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Abstract

We consider the problem of learning causal directed acyclic graphs from an observational
joint distribution. One can use these graphs to predict the outcome of interventional ex-
periments, from which data are often not available. We show that if the observational
distribution follows a structural equation model with an additive noise structure, the di-
rected acyclic graph becomes identifiable from the distribution under mild conditions. This
constitutes an interesting alternative to traditional methods that assume faithfulness and
identify only the Markov equivalence class of the graph, thus leaving some edges undirected.
We provide practical algorithms for finitely many samples, RESIT (Regression with Sub-
sequent Independence Test) and two methods based on an independence score. We prove
that RESIT is correct in the population setting and provide an empirical evaluation.

1. Introduction

Many scientific questions deal with the causal structure of a data-generating process. If
we know the reasons why an individual is more susceptible to a disease than others, for
example, we can hope to develop new drugs in order to cure this disease or prevent its
outbreak. Recent results indicate that knowing the causal structure is also useful for classical
machine learning tasks. In the two variable case, for example, knowing which is cause and
which is effect has implications for semi-supervised learning and covariate shift adaptation
(Schölkopf et al., 2012).

∗. Part of this work was done while JP and JMM were with the MPI Tübingen.
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We consider a p-dimensional random vector X = (X1, . . . , Xp) with a joint distribution
L(X) and assume that there is a true acyclic causal graph G that describes the data gen-
erating process (see Section 1.3). In this work we address the following problem of causal
inference: given the distribution L(X) we try to infer the graph G. A priori, the causal
graph contains information about the physical process that cannot be found in properties
of the joint distribution. One therefore requires assumptions connecting these two worlds.
While traditional methods like PC, FCI (Spirtes et al., 2000) or score-based approaches
(e.g. Chickering, 2002), that are explained in more detail in Section 2, make assumptions
that enable us to recover the graph up to the Markov equivalence class, we investigate a
different set of assumptions. If the data have been generated by an additive noise model (see
Section 3), we will generically be able to recover the correct graph from the joint distribution.

In the remainder of this section we set up the required notation and definitions for
graphs (Section 1.1), briefly introduce Judea Pearl’s do-calculus (Section 1.2) and use it
to define our object of interest, a true causal graph (Section 1.3). We introduce structural
equation models (SEMs) in Section 1.4. After discussing existing methods in Section 2, we
provide the main results of this work in Section 3. We prove that for additive noise models
(ANMs), a special class of SEMs, one can identify the graph from the joint distribution.
This is possible not only for additive noise models but for all classes of SEMs that are
able to identify graphs from a bivariate distribution, meaning they can distinguish between
cause and effect. Section 4 proposes and compares algorithms that can be used in practice,
when instead of the joint distribution, we are only given i.i.d. samples. These algorithms
are tested in Section 5.

This paper builds on the conference papers of Hoyer et al. (2009), Peters et al. (2011b)
and Mooij et al. (2009)1 but extends the material in several aspects. All deliberations
in Section 1.3 about the true causal graph and Example 9 are novel. The presentation
of the theoretical results in Section 3 is improved. In particular, we added the motivating
Example 25 and Propositions 4 and 28. Example 24 provides a non-identifiable case different
from the linear Gaussian example. Proposition 22 is based on (Zhang and Hyvärinen, 2009)
and contains important necessary conditions for the failure of identifiability. In Corollary 30
we present a novel identifiability result for a class of nonlinear functions and Gaussian
noise variables. Proposition 16 proves that causal minimality is satisfied if the structural
equations do not contain constant functions. Section 3.3 contains results that guarantee to
find the set of correct topological orderings when the assumption of causal minimality is
dropped. Theorem 33 proves a conjecture from Mooij et al. (2009) by showing that given an
independence oracle the algorithm provided in Mooij et al. (2009) is correct. We propose a
new score function for estimating the true directed acyclic graph in Section 4.2 and present
two corresponding score-based methods. We provide an extended section on simulation
experiments and discuss experiments on real data.

1. Parts of Sections 1 and 2 have been taken and modified from the PhD thesis of Peters (2012).
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1.1 Directed Acyclic Graphs

We start with some basic notation for graphs. Consider a finite family of random variables
X = (X1, . . . , Xp) with index set V := {1, . . . , p} (we use capital letters for random variables
and bold letters for sets and vectors). We denote their joint distribution by L(X). We write
pX1(x) or simply p(x) for the Radon-Nikodym derivative of L(X1) either with respect to
the Lebesgue or the counting measure and (sometimes implicitly) assume its existence. A
graph G = (V, E) consists of nodes V and edges E ⊆ V2 with (v, v) 6∈ E for any v ∈ V. In
a slight abuse of notation we identify the nodes (or vertices) j ∈ V with the variables Xj ,
the context should clarify the meaning. We also consider sets of variables S ⊆ X as a single
multivariate variable. We now introduce graph terminology that we require later. Most of
the definitions can be found in (Spirtes et al., 2000; Koller and Friedman, 2009; Lauritzen,
1996), for example.

Let G = (V, E) be a graph with V := {1, . . . , p} and corresponding random variables
X = (X1, . . . , Xp). A graph G1 = (V1, E1) is called a subgraph of G if V1 = V and E1 ⊆ E ;
we then write G1 ≤ G. If additionally, E1 6= E , we call G1 a proper subgraph of G.

A node i is called a parent of j if (i, j) ∈ E and a child if (j, i) ∈ E . The set of parents
of j is denoted by PAGj , the set of its children by CHGj . Two nodes i and j are adjacent if
either (i, j) ∈ E or (j, i) ∈ E . We call G fully connected if all pairs of nodes are adjacent.
We say that there is an undirected edge between two adjacent nodes i and j if (i, j) ∈ E
and (j, i) ∈ E . An edge between two adjacent nodes is directed if it is not undirected. We
then write i→ j for (i, j) ∈ E . Three nodes are called an immorality or a v-structure if
one node is a child of the two others that themselves are not adjacent. The skeleton of G
is the set of all edges without taking the direction into account, that is all (i, j), such that
(i, j) ∈ E or (j, i) ∈ E .

A path in G is a sequence of (at least two) distinct vertices i1, . . . , in, such that there
is an edge between ik and ik+1 for all k = 1, . . . , n − 1. If (ik, ik+1) ∈ E and (ik+1, ik) /∈ E
for all k we speak of a directed path between i1 and in and call in a descendant of i1.
We denote all descendants of i by DEGi and all non-descendants of i, excluding i, by NDGi .
In this work, i is neither a descendant nor a non-descendant of itself. If (ik−1, ik) ∈ E and
(ik+1, ik) ∈ E , and also (ik, ik−1) /∈ E and (ik, ik+1) /∈ E , ik is called a collider on this path.
G is called a partially directed acyclic graph (PDAG) if there is no directed cycle, i.e.,
no pair (j, k), such that there are directed paths from j to k and from k to j. G is called a
directed acyclic graph (DAG) if it is a PDAG and all edges are directed.

In a DAG, a path between i1 and in is blocked by a set S (with neither i1 nor in
in this set) whenever there is a node ik, such that one of the following two possibilities
hold: 1. ik ∈ S and ik−1 → ik → ik+1 or ik−1 ← ik ← ik+1 or ik−1 ← ik → ik+1 Or 2.,
ik−1 → ik ← ik+1 and neither ik nor any of its descendants is in S. We say that two disjoint
subsets of vertices A and B are d-separated by a third (also disjoint) subset S if every path
between nodes in A and B is blocked by S. Throughout this work, ⊥⊥ denotes (conditional)
independence. The joint distribution L(X) is said to be Markov with respect to the
DAG G if

A,B d-sep. by C ⇒ A ⊥⊥ B |C
for all disjoint sets A,B,C. L(X) is said to be faithful to the DAG G if

A,B d-sep. by C ⇐ A ⊥⊥ B |C

3
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Figure 1: After fine-tuning the parameters for the two graphs, both models generate the
same joint distribution.

for all disjoint sets A,B,C. A distribution satisfies causal minimality with respect
to G if it is Markov with respect to G, but not to any proper subgraph of G. We de-
note by M(G) the set of distributions that are Markov with respect to G: M(G) :=
{L(X) : L(X) is Markov w.r.t. G} . Two DAGs G1 and G2 are Markov equivalent if
M(G1) = M(G2). This is the case if and only if G1 and G2 satisfy the same set of d-
separations, that means the Markov condition entails the same set of (conditional) inde-
pendence conditions. The set of all DAGs that are Markov equivalent to some DAG (a
so-called Markov equivalence class) can be represented by a completed PDAG. This
graph satisfies (i, j) ∈ E if and only if one member of the Markov equivalence class does.
Verma and Pearl (1991) showed that:

Lemma 1 Two DAGs are Markov equivalent if and only if they have the same skeleton
and the same immoralities.

Faithfulness is not very intuitive at first glance. We now give an example of a distribution
that is Markov but not faithful with respect to some DAG G1. This is achieved by making
two paths cancel each other and creating an independence that is not implied by the graph
structure.

Example 2 Consider the two graphs in Figure 1. Corresponding to the left graph we
generate a joint distribution by the following equations. X = NX , Y = aX + NY , Z =
bY + cX +NZ , with NX ∼ N (0, σ2X), NY ∼ N (0, σ2Y ) and NZ ∼ N (0, σ2Z) jointly indepen-
dent. This is an example of a linear Gaussian structural equation model with graph G1 that
we formally define in Section 1.4. Now, if a · b+ c = 0, the distribution is not faithful2 with
respect to G1 since we obtain X ⊥⊥ Z.

Correspondingly, we generate a distribution related to graph G2: X = ÑX , Y = ãX +
b̃Z + ÑY , Z = ÑZ , with all Ñ· ∼ N (0, τ2· ) jointly independent. If we choose τ2X = σ2X ,
ã = a, τ2Z = b2σ2Y + σ2Z , b̃ = (bσ2Y )/(b2σ2Y + σ2Z) and τ2Y = σ2Y − (b2σ4Y )/(b2σ2Y + σ2Z), both
models lead to the covariance matrix

Σ =

 σ2X aσ2X 0
aσ2X a2σ2X + σ2Y bσ2Y

0 bσ2Y b2σ2Y + σ2Z


2. More precisely: not triangle-faithful (Zhang and Spirtes, 2008).
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and thus to the same distribution. It can be checked that the distribution is faithful with
respect to G2 if ã, b̃ 6= 0 and all τ̃· > 0.

The distribution from Example 2 is faithful with respect to G2, but not with respect to
G1. Nevertheless, for both models, causal minimality is satisfied if none of the parameters
vanishes: the distribution is not Markov to any proper subgraph of G1 or G2 since removing
an arrow would correspond to a new (conditional) independence that does not hold in the
distribution. Note that G2 is not a proper subgraph of G1. In general, causal minimality is
weaker than faithfulness:

Remark 3 If L(X) is faithful with respect to G, then causal minimality is satisfied.

This is due to the fact that any two nodes that are not directly connected by an edge can
be d-separated. Another, equivalent formulation of causal minimality reads as follows:

Proposition 4 Consider the random vector X = (X1, . . . , Xp) and assume that the joint
distribution has a density with respect to a product measure. Suppose that L(X) is Markov
with respect to G. Then L(X) satisfies causal minimality with respect to G if and only if
∀Xj ∀Y ∈ PAGj we have that Xj 6⊥⊥ Y |PAGj \ {Y }.

Proof See Appendix A.1.

1.2 Interventional Distributions

Given a directed acyclic graph (DAG) G, Pearl (2009) introduces the do-notation as a
mathematical description of interventional experiments. More precisely, do(Xj = p̃(xj))
stands for setting the variable Xj randomly according to the distribution p̃(xj), irrespective
of its parents, while not interfering with any other variable. Formally:

Definition 5 Let X = (X1, . . . , Xp) be a collection of variables with joint distribution L(X)
that we assume to be absolutely continuous with respect to the Lebesgue measure or the
counting measure (i.e., there exists a probability density function or a probability mass
function). Given a DAG G over X, we define the interventional distribution do(Xj = p̃(xj))
of X1, . . . , Xp by

p
(
x1, . . . , xp | do(Xj = p̃(xj))

)
:=

p∏
i 6=j

p(xi|xPAi
) · p̃(xj) ,

if p(x1, . . . , xp) > 0 and zero otherwise. Here p̃(xj) is either a probability density function
or a probability mass function. Similarly, we can intervene at different nodes at the same
time by defining the interventional distribution do(Xj = p̃(xj), j ∈ J) for J ⊆ V as

p
(
x1, . . . , xp | do(Xj = p̃(xj), j ∈ J)

)
:=
∏
i/∈J

p(xi|xPAi
) ·
∏
j∈J

p̃(xj)

if p(x1, . . . , xp) > 0 and zero otherwise.

5
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Here, xPAi
denotes the tuple of all xj for Xj being a parent of Xi in G. Pearl (2009)

introduces Definition 5 with the special case of p̃(xj) = δxj ,x̃j , where δxj ,x̃j = 1 if xj = x̃j
and δxj ,x̃j = 0 otherwise; this corresponds to a point mass at x̃j . For more details on soft
interventions, see Eberhardt and Scheines (2007). Note that in general:

p(x1, . . . , xp | do(Xj = x̃j)) 6= p(x1, . . . , xp |Xj = x̃j) .

The expression p
(
x1, . . . , xp | do(Xj = x̃j , j ∈ J)

)
yields a distribution over X1, . . . , Xp. If

we are only interested in computing the marginal p
(
xi | do(Xj = x̃j)), where Xi is not a

parent of Xj , we can use the parent adjustment formula (Pearl, 2009, Theorem 3.2.2)

p(xi | do(Xj = x̃j)) =
∑
xPA

j

p(xi | x̃j , xPAj
) p(xPAj

) . (1)

1.3 True Causal Graphs

In this section we clarify what we mean by a true causal graph Gc. In short, we use this term
if one can read off the results of randomized studies from Gc and the observational joint
distribution. This means that the graph and the observational joint distribution lead to
causal effects that one observes in practice. Two important restrictive assumptions that we
make throughout this work are acyclicity (the absence of directed cycles, in other words, no
causal feedback loops are allowed) and causal sufficiency (the absence of hidden variables
that are a common cause of at least two observed variables).

Definition 6 Assume we are given a distribution L(X) over X1, . . . , Xp and distributions
Ldo(Xj=p̃(xj),j∈J)(X) for all J ⊆ V = {1, . . . , p} (think of the variables Xj having been
randomized). We then call the graph Gc a true causal graph for these distributions if
• Gc is a directed acyclic graph;

• the distribution L(X) is Markov with respect to Gc;
• for all J ⊆ V and p̃(xj) with j ∈ J the distribution Ldo(Xj=p̃(xj),j∈J)(X) coincides with

p
(
x1, . . . , xp | do(Xj = p̃(xj)), j ∈ J

)
, computed from Gc as in Definition 5.

Definition 6 is purely mathematical if one considers Ldo(Xj=p̃(xj),j∈J)(X) as an abstract
family of given distributions. But it is a small step to make the relation to the “real
world”. We call Gc the true causal graph of a data generating process if it is the true causal
graph for the distributions L(X) and Ldo(Xj=p̃(xj),j∈J)(X), where the latter are obtained by
randomizing Xj according to p̃(xj). In some situations, the precise design of a randomized
experiment may not be obvious. While most people would agree on how to randomize
over medical treatment procedures, there is probably less agreement how to randomize over
the tolerance of a person (does this include other changes of his personality, too?). Only
sometimes, this problem can be resolved by including more variables and taking a less
coarse-grained point of view. We do not go into further detail since we believe that this
would require philosophical deliberations, which lie beyond the scope of this work. Instead,
we may explicitly add the requirement that “most people agree on what a randomized
experiment should look like in this context”.

In general, there can be more than one true causal DAG. If one requires causal mini-
mality, the true causal DAG is unique.

6
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Proposition 7 Assume L(X1, . . . , Xp) has a density and consider all true causal DAGs
G := {Gc,1, . . . ,Gc,m} of X1, . . . , Xp. Then there is a partial order on G using the subgraph
property ≤ as an ordering. This ordering has a least element Gc, i.e., Gc ≤ Gc,i for all i.
This element Gc is the unique true causal DAG such that L(X) satisfies causal minimality
with respect to Gc.

Proof See Appendix A.2

We now briefly comment on a true causal graph’s behavior when some of the variables
from the joint distribution are marginalized out.

Example 8 (i) If X ← Z → Y is the only true causal graph for X,Y and Z, there is
no true causal graph for the variables X and Y (the do-statements do not coincide).

(ii) Assume that the graph X → Y → Z with additional X → Z is the only true causal
graph for X,Y and Z and assume that L(X,Y, Z) is faithful with respect to this graph.
Then, the only true causal graph for the variables X and Z is X → Z.

(iii) If the situation is the same as in (ii) with the difference that X ⊥⊥ Z (i.e., L(X,Y, Z)
is not faithful with respect to the true causal graph), the empty graph is also a true
causal graph for X and Z.

Latent projections (Verma and Pearl, 1991) provide a formal way to obtain a true causal
graph for marginalization. Cases (ii) and (iii) show that there are no purely graphical
criteria that provide the minimal true causal graph described in Proposition 7.

The results presented in the remainder of this paper can be understood without causal
interpretation. Using these techniques to infer a true causal graph, however, requires the
assumption that such a true causal DAG Gc for the observed distribution of X1, . . . , Xp

exists. This includes the assumption that all “relevant” variables have been observed,
sometimes called causal sufficiency, and that there are no feedback loops.

Richardson and Spirtes (2002) introduce a representation of graphs (so-called Maximal
Ancestral Graphs, or MAGs) with hidden variables that is closed under marginalization
and conditioning. The FCI algorithm (Spirtes et al., 2000) exploits the conditional inde-
pendences in the data to partially reconstruct the graph. Less work concentrates on hidden
variables in structural equation models (e.g., Hoyer et al., 2008; Janzing et al., 2009; Silva
and Ghahramani, 2009).

1.4 Structural Equation Models

A structural equation model (SEM) (also called a functional model) is defined as a tuple
(S,L(N)), where S = (S1, . . . , Sp) is a collection of p equations

Sj : Xj = fj(PAj , Nj) , j = 1, . . . , p (2)

and L(N) = L(N1, . . . , Np) is the joint distribution of the noise variables, which we require
to be jointly independent (thus, L(N) is a product distribution) as we are assuming causal
sufficiency. The PAj are considered the direct causes of Xj . An SEM specifies how the PAj

affect Xj . Note that in physics (chemistry, biology, . . . ), we would usually expect that such

7
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causal relationships occur in time, and are governed by sets of coupled differential equations.
Under certain assumptions such as stable equilibria, one can derive an SEM describing how
the equilibrium states of such a dynamical system will react to physical interventions on
the observables involved (see Mooij et al. (2013)). We do not deal with these issues in the
present paper, but we take the SEM as our starting point. Moreover, we consider SEMs
only for real-valued random variables X1, . . . , Xp. The graph of a structural equation model
is obtained simply by drawing direct edges from each parent to its direct effects, i.e., from
each variable Xk occurring on the right-hand side of equation (2) to Xj . We henceforth
assume this graph to be acyclic. According to the notation defined in Section 1.1, PAj are
the parents of Xj . Pearl (2009) shows in Theorem 1.4.1 that the law L(X) generated by an
SEM is Markov with respect to the graph.

Structural equation models contain strictly more information than their corresponding
graph and law and hence also more information than the family of all interventional distri-
butions together with the observational distribution. This information sometimes helps to
answer counterfactual questions, as shown in the following example.

Example 9 Let N1, N2 ∼ Ber(0.5) and N3 ∼ U({0, 1, 2}), such that the three variables are
jointly independent. That is, N1, N2 have a Bernoulli distribution with parameter 0.5 and
N3 is uniformly distributed on {0, 1, 2}. We define two different SEMs, first consider SA:

SA =


X1 = N1

X2 = N2

X3 = (1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 6=X2 +N3 · 1X1=X2

If X1 and X2 have different values, depending on N3 we either choose X3 = X1 or X3 = X2.
Otherwise X3 = N3. Now, SB differs from SA only in the latter case:

SB =


X1 = N1

X2 = N2

X3 = (1N3>0 ·X1 + 1N3=0 ·X2) · 1X1 6=X2 + (2−N3) · 1X1=X2

It can be checked that both SEMs generate the same observational distribution, which sat-
isfies causal minimality with respect to the graph X1 → X3 ← X2. They also generate the
same interventional distributions, for any possible intervention. But the two models differ
in a counterfactual statement3. Suppose, we have seen a sample (X1, X2, X3) = (1, 0, 0) and
we are interested in the counterfactual question, what X3 would have been if X1 had been
0. From both SA and SB it follows that N3 = 0, and thus the two SEMs “predict” different
values for X3 under a counterfactual change of X1.

If we want to use an estimated SEM to predict counterfactual questions, this example
shows that we require assumptions that let us distinguish between SA or SB. In this work
we exploit the additive noise assumption to infer the structure of an SEM. We do not claim
that we can predict counterfactual statements.

Another property of structural equation models is that they have the power to describe
many distributions4.

3. Here, we make use of Judea Pearl’s definition of counterfactuals (Pearl, 2009).
4. A similar but weaker statement than Proposition 10 can be found in (Druzdzel and van Leijen, 2001;

Janzing and Schölkopf, 2010).
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Proposition 10 Consider X1, . . . , Xp and let L(X) be Markov with respect to G. Then
there exists an SEM (S,L(N)) with graph G that generates the distribution L(X).

Proof See Appendix A.3.

Structural equation models have been used for a long time in fields like agriculture or
social sciences (e.g., Wright, 1921; Bollen, 1989). Model selection, for example, was done
by fitting different structures that were considered as reasonable given the prior knowledge
about the system. These candidate structures were then compared using goodness of fit
tests. In this work we instead consider the question of identifiability, which has not been
addressed until recently.

Problem 11 (population case) Suppose we are given a distribution L(X) = L(X1, . . . , Xp)
that has been generated by an (unknown) structural equation model with graph G0; in par-
ticular, L(X) is Markov with respect to G0. Can the (observational) distribution L(X) be
generated by a structural equation model with a different graph G 6= G0? If not, we call G0
identifiable from L(X).

In general, G0 is not identifiable from L(X): the joint distribution L(X) is certainly Markov
with respect to a lot of different graphs, e.g., to all fully connected acyclic graphs. Propo-
sition 10 states the existence of corresponding SEMs. What can be done to overcome this
indeterminacy? The hope is that by using additional assumptions one obtains restricted
models, in which we can identify the graph from the joint distribution. Considering graph-
ical models, we see in Section 2.1 how the assumption that L(X) is Markov and faithful
with respect to G0 leads to identifiability of the Markov equivalence class of G0. Considering
SEMs, we see in Section 3 that additive noise models as a special case of restricted SEMs
even lead to identifiability of the correct DAG. Also Section 2.3 contains such a restriction
based on SEMs.

2. Alternative Methods

2.1 Estimating the Markov Equivalence Class: Independence-Based Methods

Conditional independence-based methods like the PC algorithm and the FCI algorithm
(Spirtes et al., 2000) assume that L(X) is Markov and faithful with respect to the correct
graph G0 (that means all conditional independences in the joint distribution are entailed by
the Markov condition, cf. Section 1.1). Since both assumptions put restrictions only on the
conditional independences in the joint distribution, these methods are not able to distinguish
between two graphs that entail exactly the same set of (conditional) independences, i.e.,
between Markov equivalent graphs. Since many Markov equivalence classes contain more
than one graph, conditional independence-based methods thus usually leave some arrows
undirected and cannot uniquely identify the correct graph.

The first step of the PC algorithm determines the variables that are adjacent. One
therefore has to test whether two variables are dependent given any other subset of variables.
The PC algorithm exploits a very clever procedure to reduce the size of the condition
set. In the worst case, however, one has to perform conditional independence tests with
conditioning sets of up to p− 2 variables (where p is the number of variables in the graph).

9
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Although there is recent work on kernel-based conditional independence tests (Fukumizu
et al., 2008; Zhang et al., 2011), such tests are difficult to perform in practice if one does not
restrict the variables to follow a Gaussian distribution, for example (e.g., Bergsma, 2004).

To prove consistency of the PC algorithm one does not only require faithfulness, but
strong faithfulness (Zhang and Spirtes, 2003; Kalisch and Bühlmann, 2007). Uhler et al.
(2013) argue that this is a restrictive condition. Since parts of faithfulness can be tested
given the data (Zhang and Spirtes, 2008), the condition may be weakened.

From our perspective independence-based methods face the following challenges: (1)
We can identify the correct DAG only up to Markov equivalence classes. (2) Conditional
independence testing, especially with a large conditioning set, is difficult in practice. (3)
Simulation experiments suggest, that in many cases, the distribution is close to unfaithful-
ness. In these cases there is no guarantee that the inferred graph(s) will be close to the
original one.

2.2 Estimating the Markov Equivalence Class: Score-Based Methods

Although the roots for score-based methods for causal inference may date back even further,
we mainly refer to Geiger and Heckerman (1994), Heckerman (1997) and Chickering (2002)
and references therein. Given the data D from a vector X of variables, i.e., n i.i.d. samples,
the idea is to assign a score S(D,G) to each graph G and search over the space of DAGs for
the best scoring graph.

Ĝ := argmax
G DAG over X

S(D,G) (3)

There are several possibilities to define such a scoring function. Often a parametric model
is assumed (e.g., linear Gaussian equations or multinomial distributions), which introduces
a set of parameters θ ∈ Θ.

From a Bayesian point of view, we may define priors ppr(G) and ppr(θ) over DAGs and
parameters and consider the log posterior as a score function, or equivalently (note that
p(D) is constant over all DAGs):

S(D,G) := log ppr(G) + log p(D|G) ,

where p(D|G) is the marginal likelihood

p(D|G) =

∫
Θ
p(D|G, θ) · ppr(θ) dθ.

In this case, Ĝ defined in (3) is the mode of the posterior distribution, which is usually called
the maximum a posteriori (or MAP) estimator. Instead of a MAP estimator, one may be
interested in the full posterior distribution over DAGs. This distribution can subsequently
be averaged over all graphs to get a posterior of the hypothesis about the existence of a
specific edge, for example.

In the case of parametric models, we call two graphs G1 and G2 distribution equivalent if
for each parameter θ1 ∈ Θ1 there is a corresponding parameter θ2 ∈ Θ2, such that the dis-
tribution obtained from G1 in combination with θ1 is the same as the distribution obtained
from graph G2 with θ2, and vice versa. It is known that in the linear Gaussian case (or for

10
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unconstrained multinomial distributions) two graphs are distribution-equivalent if and only
if they are Markov equivalent. One may therefore argue that p(D|G1) and p(D|G2) should
be the same for Markov equivalent graphs G1 and G2. Heckerman and Geiger (1995) discuss
how to choose the prior over parameters accordingly.

Instead, we may consider the maximum likelihood estimator θ̂ in each graph and define
a score function by using a penalty, e.g., the Bayesian Information Criterion (BIC):

S(D,G) = log p(D|θ̂,G)− d

2
log n ,

where n is the sample size and d the dimensionality of the parameter θ.

Since the search space of all DAGs is growing super-exponentially in the number of vari-
ables (e.g., Chickering, 2002), greedy search algorithms are applied to solve equation (3):
at each step there is a candidate graph and a set of neighboring graphs. For all these neigh-
bors one computes the score and considers the best-scoring graph as the new candidate. If
none of the neighbors obtains a better score, the search procedure terminates (not knowing
whether one obtained only a local optimum). Clearly, one therefore has to define a neigh-
borhood relation. Starting from a graph G, we may define all graphs as neighbors from G
that can be obtained by removing, adding or reversing one edge. In the linear Gaussian
case, for example, one cannot distinguish between Markov equivalent graphs. It turns out
that in those cases it is beneficial to change the search space to Markov equivalence classes
instead of DAGs. The greedy equivalence search (GES) (Meek, 1997; Chickering, 2002)
starts with the empty graph and consists of two-phases. In the first phase, edges are added
until a local maximum is reached; in the second phase, edges are removed until a local
maximum is reached, which is then given as an output of the algorithm. Chickering (2002)
proves consistency of this method by using consistency of the BIC (Haughton, 1988).

2.3 Estimating the DAG: LiNGAM

Kano and Shimizu (2003) and Shimizu et al. (2006) propose an inspiring method exploiting
non-Gaussianity of the data5. Although their work covers the general case, the idea is
maybe best understood in the case of two variables:

Example 12 Suppose

Y = φX +N, N ⊥⊥ X ,

where X and N are normally distributed. It is easy to check that

X = φ̃Y + Ñ , Ñ ⊥⊥ Y .

with φ̃ = φvar(X)
φ2var(X)+σ2 6= 1

φ and Ñ = X − φ̃Y .

If we consider non-Gaussian noise, however, the structural equation model becomes identi-
fiable.

5. A more detailed tutorial can be found on http://www.ar.sanken.osaka-u.ac.jp/~sshimizu/papers/

Shimizu13BHMK.pdf.
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Proposition 13 Let X and Y be two random variables, for which

Y = φX +N, N ⊥⊥ X, φ 6= 0

holds. Then we can reverse the process, i.e., there exists ψ ∈ R and a noise Ñ , such that

X = ψY + Ñ , Ñ ⊥⊥ Y ,

if and only if X and N are Gaussian distributed.

Shimizu et al. (2006) were the first to report this result. They prove it even for more than
two variables using Independent Component Analysis (ICA) (Comon, 1994, Theorem 11),
which itself is proved using the Darmois-Skitovič theorem (Skitovič, 1954, 1962; Darmois,
1953). Alternatively, Proposition 13 can be proved directly using the Darmois-Skitovič
theorem (e.g., Peters, 2008, Theorem 2.10).

Theorem 14 (Shimizu et al. (2006)) Assume a linear SEM with graph G0

Xj =
∑

k∈PA
G0
j

βjkXk +Nj , j = 1, . . . , p (4)

where all Nj are jointly independent and non-Gaussian distributed. Additionally, for each
j ∈ {1, . . . , p} we require βjk 6= 0 for all k ∈ PAG0j . Then, the graph G0 is identifiable from
the joint distribution.

The authors call this model a linear non-Gaussian acyclic model (LiNGAM) and provide
a practical method based on ICA that can be applied to a finite amount of data. Later,
improved versions of this method have been proposed in (Shimizu et al., 2011; Hyvärinen
and Smith, 2013).

2.4 Estimating the DAG: Gaussian SEMs with Equal Error Variances

There is another deviation from linear Gaussian SEMs that makes the graph identifiable.
Peters and Bühlmann (2014) show that restricting the error (or noise) variables to have the
same variance is sufficient to recover the graph structure.

Theorem 15 (Peters and Bühlmann (2014)) Assume an SEM with graph G0

Xj =
∑

k∈PA
G0
j

βjkXk +Nj , j = 1, . . . , p (5)

where all Nj are i.i.d. and follow a Gaussian distribution. Additionally, for each j ∈
{1, . . . , p} we require βjk 6= 0 for all k ∈ PAG0j . Then, the graph G0 is identifiable from the
joint distribution.

For estimating the coefficients βjk and the error variance σ2, Peters and Bühlmann (2014)
propose to use a penalized maximum likelihood method (BIC). For optimization they pro-
pose a greedy search algorithm in the space of DAGs. Rescaling the variables changes the
error terms. Therefore, in many applications Theorem 15 cannot be sensibly applied. The
BIC criterion, however, always allows to compare the method’s score with the score of a
linear Gaussian SEM that uses more parameters and does not make the assumption of equal
error variances.

12
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3. Identifiability of Continuous Additive Noise Models

Recall that equation (2) defines the general form of an SEM: Xj = fj(PAj , Nj) , j = 1, . . . , p
with jointly independent variables Ni. We have seen that these models are too general to
identify the graph (Proposition 10). It turns out, however, that constraining the function
class leads to identifiability. As a first step we restrict the form of the function to be additive
with respect to the noise variable:

Xj = fj(PAj) +Nj , j = 1, . . . , p (6)

and assume that all noise variables Nj have a strictly positive density. For those models
with strictly positive density, causal minimality reduces to the condition that each function
fj is not constant in any of its arguments.

Proposition 16 Consider a distribution generated by a model (6) and assume that the
functions fj are not constant in any of its arguments, i.e., for all j and i ∈ PAj there are
some xPAj\{i} and some xi 6= x′i such that

fj(xPAj\{i}, xi) 6= fj(xPAj\{i}, x
′
i) .

Then the joint distribution satisfies causal minimality with respect to the corresponding
graph. Conversely, if there is a j and i such that fj(xPAj\{i}, ·) is constant, causal mini-
mality is violated.

Proof See Appendix A.4

Linear functions and Gaussian variables identify only the correct Markov equivalence class
and not necessarily the correct graph. In the remainder of this section we establish re-
sults showing that this is an exceptional case. We develop conditions that guarantee the
identifiability of the DAG. Proposition 20 indicates that this condition is rather weak.

Throughout this section we assume that all random variables are absolutely continuous
with respect to the Lebesgue measure. Peters et al. (2011a) provides an extension for
variables that are absolutely continuous with respect to the counting measure.

3.1 Bivariate Additive Noise Models

We now add another assumption about the form of the structural equations.

Definition 17 Consider an additive noise model (6) with two variables, i.e., the two equa-
tions Xi = Ni and Xj = fj(Xi) +Nj with {i, j} = {1, 2}. We call this SEM an identifiable
bivariate additive noise model if the triple (fj ,L(Xi),L(Nj)) satisfies Condition 18. In
particular, we require the noise variables to have strictly positive densities.

Condition 18 The triple (fj ,L(Xi),L(Nj)) does not solve the following differential equa-
tion for all xi, xj with ν ′′(xj − f(xi))f

′(xi) 6= 0:

ξ′′′ = ξ′′
(
−ν
′′′f ′

ν ′′
+
f ′′

f ′

)
− 2ν ′′f ′′f ′ + ν ′f ′′′ +

ν ′ν ′′′f ′′f ′

ν ′′
− ν ′(f ′′)2

f ′
, (7)

Here, f := fj, and ξ := log pXi and ν := log pNj are the logarithms of the strictly positive
densities. To improve readability, we have skipped the arguments xj − f(xi), xi, and xi for
ν, ξ, and f and their derivatives, respectively.
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Zhang and Hyvärinen (2009) even allow for a bijective transformation of the data, i.e.,
Xj = gj(fj(Xi) +Nj) and obtain a similar differential equation as (7).

As the name in Definition 17 already suggests, we have identifiability for this class of
SEMs.

Theorem 19 Let L(X) = L(X1, X2) be generated by an identifiable bivariate additive noise
model with graph G0 and assume causal minimality, i.e., a non-constant function fj (Propo-
sition 16). Then, G0 is identifiable from the joint distribution.

Proof The proof of Hoyer et al. (2009) is reproduced in Appendix A.5.

Intuitively speaking, we expect a “generic” triple (fj ,L(Xi),L(Nj)) to satisfy Condition 18.
The following proposition presents one possible formalization. After fixing (fj ,L(Nj)) we
consider the space of all distributions pX such that Condition 18 is violated. This space is
contained in a three dimensional space. Since the space of continuous distributions is infinite
dimensional, we can therefore say that Condition 18 is satisfied for “most distributions”
L(Xi).

Proposition 20 If for a fixed pair (fj ,L(Nj)) there exists y ∈ R such that ν ′′(y−f(x))f ′(x) 6=
0 for all but a countable set of points x ∈ R, the set of all pX for which (fj ,L(Xi),L(Nj))
does not satisfy Condition 18 is contained in a 3-dimensional space.

The condition ν ′′(y−f(x))f ′(x) 6= 0 holds for all x if there is no interval where f is constant
and the logarithm of the noise density is not linear, for example.
Proof See Appendix A.6.

In the case of Gaussian variables, the differential equation (7) simplifies. We thus have the
following result.

Corollary 21 If Xi and Nj follow a Gaussian distribution and (fj ,L(Xi),L(Nj)) does not
satisfy Condition 18, then fj is linear.

Proof See Appendix A.7.

Although non-identifiable cases are rare, the question remains when identifiability is vi-
olated. Zhang and Hyvärinen (2009) prove that non-identifiable additive noise models
necessarily fall into one out of five classes.

Proposition 22 (Zhang and Hyvärinen (2009)) Consider X2 = f2(X1)+N2 with fully
supported noise variable N2 that is independent of X1 and three times differentiable function
f2. Let further d

dx1
f2(x1)

d2

dx21
log pN2(x2) = 0 only at finitely many points (x1, x2). If there

is a backward model, i.e., we can write X1 = g1(X2) + Ñ1 with Ñ1 independent of X2, then
one of the following must hold.

I. X1 is Gaussian, N2 is Gaussian and f is linear.

II. X1 is log-mix-lin-exp, N2 is log-mix-lin-exp and f is linear.

III. X1 is log-mix-lin-exp, N2 is one-sided asymptotically exponential and f is strictly
monotonic with f ′(x1)→ 0 as x1 →∞ or as x1 → −∞.
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IV. X1 is log-mix-lin-exp, N2 is generalized mixture of two exponentials and f is strictly
monotonic with f ′(x1)→ 0 as x1 →∞ or as x1 → −∞.

V. X1 is generalized mixture of two exponentials, N2 is two-sided asymptotically expo-
nential and f is strictly monotonic with f ′(x1)→ 0 as x1 →∞ or as x1 → −∞.

Precise definitions can be found in Appendix A.8. In particular, we obtain identifiability
whenever the function f is not injective. Proposition 22 states that belonging to one of
these classes is a necessary condition for non-identifiability. We now show sufficiency for
two classes. The linear Gaussian case is well-known and easy to prove.

Example 23 Let X2 = aX1+N2 with independent N2 ∼ N (0, σ2) and X1 ∼ N (0, τ2). We
can then consider all variables in L2 and project X1 onto X2. This leads to an orthogonal
decomposition X1 = ãX2+Ñ1. Since for jointly Gaussian variables uncorrelatedness implies
independence, we obtain a backward additive noise model. Figure 2 (left) shows the joint
density and the functions for the forward and backward model.

We also give an example of a nonidentifiable additive noise model with non-Gaussian dis-
tributions, where the forward model is described by case II, and the backwards model by
case IV:

Example 24 Let X2 = aX1 + b+N2 with independent log-mix-lin-exp N2 and X1, i.e., we
have the log-densities

ξ(x) = log pX2(x) = c1 exp(c2x) + c3x+ c4

and

ν(x) = log pN2(n) = γ1 exp(γ2n) + γ3n+ γ4 .

Then X2 is a generalized mixture of exponential distributions. If and only if c2 = −aγ2
and c3 6= aγ3 we obtain a valid backward model X1 = g(X2) + Ñ1 with log-mix-lin-exp
Ñ1. Again, Figure 2 (right) shows the joint distribution over X1 and X2 and forward and
backward functions.

Proof See Appendix A.9.

Example 24 shows how parameters of function, input and noise distribution have to be
“fine-tuned” to yield non-identifiability (Janzing and Steudel, 2010).

It can be shown that bivariate identifiability even holds generically when causal feedback
is allowed (i.e., if both X causes Y and Y causes X), at least when assuming noise and
input distributions to be Gaussian (Mooij et al., 2011).

3.2 From Bivariate to Multivariate Models

It turns out that Condition 18 also suffices to prove identifiability in the multivariate case.
Assume we are given p structural equations Xj = fj(PAj) + Nj as in (6). If we fix all
arguments of the functions fj except for one parent and the noise variable, we obtain a
bivariate model. One may expect that it suffices to put restrictions like Condition 18 on
this triple of function, input and noise distribution. This is not the case.
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Figure 2: Joint density over X1 and X2 for two non-identifiable examples. The left panel
shows Example 23 (linear Gaussian case) and the right panel shows Example 24
(the latter plot is based on kernel density estimation). The blue function corre-
sponds to the forward model X2 = f(X1) +N2, the red function to the backward
model X1 = g(X2) + Ñ1.

Example 25 Consider the following SEM

X1 = N1, X2 = f2(X1) +N2, X3 = f3(X1) + a ·X2 +N3

with N1 ∼ U [0, 1], N2 ∼ N (0, σ22) and N3 ∼ N (0, σ23), i.e., N1 is uniformly distributed on
[0, 1] and N2 and N3 are normally distributed. The variables X2 and X3 themselves are
non-Gaussian but

X3 |X1=x1 = c+ a ·X2 |X1=x1 +N3

is a linear Gaussian equation for all x1. We can revert this equation and obtain the same
joint distribution by an SEM of the form

X1 = M1, X2 = g2(X1) + b ·X3 +M2, X3 = g3(X1) +M3

for some M1 ∼ U [0, 1], M2 ∼ N (0, σ̃22) and M3 ∼ N (0, σ̃23). Thus, the DAG is not identifi-
able from the joint distribution.

Instead, we need to put restrictions on conditional distributions.

Definition 26 Consider an additive noise model (6) with p variables. We call this SEM
a restricted additive noise model if for all j ∈ V, i ∈ PAj and all sets S ⊆ V with
PAj \ {i} ⊆ S ⊆ NDj \ {i, j}, there is an xS with pS(xS) > 0, s.t.(

fj(xPAj\{i}, ·︸︷︷︸
Xi

),L(Xi |XS = xS),L(Nj)
)

satisfies Condition 18. Here, the underbrace indicates the input component of fj for variable
Xi. In particular, we require the noise variables to have non-vanishing densities and the
functions fj to be continuous and three times continuously differentiable.
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Assuming causal minimality, we can identify the structure of the SEM from the distribution.

Theorem 27 Let L(X) = L(X1, . . . , Xp) be generated by a restricted additive noise model
with graph G0 and assume that L(X) satisfies causal minimality with respect to G0, i.e.,
the functions fj are not constant (Proposition 16). Then, G0 is identifiable from the joint
distribution.

Proof See Appendix A.11.

Our proof of Theorem 27 contains a graphical statement that turns out to be a main
argument for proving identifiability for Gaussian models with equal error variances (Peters
and Bühlmann, 2014). We thus state it explicitly as a proposition.

Proposition 28 Let G and G′ be two different DAGs over variables X.

(i) Assume that L(X) has a strictly positive density and satisfies the Markov condition
and causal minimality with respect to G and G′. Then there are variables L, Y ∈ X
such that for the sets Q := PAGL \ {Y }, R := PAG

′

Y \ {L} and S := Q ∪R we have

• Y → L in G and L→ Y in G′

• S ⊆ NDGL \ {Y } and S ⊆ NDG
′

Y \ {L}

(ii) In particular, if L(X) is Markov and faithful with respect to G and G′ (i.e., both graphs
belong to the same Markov equivalence class), there are variables L, Y such that

• Y → L in G and L→ Y in G′

• PAGL \ {Y } = PAG
′

Y \ {L}

Proof See Appendix A.12.

If the distribution is Markov and faithful with respect to the underlying graph it is known
that we can recover the correct Markov equivalence class. Chickering (1995) proves that
two graphs within this Markov equivalence class can be transformed into each other by a
sequence of so-called covered edge reversals. This result implies part (ii) of the proposition.
Part (i) establishes a similar statement when replacing faithfulness by causal minimality.

Although Theorem 27 is stated for additive noise models, it can be seen as an example
of a more general principle.

Remark 29 Theorem 27 is not limited to restricted additive noise models. Whenever we
have a restriction like Condition 18 that ensures identifiability in the bivariate case (The-
orem 19), the multivariate version (Theorem 27) remains valid. The proof we provide in
the appendix stays exactly the same. The algorithms in Section 4, however, use standard
regression methods and therefore rely on the additive noise assumption.

The result can therefore also be used to prove identifiability of SEMs that are restricted to
discrete additive noise models (Peters et al., 2011a) or post-nonlinear additive noise models
(Zhang and Hyvärinen, 2009). In the latter model class we allow a bijective nonlinear
distortion: Xj = gj

(
fj(PAj) + Nj

)
. These models allow for more complicated functional
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relationships but are harder to fit from empirical data than the additive noise models
considered in this work.

We explicitly state one specific identifiability result that we believe to constitute an
important model class for applications. Without giving an identifiability result like Corol-
lary 30 Tamada et al. (2011b) have already used this result for structure learning (see also
Tamada et al., 2011a). Lemma 6 of Zhang and Hyvärinen (2009) implies that Theorem 27
remains valid if we replace Condition 18 in Definition 26 by the condition that fj is nonlinear
and L(Nj) is Gaussian. We formulate this as a corollary.

Corollary 30 (i) Let L(X) = L(X1, . . . , Xp) be generated by an SEM with

Xj = fj(XPAj
) +Nj (8)

with normally distributed noise variables Nj ∼ N (0, σ2j ) and three times differen-
tiable functions fj that are not linear in any component: denote the parents of Xj

by Xk1 , . . . , Xk`, then the function fj(xk1 , . . . , xka−1 , ·, xka+1 , . . . , xk`) is assumed to be
nonlinear for all a and some xk1 , . . . , xka−1 , xka+1 , . . . , xk` ∈ R`−1.

(ii) As a special case, let L(X) = L(X1, . . . , Xp) be generated by an SEM with

Xj =
∑

k∈PAj

fj,k(Xk) +Nj (9)

with normally distributed noise variables Nj ∼ N (0, σ2j ) and three times differentiable,
nonlinear functions fj,k.

In both cases (i) and (ii), we can identify the corresponding graph G0 from the distribution
L(X).

Both statements remain true if the noise distributions for source nodes, i.e., nodes with
no parents, are allowed to have a non-Gaussian density with full support on the real line R.

Proof See Appendix A.13.

Theorem 27 requires the positivity of densities in order to make use of the intersection
property of conditional independence. Peters (2014) shows that the intersection property
still holds under weaker assumptions. It also discusses fundamental limits of causal inference
when positivity is violated.

3.3 Estimating the Topological Order

We now investigate the case when we drop the assumption of causal minimality. Assume
therefore that we are given a distribution L(X) from an additive noise model with graph G0.
We cannot recover the correct graph G0 because we can always add edges i→ j or remove
edges that “do not have any effect” without changing the distribution. This is formalized
by the following lemma.

Lemma 31 Let L(X) be generated by an additive noise model with graph G0.

(a) For each supergraph G ≥ G0 there is an additive noise model that leads to the distri-
bution L(X).

18



Causal Discovery with Continuous Additive Noise Models

(b) For each subgraph G ≤ G0 such that L(X) is Markov with respect to G there is an
additive noise model that leads to the distribution L(X). Furthermore, there is an
additive noise model with unique graph Gmin

0 ≤ G0 that leads to L(X) and satisfies
causal minimality.

Proof See Appendix A.14.

Despite this indeterminacy we can still recover the correct order of the variables. Given a
permutation π ∈ Sp on {1, . . . , p} we therefore define the fully connected DAG Gfullπ by the
DAG that contains all edges π(i)→ π(j) for i < j. As a direct consequence of Theorem 27
and Lemma 31 we can identify the set of true orderings:

Corollary 32 Let L(X) = L(X1, . . . , Xp) be generated by an additive noise model with
graph G0. Assume that the SEM corresponding to the minimal graph Gmin

0 defined as in
Lemma 31 (b) is a restricted additive noise model. We can then identify the set Π0 of true
orderings

Π0 := {π ∈ Sp | Gfullπ ≥ Gmin
0 } .

Proof See Appendix A.15.

This result is useful, for example, if the search over structures is performed in the space of
permutations rather than in the space of DAGs (e.g. Friedman and Koller, 2003; Teyssier
and Koller, 2005; Bühlmann et al., 2013).

4. Algorithms

The theoretical results do not imply an algorithm for finitely many data that is either
computationally or statistically efficient. In this section we propose an algorithm called
RESIT that is based on independence-tests and two simple algorithms that make use of an
independence score. We prove correctness of RESIT in the population case.

4.1 Regression with Subsequent Independence Test (RESIT)

In practice, we are given i.i.d. data from the joint distribution and try to estimate the
corresponding DAG. The following method is based on the fact that for each node Xi the
corresponding noise variable Ni is independent of all non-descendants of Xi. In particular,
for each sink node Xi we have that Ni is independent of X \ {Xi}. We therefore propose
an iterative procedure: in each step we identify and disregard a sink node. This is done by
regressing each of the remaining variables on all other remaining variables and measuring
the independence between the residuals and those other variables. The variable leading
to the least dependent residuals is considered the sink node (Algorithm 1, lines 4 − 13).
This first phase of the procedure yields a causal ordering or a fully connected DAG. In the
second phase we visit every node and eliminate incoming edges until the residuals are not
independent anymore, see Algorithm 1, lines 15− 22. The procedure can make use of any
regression method and dependence measure, in this work we choose the p-value of the HSIC
independence test (Gretton et al., 2008) as a dependence measure. Under independence,
Gretton et al. (2008) provide an asymptotically correct null distribution for the test statistic
times sample size. (We use moment matching to approximate this distribution by a gamma
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distribution.) Since under dependence the test statistic is guaranteed to converge to a value
different from zero, we know that the p-value converges to zero only for dependence. As a
regression method we choose linear regression, gam regression (R package mgcv) or Gaussian
process regression (R package gptk).

Algorithm 1 is a slightly modified version of the one proposed in (Mooij et al., 2009).
In this work, we always want to obtain a graph estimate; we thus consider the node with
the least dependent residuals as being the sink node, instead of stopping the search when
no independence hypothesis is accepted as in (Mooij et al., 2009).

Algorithm 1 Regression with subsequent independence test (RESIT)

1: Input: I.i.d. samples of a p-dimensional distribution on (X1, . . . , Xp)
2: S := {1, . . . , p}, π := [ ]

3: PHASE 1: Determine causal order.
4: repeat
5: for k ∈ S do
6: Regress Xk on {Xi}i∈S\{k}.
7: Measure dependence between residuals and {Xi}i∈S\{k}.
8: end for
9: Let k∗ be the k with the weakest dependence.

10: S := S \ {k∗}
11: pa(k∗) := S
12: π := [k∗, π] (π will be the causal order, its last component being a sink)
13: until #S = 1

14: PHASE 2: Remove superfluous edges.
15: for k ∈ {2, . . . , p} do
16: for ` ∈ pa(π(k)) do
17: Regress Xπ(k) on {Xi}i∈pa(π(k))\{`}.
18: if residuals are independent of {Xi}i∈{π(1),...,π(k−1)} then
19: pa(π(k)) := pa(π(k)) \ {`}
20: end if
21: end for
22: end for
23: Output: (pa(1), . . . ,pa(p))

Given that we have infinite data, a consistent non-parametric regression method and a
perfect independence test (“independence oracle”), RESIT is correct.

Theorem 33 Assume L(X) = L(X1, . . . , Xp) is generated by a restricted additive noise
model with graph G0 and assume that L(X) satisfies causal minimality with respect to G0.
Then, RESIT used with a consistent non-parametric regression method and an independence
oracle is guaranteed to find the correct graph G0 from the joint distribution L(X).

Proof See Appendix A.16

RESIT performs O(p2) independence tests, which is polynomial in the number of nodes.
In phase 2 of the algorithm, superfluous edges are removed by variable selection. This is
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performed O(p) times. Both the independence test and the variable selection method may
scale with the sample size, of course. RESIT’s polynomial behavior in p may come as a
surprise since problems in Bayesian network learning are often NP-hard (e.g. Chickering,
1996). Despite this theoretical guarantee, RESIT does not scale well to a high number of
nodes. Since we cannot make use of an independence oracle in practice, we have to detect
dependence between a random variable and a random vector from finitely many data. For
high dimensions, this is a statistically hard problem that requires huge sample sizes.

4.2 Independence-Based Score

Searching for sink nodes makes the method described in Section 4.1 inherently asymmetric.
Mistakes made in the first iterations propagate through the whole procedure. We therefore
investigate the performance of independence-based score methods. Theorem 27 ensures that
if the data come from a restricted additive noise model we can fit only one structure to the
data. In order to estimate the graph structure we can test all possible DAGs and determine
which DAG yields the most independent residuals. But even in the limit of infinitely many
data we may find more than one DAG satisfying this constraint, some of which may not
satisfy causal minimality. We therefore propose to take a penalized independence score

Ĝ = argmin
G

p∑
i=1

DM(resG,RM
i , resG,RM

−i ) + λ#(edges) . (10)

Here, resi are the residuals of node Xi, when regressing it on its parents; they depend on
the graph G and on the regression method RM. We denote the residuals of all variables
except for Xi by res−i and DM denotes a measure of dependence. Note that variables
N = (N1, . . . , Np) are jointly independent if and only if each Ni is independent of N\{Ni},
i = 1, . . . , p. We do not prove (or claim) that the minimizer of (10) is a consistent estimator
for the correct DAG; we expect this to depend on the choice of DM and RM and λ.

As dependence measure we use minus the logarithm of the p-values of an indepen-
dence test based on the Hilbert Schmidt Independence Criterion HSIC (Gretton et al.,
2008). As regression methods we use linear regression, generalized additive models (gam)
or Gaussian process regression. For the regularization parameter λ we propose to use
log(0.05) − log(0.01). This is a heuristic choice that is based on the following idea: we
only allow for an additional edge if it allows the p-value to increase from 0.01 to 0.05 or,
equivalently, by a factor of five. In practice, p-values estimated by bootstrap techniques or
p-values that are smaller than computer precision can become zero and the logarithm be-
comes minus infinity. We therefore always consider the maximum of the computed p-value
and 10−350. Although our choices seem to work well in practice, we do not claim that they
are optimal.

4.2.1 Brute-Force

For small graphs, we can solve equation (10) by computing the score for all possible DAGs
and choose the DAG with the lowest score. Since the number of DAGs grows hyper-
exponentially in the number of nodes, this method becomes quickly computationally in-
tractable; e.g., for p = 7, there are 1, 138, 779, 265 DAGs (OEIS Foundation Inc., 2011).
Nevertheless, we use this algorithm up to p = 4 for comparison.
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4.2.2 Greedy DAG Search (GDS)

A strategy to circumvent the computational complexity of equation (10) is to use greedy
search algorithms (e.g., Chickering, 2002). At each step we are given a current DAG and
score neighboring DAGs that are arranged in some order (see below). Here, all DAGs are
called neighbors that can be reached by an edge reversal, addition or removal. Whenever
a DAG has a better score than the current DAG, we stop scoring other neighbors and
exchange the latter by the former. To obtain “better” steps, in each step we consider at
least p neighbors. In order to reduce the running time of the algorithm, we do not score
neighboring DAGs in a completely random order but start by adding or removing edges into
nodes whose residuals are highly dependent on the other residuals instead. More precisely,
we are randomly sorting the nodes, choosing each node one by one with a probability
proportional to the reciprocal dependence measure of its residuals. If all neighboring DAGs
have a worse score than the current graph G, we nevertheless consider the best neighbor H.
If H has a neighbor with a better score than G, we continue with this graph. Otherwise we
stop and output G as the optimal graph. This is a simple version of tabu search (e.g. Koller
and Friedman, 2009) that is used to avoid local optima. This method is not guaranteed to
find the best scoring graph.

Code for the proposed methods is provided on the first and second authors’ homepages.

5. Experiments

5.1 Experiments on Synthetic Data

For varying sample size n and number of variables p we compare the described methods.
Given a value of p, we randomly choose an ordering of the variables with respect to the
uniform distribution and include each of the p(p − 1)/2 possible edges with a probability
of 2/(p − 1). This results in an expected number of p edges and can be considered as a
(modestly) sparse setting. For a linear and a nonlinear setting we report the average struc-
tural Hamming distance (Acid and de Campos, 2003; Tsamardinos et al., 2006) to the true
directed acyclic graph and to the true completed partially directed acyclic graph over 100
simulations. The structural Hamming distance (SHD) between two partially directed acyclic
graphs counts how many edge types do not coincide. Estimating a non-edge or a directed
edge instead of an undirected edge, for example, contributes an error of one to the overall
distance. We also report analogous results for the structural intervention distance (SID),
which has recently been proposed (Peters and Bühlmann, 2013). Given the estimated graph
we can infer the intervention distribution p(Xj | do(Xi = xi)) by the parent adjustment (1).
We call a pair of nodes (Xi, Xj) good if the intervention distribution p(Xj | do(Xi = xi))
inferred from the estimated DAG coincides with the intervention distribution inferred from
the correct DAG for all observational distributions L(X). The SID counts the number of
pairs that are not good. Some methods output a Markov equivalence class instead of a
single DAG. Different DAGs within such a class lead to different intervention distribution
and thus different SIDs. In that case, we therefore provide the smallest and largest SID
attained by members within the Markov equivalence class. As the SHD, the SID is a purely
structural measure that is independent of any distribution. The rationale behind the new
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measure is that a reversed edge in the estimated DAG leads to more false causal effects
than an additional edge does. The SHD, however, weights both errors equally.

We compare the greedy DAG search (GDS), brute-force (BF), regression with subse-
quent independence test (RESIT), linear non-Gaussian additive models (LINGAM), the PC
algorithm (PC) with partial correlation and significance level 0.01 and greedy equivalence
search (GES), see Sections 4.2.2, 4.2.1, 4.1, 2.3, 2.1 and 2.2, respectively. We also compare
them with the conservative PC algorithm (CPC), suggested by Ramsey et al. (2006), and
random guessing (RAND). The latter chooses a random DAG with edge inclusion proba-
bility uniformly chosen between zero and one. Its estimate does not depend on the data.

5.1.1 Linear Structural Equation Models

We first consider a linear setting as in equation (4), where the coefficients βjk are uniformly
chosen from [−2,−0.1]∪ [0.1, 2] and the noise variables Nj are independent and distributed

according to Kj ·sign(Mj) · |Mj |αj with Mj
iid∼ N (0, 1), Kj

iid∼ U([0.1, 0.5]) and αj
iid∼ U([2, 4]).

The top box plot in Figure 3 compares the SHD of the estimated structure to the correct
DAG for p = 4 and n = 100. The brute-force method performs best, which indicates that
the score function in equation (10) is a sensible choice for small graphs. Greedy DAG search
performs almost equally well, it does not encounter many local optima in this setting. The
constraint-based methods and greedy equivalent search perform worse. Comparing SID
leads to the same conclusion (Figure 3, bottom).

Tables 1 and 2 provide summaries for p ∈ {4, 15} and n ∈ {100, 500}. We additionally
show distances of the estimated CPDAGs to the true CPDAGs. Therefore, if methods
output a DAG instead of a CPDAG, this DAG is transformed into the CPDAG of the
corresponding Markov equivalence class. For p = 4 and n = 500, GDS and brute force find
almost always the correct graph (86 and 90 out of 100). RESIT and LiNGAM still perform
much better than the PC methods and GES. For p = 15, the performance of RESIT (and
GES) in relation to the other methods seems to be better when evaluating SID compared
to evaluating the SHD. This indicates that the pruning (and penalization of the number of
edges) does not work perfectly. The brute-force method is not applicable to p = 15.

5.1.2 Nonlinear Structural Equation Models

We also sample data from nonlinear SEMs. We choose an additive structure as in equa-
tion (9) and sample the functions from a Gaussian process with bandwidth one. The noise
variables Nj are independent and normally distributed with a uniformly chosen variance.
Tables 3 and 4 show summaries for p ∈ {4, 15} and n ∈ {100, 500}. We cannot run the
brute-force method on data sets with p = 15. For p = 4, we have a similar situation as
in Figure 3 with GDS and the BF method outperforming all others (RESIT performing a
bit worse). Remarkably, for p = 15 and n = 100, a lot of the methods do not perform
much better than random guessing when comparing the SID. The estimated CPDAG of
the constraint-based methods can have very different lower and upper bounds for SID. This
means that some DAGs within the equivalence class perform much better than others. (The
methods do not propose any particular DAG, they treat all DAGs within the class equally.)
Figure 4 shows box plots of SHD and SID for the special case p = 15 and n = 500. This

time, RESIT perform slightly better than all other methods. It makes use of the nonlinear-
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Figure 3: Box plots of the SHD between the estimated structure (either DAG or CPDAG)
and the correct DAG for p = 4 and n = 100 for linear non-Gaussian SEMs (top).
The SID is computed between the correct DAG and the estimated DAG (bottom).
Some methods estimate only the Markov equivalence class. We then compute the
SID to the “best” and to the “worst” DAG within the equivalence class; therefore
a lower and an upper bound are shown.

ity of the structural equations. Again, the high SHD for GES indicates that the estimate
probably contains too many edges (since its SID is better than the one for the PC methods).

In conclusion, for p = 4, the brute force method works best for both linear and nonlinear
data. Roughly speaking, for p = 15, LiNGAM and GDS work best in the linear non-
Gaussian setting and RESIT works best for nonlinear data. If one does not know whether
the data are linear or nonlinear, GDS provides an alternative that works reasonably well in
both settings.

5.2 Altitude, Temperature and Duration of Sunshine

We consider recordings of average temperature T , average duration of sunshine DS and the
altitude A at 349 German weather stations (Deutscher Wetterdienst, 2008). Figure 5 shows
scatter plots of all pairs. LiNGAM estimates T → A, PC and CPC estimate T → A← DS,
GES estimates a fully connected DAG. The brute-force estimate with linear regression
obtains a score of 103.6. Since we are taking the logarithm to base 10 in equation (10),
we see that the model does not fit the data well. More sensible seems the gam regression,
for which both GDS and brute-force output the DAG T ← A → DS and T → DS, which
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Table 1: Linear SEMs: SHD between the estimated structure and the correct DAG and
SHD between the estimated CPDAG to the correct CPDAG; for both the average
and the standard deviation over 100 experiments are shown (best averages are
highlighted).

GDS BF RESIT LiNGAM PC CPC GES RAND

p = 4, n = 100
DAG 0.7± 0.9 0.6± 0.8 1.2± 1.3 1.9± 1.2 3.5± 1.5 3.6± 1.4 3.1± 1.7 4.4± 1.0

CPDAG 1.1± 1.5 0.9± 1.4 1.5± 1.7 2.4± 1.5 2.4± 1.7 2.3± 1.6 2.0± 2.0 4.3± 1.4

p = 4, n = 500
DAG 0.2± 0.6 0.1± 0.3 0.6± 0.8 0.5± 0.8 3.1± 1.4 3.2± 1.4 2.9± 1.6 4.1± 1.2

CPDAG 0.3± 0.9 0.2± 0.5 0.9± 1.3 0.8± 1.2 1.9± 1.8 1.6± 1.7 1.6± 1.9 3.9± 1.4

p = 15, n = 100
DAG 12.2± 5.3 − 25.2± 8.3 11.1± 3.7 13.0± 3.6 13.7± 3.7 12.7± 4.2 57.4± 26.4

CPDAG 13.2± 5.4 − 27.0± 8.5 12.4± 3.9 10.7± 3.5 10.8± 3.8 12.4± 4.9 58.5± 27.1

p = 15, n = 500
DAG 6.1± 6.4 − 51.2± 17.8 3.4± 2.8 10.2± 3.8 10.8± 4.2 8.7± 4.6 57.6± 24.2

CPDAG 6.8± 6.9 − 54.5± 18.5 4.5± 3.8 8.2± 4.6 7.5± 4.4 7.1± 5.6 58.9± 25.0

Table 2: Linear SEMs: SID to the correct DAG; the table shows average and standard
deviation over 100 experiments.

GDS BF RESIT LiNGAM PC CPC GES RAND

p = 4, n = 100

1.0± 1.5 1.5± 2.2 3.3± 2.1
3.4± 2.9 3.2± 2.7 2.9± 3.3

7.0± 2.80.8± 1.4
8.0± 3.2 8.5± 3.2 7.2± 3.5

p = 4, n = 500

0.2± 0.7 0.3± 1.0 0.9± 1.4
2.8± 3.1 2.3± 2.7 2.1± 2.9

6.3± 2.80.1± 0.4
7.4± 3.4 7.6± 3.3 6.9± 3.6

p = 15, n = 100

− 35.3± 21.2 45.1± 24.1
36.5± 21.3 32.5± 20.2 26.5± 18.3

55.6± 27.132.3± 24.1
63.7± 30.3 66.4± 31.5 37.6± 20.6

p = 15, n = 500

− 18.1± 13.8 14.2± 14.6
33.6± 29.5 23.2± 19.8 18.1± 21.4

57.5± 34.112.6± 16.3
55.0± 32.9 55.6± 32.4 31.6± 22.2

receives a score of 5.9. Also RESIT outputs this DAG. Although there might be a feedback
between duration of sunshine and temperature through the generation of clouds, we believe
that the link from sunshine to temperature should be stronger. In fact, the corresponding
DAG T ← A → DS with T ← DS receives the second best score. Furthermore, these
data may be confounded by geographical location. Together with the possible feedback
loop and a possible deviation from additive noise models this might be the reason why
we do not obtain clear independence of the residuals: the HSIC between the residuals of
temperature and the two others leads to a p-value of 0.012 (the other two p-values are both
about 0.12). In practice, we often expect some violations of the model assumptions. This
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Table 3: Nonlinear SEMs: SHD between the estimated structure and the correct DAG and
SHD between the estimated CPDAG to the correct CPDAG; for both the average
and the standard deviation over 100 experiments are shown.

GDS BF RESIT LiNGAM PC CPC GES RAND

p = 4, n = 100
DAG 1.5± 1.4 1.0± 1.0 1.7± 1.3 3.5± 1.2 3.5± 1.5 3.8± 1.4 3.5± 1.3 4.0± 1.3

CPDAG 1.7± 1.7 1.2± 1.4 2.0± 1.6 3.0± 1.4 2.9± 1.5 2.7± 1.4 3.4± 1.7 3.9± 1.4

p = 4, n = 500
DAG 0.5± 0.9 0.3± 0.5 0.8± 0.9 3.7± 1.2 3.5± 1.5 3.8± 1.5 3.3± 1.5 4.1± 1.2

CPDAG 0.6± 1.1 0.6± 1.0 1.0± 1.3 3.0± 1.7 3.1± 1.9 2.8± 1.8 3.4± 1.9 3.8± 1.6

p = 15, n = 100
DAG 14.3± 4.9 − 15.4± 5.7 15.4± 3.6 14.2± 3.5 15.5± 3.6 24.8± 6.3 56.8± 24.1

CPDAG 15.1± 5.4 − 16.5± 5.9 15.3± 4.0 13.3± 3.6 13.3± 4.0 26.4± 6.5 58.0± 24.7

p = 15, n = 500
DAG 13.0± 8.4 − 10.1± 5.7 21.4± 6.9 13.9± 4.5 15.1± 4.8 26.8± 8.5 56.1± 26.8

CPDAG 14.2± 9.2 − 11.3± 6.3 21.1± 7.3 13.7± 4.9 13.4± 5.1 28.6± 8.8 57.0± 27.3

Table 4: Nonlinear SEMs: SID to the correct DAG; the table shows average and standard
deviation over 100 experiments.

GDS BF RESIT LiNGAM PC CPC GES RAND

p = 4, n = 100

2.0± 2.5 2.0± 1.9 8.2± 2.8
4.7± 3.2 4.3± 2.7 4.7± 3.2

6.3± 3.11.4± 1.7
7.8± 3.4 8.5± 3.2 7.2± 3.2

p = 4, n = 500

0.6± 1.8 0.9± 1.3 8.0± 2.8
4.3± 3.7 3.7± 3.3 3.6± 3.0

6.6± 3.40.2± 0.8
7.3± 3.2 8.1± 3.2 6.5± 3.3

p = 15, n = 100

50.6± 25.3 − 65.0± 28.3
49.7± 24.6 40.4± 21.6 49.0± 27.3

60.0± 29.944.4± 23.9
68.6± 31.5 76.7± 32.8 53.6± 28.9

p = 15, n = 500

35.9± 26.8 − 67.3± 28.1
49.9± 29.0 36.4± 22.1 40.2± 23.3

58.9± 27.824.6± 18.6
60.3± 31.0 70.3± 34.6 44.6± 24.0

example, however, indicates that it may still possible to obtain reasonable estimates of the
underlying causal structure if the violations are not too strong.

5.3 Cause-Effect Pairs

We have tested the performance of additive noise models on a collection of various cause-
effect pairs, an extended version of the “Cause-effect pairs” dataset described in (Mooij
and Janzing, 2010). As of this writing, this dataset consists of observations of 86 different
pairs of variables from various domains. The task is to infer which variable is the cause and
which variable the effect, for each of the pairs. For example, one of the pairs consists of 349
measurements of altitude and temperature taken at different weather stations in Germany
(Deutscher Wetterdienst, 2008), the same data as considered in the previous subsection.
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Figure 4: Similar to Figure 3: box plots of the SHD between estimated structure and correct
DAG (top) and box plots of the SID to the correct DAG (bottom) for p = 15,
n = 500 and nonlinear Gaussian SEMs.
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Figure 5: Scatter plots of the three pairs, altitude, temperature and duration of sunshine.

It should be obvious that here the altitude is the cause, and the temperature is the effect.
The complete dataset and a more detailed description of each pair can be obtained from
http://webdav.tuebingen.mpg.de/cause-effect.

For each pair of variables (Xi, Yi), with i = 1, . . . , 86, we test the two possible additive
noise models that correspond with the two different possible causal directions, Xi → Yi
and Yi → Xi. For both directions, we estimate the functional relationship by performing
Gaussian Process regression using the GPML toolbox (Rasmussen and Nickisch, 2010). We
use the expected value of the Gaussian Process given the observations as an estimate of

27

http://webdav.tuebingen.mpg.de/cause-effect


J. Peters, J.M. Mooij, D. Janzing and B. Schölkopf

the functional dependence between the cause and the effect. The goodness-of-fit is then
evaluated by testing independence of the residuals and the inputs. Here, we use the HSIC
as an independence test and approximate the null distribution with a gamma distribution
in order to obtain p-values (Gretton et al., 2005). We thus obtain two p-values for each pair,
one for each possible causal direction (where a high p-value corresponds to not rejecting
independence, i.e., not rejecting the causal model). We then rank the pairs according to
the highest of the two p-values of the pair. Using this ranking, we can make decisions for
only a subset of the pairs, starting with the pair for which the highest of the two p-values
is the largest among all pairs (we say these pairs have a high rank). In this way we trade
off accuracy, i.e., percentage of correct decisions, versus the amount of decisions taken.

Five of the pairs have multivariate Xi or Yi, and we did not include those in the analysis
for convenience. Furthermore, not all the pairs are independent; for example, life expectancy
versus latitude occurs more than once, but measurements were done in different years and for
different gender. We therefore assigned weights to the cause-effect pairs to compensate for
this when calculating the accuracy and decision rate. For example, the pair life expectancy
versus latitude appears eight times (for different combinations of gender and year), hence
each of these pairs is weighted down with the factor 1/8; on the other hand, the pair altitude
vs. temperature at weather stations occurs only once, and therefore gets weight 1. Denoting
the weight of each pair with wi, the “effective” number of pairs becomes

∑86
i=1wi = 68. If

the set of highest-ranked pairs is denoted I, and the set of correct decisions is denoted C,
then the accuracy (fraction of correct decisions) is defined as

accuracy =

∑
i∈I∩C wi∑
i∈I wi

and the decision rate (fraction of decisions taken) is defined as

decision rate =

∑
i∈I wi∑86
i=1wi

.

The results are plotted in Figure 6. It shows the accuracy (dark blue line) as a function
of the decision rate, together with confidence intervals (light blue regions). The amount
of cause-effect pairs from which the accuracy can be estimated decreases proportionally
to the decision rate; the accuracies reported for low decision rates therefore have higher
uncertainty than the accuracies reported for high decision rates. For each decision rate, we
have plotted the 68% and 95% confidence intervals for the estimated success probability
assuming a binomial distribution using the Clopper-Pearson method. If for a given decision
rate, the 95% confidence region lies above the line at 50%, the method performs significantly
better than random guessing (for that decision rate). For example, if we take a decision for
all pairs, 72± 6% of the decisions are correct, significantly more than random guessing. If
we only take the 20% most confident decisions, all of them are correct, again significantly
more than random guessing.

6. Discussion and Future Work

Apart from a few exceptions we can identify the directed acyclic graph from a bivariate
distribution that has been generated by a structural equation model with continuous addi-
tive noise. Such an identifiability in the bivariate case generalizes under mild assumptions
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Figure 6: Results of the additive noise method on 86 cause-effect pairs, showing estimated
accuracy, 68% and 95% confidence intervals for each decision rate.

to identifiability in the multivariate case (i.e., graphs with more than two variables). This
can be beneficial for the field of causal inference: if the true data generating process can be
represented by a restricted structural equation model like additive noise models, the causal
graph can be inferred from the joint distribution. We believe that formulating the problem
using structural equation models rather than graphical models made it easier to state and
exploit the assumption of additive noise. While the language of graphical models allow us
to define some notion connecting a graph to the distribution (e.g., faithfulness), SEMs allow
us to impose specific restrictions on the possible functional relationships between nodes and
its children. This is closer in spirit to a machine learning approach where properties of
function classes play a crucial role in the estimation.

Both artificial and real data sets indicate that methods based on restricted structural
equation models can outperform traditional constraint-based methods. We have proposed
a score that reflects the independence of residuals. Although the score seems to be suitable
to detect the correct graph structure, it remains unclear how to find the best scoring DAG
when an exhaustive search is infeasible. One possibility is to search this space by greedily
choosing best-scoring neighbors. Multiple random initializations may decrease the chance
that the greedy DAG search gets stuck in local optima by the additional cost of computa-
tional complexity. We further believe that the proposed score may benefit from an extended
version of HSIC that is able to estimate mutual independence instead of pairwise indepen-
dence. Recently, Nowzohour and Bühlmann (2013) have suggested a penalized likelihood
based score for bivariate models. They estimate the noise distribution and use the BIC for
penalization. In principle this idea can again be combined with a brute-force search as in
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Section 4.2.1 or a greedy DAG search as in Section 4.2.2. Making the methods applicable
to larger graphs (p > 20) remains a major challenge. Also, studying the statistical proper-
ties of the methods (for example, establishing consistency) is an important task for future
research.
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Appendix A. Proofs

A.1 Proof of Proposition 4

Proof “if”: Assume that causal minimality is not satisfied. Then, there is an Xj and a
Y ∈ PAGj , such that L(X) is also Markov with respect to the graph obtained when removing
the edge Y → Xj from G.
“only if”: If L(X) has a density, the Markov condition is equivalent to the Markov factor-
ization (Lauritzen, 1996, Theorem 3.27). Assume that Y ∈ PAGj and Xj ⊥⊥ Y |PAGj \ {Y }.
Then P (X) = P (Xj |PAGj \ {Y })

∏
k 6=j P (Xk|PAGk ), which implies that L(X) is Markov

w.r.t. G without Y → Xj .

A.2 Proof of Proposition 7

Proof We will prove that for all G1 and G2 in G there is DAG G ∈ G such that G ≤ G1 and
G ≤ G2. This implies the existence of a least element since the set G is finite. Consider any
node Xi and denote the G1-parents by Xj1 , . . . , Xjr , Xkr+1 , . . . , Xkr+s and the G2-parents by
Xj1 , . . . , Xjr , X`r+1 , . . . , X`r+t , such that {kr+1, . . . , kr+s} and {`r+1, . . . , `r+t} are disjoint
sets. Here, Xj1 , . . . , Xjr are the joint parents in G1 and G2. We have for all xj1 , . . . , xjr ,
xkr+1 , . . . , xkr+s and x`r+1 , . . . , x`r+t (at which the density p is strictly positive) that

p(Xi |Xj1 = xj1 , . . . , Xjr = xjr , Xkr+1 = xkr+1 , . . . , Xkr+s = xkr+s)

= p
(
Xi | do(Xj1 = xj1 , . . . , Xjr = xjr , Xkr+1 = xkr+1 , . . . , Xkr+s = xkr+s ,

X`r+1 = x`r+1 , . . . , X`r+t = x`r+t)
)

= p(Xi |Xj1 = xj1 , . . . , Xjr = xjr , X`r+1 = x`r+1 , . . . , X`r+t = x`r+t) =: (∗)

This implies

(∗) = p(Xi |Xj1 = xj1 , . . . , Xjr = xjr) .
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Set the variables Xj1 , . . . , Xjr to be the G-parents of node Xi and repeat for all nodes Xi.
The distribution L(X) is Markov w.r.t. graph G by its construction. Note that all proper
subgraphs of a true causal DAG with respect to which L(X) is Markov are again true causal
DAGs. This proves the statement about causal minimality.

A.3 Proof of Proposition 10

Proof Let N1, · · · , Np be independent and uniformly distributed between 0 and 1. We
then define Xj = fj(PAj , Nj) with

fj(xPAj
, nj) = F−1Xj |PAj=xPA

j

(nj)

where F−1Xj |PAj=xPA
j

is the inverse cdf from Xj given PAj = xPAj
.

A.4 Proof of Proposition 16

Proof Assume causal minimality is not satisfied. We can then find a j and i ∈ PAj with
Xj = fj(XPAj\{i}, Xi) + Nj that does not dependent on Xi if we condition on all other

parents PAj \ {i} (Proposition 4). Let us denote PAj \ {Xi} by XA. For the function fj
it follows that fj(xA, xi) = cxA for L(XA, Xi)-almost all (xA, xi). Indeed, assume without
loss of generality that ENj = 0, take the mean of Xj |PAG0j = (xA, xi) and use e.g. (2b)
from (Dawid, 1979). The continuity of fj implies that fj is constant in its last argument.

The converse statement follows from Proposition 4, too.

A.5 Proof of Theorem 19

Proof To simplify notation we write X := Xi and Y := Xj (see Definition 17). If G0 is the
empty graph, X ⊥⊥ Y . On the other hand, if the graph is not empty, X ⊥⊥ Y would be a
violation of causal minimality. We can therefore now assume that the graph is not empty
and X 6⊥⊥ Y . Let us assume that the graph is not identifiable and we have

pn(y − f(x))px(x) = p(x, y) = pñ(x− g(y))py(y) . (11)

Set
π(x, y) := log p(x, y) = ν(y − f(x)) + ξ(x) , (12)

and ν̃ := log pñ, η := log py. From the r.h.s. of Equation (11) we find π(x, y) = ν̃(x−g(y))+
η(y), implying

∂2π

∂x∂y
= −ν̃ ′′(x− g(y))g′(y) and

∂2π

∂x2
= ν̃ ′′(x− g(y)) .

We conclude
∂

∂x

(
∂2π/∂x2

∂2π/(∂x∂y)

)
= 0 . (13)
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Using Equation (12) we obtain

∂2π

∂x∂y
= −ν ′′(y − f(x))f ′(x) , (14)

and
∂2π

∂x2
=

∂

∂x

(
−ν ′(y − f(x))f ′(x) + ξ′(x)

)
= ν ′′(f ′)2 − ν ′f ′′ + ξ′′ , (15)

where we have dropped the arguments for convenience. Combining Equations (14) and (15)
yields

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
=− 2f ′′ +

ν ′f ′′′

ν ′′f ′
− ξ′′′ 1

ν ′′f ′
+
ν ′ν ′′′f ′′

(ν ′′)2
− ν ′(f ′′)2

ν ′′(f ′)2
− ξ′′ ν

′′′

(ν ′′)2
+ ξ′′

f ′′

ν ′′(f ′)2
.

Due to Equation (13) this expression must vanish and we obtain the differential equa-
tion (7)

ξ′′′ = ξ′′
(
−ν
′′′f ′

ν ′′
+
f ′′

f ′

)
− 2ν ′′f ′′f ′ + ν ′f ′′′ +

ν ′ν ′′′f ′′f ′

ν ′′
− ν ′(f ′′)2

f ′
,

by term reordering. This contradicts the assumption that the distribution is generated by
an identifiable bivariate additive noise model, see Condition 18.

A.6 Proof of Proposition 20

Proof Let the notation be as in Theorem 19 and let y be fixed such that ν ′′(y−f(x))f ′(x) 6=
0 holds for all but countably many x. Given f, ν, we obtain a linear inhomogeneous differ-
ential equation (DE) for ξ:

ξ′′′(x) = ξ′′(x)G(x, y) +H(x, y) , (16)

where G and H are defined by

G := −ν
′′′f ′

ν ′′
+
f ′′

f ′

and

H := −2ν ′′f ′′f ′ + ν ′f ′′′ +
ν ′ν ′′′f ′′f ′

ν ′′
− ν ′(f ′′)2

f ′
,

see proof of Theorem 19. Setting z := ξ′′ we have z′(x) = z(x)G(x, y) + H(x, y) . Given
that such a function z exists, it is given by

z(x) = z(x0)e
∫ x
x0
G(x̃,y)dx̃

+

∫ x

x0

e
∫ x
x̂ G(x̃,y)dx̃H(x̂, y)dx̂ . (17)

Then z is determined by z(x0) since we can extend Equation (17) to the remaining points.
The set of all functions ξ satisfying the linear inhomogenous DE (16) is a 3-dimensional
affine space: Once we have fixed ξ(x0), ξ

′(x0), ξ
′′(x0) for some arbitrary point x0, ξ is com-

pletely determined. Given fixed f and ν, the set of all ξ admitting a backward model is
contained in this subspace.
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A.7 Proof of Corollary 21

Proof Similarly to how (13) was derived, under the assumption of the existence of a reverse
model one can derive

∂2π

∂x∂y
· ∂
∂x

(
∂2π

∂x2

)
=
∂2π

∂x2
· ∂
∂x

(
∂2π

∂x∂y

)
Now using (14) and (15), we obtain

(−ν ′′f ′)· ∂
∂x

(
ν ′′(f ′)2 − ν ′f ′′ + ξ′′

)
= (ν ′′(f ′)2 − ν ′f ′′ + ξ′′) · ∂

∂x

(
−ν ′′f ′

)
,

which reduces to

−2(ν ′′f ′)2f ′′ + ν ′′f ′ν ′f ′′′ − ν ′′f ′ξ′′′ = −ν ′f ′′ν ′′′(f ′)2 + ξ′′ν ′′′(f ′)2 + ν ′′ν ′(f ′′)2 − ν ′′f ′′ξ′′ .

Substituting the assumptions ξ′′′ = 0 and ν ′′′ = 0 (and hence ν ′′ = C everywhere with
C 6= 0 since otherwise ν cannot be a proper log-density) yields

ν ′
(
y − f(x)

)
·
(
f ′f ′′′ − (f ′′)2

)
= 2C(f ′)2f ′′ − f ′′ξ′′.

Since C 6= 0 there exists an α such that ν ′(α) = 0. Then, restricting ourselves to the
submanifold {(x, y) ∈ R2 : y − f(x) = α} on which ν ′ = 0, we have

0 = f ′′(2C(f ′)2 − ξ′′).

Therefore, for all x in the open set [f ′′ 6= 0], we have (f ′(x))2 = ξ′′/(2C), which is a con-
stant, so f ′′ = 0 on [f ′′ 6= 0]: a contradiction. Therefore, f ′′ = 0 everywhere.

A.8 Definitions of Proposition 22

Definition 34 (Zhang and Hyvärinen, 2009) A one-dimensional distribution that is abso-
lutely continuous with respect to the Lebesgue measure and density p is called:

• log-mix-lin-exp if there are c1, c2, c3, c4 with c1 < 0 and c2c3 > 0 such that

log p(x) = c1 exp(c2x) + c3x+ c4

• one-sided asymptotically exponential if there is c 6= 0 such that

d

dx
log p(x)→ c

as x→ −∞ or x→∞.

• two-sided asymptotically exponential if there are c1 6= 0 and c2 6= 0 such that

d

dx
log p(x)→ c1

as x→ −∞ and
d

dx
log p(x)→ c2

as x→∞.
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• a generalized mixture of two exponentials if there are d1, d2, d3, d4, d5, d6 with d4 > 0,
d3 > 0, d1d5 > 0 and d2 < −d1

d5
such that

log p(x) = d1x+ d2 log(d3 + d4 exp(d5x)) + d6

A.9 Proof of Example 24

Proof Our starting point is the assumption of nonidentifiability. In other words, we can
describe the joint distribution of x and y both as an additive noise model where X causes Y ,
and as an additive noise model where Y causes X. Using the same notation as in Theorem
19, this means that:

ξ(x) + ν
(
y − f(x)

)
= η(y) + ν̃

(
x− g(y)

)
∀x, y ∈ R. (18)

Case II in Proposition 22 (reproduced from Table 1 in Zhang and Hyvärinen (2009))
states that if both ξ and ν are log-mix-lin-exp and f is affine, then there could be an
unidentifiable model. Let us verify whether that is indeed the case. We take

ξ(x) = c1 exp(c2x) + c3x+ c4

ν(n) = γ1 exp(γ2n) + γ3n+ γ4

f(x) = ax+ b

with a 6= 0 (a = 0 is the degenerate case with X and Y independent).
We can rewrite (18) as follows, by substituting x with x+ g(y):

c1e
c2(x+g(y))+c3(x+g(y))+c4+γ1e

γ2(y−ax−ag(y)−b)+γ3(y−ax−ag(y)−b)+γ4 = η(y)+ν̃(x).
(19)

Differentiating with respect to x:

c1c2e
c2(x+g(y)) + c3 − aγ1γ2eγ2(y−ax−ag(y)−b) − γ3a = ν̃ ′(x). (20)

Differentiating with respect to y:

c1c
2
2e
c2(x+g(y))g′(y)− aγ1γ22eγ2(y−ax−ag(y)−b)(1− ag′(y)) = 0.

This can only be satisfied for all x if c2 = −aγ2. In that case:

−ac1g′(y) + γ1e
γ2(y−b)(1− ag′(y)) = 0.

Rewriting:

ag′(y) =
γ1e

γ2(y−b)

c1 + γ1eγ2(y−b)
.

Integrating:

g(y) = − 1

c2
ln(−c1 − γ1eγ2(y−b)) +

C

c2
.

Note that:

ec2g(y) = − 1

c1 + γ1eγ2(y−b)
e−C .
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Substituting into (20):

−c2e−Cec2x + c3 − γ3a = ν̃ ′(x).

Integrating:

−e−Cec2x + (c3 − γ3a)x+ δ4 = ν̃(x).

which is also log-mix-lin-exp with parameters δ1 = −e−C , δ2 = c2, δ3 = c3 − γ3a, δ4.
Substituting into (19):

g(y)(c3 − γ3a) + γ3y + c4 − γ3b+ γ4 − δ4 = η(y),

i.e.:

η(y) =

(
− 1

c2
ln(−c1 − γ1eγ2(y−b)) +

C

c2

)
(c3 − γ3a) + γ3y + c4 − γ3b+ γ4 − δ4.

This gives an inequality constraint: c3 6= aγ3. η(y) is a generalized mixture of exponentials
distribution with parameters d1 = γ3, d2 = − c3−aγ3

c2
, d3 = −c1, d4 = −γ1e−γ2b, d5 = γ2,

d6 = C c3−aγ3
c2

+ c4 − γ3b+ γ4 − δ4. One can check that all constraints on the parameters of
the generalized mixture of exponentials are satisfied. Choosing C appropriately allows for
normalizing the log-density. One can also easily verify that with these choices of ν̃(x) and
η(y), equation (18) holds, and therefore this gives an example of a nonidentifiable additive
noise model.

A.10 Some Lemmata

The following four statements are all plausible and their proof is mostly about technicalities.
The reader may skip to the next section and use the lemmata whenever needed. For random
variables A and B we use A |B=b to denote the random variable A after conditioning on
B = b (assuming densities exist and B has positive density at b).

Lemma 35 Let Y ∈ Y, N ∈ N ,Q ∈ Q,R ∈ R be random variables whose joint distribution
is absolutely continuous with respect to some product measure (Q and R can be multivariate)
and with density pY,Q,R,N (y,q, r, n). Let f : Y ×Q×N → R be a measurable function. If
N ⊥⊥ (Y,Q,R) then for all q ∈ Q, r ∈ R with pQ,R(q, r) > 0:

f(Y,Q, N) |Q=q,R=r
L
= f(Y |Q=q,R=r,q, N) .

A formal proof of this statement can be found in (Peters et al., 2011b, Lemma 2).

Lemma 36 Let L(X) be generated according to a SEM as in (2) with corresponding DAG
G and consider a variable X ∈ X. If S ⊆ NDGX then NX ⊥⊥ S.

Proof Write S = {S1, . . . , Sk}. Then

S =
(
fS1(PAGS1

, NS1), . . . , fSk
(PAGSk

, NSk
)
)
.
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Again, one can substitute the parents of Si by the corresponding functional equations and
proceed recursively. After finitely many steps one obtains S = f(NT1 , . . . , NTl), where
{T1, . . . , Tl} is the set of all ancestors of nodes in S, which does not contain X. Since all
noise variables are jointly independent we have NX ⊥⊥ S.

With the intersection property of conditional independence (e.g., 1.1.5 in Pearl, 2009),
Proposition 4 has the following corollary that we formalize as a lemma.

Lemma 37 Consider the random vector X and assume that the joint distribution has a
(strictly) positive density. Then L(X) satisfies causal minimality with respect to G if and
only if ∀B ∈ X ∀A ∈ PAGB and ∀S ⊂ X with PAGB \ {A} ⊆ S ⊆ NDGB \ {A} we have that

B 6⊥⊥ A | S .

Proof The “if” part is immediate. For the “only if” let us denote P := PAGB \ {A} and
Q := S \ (PAGB \ {A}), such that S = P ∪Q. Observe that B 6⊥⊥ A |P (see Proposition 4)
implies B 6⊥⊥ ({A} ∪Q) |P. From the Markov condition we have B ⊥⊥ Q | (P ∪ {A}). The
intersection property of conditional independence yields B 6⊥⊥ A | (P ∪Q).

A.11 Proof of Theorem 27

Proof We assume that there are two restricted additive noise models (see Definition 26)
that both induce L(X), one with graph G, the other with graph G′. We will show that G = G′.
Consider the variables L, Y from Proposition 28 (i) and define the sets Q := PAGL \ {Y },
R := PAG

′

Y \{L} and S := Q∪R. At first, we consider any s = (q, r) and write L∗ := L | S=s

and Y ∗ := Y | S=s. Lemma 36 gives us NL ⊥⊥ (Y,S) and NY ⊥⊥ (L,S) and we can thus apply
Lemma 35. From G we find

L∗ = fL(q, Y ∗) +NL, NL ⊥⊥ Y ∗

and from G′ we have
Y ∗ = gY (r, L∗) +NY , NY ⊥⊥ L∗

This contradicts Theorem 19 since according to Definition 26 we can choose s = (q, r) such
that (fL(q, ·),L(Y ∗),L(NL)) and (gY (r, ·),L(L∗),L(NY )) satisfy Condition 18.

A.12 Proof of Proposition 28

Proof Since DAGs do not contain any cycles, we always find nodes that have no descendants
(start a directed path at some node: after at most #X− 1 steps we reach a node without
a child). Eliminating such a node from the graph leads to a DAG, again; we can discard
further nodes without children in the new graph. We repeat this process for all nodes that
have no children in both G and G′ and have the same parents in both graphs. If we end
up with no nodes left, the two graphs are identical which violates the assumption of the
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proposition. Otherwise, we end up with a smaller set of variables that we again call X, two
smaller graphs that we again call G and G′ and a node L that has no children in G and either
PAGL 6= PAG

′

L or CHG
′

L 6= ∅. We will show that this leads to a contradiction. Importantly,
because of the Markov property of the distribution with respect to G, all other nodes are
independent of L given PAGL:

L ⊥⊥ X \ (PAGL ∪ {L}) | PAGL . (21)

To make the arguments easier to understand, we introduce the following notation (see
also Fig. 7): we partition G-parents of L into Y,Z and W. Here, Z are also G′-parents
of L, Y are G′-children of L and W are not adjacent to L in G′. We denote with D the
G′-parents of L that are not adjacent to L in G and by E the G′-children of L that are not
adjacent to L in G. Thus: PAGL = Y ∪ Z ∪W, CHGL = ∅, PAG

′

L = Z ∪D, CHG
′

L = Y ∪E.

L

W Y Z

part of G

L

D Z

EY

part of G′

Figure 7: Nodes adjacent to L in G and G′

Consider T := W ∪Y. We distinguish two cases:

Case (i): T = ∅.
Then there must be a node D ∈ D or a node E ∈ E, otherwise L would have been discarded.

1. If there is a D ∈ D then (21) implies L ⊥⊥ D |S for S := Z∪D\{D}, which contradicts
Lemma 37 (applied to G′).

2. If D = ∅ and there is E ∈ E then E ⊥⊥ L |S holds for S := Z∪PAG
′

E \ {L} (see graph

G), which also contradicts Lemma 37 (note that Z ⊆ NDG
′

E to avoid cycles).

Case (ii): T 6= ∅.
Then T contains a “G′-youngest” node with the property that there is no directed G′-path
from this node to any other node in T. This node may not be unique.

1. Suppose that some W ∈W is such a youngest node. Consider the DAG G̃′ that equals
G′ with additional edges Y →W and W ′ →W for all Y ∈ Y and W ′ ∈W \ {W}. In
G̃′, L and W are not adjacent. Thus we find a set S̃ such that S̃ d-separates L and

W in G̃′; indeed, one can take S̃ = PAG̃
′

L if W /∈ DEG̃
′

L and S̃ := PAG̃
′

W if L /∈ DEG̃
′

W .

Then also S = S̃ ∪ {Y,Z,W \ {W}} d-separates L and W in G̃′.
Indeed, all Y ∈ Y are already in S̃ in order to block L→ Y →W . Suppose there is
a G̃′-path that is blocked by S̃ and unblocked if we add Z and W ′ nodes to S̃. How
can we unblock a path by including more nodes? The path (L · · ·V1 · · ·U1 · · ·W in
Fig. 8) must contain a collider V1 that is an ancestor of a Z with V1, . . . , Vm, Z /∈ S̃
and corresponding nodes Ui for a W ′ node. Choose V1 and U1 on the given path

37



J. Peters, J.M. Mooij, D. Janzing and B. Schölkopf

so close to each other such that there is no such collider in between. If there is no
V1, choose U1 closest to L, if there is no U1, choose V1 closest to W . Now the path
L ← Z · · ·V1 · · ·U1 · · ·W ′ → W is unblocked given S̃, which is a contradiction to
the assumption that S̃ d-separates L and W .

But then S d-separates L and W in G′, too (there are less paths), and we have
L ⊥⊥W | S, which contradicts Lemma 37 (applied to G).

L WV1

V2

Vm

Z

U1

U2

Ur

W ′

L L L L

L

L

L

L

L L

Figure 8: Assume the path L · · ·V1 · · ·U1 · · ·W is blocked by S̃, but unblocked if we include
Z and W ′. Then the dashed path is unblocked given S̃.

2. Therefore, the G′-youngest node in T must be some Y ∈ Y.
Define Q := PAGL \ {Y }, R := PAG

′

Y \ {L} and S := Q∪R. Clearly, S ⊆ NDGL \ {Y }
since L does not have any descendants in G. Further, S ⊆ NDG

′

Y \{L} because Y is the
G′-youngest under all W and Y \ {Y } by construction and any directed path from Y
to Z ∈ Z would introduce a cycle in G′. Ergo, {Y }∪S ⊆ NDGL and {L}∪S ⊆ NDG

′

Y .

The variables L and Y and the sets Q,R and S satisfy the conditions required in statement
(i) of Proposition 28.

Statement (ii) follows as a special case since for Markov equivalent graphs, W,D and E
are all empty. Consider the G′-youngest node Y . In order to avoid v-structures appearing
in G and not in G′ all nodes Z ∈ Z are directly connected to the G′-youngest Y . And to
avoid cycles, those nodes Z ∈ Z are G′-parents of Y . The node Y cannot have other parents
except for the ones in Y and Z since this would introduce v-structures in G′ (with collider
Y ) that do not appear in G.

A.13 Proof of Corollary 30

Proof We only prove (i) since (ii) is a special case. Causal minimality is satisfied because
of Proposition 16. We can then apply exactly the same proof as in Theorem 27. This yields
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the two equations

L∗ = fL(q, Y ∗) +NL, NL ⊥⊥ Y ∗ and

Y ∗ = gY (r, L∗) +NY , NY ⊥⊥ L∗

SinceNL is Gaussian, Proposition 22 would imply that fL(q, ·) is linear. This contradicts the
assumption of nonlinearity. It therefore remains to show that Proposition 22 is applicable.
Let us define f := fL(q, ·) and g := gY (r, ·) and suppose that f ′(ny) = 0. As in the proof
of Theorem 1 in (Zhang and Hyvärinen, 2009, below equation (7)), we can conclude that
for all `∗

− 1

σ2Y
g′(`∗) +

`∗

σ2L
f ′′(ny)g

′(`∗) = 0

which implies g′(`∗) = 0 for all `∗. This contradicts the nonlinearity assumption of g.

A.14 Proof of Lemma 31

Proof For (a) we can change the corresponding structural equation Xj = fj(PAG0j ) +Nj

into Xj = f̃j(PAG0j , Xi) +Nj where f̃j equals fj in the first #PAG0j components and f̃j is
constant in the last component.

We now prove statement (b). By Proposition 16, G0 contains an edge i → j such that
(with XA := PAj \ {Xi}) the function fj in Xj = fj(XA, Xi) + Nj is constant in its ar-
gument of Xi, that is fj(xA, xi) = cxA for all xi. We can then construct a new additive
noise model by defining Xj = f̃j(XA) + Nj where f̃j(xA) = cxA for all xA and keeping all
other equations as well as the noise variables the same. By the Markov factorization we
obtain the same joint distribution. Iterating this procedure proves the lemma: hereby, the
intersection property (1.1.5 in Pearl, 2009) ensures that if two edges i1 → j and i2 → j can
be removed one after each other, the order does not matter (which is not necessarily true
for densities that are not strictly positive). The last argument proves uniqueness of Gmin0 .

A.15 Proof of Corollary 32

Proof For each permutation π we only consider ANMs for which the ANM constructed
according to the minimal graph Gfull, min

π (Lemma 31,b) are restricted ANMs. According
to Lemma 31 (a), we can find such ANMs for all graphs Gfullπ with π ∈ Π0. If π /∈ Π0,

Theorem 27 implies that Gfull, min
π = Gmin

0 which contradicts π /∈ Π0.

A.16 Proof of Theorem 33

Proof For the correct graph, we know that Ni is independent of all ancestor variables
Xj since the latter can be expressed in terms of noise variables without Ni. The correct
sink nodes therefore lead to independence in step 7 of Algorithm 1. We will now show
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that “wrong sinks”, that is nodes who are not sinks in the correct graph G0 do not lead
to independent residuals in the first iteration of Phase 1. It follows by induction that this
is true for any later iteration, too. Suppose that node Y is not a sink in G0 but leads to
independent residuals (step 7). Since Y is not a sink in G0, Y has children in G0. Call Z the
G0-youngest child, that is there is no directed path from Z to any other child of Y . Disregard
all descendants of Z and denote the remaining set of variables S := X \ {Y,Z,DEG0Z }. It
therefore follows that

DEG0Z ⊥⊥ Y |S ∪ {Z} . (22)

Because Y leads to independent residuals we can think of a graph G in which all variables
are parents of Y . From Equation (22) it follows that Y = gY (S, Z)+ÑY with ÑY ⊥⊥ (S, Z).
We then proceed similarly as in the proof of Theorem 27 and find from G0 that

Z | S=s = fZ(s, Y | S=s) +NZ .

From G we conclude that

Y | S=s = gY (s, Z | S=s) + ÑY .

Again, this contradicts Theorem 19. The correctness of Phase 2 follows from causal mini-
mality and Lemma 37.
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