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Abstract

The aim of this paper is to develop analytic techniques to deal with certain

monotonicity of combinatorial sequences. On the one hand, a criterion for the

monotonicity of the function x

√

f(x) is given, which is a continuous analog for one

result of Wang and Zhu. On the other hand, the log-behavior of the functions

θ(x) = x

√

2ζ(x)Γ(x+ 1) and F (x) = x

√

Γ(ax+b+1)
Γ(cx+d+1)Γ(ex+f+1) is considered, where ζ(x)

and Γ(x) are the Riemann zeta function and the Euler Gamma function, respec-

tively. As consequences, the strict log-concavities of the function θ(x) (a conjec-

ture of Chen et al.) and { n
√
zn} for some combinatorial sequences (including the

Bernoulli numbers, the Tangent numbers, the Catalan numbers, the Fuss-Catalan

numbers, the Binomial coefficients
(

2n
n

)

,
(

3n
n

)

,
(

4n
n

)

,
(

5n
n

)

,
(

5n
2n

)

) are demonstrated.

In particular, this contains some results of Chen et al., Luca and Stănică.

Finally, by researching logarithmically complete monotonicity of some functions,

the infinite log-monotonicity of the sequence { (n0+ia)!

(k0+ib)!(k0+ib)!
}i≥0 is proved. This gen-

eralizes two results of Chen et al. that both the Catalan numbers 1
n+1

(2n
n

)

and cen-

tral binomial coefficients
(2n
n

)

are infinitely log-monotonic and strengths one result

of Su and Wang that
(

dn
δn

)

is log-convex in n for positive integers d > δ. In addition,

the asymptotically infinite log-monotonicity of derangement numbers is showed. In

order to research the stronger properties of the above functions θ(x) and F (x),

the logarithmically complete monotonicity of functions 1/ x

√

aζ(x+ b)Γ(x+ c) and
x

√

ρ
∏n

i=1
Γ(x+ai)
Γ(x+bi)

is also obtained, which generalizes the results of Lee and Tepede-

lenlioǧlu, Qi and Li.
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1 Introduction

Let {zn}n≥0 be a sequence of positive numbers. It is called log-concave (resp. log-convex)

if zn−1zn+1 ≤ z2n (resp. zn−1zn+1 ≥ z2n) for all n ≥ 1. Clearly, the sequence {zn}n≥0 is log-

concave (resp. log-convex) if and only if the sequence {zn+1/zn}n≥0 is decreasing (resp.

increasing). Generally speaking, a sequence will have good behavior (e.g., distribution

properties, bounds by inequalities) if it is log-concave or log-convex. In addition, sequences

with log-behaviour arise often in combinatorics, algebra, geometry, analysis, probability

and statistics and have been extensively investigated (see [3, 10, 15, 20, 23] for instance).

Motivated by a series of conjectures of Sun [17] about monotonicity of sequences of the

forms { n
√
zn} and { n+1

√
zn+1/ n

√
zn}, where {zn}n≥0 is a familiar number-theoretic or combi-

natorial sequence, e.g., the Bernoulli numbers, the Fibonacci numbers, the derangements

numbers, the Tangent numbers, the Euler numbers, the Schröder numbers, the Motzkin

numbers, the Domb numbers, and so on. These conjectures have recently been investi-

gated by some researchers (see Chen et al. [4, 5], Hou et al. [8], Luca and Stănică [11],

Wang and Zhu [21]). The main aim of this paper is to develop some analytic techniques

to deal with monotonicity of { n
√
zn} and { n+1

√
zn+1/ n

√
zn} (Note that the monotonicity of

{ n+1
√
zn+1/ n

√
zn} equals to the log-behavior of { n

√
zn}).

Recently, Wang and Zhu [21] observed sufficient conditions that the log-behaviour of

{zn}n≥0 implies the monotonicity that of { n
√
zn}n≥1. For example, for a positive log-convex

sequence {zn}n≥0, if z0 ≤ 1, then the sequence { n
√
zn}n≥1 is increasing. Using the analytic

approach of Chen et al. [4], the following continuous analog can be proved, whose proof

is arranged in Section 2.

Theorem 1.1. Let N be a positive number. If f(x) is a positive increasing log-convex

function for x ≥ N and f(N) ≤ 1, then x

√

f(x) is strictly increasing on (N,∞).

Remark 1.2. Theorem 1.1 can be applied to the monotonicity of { n
√
zn}n≥1 for some

combinatorial sequences {zn}n≥0. Some further examples and applications related to

Theorem 1.1 can be found in [4].

Thus, one may ask whether there are some analytic techniques to deal with the log-

behavior of { n
√
zn}n≥1. This is another motivation of this paper. In particular, the

following conjecture of Chen et al. [4] is still open.

Example 1.3. Recall that the classical Bernoulli numbers are defined by

B0 = 1,

n
∑

k=0

(

n+ 1

k

)

Bk = 0, n = 1, 2, . . . .

It is well known that B2n+1 = 0, (−1)n−1B2n > 0 for n ≥ 1 and

(−1)n−1B2n =
2(2n)!ζ(2n)

(2π)2n
,
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see [6, (6.89)] for instance. In order to show that { n

√

(−1)n−1B2n} is increasing, Chen et

al [4] introduced the function θ(x) = x

√

2ζ(x)Γ(x+ 1), where

ζ(x) =
∑

n≥1

1

nx

is the Riemann zeta function and Γ(x) is the Euler Gamma function. Thus

n

√

(−1)n−1B2n = θ2(2n)/4π2.

They proved that θ(x) is increasing on (6,∞). In addition, in order to get the log-concavity

of { n

√

(−1)n−1B2n}n≥1, they further conjectured.

Conjecture 1.4. [4] The function θ(x) = x

√

2ζ(x)Γ(x+ 1) is log-concave on (6,∞).

Using some inequalities of the Riemann zeta function and the Euler Gamma function,

in Section 3, this conjecture will almost be confirmed, see Theorem 3.3. As applications,

the results of Luca and Stănică [11] on strict log-concavities of { n

√

(−1)n−1B2n}n≥1 and

{ n

√

T (n)}n≥1 can be verified, where T (n) are the Tangent numbers.

In addition, motivated by the strict log-concavities of n

√

(

2n
n

)

and n

√

1
2n+1

(

2n
n

)

(Chen

et al. [5]), the log-behavior of the function

F (x) = x

√

Γ(ax+ b+ 1)

Γ(cx+ d+ 1)Γ(ex+ f + 1)

is considered (see Theorem 3.6). As consequences, for any positive integers p ≥ 2 and

a > c, the strict log-concavities of { n

√

1
(p−1)n+1

(

pn
n

)

}n≥2 and { n

√

(

an
cn

)

}n≥30 are obtained,

see Corollary 3.7. For more examples, the sequences { n

√

1
2n+1

(

2n
n

)

}n≥1, { n

√

(

2n
n

)

}n≥1,

{ n

√

(

3n
n

)

}n≥1, { n

√

(

4n
n

)

}n≥1, { n

√

(

5n
n

)

}n≥1 and { n

√

(

5n
2n

)

}n≥1 are strictly log-concave, respec-

tively.

To study the conjectures of Sun on the monotonicity of { n+1
√
zn+1/ n

√
zn}, Chen et al. [5]

found a connection between the log-behavior of { n
√
zn}n≥1 and that of {zn+1/zn}n≥0.

Moreover, they introduced a stronger concept as follows: define an operator R on a

sequence {zn}n≥0 by

R{zn}n≥0 = {xn}n≥0,

where xn = zn+1/zn. The sequence {zn}n≥0 is called infinitely log-monotonic if the se-

quence Rr{zn}n≥0 is log-concave for all positive odd r and is log-convex for all nonnegative

even r. In fact, the infinite log-monotonicity is related to the logarithmically completely

monotonic function.

3



Recall that a function f(x) is said to be completely monotonic on an interval I if f(x)

has derivatives of all orders on I which alternate successively in sign, that is,

(−1)nf (n)(x) ≥ 0

for all x ∈ I and for all n ≥ 0. If inequality is strict for all x ∈ I and for all n ≥ 0, then

f(x) is said to be strictly completely monotonic. A positive function f(x) is said to be

logarithmically completely monotonic on an interval I if log f(x) satisfies

(−1)n[log f(x)]n ≥ 0

for all x ∈ I and for all n ≥ 1. A logarithmically completely monotonic function is

completely monotonic, but not vice versa, see Berg [2]. The reader can refer to [22] for

the properties of completely monotonic functions and [13] for a survey of logarithmically

completely monotonic functions. In [5], Chen et al. found the link between logarithmically

completely monotonic functions and infinite log-monotonicity of combinatorial sequences.

Thus, in Section 4, the logarithmically complete monotonicity of some functions related to

the combinatorial sequences will be considered. As applications, for nonnegative integers

n0, k0, k0 and positive integers a, b, b, if a ≥ b+ b and −1 ≤ k0− (n0 +1)b/a ≤ 0, then the

sequence

{ (n0 + ia)!

(k0 + ib)!(k0 + ib)!
}i≥0

is infinitely log-monotonic. This generalizes two results of Chen et al. [5] that both

the Catalan numbers 1
n+1

(

2n
n

)

and central binomial coefficients
(

2n
n

)

are infinitely log-

monotonic and strengths one result of Su and Wang [16] that
(

dn
δn

)

is log-convex in n

for positive integers d > δ. In addition, the asymptotically infinite log-monotonicity of

derangement numbers is also demonstreted.

In order to research the stronger properties of the above functions θ(x) and F (x), the

logarithmically complete monotonicity of functions 1/ x

√

aζ(x+ b)Γ(x+ c) and x

√

ρ
∏n

i=1
Γ(x+ai)
Γ(x+bi)

is also given, which generalizes one result of Lee and Tepedelenlioǧlu about the logarith-

mically complete monotonicity of x

√

2
√
πΓ(x+1)

Γ(x+1/2)
, and one result of Qi and Li about the

logarithmically complete monotonicity of x

√

aΓ(x+b)
Γ(x+c)

.

2 Analytic results for the monotonicity of the se-

quence n
√
zn

This section is to give the proof of the analytic result Theorem 1.1.

Proof. Let y = x

√

f(x). Then one can get

y′ =
y

x

(

f ′(x)

f(x)
− log f(x)

x

)

.

4



In order to show that x

√

f(x) is strictly increasing, it suffices to prove

f ′(x)

f(x)
− log f(x)

x
> 0 (2.1)

for x ≥ N . Since f(N) ≤ 1 and f(x) is increasing, one can derive that

log f(x)

x
≤ log f(x)− log f(N)

x
<

log f(x)− log f(N)

x−N
(2.2)

for x ≥ N .

By the mean value theorem, one can obtain

log f(x)− log f(N)

x−N
=

f ′(ξ)

f(ξ)
, (2.3)

where N ≤ ξ ≤ x. On the other hand, it follows from log-convexity of the function f(x)

that

(log f(x))′′ =

(

f ′(x)

f(x)

)′

=
f ′′(x)f(x)− f ′(x)2

f 2(x)
≥ 0, (2.4)

which implies that f ′(x)
f(x)

is increasing. Thus, it follows that

f ′(ξ)

f(ξ)
≤ f ′(x)

f(x)
(2.5)

for x ≥ ξ. Combining (2.2), (2.3) and (2.5), one can obtain (2.1). So x

√

f(x) is increasing.

3 Analytic results for the log-behavior of the sequence

n
√
zn

In order to deal with the log-behavior of the sequence n
√
zn, some analytic methods will

be developed in this section. There are two main results in this section, one being the

proof of Conjecture 1.4 and the other being the log-behavior of the function F (x).

In the proofs, the following some known facts are needed. It follows from [1, Theorem

8] that the function

G0(x) = − log Γ(x) + (x− 1/2) log x− x+ log
√
2π +

1

12x

is strictly completely monotonic on (0,∞). This implies that

log Γ(x) < (x− 1/2) logx− x+ log
√
2π +

1

12x
, (3.1)

(log Γ(x))′ > log x− 1

2x
− 1

12x2
, (3.2)

(log Γ(x))′′ <
1

x
+

1

2x2
+

1

6x3
. (3.3)

5



On the other hand, [1, Theorem 8] also says that the function

F0(x) = log Γ(x)− (x− 1/2) logx+ x− log
√
2π

is strictly completely monotonic on (0,∞). So

log Γ(x) > (x− 1/2) log x− x+ log
√
2π, (3.4)

(log Γ(x))′ < log x− 1

2x
, (3.5)

(log Γ(x))′′ >
1

x
+

1

2x2
. (3.6)

Thus, by combining these inequalities, one can get the next result, which will be used

repeatedly in the proofs.

Lemma 3.1. Let a > 0. Assume that h(x) = log Γ(x). If b ≥ −1 and ax+ b ≥ 0, then

x3

(

h(ax+ b+ 1)

x

)′′

≤ −ax + (2b+ 1) log (ax+ b+ 1)− 3b− 3

2
+ log 2π +

b2 + b+ 1/2

ax+ b+ 1
;

x3

(

h(ax+ b+ 1)

x

)′′

≥ −ax + (2b+ 1) log (ax+ b+ 1)− 3b− 3 + log 2π.

Proof. By h(x) = log Γ(x), it is not hard to deduce that

(

h(ax+ b+ 1)

x

)′′

=
a2x2h′′(ax+ b+ 1)− 2axh′(ax+ b+ 1) + 2h(ax+ b+ 1)

x3
.

By (3.1), (3.2) and (3.3), it follows that

a2x2h′′(ax+ b+ 1)− 2axh′(ax+ b+ 1) + 2h(ax+ b+ 1)

≤ −ax + (2b+ 1) log (ax+ b+ 1)− 3b− 3

2
+ log 2π +

b2 + b+ 1/2

ax+ b+ 1
.

In addition, by (3.4), (3.5) and (3.6), one can also obtain that

a2x2h′′(ax+ b+ 1)− 2axh′(ax+ b+ 1) + 2h(ax+ b+ 1)

≥ −ax + (2b+ 1) log (ax+ b+ 1)− 3b− 3 + log 2π.

This completes the proof.

In order to prove Conjecture 1.4, the next result will be used.

Lemma 3.2. Let ζ(x) =
∑

n≥1
1
nx the Riemann zeta function. Define a function η(x) =

ζ(x)− 1. The bound η(x) ≤ 3/2x holds for all x ≥ 4.

6



Proof. Since

η(x) =
1

2x

(

1 +
1

1.5x
+

1

2x
+ · · ·

)

≤ 1

2x

(

1 +
1

1.5x
+ 2 (ζ(x)− 1)

)

≤ 1

2x

(

1 +
1

2
+ 2η(x)

)

for x ≥ 4, one can get η(x) ≤ 3
2x
.

Now a result for Conjecture 1.4 can be stated as follows.

Theorem 3.3. The function

θ(x) = x

√

2ζ(x)Γ(x+ 1)

is log-concave on (7.1,∞).

Proof. In order to show that θ(x) is log-concave on (7.1,∞), it suffices to prove

(log θ(x))′′ =

(

log 2

x

)′′

+

(

log ζ(x)

x

)′′

+

(

log Γ(x+ 1)

x

)′′

=
2 log 2

x3
+

(

log ζ(x)

x

)′′

+

(

log Γ(x+ 1)

x

)′′

(3.7)

< 0.

Noting that log x <
√
x for x ≥ 2, one has ζ ′′(x) < η(x − 1) and |ζ ′(x)| < η(x − 0.5).

In addition, it follows from log(x + 1) ≤ x for x > 0 that log(1 + η(x)) ≤ η(x) ≤ 3
2x

by

Lemma 3.2. Thus, for x ≥ 7.1, it follows that

x3

(

log ζ(x)

x

)′′

= x2

(

ζ(x)ζ ′′(x)− ζ ′(x)2

ζ(x)2

)

− 2x
ζ ′(x)

ζ(x)
+ 2 log ζ(x)

<
x2ζ ′′(x)

ζ(x)
− 2xζ ′(x)

ζ(x)
+ 2 log ζ(x)

< 2.67, (3.8)

where the final inequality can be obtained by considering the monotonicity of the right

function.

On the other hand, by Lemma 3.1, one can get

x3

(

log Γ(x+ 1)

x

)′′

≤ −x+ log (x+ 1)− 1 + log 2π +
1

2(x+ 1)

< −4.1 (3.9)

7



for x ≥ 7.1.

Thus, combining (3.7), (3.8) and (3.9), one can conclude

(log θ(x))′′ =
2 log 2

x3
+

(

log ζ(x)

x

)′′

+

(

log Γ(x+ 1)

x

)′′

< 0,

as desired. This completes the proof.

Notice that
n

√

(−1)n−1B2n =
θ2(2n)

4π2
.

Thus, it follows from the strict log-concavity of {θ(2n)}n≥4 that { n

√

(−1)n−1B2n}n≥4 is

strictly log-concave. In addition, it is easy to check that { n

√

(−1)n−1B2n}n≥0 is strictly

log-concave for 1 ≤ n ≤ 4. Thus, the following result is immediate, which was conjectured

by Sun [17, Conjecture 2.15] and has been verified by Luca and Stănică [11] and Chen et

al. [5] by different methods, respectively.

Corollary 3.4. The sequence { n

√

(−1)n−1B2n}n≥1 is strictly log-concave.

Now consider the tangent numbers

{T (n)}n≥0 = {1, 2, 16, 272, 7936, 353792, . . .}, [14, A000182]

which are defined by

tan x =
∑

n≥1

T (n)
x2n−1

(2n− 1)!

and are closely related to the Bernoulli numbers:

T (n) = (−1)n−1B2n
(4n − 1)

2n
4n,

see [6, (6.93)] for instance. So

n

√

T (n) = 4 n

√

(−1)n−1B2n
n
√
4n − 1

n

√

1

2n
.

It is not difficult to verify that both n
√
4n − 1 and n

√

1
2n

are log-concave in n (we leave

the details to the reader). The product of log-concave sequences is still log-concave. So

the next result is immediate, which was conjectured by Sun [17, Conjecture 3.5] and was

verified by Luca and Stănică [11] by a discrete method.

Corollary 3.5. The sequence { n

√

T (n)}n≥1 is strictly log-concave.

8



In order to develop analytic techniques to deal with the log-behavior of { n
√
zn}. In the

following, the log-behavior of a function F (x) related to the Euler Gamma function will

be considered, which can be applied to some interesting binomial coefficients.

Theorem 3.6. Given real numbers b, d, f and nonnegative real numbers a, c, e, define the

function

F (x) = x

√

Γ(ax+ b+ 1)

Γ(cx+ d+ 1)Γ(ex+ f + 1)
.

(i) If a > c+ e, then F (x) is an asymptotically log-concave function.

(ii) Assume a = c+ e. If c ≥ e > 0 and b < d+ f +1/2, then F (x) is an asymptotically

log-concave function. In particular, if c ≥ 1 and b = d = f = 0, then we have F (x)

is a log-concave function for x ≥ 30; if c ≥ 1, b = d = 0 and f ≥ 1, then F (x) is a

log-concave function for x ≥ 2.

(iii) Assume a = c+e. If c > e = 0 and b < d, then F (x) is an asymptotically log-concave

function.

(iv) If a < c+ e, then F (x) is an asymptotically log-convex function.

Proof. Let h(x) = log Γ(x). By Lemma 3.1, one has

(logF (x))′′ =

(

h(ax+ b+ 1)

x

)′′

−
(

h(cx+ d+ 1)

x

)′′

−
(

h(ex+ f + 1)

x

)′′

= (c+ e− a)x+ log
(ax+ b+ 1)(2b+1)

(cx+ d+ 1)(2d+1)(ex+ f + 1)(2f+1)
+ 3(d+ f − b)

+
9

2
− log 2π +

b2 + b+ 1/2

ax+ b+ 1
. (3.10)

It is easy to prove for a > c+ e that

lim
x→+∞

(c+ e− a)x+ log
(ax+ b+ 1)(2b+1)

(cx+ d+ 1)(2d+1)(ex+ f + 1)(2f+1)
= −∞,

and for a = c+ e that

lim
x→+∞

log
(ax+ b+ 1)(2b+1)

(cx+ d+ 1)(2d+1)(ex+ f + 1)(2f+1)
= −∞

if c ≥ e > 0 and b < d + f + 1/2 or c > e = 0 and b < d. Thus, under conditions of (i),

(ii) and (iii), respectively, by (3.10) one can get

lim
x→+∞

(logF (x))′′ = −∞,

implying that F (x) is an asymptotically log-concave function.

9



Assume that a = c+ e and c ≥ e ≥ 1. If b = d = f = 0, then, by (3.10),

(logF (x))′′ < log
(ax+ 1)

(cx+ 1)(ex+ 1)
+

9

2
− log 2π +

1

2(ax+ 1)
< −0.04

for x ≥ 30. If b = d = 0 and f ≥ 1, then, by (3.10),

(logF (x))′′ < log
(ax+ 1)

(cx+ 1)(ex+ 2)3
+

9

2
− log 2π +

1

2(ax+ 1)
< −0.37

for x ≥ 2.

Finally, since the proof of (iv) is similar to that of (i), which is omitted for brevity.

This completes the proof.

By Theorem 3.6, the next result is immediate.

Proposition 3.7. Let integers a, b, c, d, f satisfiy a > c > 0 and b < d + f + 1/2. Then

the sequence

{ n

√

Γ(an + b+ 1)

Γ(cn + d+ 1)Γ((a− c)n+ f + 1)
}n≥1

is asymptotically log-concave. In particular, { n

√

(

an
cn

)

}n≥30 and

{ n

√

Γ(an+ 1)

Γ(cn+ 1)Γ((a− c)n+ f + 1)
}n≥2

is strictly log-concave for f ≥ 1.

For integer p ≥ 2, Fuss-Catalan numbers [7] are given by the formula

Cp(n) =
1

(p− 1)n+ 1

(

pn

n

)

=
Γ(pn+ 1)

Γ(n+ 1)Γ((p− 1)n + 2)
.

It is well known that the Fuss-Catalan numbers count the number of paths in the integer

lattice Z× Z (with directed vertices from (i, j) to either (i, j + 1) or (i+ 1, j)) from the

origin (0, 0) to (n, (p − 1)n) which never go above the diagonal (p − 1)x = y. Su and

Wang [16] showed that {
(

an
bn

)

}n≥0 is log-convex for positive integers a > b. Thus it is easy

to see that {Cp(n)}n≥0 is log-convex. Chen et al. [5] proved that n

√

1
2n+1

(

2n
n

)

and n

√

(

2n
n

)

are strictly log-concave, respectively. By verifying the first few terms, one can get the

following corollary by Corollary 3.7.

Corollary 3.8. The sequences { n

√

1
2n+1

(

2n
n

)

}n≥1, { n

√

(

2n
n

)

}n≥1, { n

√

(

3n
n

)

}n≥1, { n

√

(

4n
n

)

}n≥1,

{ n

√

(

5n
n

)

}n≥1 , { n

√

(

5n
2n

)

}n≥1 and { n

√

Cp(n)}n≥2 are strictly log-concave for any positive

integer p ≥ 2, respectively.
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4 Logarithmically completely monotonic functions

Since logarithmically completely monotonic functions have many applications, it is im-

portant to know which function has such property. In particular, Chen et al. [5] found

the connection between logarithmically completely monotonic functions and infinite log-

monotonicity of combinatorial sequences as follows.

Theorem 4.1. [5] Assume that a function f(x) such that [log f(x)]′′ is completely mono-

tonic for x ≥ 1 and an = f(n) for n ≥ 1. Then the sequence {an}n≥1 is infinitely

log-monotonic.

Thus it is very interesting to research logarithmically complete monotonicity of some

functions related to combinatorial sequences, which is the aim of this section.

Many sequences of binomial coefficients share various log-behavior properties, see

Tanny and Zuker [18, 19], Su and Wang [16] for instance. In particular, Su and Wang

proved that
(

dn
δn

)

is log-convex in n for positive integers d > δ. Recently, Chen et al. [5]

proved that both the Catalan numbers 1
n+1

(

2n
n

)

and central binomial coefficients
(

2n
n

)

are

infinitely log-monotonic. Motivated by these results, a generalization can be stated as

follows.

Theorem 4.2. Let n0, k0, k0 be nonnegative integers and a, b, b be positive integers. Define

the function

G(x) =
Γ(n0 + ax+ 1)

Γ(k0 + bx+ 1)Γ(k0 + xb+ 1)
.

If a ≥ b + b and −1 ≤ k0 − (n0 + 1)b/a ≤ 0, then (logG(x))′′ is a completely monotonic

function for x ≥ 0. In particular,

{ (n0 + ia)!

(k0 + ib)!(k0 + ib)!
}i≥0

is infinitely log-monotonic.

Proof. By Theorem 4.1, it suffices to show that (logG(x))′′ is a completely monotonic

function for x ≥ 0. Let g(x) = logG(x). So

[g(x)](n)

= [log Γ(n0 + ax+ 1)](n) − [log Γ(k0 + bx+ 1)](n) − [log Γ(k0 + xb+ 1)](n)

= (−1)n
∫ ∞

0

tn−1

1− e−t

[

ane−t(n0+ax+1) − bne−t(k0+bx+1) − b
n
e−t(k0+xb+1)

]

dt (4.1)

= (−1)n
∫ ∞

0

antn−1e−tax

[

e−(n0+1)t

1− e−t
− e−ta(k0+1)/b

1− e−at/b
− e−ta(k0+1)/b

1− e−at/b

]

dt

11



since

[log Γ(x)](n) = (−1)n
∫ ∞

0

tn−1e−tx

1− e−t
dt

for x > 0 and n ≥ 2, see [12, p.16] for instance.

It follows from a > b > 0 that for further simplification denote u = k0 − (n0 + 1)b/a,

p = a/b, and q = a/b. Clearly, 1
p
+ 1

q
≤ 1. So one can deduce that

(−1)n[g(x)](n) =

∫ ∞

0

antn−1e−t(n0+ax+1)h(t, u)dt, (4.2)

where

h(t, u) =
1

1− e−t
− e−tp(u+1)

1− e−pt
− euqt

1− e−qt
.

Furthermore, one can obtain the next claim for −1 ≤ k0 − (n0 + 1)b/a ≤ 0.

Claim 1. If −1 ≤ u ≤ 0, then h(t, u) > 0.

Proof of Claim: It is obvious that h(t, u) is concave in u. Thus it suffices to show

h(t, u) > 0 for u = −1 and u = 0. Setting u = 0 since the case u = −1 can be obtained

by switching the roles of p and q, one has

h(t, 0) =
e−t

1− e−t
− e−tp

1− e−pt
− e−qt

1− e−qt
.

Noting for s > 0 that function

f(s) =
se−s

1− e−s

strictly decreases in s and 1
p
+ 1

q
≤ 1, one gets that

h(t, 0) ≥ (
1

p
+

1

q
)

e−t

1− e−t
− e−tp

1− e−pt
− e−qt

1− e−qt

=
f(t)− f(tp)

tp
+

f(t)− f(tq)

tq
≥ 0.

This completes the proof of this Claim.

Thus, by (4.2) and this Claim, one has (−1)n[g(x)](n) > 0, which implies that (logG(x))′′

is a completely monotonic function. This completes the proof.

By Theorem 4.2, the following two corollaries are immediate.

Corollary 4.3. Let n0, k0, d, δ be four nonnegative integers. Define the sequence

Ci =

(

n0 + id

k0 + iδ

)

, i = 0, 1, 2, . . . .

If d > δ > 0 and −1 ≤ k0 − (n0 + 1)δ/d ≤ 0, then the sequence {Cn}n≥0 infinitely

log-monotonic.

12



Corollary 4.4. The Fuss-Catalan sequence {Cp(n)}n≥0 is infinitely log-monotonic, where

p ≥ 2 and Cp(n) =
1

(p−1)n+1

(

pn
n

)

.

The derangements number dn is a classical combinatorial number. It is log-convex and

ratio log-concave, see [10] and [4] respectively. Noted that {Γ(n)}n≥1 is strictly infinitely

log-monotonic (see Chen et al. [5]) and

|dn −
n!

e
| ≤ 1

2
(4.3)

for n ≥ 3 (see [8]), the following interesting result can be demonstrated.

Theorem 4.5. The sequence of the derangements numbers {dn}n≥3 is asymptotically

infinitely log-monotonic.

Proof. From (4.3), one can deduce

n!

e
− 1

2
≤ dn ≤ n!

e
+

1

2
,

which implies

Γ(n+ 1)− 3

2
≤ edn ≤ Γ(n+ 1) +

3

2
.

Thus

e2(dn+1dn−1 − d2n)

≥ [Γ(n+ 2)− 1.5][Γ(n)− 1.5]− [Γ(n+ 1) + 1.5]2

> 0

for n ≥ 4, which implies that {dn}n≥4 is log-convex. Note that

e4(d3n+1dn−1 − d3ndn+2)

≥ [Γ(n+ 2)− 1.5]3[Γ(n)− 1.5]− [Γ(n + 1) + 1.5]3[Γ(n+ 3) + 1.5]

> 0

for n ≥ 8, which implies that R{dn}n≥8 is log-concave. Because {Γ(n)}n≥1 is strictly in-

finitely log-monotonic, similarly, it can be proceeded to the higher order log-monotonicity.

Thus, for any positive integer k, by the sign-preserving property of limits, one can obtain

that there exists a positive N such that the sequence Rr{dn}n≥N is log-concave for posi-

tive odd r and is log-convex for positive even r. Thus, the sequence of the derangements

numbers {dn}n≥3 is asymptotically infinitely log-monotonic.

In the following, we will continous to give two kinds of logarithmically completely

monotonic functions. In order to consider a stronger result for Theorem 3.3, given a, b, c >

0, define the function

θa,b,c(x) =
x

√

aζ(x+ b)Γ(x+ c).

13



It is known that the Riemann zeta function ζ(x) is logarithmically completely monotonic

on (1,+∞) and the function [log Γ(x)]
′′

is completely monotonic on (0,+∞), see Chen et

al. [5]. Basing on these results, one can demonstrate the next.

Theorem 4.6. Let a, b, c be positive real numbers, where b ≥ 1. If aζ(b)Γ(c) ≤ 1, then

the reciprocal of the function θa,b,c(x) is logarithmically completely monotonic on (1,∞).

Proof. Since

log θ−1
a,b,c(x) = − log (aζ(x+ b)Γ(x+ c))

x
= − log a + log ζ(x+ b) + log Γ(x+ c)

x
,

in order to show that θ−1
a,b,c(x) is logarithmically completely monotonic on (1,∞), it suffices

to prove

(−1)n log(n) θ−1
a,b,c(x) ≥ 0

for all n ≥ 1. Note that a known formula as follows:

(

g(x)

x

)(n)

=
(−1)ng(0)n!

xn+1
+ x−n−1

∫ x

0

tng(n+1)(x)dt, (4.4)

which can be easily proved by induction. Thus, one can deduce for n ≥ 1 and x > 1 that

(−1)n log(n) θ−1
a,b,c(x)

=
−n! log aζ(b)Γ(c)

xn+1
+ x−n−1

∫ x

0

tn(−1)n+1
[

(log ζ(x+ b))(n+1) + (log Γ(x+ c))(n+1)
]

dt

≥ 0

since log aζ(b)Γ(c) ≤ 0, (−1)n+1 (log ζ(x+ b))(n+1) ≥ 0 and (−1)n+1 (log Γ(x+ c))(n+1) ≥
0. This completes the proof.

In [1], the next result was proved by Alzer.

Theorem 4.7. [1] Let nonnegative sequences 0 ≤ a1 ≤ a2 ≤ a3 ≤ · · · ≤ an and 0 ≤ b1 ≤
b2 ≤ b3 ≤ · · · ≤ bn. If

∑k
i=1 ai ≤

∑k
i=1 bi for k = 1, 2, . . . , n, then the function

n
∏

i=1

Γ(x+ ai)

Γ(x+ bi)

is completely monotonic on (0,∞).

On the other hand, in [9], Lee and Tepedelenlioǧlu proved the function x

√

2
√
πΓ(x+1)

Γ(x+1/2)

originating from the coding gain is logarithmically completely monotonic on (0,∞). In ad-

dition, Qi and Li [13] considered the logarithmically completely monotonicity of x

√

aΓ(x+b)
Γ(x+c)

.

In what follows a general result for a kind of logarithmically completely monotonic func-

tions is obtained.
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Theorem 4.8. Let 0 ≤ a1 ≤ a2 ≤ a3 ≤ · · · ≤ an, 0 ≤ b1 ≤ b2 ≤ b3 ≤ · · · ≤ bn and ρ > 0,

define the function

χ(x) = x

√

√

√

√ρ
n
∏

i=1

Γ(x+ ai)

Γ(x+ bi)
.

(i) If ρ
∏n

i=1
Γ(ai)
Γ(bi)

≥ 1 and
∑k

i=1 ai ≥
∑k

i=1 bi for k = 1, 2, . . . , n, then the function χ(x)

is logarithmically completely monotonic on (0,∞).

(ii) If ρ
∏n

i=1
Γ(ai)
Γ(bi)

≤ 1 and
∑k

i=1 ai ≤
∑k

i=1 bi for k = 1, 2, . . . , n, then the reciprocal of

the function χ(x) is logarithmically completely monotonic on (0,∞).

Proof. Because (ii) can be obtained in the similar way, it only needs to prove (i). Define

the function h(x) =
∑n

i=1 log Γ(x+ ai)− log Γ(x+ bi). Then

log x

√

√

√

√ρ
n
∏

i=1

Γ(x+ ai)

Γ(x+ bi)
=

log ρ
∏n

i=1
Γ(x+ai)
Γ(x+bi)

x
=

log ρ+ h(x)

x
.

So it is not hard to get

(−1)k[logχ(x)](k) =
k!(log ρ+ h(0))

xk+1
+ x−k−1

∫ x

0

tk(−1)kh(k+1)(x)dt. (4.5)

If ρ
∏n

i=1
Γ(ai)
Γ(bi)

≥ 1, then it is clear that

log ρ+ h(0) ≥ 0.

In addition, Alzer [1] proved that (−1)kh(k+1)(x) ≥ 0 for k ≥ 0 and x ≥ 0. Thus,

(−1)k[logχ(x)](k) ≥ 0,

that is, χ(x) is logarithmically completely monotonic on (0,∞). This completes the

proof.

Remark 4.9. If ρ = 2
√
π, a1 = 1 and b1 = 1

2
, then 2

√
πΓ(1)

Γ(1/2)
= 2 > 1. So the function

x

√

2
√
πΓ(x+1)

Γ(x+1/2)
is logarithmically completely monotonic on (0,∞), see [9]. In addition, if n =

1 in Theorem 4.8, then it was proved by Qi and Li [13]. Thus, the result in Theorem 4.8

is a generalization.
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