
ar
X

iv
:1

30
9.

71
17

v1
  [

m
at

h.
C

O
] 

 2
7 

Se
p 

20
13

Using functional equations to enumerate 1324-avoiding

permutations

Fredrik Johansson∗ and Brian Nakamura†

Abstract

We consider the problem of enumerating permutations with exactly r occurrences of the
pattern 1324 and derive functional equations for this general case as well as for the pattern
avoidance (r = 0) case. The functional equations lead to a new algorithm for enumerating
length n permutations that avoid 1324. This approach is used to enumerate the 1324-avoiders
up to n = 31. We also extend those functional equations to account for the number of
inversions and derive analogous algorithms.

1 Introduction

Let a1 . . . ak be a sequence of k distinct positive integers. We define the reduction of this sequence,
denoted by red(a1 . . . ak), to be the length k permutation τ = τ1 . . . τk that is order-isomorphic
to a1 . . . ak (i.e., ai < aj if and only if τi < τj for every i and j). Given a (permutation) pattern
τ ∈ Sk, we say that a permutation π = π1 . . . πn contains the pattern τ if there exists 1 ≤ ii < i2 <
. . . < ik ≤ n such that red(πi1πi2 . . . πik ) = τ , in which case we call πi1πi2 . . . πik an occurrence of
τ . We also define Nτ (π) to be the number of occurrences of pattern τ in the permutation π. For
example, if the pattern τ = 123, the permutation 53412 avoids the pattern τ (so N123(53412) = 0),
whereas the permutation 52134 contains two occurrences of τ (so N123(52134) = 2).

For a pattern τ and non-negative integer r ≥ 0, we define the set

Sn(τ, r) := {π ∈ Sn : π has exactly r occurrences of the pattern τ}

and also define sn(τ, r) := |Sn(τ, r)|. For the r = 0 case, we say that the two patterns σ and τ are
Wilf-equivalent if sn(σ, 0) = sn(τ, 0) for all n. Additionally, two patterns that are Wilf-equivalent
are said to belong to the same Wilf-equivalence class. Note that the r = 0 case corresponds with
“classical” pattern avoidance, which has been well-studied. Work on the more general problem
(r ≥ 0) has usually been restricted to patterns of length 3 and small r. Some recent work include
[6, 5, 7, 8, 11, 14, 19, 20].

A little more is known for the pattern avoidance problem, but the problem quickly gets difficult.
For each τ ∈ S3, it is well known that sn(τ, 0) = 1

n+1

(
2n
n

)
(the Catalan numbers) [13]. For the

length 4 patterns, there are three cases (Wilf-equivalence classes) to consider: 1234, 1342, and
1324. The enumeration for the 1234-avoiding permutations was solved by Gessel in [12]. Later,
Bóna solved the case for the 1342-avoiding permutations in [4]. The pattern 1324, however, has
been notoriously difficult to enumerate.

There is currently no non-recursive formula known for computing sn(1324, 0), and precise
asymptotics are not known either. Marinov and Radoičić developed an approach in [16] using

∗RISC, Johannes Kepler University, 4040 Linz, Austria. [fredrik.johansson@risc.jku.at]
†CCICADA, Rutgers University-New Brunswick, Piscataway, NJ, USA. [bnaka@dimacs.rutgers.edu]

1

http://arxiv.org/abs/1309.7117v1


generating trees and computed sn(1324, 0) for n ≤ 20. Another approach (using insertion encod-
ing) was used by Albert et al. in [1] to compute sn(1324, 0) for n ≤ 25 (five more terms). Given the
difficulty of this pattern, Zeilberger has even conjectured that “Not even God knows s1000(1324, 0)”
[10].

Given the difficulty of exact enumeration, work has also been done on studying how the sequence
sn(τ, 0) grows for various patterns. We define the Stanley-Wilf limit of a pattern τ to be:

L(τ) := lim
n→∞

(sn(τ, 0))
1/n. (1)

Thanks to results by Arratia [2] and Marcus and Tardos [15], we know that for each pattern τ , the
limit L(τ) exists and is finite. For patterns of length three, the Stanley-Wilf limit is known to be 4.
Additionally, Regev [21] showed that L(1234) = 9, while Bóna’s result in [4] gives us L(1342) = 8.
The exact limit for the pattern 1324, however, is still unknown. The best known lower bound is by
Albert et al. [1], who showed that L(1324) ≥ 9.47. The best known upper bound has seen some
improvements in recent years. The recent “best” upper bound was improved by Claesson, Jeĺınek,
and Steingŕımsson in [9] to L(1324) ≤ 16. That approach was then refined by Bóna in [3] to show
that L(1324) < (7 + 4

√
3) ≈ 13.93.

Additionally, Claesson, Jeĺınek, and Steingŕımsson conjectured that the number of length n
permutations avoiding 1324 with exactly k inversions was non-decreasing in n (for each fixed k).

They show that if this conjecture holds, then L(1324) ≤ eπ
√

2/3 ≈ 13.002. Neither the current
lower bound nor this potential new upper bound appear to be “close” to the exact value of L(1324).
For example, Steingŕımsson’s survey paper [23] considers empirical data and suggests that it may
be close to 11. Some data we consider in this paper suggests a similar story.

The paper is organized in the following manner. In Section 2, we derive functional equations
for computing sn(1324, r). Furthermore, the approach is specialized to the avoidance case (r = 0)
to derive an algorithm for enumerating the 1324-avoiding permutations. In Section 3, we describe
technical details on the algorithm and use it to compute sn(1324, 0) up to n = 31, giving us 6
new terms. We use this new data to make some empirical observations. In Section 4, we extend
the functional equations to keep track of the number of inversions. We conclude with a few final
remarks in Section 5.

2 Functional equations for the pattern 1324

We begin by extending the functional equations approach in [17] to the pattern 1324. We will
first derive functional equations that can be used to compute sn(1324, r). The approach will be
presented in full detail so that this article is self-contained. We then specialize this approach to
the r = 0 case and develop a new algorithm for enumerating the 1324-avoiding permutations.

2.1 A general approach to s
n
(1324, r)

Given a non-negative integer n, we define the polynomial (in the variable t)

fn(t) :=
∑

π∈Sn

tN1324(π). (2)

Observe that the coefficient of tr in fn(t) is exactly equal to sn(1324, r).
In addition to the variable t, we introduce n(n+1)/2 catalytic variables xi,j with 1 ≤ i ≤ j ≤ n

and n(n + 1)/2 catalytic variables yi,j with 1 ≤ j ≤ i ≤ n. Note that the subscripts of the two

2



sets of catalytic variables range over different quantities. We define the weight of a permutation
π = π1 . . . πn to be

weight(π) :=

tN1324(π)
∏

1≤i≤j≤n

x
#{(a,b) : πa<πb, πa=i, πb>j}
i,j ·

∏

1≤j≤i≤n

y
#{(a,b,c) : πb<πa<πc, πa=i, πb≥j}
i,j

where it is always assumed that 1 ≤ a < b < c ≤ n. For example,

weight(213) = x1,1x1,2x2,1x2,2 · y2,1
weight(41325) = t · x3

1,1x
2
1,2x1,3x1,4x2,2x2,3x2,4x3,3x3,4x4,4 · y3,1y3,2y34,1y24,2y4,3.

In essence, the weight stores information about 1324 patterns, 213 patterns (which may become
the “324” of a 1324 occurrence), and 12 patterns (which may become the “13” of a 213 occurrence)
through the exponents of the variable t, the variables yi,j , and the variables xi,j , respectively.

We will define a multi-variate polynomial Pn on all the previously defined variables. For nota-
tional convenience, we first write the xi,j variables and the yi,j variables as matrices of variables:

Xn :=




x1,1 · · · x1,n

. . .
... xi,i

...
. . .

xn,1 · · · xn,n




, Yn :=




y1,1 · · · y1,n
. . .

... yi,i
...

. . .

yn,1 · · · yn,n




(3)

where we will disregard the entries below the diagonal in Xn and the entries above the diagonal
in Yn.

For each n, we now define the multi-variate polynomial:

Pn(t;Xn, Yn) :=
∑

π∈Sn

weight(π)

Observe that Pn(t;1n,1n) = fn(t) is our desired polynomial, where 1n is the n× n matrix of all
1’s. For a fixed r ≥ 0, our goal is to quickly compute the coefficient of tr in Pn(t;1n,1n), which is
exactly sn(1324, r). We will do this by deriving a functional equation for Pn. This follows readily
from the following result:

Lemma 1. Let π = π1 . . . πn and suppose that π1 = i. If π′ := red(π2 . . . πn), then

weight(π) = xn−i
i,i xn−i−1

i,i+1 . . . x1
i,n−1 · weight(π′)|A′ ,

where A′ is the set of substitutions given by

A′ :=





xb,c → xb,c+1 b < i, c ≥ i

xb,c → xb+1,c+1 b ≥ i, c ≥ i

xb,c → yi,1yi,2 . . . yi,b · xb,c · xb,c+1 b < i, c = i− 1

yb,c → yb+1,c b ≥ i, c < i

yb,c → yb+1,c+1 b ≥ i, c > i

yb,c → tyb+1,c · yb+1,c+1 b ≥ i, c = i .

3



Proof. We assume i to be a fixed value. Observe thatN1324(π) is equal to the number of occurrences
of 1324 in π2 . . . πn plus the number of occurrences of 213 in π2 . . . πn, where the term corresponding
to the “1” is greater than i.

If we re-insert i at the beginning of π′, we would shift all the terms i, i+ 1, . . . , n− 1 up by 1.
This gives us the substitutions:

xb,c → xb,c+1 b < i, c ≥ i

xb,c → xb+1,c+1 b ≥ i, c ≥ i

yb,c → yb+1,c b ≥ i, c < i

yb,c → yb+1,c+1 b ≥ i, c > i.

We make a few more observations. First, in weight(π), the exponents of xk,i−1 and xk,i are
equal and the exponents of yk,i and yk,i+1 are equal for each k (since π1 = i). This gives the
substitutions xb,i−1 → xb,i−1 · xb,i if b < i and yb,i → yb+1,i · yb+1,i+1 if b ≥ i.

Second, the number of 1324 patterns that include the first term π1 = i is the sum of the
exponents of yj,i+1 for i + 1 ≤ j ≤ n. The substitution yb,i → yb+1,i · yb+1,i+1 changes to
yb,i → tyb+1,i · yb+1,i+1 (for b ≥ i).

Third, the number of 213 patterns that include the first term π1 = i (i.e., the “2” term is equal
to i) and whose “1” term is at least k is equal to the sum of the exponent of xj,i for k ≤ j ≤ i− 1.
The substitution xb,i−1 → xb,i−1 · xb,i changes to xb,i−1 → yi,1yi,2 . . . yi,b · xb,i−1 · xb,i (for b < i).

This gives us our substitution set A′. Finally, the new “i” would create new 12 patterns and
would require an extra factor of xn−i

i,i xn−i−1
i,i+1 . . . x1

i,n−1 for the weight.

Now, we define the operator R1 on an arbitrary n× n square matrix Yn and i < n to be:

R1(Yn, i) :=




y1,1 · · · y1,i−1 ty1,iy1,i+1 y1,i+2 · · · y1,n
...

. . .
...

...
yi−1,1 yi−1,i−1 · · · yi−1,n

yi+1,1 · · · yi+1,i−1 tyi+1,iyi+1,i+1 yi+1,i+2 · · · yi+1,n

...
...

...
. . .

...
...

...
...

. . .
...

yn,1 · · · yn,i−1 tyn,iyn,i+1 yn,i+2 · · · yn,n




. (4)

If i = n, then R1(Yn, i) is defined to be the (n− 1)× (n− 1) matrix obtained by deleting the n-th
row and n-th column from Yn. In essence, the R1 operator deletes the i-th row, merges the i-th
and (i + 1)-th columns (via term-by-term multiplication), and multiplies this new column by a
factor of t. It is important to note that while this operator is defined on any n× n matrix, it will
only be applied to our “matrix of variables” Yn to get a smaller (n− 1)× (n− 1) matrix.

In addition, we define another operator R2 on two n × n square matrices Xn and Yn and
1 < i ≤ n to be:

R2(Xn, Yn, i) :=




x1,1 · · · x1,i−2 w1 x1,i+1 · · · x1,n

...
. . .

...
...

xi−2,1 · · · xi−2,i−2 wi−2 xi−2,i+1 · · · xi−2,n

xi−1,1 · · · xi−1,i−2 wi−1 xi−1,i+1 · · · xi−1,n

xi+1,1 · · · xi+1,i−2 wi+1 xi+1,i+1 · · · xi+1,n

...
...

...
. . .

...
xn,1 · · · xn,i−2 wn xn,i+1 · · · xn,n




(5)

4



where

wk :=

{
yi,1yi,2 . . . yi,k · xk,i−1 · xk,i k ≤ i− 1

0 k > i− 1 .

If i = 1, then R2(Xn, Yn, i) is defined to be the (n− 1)× (n− 1) matrix obtained by deleting the
1-st row and 1-st column from Xn. In essence, the R2 operator modifies Xn by deleting the i-th
row, merging the (i − 1)-th column with the i-th column (via term-by-term multiplication), and
scaling that new column by products of terms from Yn.

Lemma 1 now directly leads to the following:

Theorem 1. For the pattern τ = 1324,

Pn(t;Xn, Yn) =

n∑

i=1

xn−i
i,i xn−i−1

i,i+1 . . . x1
i,n−1 · Pn−1(t; R2(Xn, Yn, i), R1(Yn, i)). (FE1324)

Although all the entries in the matrices are changed for consistency and notational convenience,
we will continue to disregard the entries below the diagonal in subsequent matrices Xk and the
entries above the diagonal in subsequent matrices Yk. We can apply the same computational tricks
shown in [18, 17]. For example, it is not necessary to compute Pn(t;Xn, Yn) completely symbolically
and substitute xi,j = 1 and yi,j = 1 at the end. Instead, we can apply functional equation (FE1324)
directly to Pn(t;1n,1n) and subsequent Pk terms. We may also use the following lemma from [17],
which is obvious from the definition of the operator R1:

Lemma 2. Let A be a square matrix where every row is identical (i.e., the i-th row and the j-th
row are equal for every i, j). Then, R1(A, i) will also be a square matrix with identical rows.

By Lemma 2, repeated applications of the R1 operator to the all ones matrix 1n will still result
in a matrix with identical rows. It is therefore sufficient to keep track of only a single row. It is
also helpful to note that repeated applications of R1 to the matrix 1n will result in a matrix whose
entries are powers of t.

While the lemma does not apply to the R2 operator, this still allows us to simplify the polyno-
mial Pn and its functional equation by reducing the number of catalytic variables from n(n + 1)
variables to n(n+ 1)/2 + n variables. Let Qn(t; C; d1, . . . , dn) denote the polynomial Pn(t;C,D)
where every entry of the n×n matrices C and D are powers of t and every row in D is [d1, . . . , dn].
We get the analogous functional equation:

Qn(t; C; d1, . . . , dn) =
n∑

i=1

cn−i
i,i cn−i−1

i,i+1 . . . c1i,n−1 ·Qn−1(t; R2(C,D, i); d1, . . . , di−1, tdidi+1, di+2, . . . , dn). (FE1324c)

Repeatedly applying this recurrence to Qn(t;1n; 1 [n times]) allows us to compute our desired
polynomial since Qn(t;1n; 1 [n times]) = Pn(t;1n,1n) = fn(t). Extracting the coefficient of tr

from this polynomial gives us sn(1324, r).
Additionally, for a fixed r, the sequence sn(1324, r) can be computed more quickly by discarding

higher powers of t (just as in [18, 17]). Although this approach is too memory intensive for larger
r, for small r, this method is still much faster than naive methods that construct the set Sn(τ, r).
The approach has been implemented in the procedure F1324rN(r,N) in the accompanying Maple
package F1324.

For example, the Maple call F1324rN(0,19); for the first 19 terms of sn(1324, 0) produces the
sequence:

1, 2, 6, 23, 103, 513, 2762, 15793, 94776, 591950, 3824112, 25431452, 173453058,

1209639642, 8604450011, 62300851632, 458374397312, 3421888118907, 25887131596018

5



and the Maple call F1324rN(1,17); for the first 17 terms of sn(1324, 1) produces the sequence:

0, 0, 0, 1, 10, 75, 522, 3579, 24670, 172198, 1219974, 8776255,

64082132, 474605417, 3562460562, 27079243352, 208281537572.

2.2 Specializing to r = 0

Unfortunately, the previous algorithm developed for the pattern 1324 is very memory intensive,
even for r = 0. In this subsection, we outline how to extract a simpler recurrence specifically for
the pattern avoidance case.

We will specialize for the r = 0 case beginning at functional equation (FE1324c). Recall that
Qn(t; C; d1, . . . , dn) is the polynomial given by Pn(t;C,D) where every entry of the n×n matrices
C and D are powers of t and every row in D is [d1, . . . , dn]. We had the functional equation

Qn(t; C; d1, . . . , dn) =
n∑

i=1

cn−i
i,i cn−i−1

i,i+1 . . . c1i,n−1 ·Qn−1(t; R2(C,D, i); d1, . . . , di−1, tdidi+1, di+2, . . . , dn)

and wanted to compute Qn(t; 1n; 1 [n times]) = fn(t) and extract the coefficient of tr, which is
exactly sn(1324, r).

1

Since all the variables ck,l (from matrix C) and dk represent powers of t, it is sufficient to
keep track of powers of t through most of the algorithm. This allows us to consider the analogous
function Hn(t; U ; v1, . . . , vn), where U is an n× n matrix of non-negative integers and each vi is
a non-negative integer. More precisely, Hn(t; U ; v1, . . . , vn) is the polynomial Pn(t; C,D), where
C and D are n× n matrices, ci,j = tui,j for every 1 ≤ i, j ≤ n, and every row of D is [tv1 , . . . , tvn ].

In addition, we define the analogous operator R′
2 on an n×n square matrix Un (of non-negative

integers), a length n vector of non-negative integers [v1, . . . , vn], and 1 < i ≤ n:

R′
2(Un, [v1, . . . , vn] , i) :=




u1,1 · · · u1,i−2 w′
1 u1,i+1 · · · u1,n

...
. . .

...
...

ui−2,1 · · · ui−2,i−2 w′
i−2 ui−2,i+1 · · · ui−2,n

ui−1,1 · · · ui−1,i−2 w′
i−1 ui−1,i+1 · · · ui−1,n

ui+1,1 · · · ui+1,i−2 w′
i+1 ui+1,i+1 · · · ui+1,n

...
...

...
. . .

...
un,1 · · · un,i−2 w′

n un,i+1 · · · un,n




(6)

where

w′
k :=

{
(v1 + v2 + . . .+ vk) + uk,i−1 + uk,i k ≤ i− 1

0 k > i− 1 .
(7)

If i = 1, then R′
2(Un, [v1, . . . , vn] , i) is defined to be the (n−1)×(n−1) matrix obtained by deleting

the 1-st row and 1-st column from Un. In essence, the R′
2 operator modifies Un by deleting the

i-th row, merging the (i − 1)-th column with the i-th column (via term-by-term addition), and
adding partial sums of [v1, . . . , vn] into the new column.

1Recall that 1n is the n× n matrix where every entry is 1.

6



We now have the functional equation (analogous to Eq. (FE1324c)):

Hn(t; U ; v1, . . . , vn) =
n∑

i=1

tei ·Hn−1(t; R
′
2(U, [v1, . . . , vn] , i); v1, . . . , vi−1, (vi + vi+1 + 1), vi+2, . . . , vn) (FE1324e)

where ei = (n− i)ui,i + (n− i− 1)ui,i+1 + . . .+ (1)ui,n−1. Observe that Hn(t; 0n; 0 [n times]) is
now our desired polynomial fn(t).

2

Since we are specifically considering the r = 0 case, we can make additional observations and
simplifications. First, we are only interested in the constant term of fn(t). As in [18, 17], we
only need to keep track of polynomials of the form a0 + a1t in intermediate computations, where
a1 represents permutations with at least one occurrence of the pattern we are tracking. Because
of this, we may consider all matrices/vectors used in Hn to be 0-1 matrices/vectors. After every
addition (for example, in the w′

k term in R′
2), we can take the minimum of the resulting sum and

1.
Next, observe that v1, . . . , vn only appear in the R′

2 operator, and in particular, in the partial
sums for w′

k in Eq. 7. Suppose that some of the v1, . . . , vn are equal to 1, and let j be the smallest
number such that vj = 1. Then,

Hn(t; U ; v1, . . . , vn)|t=0 = Hn(t; U ; 0 [j − 1 times] , 1 [n− j + 1 times])|t=0.

In particular, the variables v1, . . . , vn are unnecessary, and it is sufficient to keep track of how
many 0’s there are. We can then consider this slightly simpler function

H̃n(t; U ; k) := Hn(t; U ; 0 [k times] , 1 [n− k times])

where 0 ≤ k ≤ n.
Finally, observe that whenever ei > 0 in (FE1324e), we can discard the entire term since we

are only interested in the constant term of the final polynomial. Observe that ei > 0 if and only
if ui,j > 0 for some j ≥ i. This observation (combined with how the R′

2 operator “modifies” the
matrix Un) implies that we only need to keep track of the left-most 1 within each row of Un. If
there are multiple 1’s on a row, the left-most 1 is sufficient to force ei > 0 as long as it is not in
the n-th column. Therefore, we can consider a function of the form

H0
n(t; b1, . . . , bn; k) := H̃n(t; Bn; k) = Hn(t; Bn; 0 [k times] , 1 [n− k times])

where 0 ≤ k ≤ n and 1 ≤ bj ≤ n+ 1 for each j and Bn is the n× n matrix where the j-th row is
[ 0 [n times] ] if bj = n+ 1 and otherwise is [ 0 [bj − 1 times] , 1 [n− bj + 1 times] ].

This approach is implemented in the Maple package F1324 in the procedure AV1324(n). An
improved implementation in C++ is provided in the program av1324.cpp and is discussed in
greater detail in the next section.

3 Computational details and results

3.1 Algorithmic details for enumerating 1324-avoiders

For notational convenience, let an ≡ sn(1324, 0) denote the number of 1324-avoiding permutations
of length n. The values an up to n = 25 were previously computed in [1] and subsequently listed
in A061552 of OEIS ([22]). To extend this list, we have written a C++ implementation of the

2We denote the n× n matrix consisting of all zeros by 0n.

7

http://oeis.org/A061552


algorithm described in the previous section. The implementation is in the program av1324.cpp,
which is available from the authors’ websites.

The main part of the program is a recursive function G(n, k, b) ≡ H0
n(t; b1, . . . , bn; k) which

takes as input an integer n ≤ 1, an integer 0 ≤ k ≤ n, and a vector of integers b = [b̃0, . . . b̃n−1]
satisfying 0 ≤ b̃j ≤ n (these correspond to the bj in H0

n as b̃j = bj+1 − 1, being zero-aligned
since this is more natural in C++). We represent b as an array of bytes, zero-padded to a fixed
maximum length of 32 (sufficient to compute an up to n = 32). The output of G is an integer,
which we represent as a 128-bit unsigned integer (sufficient to compute an up to at least n = 34,
since a34 < 34! < 2128 and all recursive calls to G must produce values that are no larger than the
output).

We use full memorization to reduce the number of recursive calls that have to be made. The
std::map type in the C++ standard library is used to associate vectors b with output values
G(n, k, b), using one such map for each pair n, k. The std::map type implements a self-balancing
binary tree with O(logN) insertion and lookup time where N is the size of the cache. The keys b
are compared lexicographically by casting to 64-bit integers and processing eight bytes at a time.

We compiled the program with GCC 4.3.4 and ran it on the MACH computer at the Johannes
Kepler University of Linz, using a 2.66 GHz Intel Xeon E7-8837 CPU with 1024 GiB of memory
allocated to the process. The memory limit allowed computing an up to n = 31. The 6 new terms
are:

a26 = 49339914891701589053

a27 = 402890652358573525928

a28 = 3313004165660965754922

a29 = 27424185239545986820514

a30 = 228437994561962363104048

a31 = 1914189093351633702834757

We computed all an consecutively in one run to benefit from already cached function values (com-
puting a single an in isolation would not give any significant memory savings). With a1, . . . , a30
already computed, the evaluation of a31 took 33 hours and used 920 GiB of memory, and the
computation as a whole took 50 hours.

Detailed results from the computation are presented in Table 4 (in the Appendix). Besides the
running time and total memory usage, we record the number of cache hits (calls to H replaced by
cache lookups) and the number of cache misses (calls to G that require evaluation). Up to n = 15,
we also show the number of calls to G used by the algorithm with caching disabled, measured in
a separate run of the program.

All quantities appear to grow slightly faster than exponentially. Over the measured range,
the number of function calls (as well as the size of the cache in memory) is roughly proportional
to 2.2n. If the memory overhead of the implementation were reduced by half (or if we had a
computer with twice as much memory), we could thus compute roughly one more entry. With
caching disabled, the number of recursive function calls grows much faster, making this version
impractical (for n ≤ 15, the number of calls is roughly 2.4an).

At present, we do not know if the algorithm can be modified to significantly reduce the memory
consumption required by full memorization, without significantly increasing the running time. Such
a modification might allow computing several more entries in the sequence {an}, particularly if
the job could be parallelized.

8



3.2 Observations on the asymptotics

Since the enumeration problem is solved for the patterns 1234 and 1342, it is not hard to derive
asymptotic information on the sequences enumerating their respective pattern avoiders. For the
pattern 1234, we have

sn(1234, 0) ∼ 9nn−4

and for the pattern 1342, we have

sn(1342, 0) ∼ 8nn−5/2.

The convergence occurs fairly quickly, even when observing the first 31 terms. On the other hand,
it is not even known if the asymptotics for sn(1324, 0) look like µnnθ (for constants µ and θ).
Shalosh B. Ekhad was kind enough to compute some numerical data for the authors.

Using the first 29 terms, the first 30 terms, and the first 31 terms, the approximate value for θ
and µ for the patterns 1234 and 1342 are:

n θ µ
29 -3.990065278 8.978066441
30 -3.990767318 8.979528508
31 -3.991374852 8.980845382

Table 1: Approximate values for θ and
µ using the first n = 29, 30, 31 terms of
sn(1234, 0).

n θ µ
29 -2.507234370 7.987629199
30 -2.506672206 7.988446482
31 -2.506140202 7.989181549

Table 2: Approximate values for θ and
µ using the first n = 29, 30, 31 terms of
sn(1342, 0).

However, when the same guessing is done for the pattern 1324, the convergence is much slower.
The values are:

n θ µ
29 -8.365614110 10.40595402
30 -8.506078382 10.42830233
31 -8.643316748 10.44936383

Table 3: “Approximate” values for θ and µ using the first n = 29, 30, 31 terms of sn(1324, 0).

It should be re-emphasized that it is not known whether this sequence fits the asymptotic form
of µnnθ. The empirical asymptotics suggests that either the convergence is much slower than
the other length 4 patterns or that the sequence does not have that asymptotic form to begin
with (unlike the other patterns). In addition, the µ values would suggest that the Stanley-Wilf
limit L(1324) is at least 10.45. More detailed numerical data on the asymptotics (from Shalosh
B. Ekhad) can be found on the authors’ websites.

4 Extending to inversions

In this section, we show how the previous functional equations can be adapted to refine the values by
the number of inversions. The number of inversions in a permutation is one of the most commonly
studied permutation statistic and in essence, quantifies how “unsorted” a permutation is. Given a
permutation π = π1 . . . πn, the inversion number of π, denoted by inv(π), is the number of pairs

9



(i, j) such that 1 ≤ i < j ≤ n and πi > πj . An equivalent definition is that inv(π) = N21(π), the
number of 21 patterns in π.

We again consider the pattern 1324. For each n, we define the bivariate polynomial

gn(t, q) :=
∑

π∈Sn

qinv(π)tN1324(π).

Observe that gn(t, 1) is exactly fn(t) from Section 2.
For the pattern τ = 1324, the polynomial Pn can now be “generalized” as

Pn(t, q; Xn, Yn) :=
∑

π∈Sn

qinv(π)weight(π).

Note that Pn(t, 1; Xn, Yn) is exactly Pn(t; Xn, Yn) from Section 2.
We now make an important observation. Given a permutation π = π1 . . . πn, suppose that

π1 = i. Then, inv(π) is equal to the number of inversions in π2 . . . πn plus the number of terms in
π2 . . . πn that are less than i (which is exactly i−1). For any previously define functional equation,
it is enough to insert a factor of qi−1 into the summation.

We can now quickly derive the modified functional equations for the pattern. The functional
equation (FE1324) now becomes:

Corollary 1. For the pattern τ = 1324,

Pn(t, q;Xn, Yn) =
n∑

i=1

qi−1xn−i
i,i xn−i−1

i,i+1 . . . x1
i,n−1 · Pn−1(t, q; R2(Xn, Yn, i), R1(Yn, i)). (qFE1324)

Similarly, the functional equation (FE1324c) for Qn(t; C; d1, . . . , dn) now becomes the analo-
gous:

Corollary 2. For the pattern τ = 1324,

Qn(t, q; C; d1, . . . , dn) =
n∑

i=1

qi−1cn−i
i,i cn−i−1

i,i+1 . . . c1i,n−1 ·Qn−1(t, q; R2(C,D, i); d1, . . . , di−1, tdidi+1, di+2, . . . , dn).

(qFE1324c)

The functional equation (FE1324e) for Hn(t; U ; v1, . . . , vn), which corresponds specifically to the
pattern-avoidance case, also becomes the analogous:

Corollary 3. For the pattern τ = 1324,

Hn(t, q; U ; v1, . . . , vn) =
n∑

i=1

qi−1tei ·Hn−1(t, q; R
′
2(U, [v1, . . . , vn] , i); v1, . . . , vi−1, (vi + vi+1 + 1), vi+2, . . . , vn)

(qFE1324e)

The enumeration algorithm derived from the functional equation (qFE1324e) has been imple-
mented in the procedure qAv1324r(n,r,q) in the Maple package F1324. It is also worth noting
that the same extension can be done for tracking non-inversions by inserting qn−i into the sum-
mations (instead of qi−1). This has also been implemented in the Maple package F1324 in the
procedure pAv1324r(n,r,p).

10



In [9], Claesson, Jeĺınek, and Steingŕımsson consider refining the number of 1324-avoiding per-
mutations by the inversion number to prove a new upper bound on the Stanley-Wilf limit. They
conjectured that for each fixed k, the number of 1324-avoiders with exactly k inversions is non-
decreasing in n. If this conjecture is proven true, their result would improve the upper bound
of the growth rate. Using our algorithm, we are able to empirically confirm this conjecture for
n, k ≤ 23, and the explicit values can be found on the authors’ websites. We suspect that a more
careful analysis of the functional equations and the algorithm may lead to new insights regarding
this conjecture.

5 Conclusion

In this paper, we extended the functional equations approach of [18, 17] to derive functional
equations as well as an enumeration algorithm for computing sn(1324, r). We were able to specialize
this approach to r = 0 to develop a new enumeration algorithm for computing the number of 1324-
avoiding permutations. This new approach was used to compute 6 new terms for the sequence as
well as make some empirical observations on the asymptotics. The functional equations were also
extended to refine sn(1324, r) by the number of inversions.

While some of the key contributions of this paper are algorithms, it is important to note that
all the intermediate steps were rigorous functional equations. In particular, the specialized func-
tional equations for enumerating 1324-avoiders can be viewed as recursively defined functions on
0-1 matrices. We suspect that a more careful analysis of these functions may yield insight into the
sequence enumerating the 1324-avoiders and perhaps the Stanley-Wilf limit L(1324). In addition,
the functional equations for tracking inversions were used to confirm the conjecture by Claesson,
Jeĺınek, and Steingŕımsson for up to n, k ≤ 23. We suspect that a more careful analysis of these
functional equations may also provide insight toward resolving their conjecture, which would then

lower the upper bound on L(1324) to eπ
√

2/3 ≈ 13.002.

Acknowledgments: We would like to thank Doron Zeilberger and Manuel Kauers for their very
helpful comments and suggestions. We would also like to thank Shalosh B. Ekhad for computing
numerical data on the asymptotics for us.

References

[1] M. H. Albert, M. Elder, A. Rechnitzer, P. Westcott, and M. Zabrocki. On the Stanley-
Wilf limit of 4231-avoiding permutations and a conjecture of Arratia. Adv. in Appl. Math.,
36(2):96–105, 2006.

[2] Richard Arratia. On the Stanley-Wilf conjecture for the number of permutations avoiding a
given pattern. Electron. J. Combin., 6:Note, N1, 4 pp. (electronic), 1999.

[3] Miklós Bóna. A new upper bound for 1324-avoiding permutations. arxiv:1207.2379 [math.co],
2012.

[4] Miklós Bóna. Exact enumeration of 1342-avoiding permutations: a close link with labeled
trees and planar maps. J. Combin. Theory Ser. A, 80(2):257–272, 1997.

[5] Miklós Bóna. The number of permutations with exactly r 132-subsequences is P -recursive in
the size! Adv. in Appl. Math., 18(4):510–522, 1997.

11



[6] Miklós Bóna. Permutations with one or two 132-subsequences. Discrete Math., 181(1-3):267–
274, 1998.

[7] Alexander Burstein. A short proof for the number of permutations containing pattern 321
exactly once. Electron. J. Combin., 18(2):Paper 21, 3, 2011.

[8] David Callan. A recursive bijective approach to counting permutations containing 3-letter
patterns. arxiv:math/0211380 [math.co], 2002.

[9] Anders Claesson, Vı́t Jeĺınek, and Einar Steingŕımsson. Upper bounds for the Stanley-Wilf
limit of 1324 and other layered patterns. J. Combin. Theory Ser. A, 119(8):1680–1691, 2012.

[10] Murray Elder and Vince Vatter. Problems and conjectures presented at the third international
conference on permutation patterns. arxiv:math/0505504 [math.co], 2005.

[11] Markus Fulmek. Enumeration of permutations containing a prescribed number of occurrences
of a pattern of length three. Adv. in Appl. Math., 30(4):607–632, 2003.

[12] Ira Gessel. Symmetric functions and P-recursiveness. J. Combin. Theory Ser. A, 53(2):257–
285, 1990.

[13] Donald E. Knuth. The art of computer programming. Vol. 1: Fundamental algorithms.
Addison Wesley, Reading, Massachusetts, 1973.

[14] Toufik Mansour and Alek Vainshtein. Counting occurrences of 132 in a permutation. Adv. in
Appl. Math., 28(2):185–195, 2002.

[15] Adam Marcus and Gábor Tardos. Excluded permutation matrices and the Stanley-Wilf con-
jecture. J. Combin. Theory Ser. A, 107(1):153–160, 2004.

[16] Darko Marinov and Radoš Radoičić. Counting 1324-avoiding permutations. Electron. J.
Combin., 9(2):Research paper 13, 9 pp. (electronic), 2002/03. Permutation patterns (Otago,
2003).

[17] Brian Nakamura. Approaches for enumerating permutations with a prescribed number of
occurrences of patterns. Pure Math. Appl. (PU.M.A.), to appear.

[18] Brian Nakamura and Doron Zeilberger. Using Noonan-Zeilberger functional equations to
enumerate (in polynomial time!) generalized Wilf classes. Adv. in Appl. Math., 50(3):356–
366, 2013.

[19] John Noonan. The number of permutations containing exactly one increasing subsequence of
length three. Discrete Math., 152(1-3):307–313, 1996.

[20] John Noonan and Doron Zeilberger. The enumeration of permutations with a prescribed
number of “forbidden” patterns. Adv. in Appl. Math., 17(4):381–407, 1996.

[21] Amitai Regev. Asymptotic values for degrees associated with strips of Young diagrams. Adv.
in Math., 41(2):115–136, 1981.

[22] Neil Sloane. The On-Line Encyclopedia of Integer Sequences,http://oeis.org/, 2013.

[23] Einar Steingŕımsson. Some open problems on permutation patterns. London Mathematical
Society Lecture Note Series,to appear.

12

http://oeis.org/


Appendix

n an = sn(1324, 0) Cache hits Cache misses Calls, cache disabled

1 1 0 1 1
2 2 0 4 4
3 6 4 10 14
4 23 17 21 54
5 103 49 41 239
6 513 121 79 1187
7 2762 280 153 6417
8 15793 628 300 36936
9 94776 1386 595 223190
10 591950 3032 1194 1402845
11 3824112 6607 2422 9113389
12 25431452 14383 4963 60903142
13 173453058 31328 10260 417167046
14 1209639642 68314 21375 2920322177
15 8604450011 149166 44828 20843563430
16 62300851632 326163 94562
17 458374397312 714178 200491 Time, ms Mem, KiB
18 3421888118907 1565935 427006 3.4 · 102 5.2 · 104

19 25887131596018 3438097 913101 9.1 · 102 9.7 · 104

20 198244731603623 7558183 1959618 2.5 · 103 2.0 · 105

21 1535346218316422 16636000 4219286 6.4 · 103 4.1 · 105

22 12015325816028313 36659838 9111542 1.6 · 104 8.7 · 105

23 94944352095728825 80876277 19729578 4.1 · 104 1.9 · 106

24 757046484552152932 178616038 42827166 1.0 · 105 4.0 · 106

25 6087537591051072864 394883523 93177487 2.6 · 105 8.7 · 106

26 49339914891701589053 873872819 203150306 6.5 · 105 1.9 · 107

27 402890652358573525928 1935710217 443784326 1.6 · 106 4.2 · 107

28 3313004165660965754922 4291690537 971213858 4.3 · 106 9.1 · 107

29 27424185239545986820514 9523492671 2129084186 1.4 · 107 2.0 · 108

30 228437994561962363104048 21150884205 4674743970 4.2 · 107 4.4 · 108

31 1914189093351633702834757 47012202538 10279369333 1.2 · 108 9.6 · 108

Table 4: Results of the computation of the number of 1324-avoiding permutations of length n using
our C++ implementation. The table includes the number of calls to the function G that result
in a cache hit and the number of calls that result in a cache miss. For small n, the number of
evaluations G that would be required without memorization are presented in the rightmost column.
For large n, the elapsed CPU time and memory usage of the memorized version are shown.

13


	1 Introduction
	2 Functional equations for the pattern 1 3 2 4
	2.1 A general approach to sn(1 3 2 4, r)
	2.2 Specializing to r=0

	3 Computational details and results
	3.1 Algorithmic details for enumerating 1324-avoiders
	3.2 Observations on the asymptotics

	4 Extending to inversions
	5 Conclusion

