

is an C-finite matrix sequence.

(ii) The sequence {|An|}∞n=1 is in C-finite.
(iii) For any fixed i, j, the sequence of consisting of the (i, j)-th cofactor of An

is C-finite, and the sequence {Cn}∞n=1 of matrices of cofactors of An is an
C-finite matrix sequence.

(iv) There exist n1 and p such that, for every 0 ≤ i ≤ p − 1 and n ∈ N+,
|Ai+n1 | = 0 iff |Apn+i+n1 | = 0.

(v) Let n1, p ∈ N. If |Apn+i+n1
| 6= 0 for every n ∈ N+, then the sequence of

matrices of the form (Apn+i+n1
)
−1

is an C-finite matrix sequence.
Proof.

(i) Immediate.
(ii) The determinant is a polynomial function of the entries of the matrix, so it

is C-finite by the closure of the set of C-finite sequences to finite addition
and multiplication.

(iii) The cofactor is a constant times a determinant, so again it is C-finite.
(iv) This follows from the Lech-Mahler-Skolem property of C-finite sequences

and from the fact that the determinant is a C-finite sequence.
(v) The transpose of the matrix of cofactors Cn of An is an C-finite matrix

sequence by the above. Since |Apn+i+n1
| 6= 0 for every n ∈ N+, then

the (Apn+i+n1)
−1

= 1

|Apn+i+n1 |
Cn is well-defined and an C-finite matrix

sequence.

�

Lemma 11. Let M be an r × r matrix. Let c, d ∈ Z with c > 0. Let

Mn =

{
M cn+d, cn+ d ≥ 0

0, otherwise

The sequence Mn is a C-finite matrix sequence.

Proof. Let

χ(λ) =

r∑
t=0

etλ
t

be the characteristic polynomial of M c, with er 6= 0. By the Cayley-Hamilton
theorem, χ(M c) = 0, so

0 =

r∑
t=1

etM
ct(2.2)

with er 6= 0. If d ≥ 0, then by multiplying Eq. (2.2) by Md and setting t = n,
we get that for every i, j, the entry (i, j) in the sequence of matrices Mn : n ∈ N
satisfies the recurrence

Mn[i, j] = −
r−1∑
t=1

et
er
Mn−r+t[i.j] .

If d < 0, there exists r > 0 such that cr > |d|. We have M cn+d = M c(n−r)+cr−|d|.
The claim follows similarly to the case of d ≥ 0 by multiplying Eq. (2.2) by M cr−|d|

and setting t = n− r. �
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Lemma 12. Let r,m, ` ∈ N and let {An}∞n=n0
, {Bn}∞n=n0

be C-finite matrix se-
quences of consisting of matrices of size r × m respectively m × ` over C. Then
AnBn is an C-finite matrix sequence.

Proof. Let 1 ≤ i ≤ r and 1 ≤ j ≤ `. Then

(AnBn)ij =

m∑
k=1

(An)ik (Bn)kj

is a polynomial in C-finite matrix sequences. Hence, by the closure of C-finite
sequences to finite addition and multiplication, AnBn is an C-finite matrix se-
quences. �

3. Proof of Theorem 1

The proof of Theorem 1 relies on the notion of a pseudo-inverse of a matrix. This
notion is a generalization of the inverse of square matrices to non-square matrices.
For an introduction, see [3]. We need only the following theorem:

Theorem 13 (Moore-Penrose pseudo-inverse). Let F be a subfield of C. Let s, t ∈
N+. Let M be a matrix over F of size s×t with s ≥ t whose columns are independent.
Then there exists a unique matrix M+ over F of size t × s which satisfies the
following conditions:

(i) M∗M is non-singular;

(ii) M+ = (M∗M)
−1
M∗;

(iii) M+M = I.

M∗ is the Hermitian transpose of M , i.e. M∗ is obtained by taking the transpose
of M and replacing each entry with its complex conjugate.
M+ is called the Moore-Penrose pseudo-inverse of M .

The following is the main lemma necessary for the proof of Theorem 1. It
allows to extract C2-recurrences for individual sequences of numbers from recursion
schemes with C-finite coefficients for multiple sequences of numbers.

Lemma 14. Let F be a subfield of C and let r ∈ N+. For every n ∈ N+, let vn be
a column vector of size r× 1 over F. Let wn be a C-finite sequence which is always
positive. Let Mn be an C-finite matrix sequence consisting of matrices of size r× r
over F such that, for every n,

vn+1 =
1

wn
Mnvn .(3.1)

For each j = 1, . . . , r, vn[j] is C 2-finite. Moreover, all of the vn[j] satisfy the same
recurrence relation (possibly with different initial conditions).

Proof. For every i = 0, . . . , r2, let M
{i}
n = 1

wn+i−1···wn−1
Mn+i−1 · · ·Mn−1. By Eq.

(3.1), for every n,

vn+i = M{i}n vn−1 .(3.2)

Let N
{0}
n , . . . , N

{r2}
n be the column vectors of size r2 × 1 corresponding to

M
{0}
n ,. . . ,M

{r2}
n with N

{i}
n [r(k − 1) + `] = M{i}[k, `]. For every fixed n,

N
{0}
n , . . . , N

{r2}
n are members of the vector space of column vectors over F of size

r2 × 1. Since this vector space is of dimension r2, N
{0}
n , . . . , N

{r2}
n are linearly

dependent. Let sn ∈ {1, . . . , r2} be such that N
{sn}
n , . . . , N

{r2}
n are linearly inde-

pendent, but N
{sn−1}
n ,. . . , N

{r2}
n are linearly dependent. We have that N∗n,snNn,sn

is non-singular.
5



For every t = 0, . . . , r2 − 1 let Nn,t be the r2 × (r2 − t) matrix whose columns

are N
{t}
n , . . . , N

{r2−1}
n . Let

Ñn,t = C
(
N∗n,tNn,t

)T
N∗n,t

where C
(
N∗n,tNn,t

)T
is the transpose of the cofactor matrix of N∗n,tNn,t. Then

N+
n,sn =

1

|N∗n,snNn,sn |
Ñn,sn =

(
N∗n,snNn,sn

)−1
N∗n,sn

is the Moore-Penrose pseudo-inverse of Nn,sn , where |N∗n,tNn,t| denotes the deter-
minant of the matrix. In particular,

N+
n,snNn,sn = I .(3.3)

Consider the system of linear equations

Nn,snyn,sn = N{r
2}

n .(3.4)

with yn,sn a column vector of size
(
r2 − sn

)
× 1 of indeterminates yn,sn [k]. Let

y′n,sn = Ñn,snN
{r2}
n

yn,sn =
1∣∣N∗n,snNn,sn ∣∣y′n,sn .

Using Eq. (3.3) we have that yn,sn is a solution of Eq. (3.4). This solution which
can be rephrased as the matrix equation:

y′n,sn [1]M{sn}n + · · · y′n,sn [r2 − sn]M{r
2−1}

n =
∣∣N∗n,snNn,sn ∣∣M{r2}n .(3.5)

Moreover, by Lemmas 12 and 10, y′n is an C-finite vector sequence. Multiplying
Eq. (3.5) from the right by vn−1 and rearranging, we get

y′n,sn [1]vn+sn + · · · y′n,sn [r2 − sn]vn+r2−1 −
∣∣N∗n,snNn,sn ∣∣ vn+r2 = 0 ,(3.6)

For every n and every s ≥ sn,
∣∣N∗n,sNn,s∣∣ 6= 0, and for every s < sn,

∣∣N∗n,sNn,s∣∣ = 0
are linearly dependent. By Claim 10, there exists n1 such that for n ≥ n1, sn
is periodic and let p be the period. Using this periodicity we can remove the
dependence of Eq. (3.6) on the infinite sequence sn, and instead use for all n ≥ n1

a finite number of values, sn1+1, . . . , sn1+p:

p∑
i=1

In≡i (mod p)

(( r2−sn1+i∑
j=1

y′n,sn1+i
[j]vn+sn1+i+j−1

)

−
∣∣∣N∗n,sn1+i

Nn,sn1+i

∣∣∣ vn+r2

)
= 0

which can be rewritten as

q{0}n vn + · · ·+ q{r
2−1}

n vn+r2−1 = q{r
2}

n vn+r2

with

q{t}n =

{∑p
i=1 In≡i (mod p)y

′
n,sn1+i

[t+ 1− sn1+i], 0 ≤ t ≤ r2 − 1∑p
i=1 In≡i (mod p)

∣∣∣N∗n,sn1+i
Nn,sn1+i

∣∣∣ , t = r2 .

Note that, as the result of the closure of the C-finite sequences to finite addition

and multiplication, q
{t}
n is C-finite. Moreover, note q

{r2}
n is non-zero. �

We can now turn the main proof of this section.
6



Proof of Theorem 1. Let ζ(n) = c
(
n
2

)
+ dn+ e. Let b′n = aζ(n). We have

ζ(n)− ζ(n− 1) = cn+ d .

Let an satisfy the C-recurrence

an+s = c(s−1)an+s−1 + · · ·+ c(0)an .(3.7)

In order to write the latter equation in matrix form, let

M =


c(s−1) · · · c(0)

1
. . .

1


where the empty entries are taken to be 0. Let un = (an, . . . , an−s+1)

tr
. We have

un = Mun−1 ,

and consequently,

uζ(n) = M cn+duζ(n−1) .

For large enough values of n such that cn+ d ≥ 0, M cn+d is C-finite by Lemma 11.
Hence, the desired result follows from Lemma 14. �

As immediate consequences, we get closure properties for C2-finite sequences
over C.

Corollary 15. Let an and bn be C 2-finite sequences. The following hold:

(i) an + bn is C 2-finite
(ii) anbn is C 2-finite

Proof. Let an and bn satisfy the following recurrences

c(s)n an+s = c(s−1)
n an+s−1 + · · ·+ c(0)

n an

d(s)
n bn+s′ = d(s′−1)

n bn+s′−1 + · · ·+ d(0)
n bn

where the sequences c
(i)
n and d

(i)
n are C-finite and c

(s)
n and d

(s)
n are non-zero. It is

convenient to assume without loss of generality that s = s′. We apply Lemma 14
for both cases:

(i) For an + bn, let vn+1 = (an+1, . . . , an+2−s, bn+1, . . . , bn+2−s)
tr

and

M =
1

c
(s)
n d

(s)
n



c
(s−1)
n+1 d

(s)
n · · · c

(0)
n+2−sd

(s)
n d

(s−1)
n+1 c

(s)
n · · · d

(0)
n+2−sc

(s)
n

d
(s)
n

. . .

d
(s)
n

c
(s)
n

. . .

c
(s)
n


where the empty entries are taken to be 0. We have vn+1 = Mvn and the
claim follows from Theorem 14.

(i.a) For anbn, we have

c(s)n d(s)
n an+sbn+s =

s−1∑
t1,t2=0

c(t1)
n d(t2)

n an+t1bn+t2 .(3.8)

7



Let vn+1 = (an+1−t1bn+1−t2 : 0 ≤ t1, t2 ≤ s− 1)
tr

. Similarly to
the case of an+bn, we can define M such that vn+1 = 1

c
(s)
n d

(s)
n

Mvn,

where the first row of M corresponds to Eq. (3.8), and the sub-
sequent rows consist of non-zero value and otherwise 0s.

4. Fibonacci numbers

The Fibonacci number Fn, given by the famous recurrence

Fn+2 = Fn+1 + Fn

with F1 = 1, F2 = 1, can also be described in terms of counting binary words.
Fn counts the binary words of length n − 2 which do not contain consecutive 1s.
Similarly, Fn−1 counts the binary words of length n − 2 which begin with 0 (or,
equivalently, end with 0), and Fn−2 counts the binary words which begin (end)
with 1. Let Wn = Fn+2.

Let 0 < k < m, then

Wm+k = Wk−1Wm +Wk−2Wm−1

since Wk−1Wm counts the binary words of length m+k with no consecutive 1s which
have 0 at index k, and Wk−2Wm−1 counts the binary words with no consecutive 1s
which have 1 at index k(and therefore 0at indexk − 1. This translates back to the
Fibonacci numbers as:

Fm+k+2 = Fk+1Fm+2 + FkFm+1

So we have for the appropriate choices of m and k:

F(n+1)2 = F2n+1Fn2+1 + F2nFn2(4.1)

Fn2 = F2nF(n−1)2 + F2n−1F(n−1)2−1

Fn2+1 = F2n+1F(n−1)2 + F2nF(n−1)2−1

Extracting F(n−1)2−1 from the second equation, we get:

F(n−1)2−1 =
Fn2 − F2nF(n−1)2

F2n−1

and substituting F(n−1)2−1 in the third equation, we have:

Fn2+1 =
F2nFn2 + (F2n−1F2n+1 − F 2

2n)F(n−1)2

F2n−1

and substituting into Eq. (4.1), we have

F2n−1F(n+1)2 = F2n (F2n+1 + F2n−1)Fn2 + F2n+1

(
F2n−1F2n+1 − F 2

2n

)
F(n−1)2

where F2n−1, F2n (F2n+1 + F2n−1) and F2n+1

(
F2n−1F2n+1 − F 2

2n

)
are C-finite by

the closure properties of C-finite sequences in Lemma 6. Similarly, we can derive
the following C2-recurrence for F(n+1

2 ):

Fn−1F(n+1
2 ) = (Fn−1Fn+1 + FnFn−2)F(n2)

+
(
FnF

2
n−1 − Fn−2F

2
n

)
F(n−1

2 )

The sequences Fn2 and F(n2)
are catalogued in the On-Line Encyclopedia of

Integer Sequences [1] as (A054783) and (A081667).
�
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Figure 5.1. Examples of graphs belonging to the iterative fam-
ilies: paths, cycles, cliques, wheels, complete bipartite graphs and
prisms. They are also bi-iterative families.

5. Bi-iterative graph families

In this section we define the notion of a bi-iterative graph family, give examples
for some simple families which are bi-iterative and provide some simple lemmas for
them. The graph families we are interested in are built recursively by applying
basic operations on k-graphs. A k-graph is of the form

G = (V,E;R1, . . . , Rk)

where (V,E) is a simple graph and R1, . . . , Rk ⊆ V partition V . The sets R1, . . . , Rk
are called labels. The labels are used technically to aid in the description of the
graph families, but we are really only interested in the underlying graphs. Before
we give precise definitions and auxiliary lemmas for constructing bi-iterative graph
families, we give some examples of bi-iterative graph families.

Example 16 (Bi-iterative graph families). See Figures 5.1, 5.2 and 5.3 for illus-
trations of the following graph families.

(i) Iteratively families, such as paths, cycles, and cliques, serve as simple
examples of bi-iteratively constructible families.

(ii) G1
0 is a single vertex labeled 2. For each n, G1

n has one vertex labeled 2
and all others are labeled 1. G1

n is obtained from G1
n−1 by adding a cycle

of size n+2 and identifying one vertex of the cycle with the vertex labeled
2 is in G1

n−1. All other vertices in the cycle are labeled 1.
(iii) G2

n is obtained from a path of length n + 1 by adding, for each vertex
1 ≤ i ≤ n + 1, a new clique of size i, and identifying one vertex of the
clique with i.

(iv) G3
0 is a single vertex labeled 2. G3

n is obtained from G3
n−1 by adding

n+ 1 isolated vertices labeled 3, adding all possible edges between vertices
labeled 2 and vertices labeled 3, relabel all from 2 to 1, and then from 3
to 2.

(v) G4
0 consists of a triangle in which the vertices are labeled 1,2,3. G4

n is
obtained from G4

n−1 by adding a path Pn+2 whose end-points are labeled
4 and 5. Then, the edges {2, 4} and {3, 5} are added, and the labels are
changed so that the endpoints of the Pn+2 path are now labeled 2 and 3,
and all other vertices in G4

n are labeled 1.
(vi) G5

0 is obtained by taking two disjoint copies of G4
0 and respectively identi-

fying the vertices labeled 2 and 3. G5
n is obtained from two disjoint copies

of G4
n−1 by adding a path Pn+2 and connecting each of its endpoints to

the corresponding end-points labeled 2 and 3 of the two copies of G5
n.

9



G1
3 G4

3

G5
3 G6

3

G7
2

Figure 5.2. Examples of graphs belonging to some of the bi-
iterative families of Example 16. The bi-iterative families G1

n, G4
n,

G5
n and G6

n are bounded.

G2
4 G3

4

Figure 5.3. Examples of graphs belonging to the bi-iterative
families of Example 16 not depicted in Figure 5.2. The bi-iterative
families G2

n and G3
n are not bounded.
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(vii) G6
0 consists of a triangle in which the vertices are labeled 2,3,4. G6

n is
obtained by adding to G6

n−1 a cycle of size 3n+ 3 in which three vertices
are labeled 5,6,7. Between each of the pairs (5, 6), (6, 7) and (5, 7) there
are n vertices labeled 1. Then, 2, 3, 4 are connected to 5, 6, 7 respectively,
and the labels are changed so that only the vertices labeled 5, 6, 7 remain
labeled, and their new labels are 2, 3, 4.

(viii) The family G7
n is similar to G6

n, except we add a cycle of size 8n + 4, we
have four distinguished vertices separated by n vertices labeled 1, etc.

Now we proceed to define the precise definitions which allow us to build such
families.

Definition 17 (Basic and elementary operations).
The following are the basic operations on k-graphs:

(i) Addi(G): A new vertex is added to G, where the new vertex belongs to
Ri;

(ii) ρi→j(G): All the vertices in Ri are moved to Rj , leaving Rj empty;
(iii) ηi,j(G): All possible edges between vertices labeled i and vertices labeled

j are added;
(iv) ηbi,j(G): If Ri ∪Rj ≤ b, then ηbi,j(G) = ηi,j(G); otherwise ηbi,j(G) = G;
(v) δi,j(G): All edges between vertices labeled i and vertices labeled j are

removed.

An operation F on k-graphs is elementary if F is a finite composition of any of
the basic operations on k-graphs. We denote by id the elementary operation which
leaves the k-graph unchanged.
Definition 18 (Bi-iterative graph families).

Let k ∈ N, G0 be a k-graph and F,H,L be elementary operations on k-graphs,

(i) The sequence F (Gn) : n ∈ N is called an F -iteration family and is said to
be an iteratively constructible family.

(ii) The sequence Gn+1 = H (Fn(L(Gn))) : n ∈ N is called an (H,F,L)-bi-
iteration family and is said to be a bi-iteratively constructible family. By
Fn(G) we mean the result of performing n consecutive applications of F
on G.

Let Gn : n ∈ N be a family of graphs. This family is (bi-)iteratively constructible
if there exists k ∈ N and a family G′n : n ∈ N of k-graphs which is (bi-)iteratively
constructible, such that Gn is obtained from G′n by ignoring the labels.

It is sometimes convenient to describe G0 using basic operations on the empty
graph ∅.

We can now prove the observation from Example 16(1):

Lemma 19. Every iteratively constructible family is bi-iteratively constructible.

Proof. If F is an elementary operation such that Gn : n ∈ N is an F -iteration
family, then Gn : n ∈ N is also an (F, id, id)-bi-iteration family. �

All of the families in Example 16 are bi-iteratively constructible families which
are not iteratively constructible. The all grow too quickly to be iteratively con-
structible. Now consider for instance G3

n. Let F = Add3, H = Add3 ◦ η2,3 ◦ ρ2→1 ◦
ρ3→2 and L = ∅. We have G3

n+1 = H(Fn(L(Gn))).
In the sequel we will want to distinguish a particular type of bi-iterative families,

in which every application of ηi,j only adds at most a fixed amount of edges.

Definition 20 (Bounded bi-iterative families). A basic operation is bounded if it
not of the type ηi,j . A bi-iteratively constructible graph family Gn : n ∈ N is
bounded if its construction uses only bounded basic operations.

11



Example 21. Considering the families of Example 16, it is not hard to see that
G1
n, G4

n, G5
n,G6

n,G7
n are bounded bi-iterative families, while G2

n,G3
n are bi-iterative

families which are not bounded.

5.1. Lemmas for building bi-iterative graph families. Here we give some
lemmas which are useful to make the construction of bi-iterative families easier.
Their aim is to help the reader understand which families of graph are bi-iterative.

Lemma 22. Let GAn , G
B
n : n ∈ N be two bi-iteratively constructible families. The

family GAn t GBn : n ∈ N obtained by taking the disjoint union of the two families
is bi-iteratively constructible. In particular, if both families GAn , G

B
n : n ∈ N are

iteratively constructible, then so is GAn tGBn : n ∈ N.

Proof. Let HO, FO, LO be elementary operations such that GOn : n ∈ N is an
(HO, FO, LO)-bi-iteration family for i = A,B. We can assume w.l.o.g. that the
labels of the two families are disjoint; if they are not, we can simply rename the
labels used by one of the families. The family GAn tGBn : n ∈ N is an (HA◦HB , FA◦
FB , LA ◦ LB)-bi-iteration family, where ◦ denotes the composition of operations.
The case in which GAn , G

B
n : n ∈ N are iteratively constructible is similar. �

Lemma 23. Let Gn : n ∈ N and Jn : n ∈ N be iteratively constructible families
of k-graphs whose basic operations use distinct labels. The family Gn t Jn is an
iteratively constructible family.

Proof. Let FG and FJ be the elementary operations associated with the two fami-
lies. Let F be the composition FG ◦FJ . The iteratively constructible family whose
underlying elementary operation is F is Gn t Jn. �

Lemma 24. Let Gn : n ∈ N be an iteratively constructible family of k-graphs and
let H and L be two elementary operations over k-graphs. Let D0 be a k-graph, and
Dn+1 = H(L(Dn) tGn). The family Dn : n ∈ N is bi-iteratively constructible.

Proof. Let F be an elementary operation such that Gn : n ∈ N is an F -iteration
family. Let F ′ and G′0 be the same as F and G0, except that the labels they use are
changed as follows. If a basic operation in F uses label i, then the corresponding
operation in F ′ uses label i + k. For every i = 1, . . . , k, let ρi = ρi→i+k. Let ρ be
the composition ρ1 ◦ · · · ◦ ρk. If a vertex in G0 has label i, then the corresponding
vertex in G′0 has label i+k. For every vertex v of G0 with label i, let av = Addi+k.
Let a be the composition of av, v ∈ V (G). We have Dn+1 = H(ρ(F ′n(a(L(Dn))))),
and therefore Dn : n ∈ N is a bi-iteratively constructible family of 2k-graphs. �

Using Lemma 24, it is easy to show that some families from Example 16 are
indeed bi-iterative.

Example 25. Consider G4
n from Example 16. From Lemma 19 we get that P̃n =

P 4,5
n+3 is an iterative family. We define En+1 = H(L(En)tP̃n) with L = ρ1→5◦ρ2→6

and H = η2,4 ◦ η3,5 ◦ ρ2→1 ◦ ρ3→1 ◦ ρ4→2 ◦ ρ3→5. We get G4
n = En.

Subfamilies of iteratively constructible families give rise to many other related
bi-iteratively constructible families:

Lemma 26. Let Gn : n ∈ N be iteratively constructible.

(i) G(n2)
: n ∈ N and Gn2 : n ∈ N are bi-iteratively constructible.

(ii) Let c ∈ N+ and d, e ∈ Z. There exists r ∈ N such that Hn = Gcm2+dm+e :
m ∈ N, m = n+ r is bi-iteratively constructible.

Proof. Let F be an elementary operation such that Gn : n ∈ N is an F -iteration
family.

12



(i) G(n2)
: n ∈ N is an (id, F, id)-bi-iteration family. The proof is by induction

on n with G(0
2)

= G0 and

id
(
Fn
(
id
(
G(n2)

)))
= Fn+(n2) (G0) = F (n+1

2 ) (G0) = G(n+1
2 ) .

Gn2 : n ∈ N is an (id, F 2, F )-bi-iteration family. Again by induction with
G02 = G0 and

id
(
F 2n (F (Gn2))

)
= F 2n+1+n2

(G0) = F (n+1)2 (G0) = G(n+1)2 .

(ii) Since c > 0, there exists r ∈ N such that c(n + r)2 + d(n + r) + e =
cn2 + d′n + e′ and d′, e′ ≥ 0. Let H0 = Ge′ , then Hn : n ∈ N is an
(id, F 2c′ , F d

′+1)-bi-iteration family. Here again the proof is by induction
on n.

�

5.2. Families which are not bi-iterative. Clique-width is a graph parameter
which generalizes tree-width, and is very useful for designing efficient algorithms
for NP-hard problems, see e.g. [9, 17].

Definition 27. The clique-width cwd(G) of a graph G is the minimal k ∈ N such
that there exists a k-graph H whose underlying graph is isomorphic to G and which
can be obtained from ∅ by applying the basic operations Addi, ρi→j , ηi,j and δi,j
from Definition 17.

Bi-iterative families have bounded clique-width. Using this fact we easily get
examples of families which are not bi-iterative.

Lemma 28. If Gn : n ∈ N is a bi-iterative family of k-graphs, then for every n,
Gn has clique-width at most k.

Proof. Let Gn be a (H,F,L)-bi-iteration family of k-graphs. Since G0 is a k-graph,
it can be expressed by the basic operations Addi, ρi→j , and ηi,j on ∅. For every
n > 0, Gn is a composition of the operations H, F and L, which are in turn
compositions of basic operations. Therefore, for every n, Gn can be obtained from
∅ by applying operations of the form Addi, ρi→j , ηi,j , δi,j , and ηbi,j . It remains to

notice that whenever an operation ηbi,j is applied to a k-graph G′, it can be either
replaced by ηi,j or omitted, depending on whether the number of vertices in G′

labeled i or j is smaller or equal to b or not. Therefore, for every n, Gn can be
obtained from ∅ by applying operations of the form Addi, ρi→j , ηi,j and δi,j (but no
operations of the form ηbi,j). Therefore, each Gn is of clique-width as most k. �

Graph families which have unbounded clique-width, like square grids and other
lattice graphs, are not bi-iterative. It is instructive to compare the graphs in Figure
5.4 with the graphs of Figure 5.2.

6. Graph polynomials and MSOL

We consider in this paper two related rich families of graph polynomials with use-
ful decomposition properties. These graph polynomials are defined using a simple
logical language on graphs.

6.1. Monadic Second Order Logic of graphs, MSOL. We define the logic
MSOL of graphs inductively. We have three types of variables: xi : i ∈ N which
range over vertices, Ui : i ∈ N which range over sets of vertices and Bi : i ∈ N
which range over sets of edges. We assume our graphs are ordered, i.e. that there
exists an order relation ≤ on the vertices. Atomic formulas are of the form xi = xj ,
(xi, xj) ∈ E, xi ≤ xj , xi ∈ Uj and (xi, xj) ∈ B`. The logical formulas of MSOL are
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Figure 5.4. Examples of graphs belonging to two families which
are not bi-iterative, because they have unbounded clique-width.

built inductively from the atomic formulas by using the connectives ∨ (or), ∧ (and),
¬ (negation) and → (implication), and the quantifiers ∀xi, ∃xi, ∀Ui, ∃Ui, ∀Bi, ∃Bi
with their natural interpretation.

If no variable Bi occurs in the formula, then the formula is said to be in MSOLG,
MSOL on graphs. Otherwise, the formula is said to be on hypergraphs.1 Some-
times additional modular quantifiers are allowed, giving rise to the extended logic
CMSOL. The counting quantifiers are of the form Cqxϕ(x), whose semantics is
that the number of elements from the universe satisfying ϕ is zero modulo q. On
structures containing an order relation, as is the case here, CMSOL and MSOL are
equivalent, cf. [6].

Example 29.

(i) We can express in MSOL that a set of edges B1 is a matching:

ϕmatch(B1) = ∀x1∀x2∀x3 ((x1, x2) ∈ B1 ∧ (x2, x3) ∈ B1 → x1 = x3)

(ii) We can express in MSOL that a set of vertices U1 is an independent set:

ϕind(U1) = ∀x1∀x2 ((x1, x2) ∈ E → (x1 /∈ U1 ∨ x2 /∈ U1))

where write e.g. x1 /∈ U1 as shorthand for ¬ (x1 ∈ U1). Note ϕind(U1) is a
MSOLG formula.

(iii) A graphs is 3-colorable iff it satisfies the following MSOLG formula:

∃U1∃U2∃U3 (ϕpartition(U1, U2, U3) ∧ ϕind(U1) ∧ ϕind(U2) ∧ ϕind(U3))

where ϕpartition expresses that U1, U2, U3 form a partition of the vertices:

ϕpartition(U1, U2, U3) = ∀x1 (x1 ∈ U1 ∨ x1 ∈ U2 ∨ x1 ∈ U3) ∧
∀x1¬ (x1 ∈ U1 ∧ x1 ∈ U2) ∧
∀x1¬ (x1 ∈ U2 ∧ x1 ∈ U3) ∧
∀x1¬ (x1 ∈ U1 ∧ x1 ∈ U3)

(iv) We can express in MSOL that a vertex x1 is the first element is its con-
nected component in the graph spanned by B1 with respect to the ordering
of the vertices:

ϕfconn(x1, B1) = ∀x2 (ϕsc(x1, x2)→ x1 ≤ x2)

where ϕsc(x1, x2) says that x1 and x2 belong to the same connected com-
ponent in the graph spanned by B1:

1MSOLG is referred to as node-MSOL in [20], as MS1 in [6], and as MSOL(τgraph) in [18].
Full MSOL is sometimes referred to as MS2 or as MSOL(τhypergraph). τgraph and τhypergraph
are vocabularies whose structures represent graphs in different ways, the later of which can also
be used to represent hypergraphs.
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ϕsc(x1, x2, B1) = ∀U1

((
x1 ∈ U1 ∧ x2 /∈ U1

)
→

∃x3∃x4 (B1(x3, x4) ∧ x3 ∈ U1 ∧ x2 /∈ U1)

)
The formula ϕfconn(x1, B1) will be useful when we discuss the definability
of the Tutte polynomial.

6.2. MSOL-polynomials. MSOL-polynomials are a class of inductively defined
graph polynomials given e.g. in [16]. It is convenient to refer to them in the
following normal form:

p =
∑

U1,...,U`,B1,...,Bm:Φ(Ū,B̄)

X
|U1|
1 · · ·X |U`′ |`′ X

|B1|
`′+1 · · ·X

|Bm′ |
`′+m′

where Φ is an MSOL formula with the iteration variables indicated and `′ ≤ `,
m′ ≤ m. Ū , B̄ is short for U1, . . . , U`, B1, . . . , Bm. If m = 0 and all the formulas
are MSOLG formulas, then we say p is a MSOLG-polynomial. It is often convenient
to think of the indeterminates Xi as multiplicative weights of vertices and edges.

While every MSOLG-polynomial is a MSOL-polynomial, the converse is not true.
The independence polynomial, the interlace polynomial [8], the domination poly-
nomial and the vertex cover polynomial are MSOLG-polynomials. The Tutte poly-
nomial, the matching polynomial, the characteristic polynomial and the edge cover
polynomial are MSOLHG. We illustrate this for the independence polynomial and
the Tutte polynomial.

6.3. The independence polynomial. The independence polynomial is the gen-
erating function of independent sets,

I(G) =

n∑
j=0

indG(j)Xj ,

where indG(j) is the number of independent sets of size j and n is the number of
vertices in G. It is a MSOLG-polynomial, given by

I(G) =
∑

U1:Φind(U1)

X |U1|

where Φind = ϕind from Example 29 says U1 is an independent set.

6.4. The Tutte polynomial and the chromatic polynomial. The chromatic
polynomial is defined in terms of counting proper colorings, but it can be written
as a subset expansion which resembles an MSOL-polynomial as follows:

χ(G) =
∑
A⊆E

(−1)|A|Xk(A)(6.1)

where k(A) is the number of connected components in the spanning subgraph of G
with edge set A.

Therefore, χ(G) is an evaluation of the dichromatic polynomial given by

Z(G) =
∑
A⊆E

Y |A|Xk(A)

which is an MSOL-polynomial:

Z(G) =
∑

U1,B1:Φ1

Y |B1|X |U1|
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with Φ1 says that U1 is the set of vertices which are minimal in their connected
component in the graph (V,B1) with respect to the ordering on the vertices

Φ1 = ∀x (x ∈ U1 ↔ ϕfconn(x1, B1)) ,

where ϕfconn is from Example 29. The dichromatic polynomial is related to the
Tutte polynomial via the following relation:

T (G,X, Y ) =
Z(G, (X − 1)(Y − 1), Y − 1)

(X − 1)k(E)(Y − 1)|V |
.

The Tutte polynomial can also be shown to be an MSOL-polynomial via its defini-
tion in terms of spanning trees.

6.5. A Feferman-Vaught-type theorem for MSOL-polynomials. The main
technical tool from model theory that we use in this paper is a decomposition prop-
erty for MSOL-polynomials, which resembles decomposition theorems for formulas
of First Order Logic, FOL, and MSOL. For an extensive survey of the history and
uses of Feferman-Vaught-type theorems, including to MSOL-polynomials, see [21].

In Theorem 30 we rephrase Theorem 6.4 of [21]. For simplicity, we do not
introduce the general machinery that is used there, e.g. instead of the notion
of MSOL-smoothness of binary operations we limit ourselves to our elementary
operations (see Section 4 of [21] for more details). Some other small differences
follow from the proof of Theorem 6.4.

Theorem 30 ([21], see also [11]). Let k be a natural number. Let P be a finite set
of MSOL-polynomials. Then there exists a finite set of MSOL-polynomials P ′ =
{p0, . . . , pα} such that P ⊆ P ′ and for every elementary operation σ on k-graphs,
the following holds. If either all members of P are MSOLG-polynomials, or σ
consists only of bounded basic operations, then there exists a matrix Mσ such that
for every graph G,(

p0(σ(G), X̄), . . . , pα(σ(G), X̄)
)tr

= Mσ

(
p0(G, X̄), . . . , pα(G, X̄)

)tr
Mσ is a matrix of size α× α of polynomials with indeterminates X̄. Additionally,
if all members of P are MSOLG-polynomials, then the same is true for P ′.

For bi-iterative families of graphs we prove the following result, which we will
use in the proof of our main theorem.

Lemma 31. Let k be a natural number. Let p be an MSOL-polynomial and let Gn :
n ∈ N be a bi-iterative graph family. If p is an MSOLG-polynomial, or Gn : n ∈ N
is bounded, then there exist a finite set of MSOL-polynomials P ′ = {p0, . . . , pα} and
a C-finite sequence Mn : n ∈ N such that p ∈ P ′ and

such that(
p0(Gn+1, X̄), . . . , pα(Gn+1, X̄)

)tr
= Mn

(
p0(Gn, X̄), . . . , pα(Gn, X̄)

)tr
Additionally, if p is an MSOLG-polynomial, then the same is true for all members
of P ′.

Proof. Let F , H and L be elementary operations such thatGn+1 = H (Fn(L(Gn))).
Let P ′ = {p0, . . . , pα} be the set of MSOL-polynomials guaranteed in Theorem 30
for P = {p}. We have(

p0(σ(G), X̄), . . . , pα(σ(G), X̄)
)tr

= Mσ

(
p0(G, X̄), . . . , pα(G, X̄)

)tr
for σ ∈ {L,F,H}. Therefore,(

p0(Gn+1, X̄), . . . , pα(Gn+1, X̄)
)tr

= MHM
n
FML

(
p0(G, X̄), . . . , pα(G, X̄)

)tr
.

By Lemmas 11 and 12, An = MHM
n
FML is a C-finite sequence of matrices. �
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7. Statement and proof of Theorem 2

We are now ready to state Theorem 2 exactly and prove it.

Theorem 32. Let k be a natural number. Let p be an MSOL-polynomial and
let Gn : n ∈ N be a bi-iterative graph family. If p is an MSOLG-polynomial, or
Gn : n ∈ N is bounded, then the sequence p(Gn) : n ∈ N is C 2-finite.

To transfer Theorem 32 to C-finite sequences over a polynomial ring, we will use
the following lemma:

Lemma 33. Let F be a countable subfield of C. For every ξ ∈ N, there exists a
set Dξ = {d1, . . . , dξ} ⊆ R such that the partial function subξ : F[x1, . . . , xξ] → C
given by

subξ(p) = p(d1, . . . , dξ)

is injective.

Proof. We prove the claim by induction on ξ. For the case ξ = 0 we have Dξ = ∅
and subξ(p) = p, which is injective.

Now assume there exists Dξ−1 such that subξ−1 is injective. Let Bξ−1 be the
set of real numbers which are roots of non-zero polynomials in the polynomial
ring F[d1, . . . , dξ−1][xξ] of polynomials in the indeterminate xξ whose coefficients
are polynomials in d1, . . . , dξ−1 with rational coefficients. The cardinality of Bξ−1

is ℵ0, implying that that there exists dξ ∈ R\Bξ−1. Let Dξ = Dξ−1 ∪ {dξ}.
Assume for contradiction that there exist distinct p, q ∈ Q[x1, . . . , xξ] such that
subξ(p) = subξ(q). Let r(x1, . . . , xξ) = p(x1, . . . , xξ)− q(x1, . . . , xξ). Let

r(x1, . . . , xξ) =
∑

i1,...,iξ≤t

ρi1,...,iξx
i1
1 · · ·x

iξ
ξ .

Since p and q are distinct, r is not the zero polynomial and there exists i′ξ such that

ri′ξ(x1, . . . , xξ−1) =
∑

i1,...,iξ−1≤t

ρi1,...,iξ−1,i′ξ
xi11 · · ·x

iξ−1

ξ−1

is not identically non-zero.
By the assumption that subξ(p) = subξ(q) we have that r(d1, . . . , dξ) = 0.

• If xξ has non-zero degree in r(d1, . . . , dξ−1, xξ), then dξ is indeed a root of
a non-zero polynomial r(d1, . . . , dξ−1, xξ) ∈ Q[d1, . . . , dξ−1][xξ].

• Otherwise, r(d1, . . . , dξ−1, xξ) is a polynomial of degree zero in xξ. In
order for r(d1, . . . , dξ) = 0 to hold, r(d1, . . . , dξ−1, xξ) must be identically

zero. In particular, the coefficient of x
i′ξ
ξ in r(d1, . . . , dξ−1, xξ) is zero,

but this coefficient is ri′ξ(d1, . . . , dξ−1). This implies that there exist two

distinct polynomials, e.g. ri′ξ(x̄) and 2ri′ξ(x̄), which agree on d1, . . . , dξ−1

in contradiction to the assumption that subξ−1 is injective.

�

Lemma 34. Let F be a subfield of C and let r ∈ N+ and let r ∈ N+. For every
n ∈ N+, let vn be a column vector of size r× 1 of polynomials in F[x1, . . . , xk]. Let
Mn be a C-finite sequence of matrices of size r× r over F[x1, . . . , xk] such that, for
every n,

vn+1 = Mnvn .(7.1)

For each j = 1, . . . , r, vn[j] is C 2-finite. Moreover, all of the vn[j] satisfy the same
recurrence relation (possibly with different initial conditions).
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Proof. First note that due to the C-finiteness of Mn and Eq. (7.1), we may assume
w.l.o.g. that the the matrices Mn and vectors vn are all given over a finite extension
field F of C. In particular, we need that F is countable.

Let Dk = {d1, . . . , dk} be the set guaranteed in Lemma 33. For every n, let un
and Ln be the real vector respectively real matrix obtained from vn respectively
Mn by substituting x1, . . . , xk with d1, . . . , dk. Ln is a C-finite sequence of matrices
over F(d1, . . . , dk) the extension field of F with Dk. We have for every n,

un+1 = Lnun .

By Lemma 14, there exists n0 and C-finite sequences over F(d1, . . . , dk),

c
{0}
n , . . . , c

{r2}
n , such that for every n > n0,

c{0}n un + · · ·+ c{r
2−1}

n un+r2−1 = c{r
2}

n un+r2

and q
{r2}
n is non-zero. Using Lemma 33, there exist unique polynomials

q{0}n (x1, . . . , xξ), . . . , q
{r2}
n (x1, . . . , xξ)

such that for every n,

q{0}n (d1, . . . , dξ) = c{0}n (d1, . . . , dξ) .

Let t(x1, . . . , xξ) be the polynomial given by

t(x1, . . . , xξ) = q{0}n vn + · · ·+ q{r
2−1}

n vn+r2−1 − q{r
2}

n vn+r2 .

substituting d1, . . . , dξ on both sides of the latter equation, we get subξ(t) = 0,
but this implies that t(x1, . . . , xξ) is identically zero, since subξ(0) = 0 and subξ is
injective.

�

Proof of Theorem 32. Let P ′ = {p0, . . . , pα} and Mn : n ∈ N be as guaranteed by
Lemma 31. We have(

p0(Gn+1, X̄), . . . , pα(Gn+1, X̄)
)tr

= Mn

(
p0(Gn, X̄), . . . , pα(Gn, X̄)

)tr
.

By Lemma 34, p(Gn) : n ∈ N is C2-finite. �

8. Examples of relatively iterative sequences

Here we give explicit applications of Theorem 2. The applications follow the
basic ideas underlying the proof, but can be significantly simplified given specific
choices of a graph polynomial and a bi-iterative family.

8.1. The independence polynomial on G2
n. Let G2

n be as described in Example
16. We denote by v0, . . . , vn the vertices of the underlying path ofG2

n. Let IA(G2
n, x)

(IB(G2
n, x)) be the generating functions counting independent sets U1 in G2

n such
that vn belongs (resp. does not belong) to U1. Then,

I(G2
n, x) = IA(G2

n, x) + IB(G2
n, x) .(8.1)

Now we give a matrix equation for computing IA(G2
n+1, x),IB(G2

n+1, x) and
I(G2

n+1, x) from IA(G2
n, x),IB(G2

n, x) and I(G2
n, x): for all m,(

IA(G2
m+1, x)

IB(G2
m+1, x)

)
= M

(
IA(G2

m, x)
IB(G2

m, x)

)
(8.2)

where

M =

(
0 x

1 + nx 1 + nx

)
.

The first row reflects the facts that if vn+1 belongs to the sets U1 counted by
IA(G2

n+1, x), vn+1 and vn may not belong to the same U1, and vn+1 contributes a
18



multiplicative factor of x. The second row reflects that vn+1 does not belong to the
sets U1 counted in IB(G2

n+1, x), so independent of whether vn is in U1, there are
two options: either exactly one of the clique vertices adjacent to vn+1 belong to U1

and contributes a factor of x, or no vertex of that clique belongs to U1, contributing
a factor of 1.

Eq. (8.2) holds both for n and n+ 1, leading to the recurrence relation

I(G2
n+1, x) = (1 + nx)I(G2

n, x) + x(1 + (n− 1)x)I(G2
n−1, x)

I(G2
0, x) = 1 + x

I(G2
1, x) = 1 + 3x+ x2

using Eq. (8.1). This is a C2-finite recurrence, which is also a P-recurrence.
The number of independent sets of G2

n+1 is I(G2
n+1, 1). Interestingly, the se-

quence I(G2
n+1, 1) : n ∈ N is in fact equal to the seemingly unrelated sequence

(A052169) of [1]. This implies I(G2
n+1, 1) has an alternative combinatorial inter-

pretation as the number of non-derangements of 1, . . . , n+ 3 divided by n+ 2. See
[25] for a treatment of the related (A002467).

8.2. The dichromatic polynomial on G4
n. Let Zt(Pn+2) denote the dichro-

matic polynomial of Pn+2 such that the end-points of Pn+2 belong to the same
connected component iff t = 1, for t = 0, 1. Zt(G

4
n) is defined similarly with respect

to the most recently added path.
We have

Z0(G4
n) =

(
v

q
+ 1

)2

Z0(Pn+2) · Z0(G4
n−1)

+

(
2
v

q
+ 1

)
Z0(Pn+2)Z1(G4

n−1)

Z1(G4
n) =

v2

q2
Z0(Pn+2)Z1(G4

n−1)

+

(
v2

q
+ 2

v

q
+ 1

)
Z1(Pn+2)Z1(G4

n−1)

+

(
v

q
+ 1

)2

Z1(Pn+2)Z0(G4
n−1)

by dividing into cases by considering the end-points u, v of Pn+2 and the end-
points u′, v′ of the Pn+1 in G4

n−1 and the edges {u, v} and {u′, v′} with respect to
the iteration variable of Zt(G

4
n). For example, the coefficient of Z1(Pn)Z1(G4

n−1)
corresponds exactly to the case that u, v are in the same connected components in
the graph spanned by A (A is the iteration variable in the definition of Z in Eq.
(6.1)). If at least one of the edges {u, v} and {u′, v′} belongs to A, then G4

n−1 and
G4
n have the same number of connected components, but in Z1(Pn+2)Z1(G4

n−1) we
have that Z1(Pn+2) contributes an additional factor of q which should be cancelled,

so the weight in the case is v2+2v
q . If none of the two edges belongs to A, then u, v

are in a different connected component from u′, v′, so no correction is needed and
the weight is 1.

Using that Z(G4
n) = Z0(G4

n) + Z1(G4
n), we get:
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Z0(G4
n) =

v2

q2
Z0(Pn+2) · Z0(G4

n−1)

+

(
2
v

q
+ 1

)
Z0(Pn+2)Z(G4

n−1)(8.3)

Z(G4
n) =

((
v

q
+ 1

)2

Z(Pn+2) +
v2

q

(
1− 1

q

)
Z1(Pn+2)

)
Z(G4

n−1)

−v
2

q

(
1− 1

q

)
Z1(Pn+2)Z0(G4

n−1)(8.4)

Let m ∈ N. Eqs. (8.3) and (8.4) hold for every n, in particular for m and m+ 1,
and from these equations we can extract a recurrence relation for Z(G4

m+1) using
Z(G4

m) and Z(G4
m−1) by canceling out Z0(G4

m) and Z0(G4
m−1):

Z(G4
m+1) = Z(G4

m)

((
v

q
+ 1

)2

Z(Pm+3) +
v2

q

(
1− 1

q

)
Z1(Pm+3)

)

−Z(G4
n−1)

[
v2

q

(
1− 1

q

)
Z1(Pm+3) ·

(
Z0(Pm+2)

v2

q2
+

(
v
q + 1

)2

Z0(Pm+2)Z(Pm+2)

(q − 1)Z1(Pm+2)
+

(
2
v

q
+ 1

)
Z0(Pm+2)

)]

Using this recurrence relation, it is easy to compute the dichromatic and Tutte
polynomials. E.g., Z(G4

m, 3,−1), the number of 3-proper colorings of G4
m, and

|Z(G4
m,−1,−1)|, the number of acyclic orientations of G4

m, are given, for m =
0, . . . , 6, by

Z(G4
m, 3,−1) :6 30 318 6762 288354 24601830 4198550862

|Z(G4
m,−1,−1)| :6 90 2826 179874 22988394 5882561010 3011536790874

9. Conclusion and further research

We introduced a natural type of recurrence relations, C2-recurrences, and proved
a general theorem stating that a wide class of graph polynomials have recurrences
of this type on some families of graphs. We gave explicit applications to the Tutte
polynomial and the independence set polynomial. We further showed that quadratic
sub-sequence of C-finite sequences are C2-finite.

A natural generalization of the notion of C2-recurrences could be to allow even
sparser sub-sequences. We say a sequence an is C 1-finite if it is C-finite. We say a
sequence is C r-finite if it has a linear recurrence relation of the form

c(s)n an+s = c(s−1)
n an+s−1 + · · ·+ c(0)

n an

where c
(0)
n , . . . , c

(s)
n are Cr−1-finite. This definition coincides with the definition of

C2-finite.

Problem 35. Can we find families of graphs for which the Tutte polynomial and
other MSOL-polynomials have Cr-recurrences?
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