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Invariants for permutation-Hermite equivalence and critical dimen-
sion groups0

Abstract Motivated by classification, up to order isomorphism,
of dense subgroups of Euclidean space that are free of minimal
rank, we obtain apparently new invariants for an equivalence
relation (intermediate between Hermite and Smith) on integer
matrices. These then participate in the classification of the
dense subgroups.
The same equivalence relation has appeared before, in the

classification of lattice simplices. We discuss this equivalence
relation (called permutation-Hermite), obtain fairly fine invari-
ants for it, and have density results, and some formulas count-
ing the numbers of equivalence classes for fixed determinant.

David Handelman1

Outline

Attempts at classification of particular families of dense subgroups of Rn as partially ordered
(simple dimension) groups lead to two directed sets of invariants (in the form of finite sets of finite
abelian groups, with maps between them) for an equivalence relation on integer matrices. These
turn up occasionally in the study of lattice polytopes and commutative codes, among other places.
The development in our case was classification of the dimension groups first, and then that of
integer matrices; for expository reasons, we present the latter first.

Let B and B′ be rectangular integer m × n matrices. We say B is permutation-Hermite
equivalent (or PHermite-equivalent, or PH-equivalent) to B′ if there exist U ∈ GL(m,Z) and
a permutation matrix P of size n such that UBP = B′. Classification of matrices up to PH-
equivalence is the same as classification of subgroups of (a fixed copy of) Z1×n as partially ordered
subgroups of Zn (with the inherited ordering)—the row space of B, r(B), is the subgroup, and
the order automorphisms of Z1×n are implemented by the permutation matrices (acting on the
right). With this in mind, we can even define an equivalence relation on matrices B ∈ Zm×n and
B′ ∈ Zm′×n, if we allow the additional operation of deleting a row of zeros any time it appears in
the course of row reduction.

For an important subclass of matrices (suggested by the dimension group problem), we con-
struct two families of invariants that are surprisingly effective. For example, the Smith normal form
(SNF) is an invariant, but a relatively crude one; these new invariants easily distinguish matrices
with the same SNF in many cases. They also yield information about the matrices themselves, for

example, whether the matrix is PH-equivalent to a matrix of the form C :=
(

I n−1 a

0 d

)
—that is, an

identity matrix of size n − 1, a column a, and d = |detB|. When this happens, the cokernel is
cyclic, but the converse fails. The latter forms are particularly amenable to complete classification
for PH-equivalence. We also construct numerous examples with the expected unusual properties.

The motivation came from classification of dense subgroups, G, of Rn that are free of rank
n + 1, viewed as partially ordered abelian groups, the ordering obtained by restricting the strict
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ordering on Rn to G; that is, nonzero g ∈ G is in the positive cone, G+ iff each coordinate is a
(strictly) positive real number. This defines (together with the embedding into Rn, which we often
suppress in notation) a critical (dimension) group. Equivalently, we can define a critical group to
be a simple dimension group that is free of rank n + 1, and has exactly n pure traces (any affine
representation, G → AffS(G,u), for some order unit u will yield the desired dense embedding in
Rn ∼= AffS(G,u); different order units yield isomorphisms among the images).

Let ei denote the standard basis elements of Rn = R1×n. A class of critical groups, known as
basic critical groups, consists of those of the form, G = 〈e1, e2, . . . , en;

∑
αiei〉, where αi are real

numbers such that that {1, α1, . . . , αn} is linearly independent over the rationals (this is equivalent
to density of G in Rn). Basic critical groups are a useful source of examples, as in [BeH]. They
admit a characterization among critical groups in terms of their structure as simple dimension
groups, via the pure traces.

For each subset of the pure trace space Ω ⊂ ∂eS(G,u) such that |Ω| = n− 1 (that is, Ω misses
exactly one of the pure traces), define kerΩ = ∩τ∈Ω ker τ . For any critical dimension group, the
rank of kerΩ will either be one or zero. We can thus write the kernel as xΩZ where xΩ is unique
with respect to σ(xΩ) ≥ 0 where σ is the pure trace not in Ω). Now form E(G) :=

∑
Ω xΩZ ⊂ G.

Then G is basic iff G/E(G) ∼= Z; when this occurs, all sets of pure traces are ugly (in the sense of
[BeH]).

However, the converse of the latter statement is not correct, but yields a larger family of critical
groups. We say a critical group is almost basic, if it can be written in the form (that is, up to order
isomorphism) G = 〈f1, f2, . . . , fn; (α1, . . . , αn)〉 ⊂ Rn where fi ∈ Zn, the set {f1, . . . , fn} is real
linearly independent, and {1, α1, . . . , αn} is rationally linearly independent: these are necessary
and sufficient for G to be dense in Rn. Then G is almost basic iff the torsion-free rank of G/E(G)
is one, and this is equivalent to all sets of pure traces being ugly.

Of course, G/E(G) itself is an invariant of order isomorphism. In the case of almost basic
critical groups, we can restrict to the span of the integer rows, and in doing so, not only do we
obtain an invariant for integer matrices, but the invariant boils down to PH-equivalence. Moreover,
for each subset Ω ⊂ ∂eS(G,u) (this time, we allow arbitrary subsets, not just those of cosize one),
we may form the quotient pre-ordered abelian groupG/ kerΩ (in general, the quotient of a partially
ordered abelian group by a subgroup that is not an order ideal—G is simple, so it has no proper
order ideals—can only be pre-ordered, and does not inherit many properties from the original).

When the set Ω is ugly (for example, if G is almost basic), GΩ = G/ kerΩ is itself a critical
group with respect to the real vector space RΩ. Thus we can also look at GΩ/E(GΩ). This gives
rise to an onto map from the torsion part of G/E(G) to that of GΩ/E(GΩ). If we now assume that
G is almost basic, we see that the torsion lives entirely in the integer part of the row space. This
implies that it is a PH-invariant for the integer part (this requires an innocuous extra assumption
on the integer part).

Of course, we give a direct proof (avoiding dimension groups) that the resulting family of
abelian groups and maps between them (the torsion parts of GΩ/E(GΩ)) as Ω varies over the
direct set consisting of the subset of a finite set) is a PH-invariant.

The quotient maps are obtained by removing columns (those not in Ω), and recalculating the
invariant (or the torsion part) without using the irrational row. This turns out to be surprisingly
easy, and also leads to a second family of PH-invariants (also indexed by subsets of {1, 2, . . . , n}),
corresponding to a dual operation.

A list of objects is an unordered tuple (equivalently, a set with multiplicities recorded, some-
times known as a multiset). To distinguish between sets, ordered tuples, and lists, we use the
notation [[a1, a2, a3]] for lists. (There does not appear to be a standard notation for this.)
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Introduction

Let G ⊂ R1×n be a finitely generated subgroup of R1×n (or Rn for short, if there is no ambiguity).
We can associate to G a lot of matrices as follows. Pick a Z-basis, F := {f1, . . . , fm} for G, and
let BF ∈ Rm×n be the matrix whose jth row is fj . Obviously, the row space of BF , r(BF ), is G,
still viewed as a subgroup of Rn. We can apply any element of GL(m,Z) on the left to BF , and
the row space is unchanged. So the inclusions G ⊂ Rn are classified (merely as a subgroup of Rn)
by the orbits of GL(m,Z) (acting from the left) on Rm×n.

Now suppose we let G inherit the usual topology from Rn, and assume that the image of G
is dense. Suppose G′ is another group with the same properties (free of the same rank, a dense
subgroup of Rn, etc), and we want to decide whether G and G′ are isomorphic as topological
subgroups of Rn. Any such isomorphism, by definition, must extend to a continuous, hence vector
space, automorphism of Rn, and these are given by the right action of GL(n,R). Thus the
classification of (dense) G ⊂ Rn up to topological isomorphism is given by orbits of GL(m,Z) ×
GL(n,Z) acting on a subset of Rm×n (corresponding to those matrices whose row space is dense
in Rn) in the obvious manner.

Finally, suppose we also impose the strict ordering on Rn, making it into a simple dimension
group, and by restriction, give a dense subgroup G the structure of a partially ordered abelian
group. By [EHS], it is also a simple dimension group, and every simple dimension group with
no infinitesimals and exactly n pure traces arises in this manner. Now we wish to determine the
order-isomorphism class of such simple dimension groups. Every order-isomorphism G→ G′ (both
embedded in Rn as dense subgroups and with the inherited strict ordering) will extend to an
order-automorphism of Rn [H]. The order-automorphisms of the latter are given exactly by the
weighted permutation matrices all of whose nonzero entries are positive: that is, they factor as ∆P
where ∆ is a positive diagonal matrix and P is a permutation matrix. Let P (n,R)+ denote the
group of such weighted permutation matrices. Here the classification of G (now viewed as simple
dimension groups with ordering inherited from Rn) is given by the orbits of GL(m,Z)×P (n,R)+

on the subset of Rm×n consisting of the matrices whose row space is dense.

We are specifically interested in the partially ordered case, with m = n+1; that is, G is free of
rank n+ 1, and the embedding into Rn which determines the ordering and also the topology (the
ordering determines the topology in any case) has dense image; these are called critical (dimension)
groups.

This is strongly reminiscent of Hermite equivalence of (integer) matrices, and Smith normal
form. If we let G ⊂ Zn (this requires m ≤ n), the classification of the subgroups of Zn is just
the orbit space of Zm×n under the action of GL(m,Z) (acting on the left), and this gives rise to
Hermite equivalence. If instead we want to classify the subgroups of Zn up to isomorphism as
subgroups of fixed Zn, we note that the automorphism group of Zn is GL(n,Z) (acting on the
right), so we are looking at the classification of matrices under the action of GL(m,Z)×GL(n,Z);
this gives rise to Smith equivalence, and the set of elementary divisors is a complete invariant.

The analogue of the third relation arises when we view the fixed Zn as a partially ordered
group, with the coordinatewise ordering, called simplicial. Subgroups inherit the partial ordering
(but are themselves almost never simplicial), and we classify them up to order isomorphism. If
the subgroup has full rank, such an order-isomorphism to another one (necessarily of the same
rank) extends uniquely to an order isomorphism of Zn. These are given precisely by permutation
matrices. We arrive at an equivalence relation that frequently turns up (e.g., [R, R2, ALTPP,
TSCS]), but has no name. So we give it one, at least restricted to square matrices.

Two matrices B and B′ in MnZ are PHermite-equivalent (or PH-equivalent for short) if there
exist U ∈ GL(n,Z) and a permutation matrix P such that UB = B′P . (We could of course place
the P to the right of B.)
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We will see that for a large class of critical groups, the classification problem includes within it a
PH-equivalence class question. We will develop invariants for PH-equivalence on a subclass of MnZ

(appropriate for critical groups), much finer than the usual elementary divisors. We also obtain
(natural) density results for matrices that have a particularly tractable equivalent form; it turns out
that for n ≥ 6, more than 80% have this property, converging to (ζ(2)ζ(3)/ζ(6))/ζ(2)ζ(3)ζ(4) · · · ∼
.845 as n→∞ (the expression is the quotient of two moderately well-known constants, the Landau
totient and

∏∞
n=2 ζ(n).

Critical (simple dimension) groups have been a source of interesting examples in dimension
groups, e.g., [EHS], [H], and particularly in [BeH], concerning properties of traces (good, ugly,
bad). These can be used to characterize classes of critical dimension groups.

Let G be an abelian group, free of rank n + 1, which is embedded as a dense subgroup of
Rn. This embedding imposes both a topology (the relative one, inherited from Rn), and a partial
ordering, inherited from the strict ordering on Rn (thus an element v in Rn is in the positive cone
iff either v is zero, or if each of its components is strictly positive). The latter ordering makes
the group into a simple dimension group, whose pure traces are precisely the coordinate functions
(from Rn). In the latter case, the ordering induces a metric, which yields the same topology as
the inherited one.

If G is a simple dimension group, free of rank n + 1, with exactly n pure traces, then it
is critical dimension group. These are precisely the partially ordered groups described in the
previous paragraph, via any affine representation. If we view G merely as a topological group (free
of rank n+ 1, embedded as a dense subgroup of Rn), with topology inherited from Rn, we call it
topologically critical.

In the case that n = 1, critical subgroups of R are of the form Z + rZ ⊂ R, up to order
isomorphism, and is well known that Z + rZ ∼= Z + r′Z as either topological groups or ordered
groups if and only if r is in the PSL(2,Z)-orbit of r′, where PSL(2,Z) acts by fractional linear
transformations [ES]. However, the situation when n ≥ 2 is much more complicated.

A special class of critical dimension groups, called basic in [BeH], is relatively easy to classify.
Let {ei} be the standard basis of Zn ⊂ Rn, and let α = (α1, . . . , αn) ∈ Rn be such that the
set {1, α1, . . . , αn} is linearly independent over the rationals. Set G to be the subgroup of Rn

generated by {ei}ni=1 ∪ {
∑
αiei}. This is automatically dense in Rn, and as an ordered group

is critical. We call a critical group basic if it is order-isomorphic to G for some choice of α (the
rational linear independence is necessary and sufficient for G to be dense).

All critical groups of rank two (that is, n = 1) are automatically basic, but this fails drastically
when n > 1, as we will see. However, if we fix n, and consider classification of basic critical groups
of rank n + 1, then the role of PSL(2,Z) is performed by the much more elementary group, the
semidirect product Zn ×Θ (Sn × {±1}) (the action of the symmetric group and ±1 is the obvious
one).

Basic critical groups are easily characterized in terms of ugly sets of pure traces, with an extra
condition. This suggests a potentially larger class of critical groups, characterized entirely in terms
of ugly sets of pure traces. These are given by the following construction. Let A be a rank n
subgroup of Zn, and let G be the subgroup of Rn generated by A and α (same α as above); this
will automatically be critical, and we call a critical almost basic if it is order isomorphic to such
a choice of A and α.

Almost basic critical groups admit a classification analogous to that for basic ones, but with
an additional feature; after making a preliminary modification to A, the additional feature boils
down to PH-equivalence.

Restricting to the relevant class of matrices B (for almost basic critical groups), we develop
invariants (finer than elementary divisors/invariant factors). These are motivated by and apply
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back to almost basic critical groups, and correspond to subsets of the pure trace space. The
invariants consist of a family of finite abelian groups, which are usually easy to calculate.

There are four appendices. The first deals with a general duality for some sets of rectangular
matrices over arebitrary rings (related to the examples of section 6). The second is joint work with
my colleague Damien Roy, concerning a truncated form of the reciprocal of the Euler function,
related to the density arguments in section 7. The third shows that the obvious lower bound for
the number of PH-equivalence classes of matrices with determinant d is asymptotically correct,
with error bounds, at least when d is square-free. The fourth appendix has exact formulas for
PH-equivalence classes, with special attention to those with 1-block size n− 1, when n = 3.

A subset {gi} of a torsion-free abelian group A is rationally linearly independent (or linearly
independent over Q) if whenever {n(i)} is a collection of integers with n(i) = 0 for all but finitely
many i, then

∑
n(i)gi = 0 implies n(i) = 0 for all i. This is equivalent to the usual linear

independence over the rationals of the set {gi} as a subset of the divisible hull of A, that is,
A⊗Z Q, a vector space over the rationals.

Statement of results

Section 1 contains the definitions of terminal forms (based on a result, [TSCS, Theorem 4.1] on
commutative codes) and the prototype invariant(s), together with their elementary properties,
and short exact sequences relating them. The second section describes the (pseudo-)action of
the permutation group Sn+1 on matrices whose 1-block size. Section 3 introduces two families
of invariants, and gives examples to show how fine these are; it also includes more short exact
sequences relating them. Section 4 contains more results and conjectures for matrices PH-equivalent
to a matrix with 1-block size n − 1. Section 5 deals with the (rare) phenomenon of matrices PH-
conjugate to their duals. And section6 discusses the duality conjecture, and some positive results
for classes of matrices.

Section 7 gives a density result for matrices with this last property, at least .8 for n ≥ 6 and
converging up to (ζ(2)ζ(3)/ζ(6)) · 1/(ζ(2)ζ(3)ζ(4) · · · ) ∼ .845 as n→∞.

Sections 8–11 deal with critical groups, that is, dense subgroups of Rn that are free of rank
n+ 1, equipped (except in section 5) with the strict ordering, making them into simple dimension
groups. Section 5 contains a topological classification theorem, which for n ≥ 3 corresponds to
the classification of a totally ordered subgroups of R. Basic critical dimension groups [BeH] are
characterized in section 6, within the class of critical dimension groups, by means of the invariant
which led to the development in sections 1–6.

Almost basic critical dimension groups are introduced in section 10, and the principal result
is that the classification of these reduces to PH-equivalence of integer matrices associated to them.
When n = 1, this is partly given by the action of PSL(2,Z); however, when n ≥ 2, the corresponding
group is much smaller, a semi-direct product of Sn × {±1} acting on Zn+1. Section 11 is a result
on almost critical basic dimension groups that amounts to showing that the whole family of PH-
invariants yields their counterparts for these dimension groups.

Appendix A contains a general duality argument for natural orbit spaces, used in section 6.
Appendix B (joint with Damien Roy) is a short argument showing that the appropriate truncations
of a form of the reciprocal of the Euler function yield a better than expected order of convergence.
This is used in section 8. Appendix C suggests an asymptotic formula for the number of PH-
equivalence classes of fixed determinant and size, and proves it when the determinant is square-free.
Appendix D contains exact counting results on the numbers of PH-equivalence classes of size three
matrices and fixed determinants, and also the numbers of PH-equivalence classes that contain a
1-block size two matrix.

Contents

1 Permutation-Hermite equivalence; first invariants
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2 PH-equivalence for some terminal forms
3 Finer invariants
4 Size n− 1 1-block terminal forms
5 Dual-compatibility and dual-conjugacy
6 Duality?
7 Densities for PH-equivalence to 1-block size n− 1
8 Topological isomorphism for topologically critical groups
9 Basic critical dimension groups
10 Isomorphisms between almost basic critical groups
11 Unperforation of quotients

Appendix A General duality
Appendix B A truncated reciprocal formula (joint with D Roy)
Appendix C Counting PH-equivalence classes
Appendix D Counting PH-equivalence classes in size 3

1 Permutation-Hermite equivalence

Let B and C be n × n integer matrices (B,C ∈ MnZ). We consider two very well known, and a
lesser-known, equivalence relation between B and C.

The matrices B and C are Hermite equivalent if there exists U in GL(n,Z) such that B = UC
(this is more frequently defined on the right, rather than the left, but we will use this form here). In
other words, B and C are obtainable from each other other by Z-elementary row operations (that is,
permutations, multiplication of a row by−1, and adding a row to another). Normal forms have been
well-studied (for example, see theWikipedia article, http://en.wikipedia.org/wiki/Hermite normal form).

Matrices B and C are Smith equivalent if there exist U and V in GL(n,Z) such that B =
UCV . Normal forms are even more well known, and correspond to invariant factors; they are used
to classify finite abelian groups.

Matrices B and C are permutation Hermite-equivalent (or PHermite-equivalent or PH-
equivalent) if there exists U in GL(n,Z) and a permutation matrix P such that B = UCP .
In order words, B and C are obtainable from each other other by Z-elementary row operations
(that is, permutations, multiplication of a row by −1, and adding a row to another), together with
column permutations.

PH-equivalence classifies subgroups of a fixed copy of Zn up to order-automorphism of the
latter (when equipped with the simplicial, that is, coordinatewise, ordering); to see this, given the
square matrix B, let r(B) denote its row space, viewed as a subgroup of Zn. Left multiplication by
elements of GL(n,Z) has no effect on the row space—only the generating set for r(B) is changed—
and column permutations implement the order-automorphisms of Z1×n when the latter is given
the usual coordinatewise partial ordering. It is helpful to permit the matrices B to be m× n with
m ≥ n; then elementary row operations are now implemented by elements of GL(m,Z). These
do not change the row space, and it useful to add another operation: if at some point during a
sequence of row and allowed column operations, a row becomes identically zero, then we delete it
(and thus reduce the size). This obviously has no effect on the row space, and will be useful in the
development of our invariants.

This section deals with an initial pair of invariants (one involving the dual of a matrix) and
some of their properties.

Reduced forms for PH-equivalence have been obtained ([TSCS]; a special case is quoted as
Theorem1.1 below), but normal forms have not, as far as I could tell. (Informally, reduced forms
for an equivalence relation constitute a useful collection of elements which contains representatives
of each equivalence class; normal forms constitute a collection containing exactly one representative
of each class.)
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We say a sequence, vector, list, or set of integers, v, has content c, denoted cont(v) = c, if
c is the greatest common divisor of the nonzero entries of v (and if all the entries are zero, then
cont(v) = 0). We say v is unimodular (not to be confused with unimodal) if cont(v) = 1.

We will restrict ourselves to the following class of matrices in MnZ. Define B ∈ MnZ to be
weakly nonsingular if the following two conditions apply:

(a) rankB = n

(b) every column of B is unimodular.

If C is any element of MnZ with full rank, then there is a factorization C = BD where B is
weakly nonsingular and D is diagonal with positive integer entries thereon.

Let NSn (or simply NS when n is understood) denote the collection of weakly nonsingular
n×n (integer) matrices. If U ∈ GL(n,Z) and w is any member of Z1×n, then cont(Uw) = cont(w).
Permutation of the columns of matrix simply permutes the contents of the columns. It follows that
NS is preserved under PHermite-equivalence.

Given B ∈ NS, there is a pseudo-algorithm that can be applied to reduce it to a more
tractable form. First, apply the usual algorithm to obtain a Hermite normal form: since the
content of the first column is one, there exists U1 ∈ GL(n,Z) such that the first column of U1B
is e1 = (1, 0, . . . , 0)T , the first standard basis element. Delete the first row and column, so that
the second column has content possibly exceeding one (it cannot be zero, since the matrix has full
rank), and continue in the obvious way, obtaining an upper triangular matrix whose first diagonal
entry is 1, and for which the other diagonal entries are positive integers.

Permute the rows and columns so that all the diagonal ones are grouped together, in a block
(it is easy to see how to do this), and now the matrix is in the form

(
I s Y
0 D

)
,

where D is an upper triangular matrix of size n − s, whose diagonal entries all exceed one. If,
in D, the content of any column is one, we may apply the same process to it via row operations,
creating an additional standard basis vector via operations on the rows of size n−s. By permuting
rows and columns, we may enlarge the identity block, and we continue this until there are no more
columns of the resulting lower block matrix that are unimodular. (Recall however, that at every
stage of this process, the size n matrix has all of its columns unimodular.) This yields the Hermite
normal form; further processing may be required.

A PH-reduced form is obtained in the following result of [TSCS], for convenience stated here
only for full rank matrices.

THEOREM 1.1 [TSCS, Theorem 4.1] Let B ∈MnZ be of full rank. Then there exists a
PH-equivalent upper triangular matrix C ∈MnZ

+, such that
(a) 0 < Cii ≤ Ci+1,i+1 for all 1 ≤ i < n;
(b) 0 ≤ Ci,j < Cjj for all i < j;
(c) Cii ≤ gcd {Csj | i ≤ s ≤ j} for all i < j.

We say C is PH-terminal (or just terminal) if it is in the form described in the theorem.
Terminal suggests that there is nothing more that can be done to such matrices to simplify them.
The size of the identity matrix that appears in the terminal form is called its 1-block size. If
B ∈ NSn, then it has at 1-block size at least one.

This is described in the cited reference as a normal form, but this is not the usual use of the
term—two distinct matrices C and C ′ each satisfying the conditions can be PHermite-equivalent.

7



As a trivial example from NS , set

C =




1 0 1
0 1 2
0 0 6


 C ′ =




1 0 2
0 1 1
0 0 6


 .

Then C and C ′ are conjugate via the transposition
(

0 1

1 0

)
⊕ (1), hence are PHermite equivalent.

This type of phenomenon can be avoided by refining the invariant. For example, we can make the
top of the first column to the right of identity block be increasing; if there are ties, we can go to
the next truncated column, and break the ties, etc. However, there is a less trivial difficulty with
terminal matrices.

Applied to an NS matrix, the terminal form has an identity block of some size in the upper
left corner. If two terminal forms are PH-equivalent, it is natural to ask whether the sizes of the
identity blocks are the same. The answer is no, and we will see that this phenomenon occurs fairly
frequently, almost generically (Proposition 3.8). The equation,




2 −1 −1
3 −1 −2
6 −3 −4






1 1 2
0 2 0
0 0 3


 =




1 0 2
0 1 3
0 0 6






0 0 1
0 1 0
1 0 0




is of the form UC = C ′P where C and C ′ belong to NS3, are in terminal form, C has just one
1 on the diagonal, C ′ has two; each has determinant 6 and detP = −1, so |detU | = 1, and thus
U ∈ GL(3,Z). So C and C ′ are PH-equivalent but with different block sizes for 1.

Hermite normal forms of matrices in NSn, while themselves in NSn, need not be terminal.
We defineNSn,m to be the class of matrices B ∈ NSn which have a terminal form with 1-block

size at least m. Obviously, NSn,n = GL(n,Z), and from the definition, NSn,1 = NSn. The most
important of these classes is NSn,n−1.

First, we give a simple example to distinguish the three equivalence relations. Barely any
calculation is required.

For each of i = 0, 1, 2, 3, 4, set

Bi =

(
1 i
0 5

)
.

Then
(i) If i 6= 0, Bi is in NS and is in terminal form.
(ii) Every 2× 2 matrix with invariant factors {1, 5} is Hermite-equivalent to one of the Bi.
(iii) all five are mutually Hermite-inequivalent.
(iv) B2 and B3 are PH-equivalent, but there are no other PH-equivalences among these matrices.
(v) all five are mutually Smith equivalent, that is, their set of invariant factors is {1, 5}.

An obvious invariant for PH-equivalence of matrices B ∈ NSn is simply the cokernel, J(B) =
Z1×n/Z1×nB, the Smith invariant. We will often abbreviate this Zn/ZnB, or Zn/r(B) (so that
r(B) denotes the subgroup generated by the rows of B). This is a very coarse invariant.

A second invariant arises from the dual. Let B ∈ NS (it need not be in terminal form); label
its rows fi. For each i, define xi to be the unique row in Z1×n with the following properties:
(a) xi = m(i)Ei where Ei is the ith standard basis element of Z1×n and m(i) is a positive integer;
(b) xi ∈

∑
fjZ;

(c) whenever y ∈∑ fjZ and y = kEi for some k ∈ Z, then m(i) divides |k|.
To see that each xi exists, note that r(B) =

∑
fjZ ⊆ Z1×n is just the row space of B, hence

is of rank n, so it hits every nonzero cyclic subgroup of Z1×n in a nonzero element; then the usual
well-ordering argument works.
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Now form X(B) =
∑
xiZ = ⊕xiZ. Then I(B) = r(B)/X(B) is a finite abelian group (since

the rank of X(B) is obviously n). The claim is that this is an invariant for PHermite equivalence
between matrices in NS .

To see that it really is a PH-invariant (for matrices in NS), suppose that C is another member
of NSn, and UCP = B where U ∈ GL(n,Z) and P is a permutation matrix. The row space of B
is unaffected by the left action of GL(n,Z), and the list [[xi]] is similarly unaffected by permutation
of the columns.

It would be useless if we couldn’t compute with it, but it turns out to be rather easy to deal
with.

Unless inconvenient, we write Zk (for k a positive integer) in place of Z/kZ. This is not going
to cause confusion with the other meaning of Zk, the k-adic completion, as we never use the latter.

The following will be subsumed by more easily obtained results after we have an equivalent
form of the construction of I(B).

LEMMA 1.2 Let n, di, zi, d > 1 (i = 2, . . . n) be positive integers and let ai (i = 1, . . . , n− 1)
be nonnegative integers with ai < d and gcd {di, zi} = 1. Suppose B and B′ are the
following n× n matrices:

B =




1 0 0 . . . 0 a1
0 1 0 . . . 0 a2

0 0
. . .

...
0 0 0 . . . 1 an−1

0 0 0 . . . 0 d




B′ =




1 z2 z3 . . . zn−1 zn
0 d2 0 . . . 0 0

0 0
. . .

...
0 0 0 . . . dn−1 0
0 0 0 . . . 0 dn




Then both B and B′ are NS matrices in terminal form. Moreover,

I(B) ∼=
⊕

i

(
Z

/(
d

gcd {d, ai}

)
Z

)
,

and I(B′) is cyclic of order
lcm {d2, d3, . . . , dn} .

Proof. That the matrices have all their columns unimodular is an immediate consequence of the
properties ascribed to the coefficients. Let fj (j = 1, . . . , n) be the rows of B. Then for i < n,
Ei = fi − (ai/d)fn, so that xi = (d/ gcd {d, ai})fi − (ai/ gcd {d, ai})fn. In addition, xn = fn, so
that a basis for X(B) is {(d/ gcd{d, ai})fi} ∪ {fn}. As {f1, . . . , fn} is a basis for r(B), we have

that I(B) ∼=
⊕

i

(
Z
/(

d
gcd{ai,d}

)
Z

)
.

Now let fj be the j row of B′, and let l = lcm {di}. Then

E1 = f1 −
∑

i≥2

zi
di
fi

lE1 = lf1 −
∑

i≥2

zifi

If t > 1 is a prime dividing l and all of the zi, then it divides at least one of the dj ; but this would
contradict gcd {d, zi} = 1 for all i. Hence lE1 is a unimodular element of

∑
fjZ, so that x1 = lE1.

For i > 2, xi = fi. Hence a basis for
∑n

i=1 xiZ is {lf1, f2, . . . , fn}, and thus I(B′) is cyclic of order
l. •
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Here are some very simple examples with n = 2. Define

Ba,d =

(
1 a
0 d

)

where d > 1; in order to be terminal, we need gcd {a, d} = 1 and 1 ≤ a < d. By taking determi-
nants, we see that Ba,d PH-equivalent to Ba′,d′ entails d = d′ (a peculiarity of the n = 2 case).
So let a′ be another integer in the interval 1 ≤ a′ < d relatively prime to d. Then Ba,d is PH
equivalent to Ba′,d if and only either a = a′ or aa′ ≡ 1 mod d (that is, in Z/dZ, [a] = [a]±1). The
second choice comes from letting P be the nontrivial permutation matrix, and working out the
details. Here I(Ba,d) ∼= Z/dZ, not very exciting.

Next, consider variations on the earlier example. Set

B =




1 0 b
0 1 c
0 0 6


 , C1 =




1 1 1
0 2 0
0 0 3


 , C2 =




1 1 2
0 2 0
0 0 3


 .

In order for B to terminal, we require gcd {b, c, 6} = 1 and 0 ≤ b, c < 6; we may assume b ≤ c (by
conjugating with the obvious transposition). Every terminal form of an NS matrix with diagonal
entries 1, 2, 3 is PH-equivalent to one of C1 or C2; this is routine.

We will show that the only choices for B which are PH-equivalent to a terminal form whose
1-block has size unequal to two (which means it has size one) correspond to (b, c) = (2, 3) and (3, 4).
The former comes from the earlier example, and it is PH-equivalent to C2. A similar computation
(which comes from an easy sequence of row reductions) shows that with (b, c) = (3, 4) or (4, 3), B
is PH-equivalent to C1.

There are no other terminal forms of size three with 2, 3 along the diagonal than C1 and C2,
since both numbers are prime.

We have, by the earlier result, I(B) = (Z/(6/ gcd{6, b})Z) ⊕ (Z/(6/ gcd{6, c})Z). Hence if
at least one of b or c is relatively prime to 6, then I(B) is not cyclic, and has Z/6Z as a proper
quotient.

Now I(Ci) ∼= Z6 since 6 = lcm {2, 3}. Hence if b or c is relatively prime to 6, B cannot be
PH-equivalent to either Ci, and in particular, all terminal forms of B have the same 1-block size,
two.

Finally C1 and C2 are not PH-equivalent, since the corresponding B forms are not; this will
come from a general result obtained later. •

LEMMA 1.3 Let B =
(

I r X

0 D

)
be in terminal form with D upper triangular, and whose

diagonal entries satisfy 1 < dr+1 ≤ dr+2 ≤ dn. Set l = lcm {di}.
(a) If D is diagonal, then I(B) is a quotient of (Zl)

r.
(b) In general, I(B) is a quotient of

(Z/lZ)r ⊕




n−1⊕

j=r+1

Z/lcm {dj+1, dj+2, . . . , dn}Z


 .

Proof. For 1 ≤ i ≤ r, Ei = fi −
∑

j>1(aij/dj)fj for some integers {aij}. Hence lEi ∈ C(B), and
thus lEi ∈ X(B). Hence xi = tiEi for some positive integer ti dividing l.
(a) Here xi = fi if i > r, and thus X(B) is spanned by {xi}i≤r ∪ {fi}i>r; from the form of tiEi,
we have that X(B) is spanned by {tifi}i≤r ∪{fi}i>r. Since {fi} is a basis for r(B), it follows that
I(B) ∼= ⊕i≤r(Zti). This is a quotient of (Zl)

r since each ti divides l.
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(b) If r < i < n, we can write Ei = fi −
∑

j>i(aij/dj)fj . Obviously, xn = fn. Set li =
lcm {di+1, di+2, . . . , n}, so that liEi ∈ r(B) and thus is in X(B). So again we can write xi = tiEi

with ti dividing li, and we obtain I(B) is a quotient of (Zl)
r ⊕ (

⊕
i>r Zti), which is a quotient of

the desired group. •
The 1-block size (that is, the size of the identity matrix in the upper left corner) in terminal

forms turns out to be significant, particularly if it is n − 1—when this occurs, PH-equivalence
classes can be determined exactly.

COROLLARY 1.4 Suppose B =
(

I s X

0 D

)
is in terminal form, and let d = detB. If I(B)

has a quotient which is isomorphic to (Zd)
s, then all terminal forms PH-equivalent to B

must have 1-block size at least s.

Proof. Suppose B′ =
(

I r X′

0 D′

)
is a PH-equivalent terminal form with r < s. In particular,

detB′ = detB = d. All the factors that are quotients of Z/lcm
{
d′j , . . . , d

′
n

}
for j > r, have order

at most
∏
d′j/d

′
r+2 < d. But then the preceding says that I(B′) has at most r copies of (Zd)

r

appearing as a factor, a contradiction. •
It is convenient to introduce the notion of opposite here, in order to put the invariant(s) in a

broader context.

A dual formulation of the invariant. When we construct the xi in order to determine I(B), we
also create a dual of the matrix B, call it Bop, also in NSn, and for which I(B) = Z1×n/Z1×nBop,
that is, I(B) ∼= J(Bop). To see this, we have a unique representation for each i, xi =

∑
j cijfj with

cij ∈ Z; since xi is not a nontrivial multiple of any element of
∑
fiZ, it follows that the content of

{cij}nj=1 is one. Hence the matrix C = (cji) (the transpose of what is expected) belongs to NSn.
Next, we see that if B′ is PH-equivalent to B, then C ′ (constructed out of the canonical x′i)

is PH-equivalent to C. A row operation on B simply multiplies CT on the right by an element
of GL(n,Z), hence multiplies its transpose, C, on the left by an element of GL(n,Z). A column
permutation applied to B multiplies the representation of the xi by a row permutation of the
matrix CT , so induces a column permutation of C.

So we call C, Bop. In general, when B is in terminal form, Bop will be far from terminal,
requiring both row operations and column permutations to put it into terminal form. If we think
in terms of the row space of Bop, then it is almost tautological that I(B) = Zn/r(Bop). That being
the case, I(B) is determined from the Smith normal form of Bop. To some extent this explains some
of the loss of information in going from the PH-equivalence class of B to I(B). Unsurprisingly,
(Bop)op = B. In general, |detB| 6= |detBop|; this occurs when |detB| 6= |I(B)|, and we have seen
an example for which detB = 8, but I(B) ∼= Z8 ⊕ Z2. From the equations defining Bop, we have
(Bop)TB = ∆ := diag (m(i), . . . m(i)), where the m(i) are defined via the xi, that is, xi = m(i)Ei.

Because of potential confusion caused by the notation, we redefine J(B) = I(Bop) = Z1×n/Z1×nB
(determined by the Smith normal form of B), and thus J(Bop) = I(B) = Z1×n/Z1×nBop. We will
soon obtain a simpler description for Bop.

LEMMA 1.5 Suppose that B,B′ ∈ NSn and ∆,∆′ are diagonal real matrices with strictly
positive entries. If B∆ = B′∆′, then ∆ = ∆′ and B = B′.

Proof. Since B is invertible in MnQ, we have B−1B′ = ∆(∆′)−1; thus the latter has only rational
entries (all of which are nonnegative). We can therefore write N∆(∆′)−1 = ∆′′ for some positive
integerN and ∆′′ = diag (di) diagonal with only positive integer diagonal entries. FromNB−1B′ =
∆′′, we have B′N = B∆′′. Now the ith column of B′N has content N , and the ith column of B∆
is just di times the ith column of B, hence has content di. Thus di = N for all i, so (B′−B)N = 0
and thus B′ = B. As B is invertible in MnR, ∆ = ∆′. •
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The following shows that Bop can be characterized via a more general equation.

PROPOSITION 1.6 Let B ∈ NSn. Then
(a) Bop ∈ NSn and (Bop)TB = diag (m(1), . . . ,m(n));
(b) if C ∈ NSn and CTB is diagonal with only nonnegative entries, then C = Bop;
(c) (Bop)op = B, and the lists [[m(i)]] are the same for B and Bop;
(d) if B′ ∈ NSn is PH-equivalent to B, then (B′)op is PH-equivalent to Bop.

Proof. (a) is noted above.
(b) Write (Bop)TB = ∆0. As B ∈ NSn, B−1 exists (in MnQ), we can write C = (∆B−1)T =

(B−1)T∆, and similarly, Bop = (B−1)T∆0. Then

Bop∆ = (B−1)T∆0∆ = (B−1)T∆∆0 = C∆0.

The result now follows from the preceding lemma.
(c) From (Bop)TB = ∆0, on transposing, we obtain BTBop = ∆0; as B ∈ NSn implies

Bop ∈ NSn, we have B = (Bop)op from (b). It then follows from BTBop = ∆0 that the list [[m(i)]]
(the list of diagonal entries of ∆0) is the same, whether computed with respect to B or with respect
to Bop.

(d) There exist U ∈ GL(n,Z) and a permutation matrix P such that B = UB′P ; then
∆0 = (Bop)TB = (Bop)TUB′P . Pre-multiplying by P and post-multiplying by P−1, we have
P∆0P

−1 = P (Bop)TUB′. Since B′, (P (Bop)TU)T ∈ NSn and P∆0P
−1 is diagonal, by the lemma,

we have (B′)op = (P (Bop)TU)T = UTBopP−1 (since P−1 = P T ), yielding that (B′)op is PH-
equivalent to Bop. •

This leads to a fast construction of Bop. From the characterization of Bop in 1.6(a,b), finding
Bop and ∆ becomes relatively simple. Pick B ∈ NSn; form B−1 ∈ MnQ. There exists a smallest
positive integer m(i) such that m(i) times the ith row of B−1 consists of integers—and necessarily,
the resulting row has content one. Set ∆ = diag (m(i)); since the entries of ∆B−1 are all integers
and the content of each row is one, it is immediate that (∆B−1)T ∈ NSn. Then Bop = (∆B−1)T .

In [ALTPP], the authors introduced two numbers associated to a matrix B ∈ NSn; the first
was denoted I, which is |detB|; the second was denoted I∗,1and is |detBop|; they also use B∗, the
dual matrix emanating from lattice polytopes, for what is called here Bop. Among other things,
they constructed very useful tables of numbers of isomorphism classes, and explicit generators,
which turned out to be particularly helpful for Appendix D.

Let B belong to NSn. Defining Ei, xi, and m(i) as we have above, there is an obvious short
exact sequence,

0→ r(B)∑
xiZ

→ Z1×n

∑
xiZ

→ Z1×n

r(B)
→ 0.

The left term is just I(B), the right is I(Bop), which is determined by the invariant factors of B.
The middle term is naturally isomorphic to r(B)/(

∑
xiZ)B via B; the map sending w ∈ Zn to

wB induces a group homomorphism Z1×n/
∑
xiZ → r(B)/(

∑
xiZ)B, which is clearly onto; it is

also one to one, since wB = vB (with v ∈ ∑ xiZ) entails w = v. In addition, xiB = m(i)fi, so
that the middle group is just ⊕Zm(i). So we can rewrite the short exact sequence,

0→ J(Bop)→ ⊕Zm(i) → J(B)→ 0.

1 Unfortunately I came across this reference after I had established the notation for this paper,
so that their I is |I(Bop)| = |J(B)|, and their I∗ is |I(B)| = |J(Bop)|.
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Since we may interchange B with Bop (from (Bop)TB = ∆, we obtain BTBop = ∆), we also
obtain a short exact sequence 0 → J(B) → ⊕Zm(i) → J(Bop) → 0. This can be re-interpreted
more generally.

For a finite group G, the exponent of G, denoted ExpG, is the smallest positive integer such
that the order of every element divides e.

PROPOSITION 1.7 Suppose B ∈ NSn. Then ExpJ(B) = Exp J(Bop) = ExpZn/Zn∆ =

lcm {m(i)}.
Proof. From the short exact sequence 0 → J(B) → ⊕Zm(i) → J(Bop) → 0, obviously Exp J(B)
and Exp J(Bop) divide the exponent of the middle term, which is lcm {m(i)}. Set d = Exp J(B).
This says that Znd ⊆ ZnB. Applying B−1 (which exists in Qn×n), we have ZndB−1 ⊂ Zn,
whence C := dB−1 is an integral matrix satisfying CB = dI . Since (Bop)TB = ∆, we deduce
(Bop)T = d∆C, so that CT = Bopd∆−1 (as matrices with rational entries).

The ith column of CT is thus d/m(i) times the ith row of Bop. As each column of Bop has
content one, this entails (as CT has only integer entries) m(i) divides d. Hence lcm {m(i)} divides
d; since d divides lcm {m(i)}, we have d = lcm {m(i)}.

Since BTBop = ∆T = ∆, we can interchange the roles of B and Bop, obtaining the final
equality. •

Let d = Exp J(B); then we can regard each of J(B), J(Bop), and Z1×n/Z1×n∆ as Zd-modules.
As Zd is self-injective, each of them contains a nonzero free submodule as a direct summand; and
J(∆) := ⊕Zm(i) contains a free Zd-module on two generators as a direct summand.

LEMMA 1.8 Suppose that p is a prime and B in NSn has terminal form

(
I n−1 X
0 pm

)

for some m ≥ 1. If B′ is a terminal matrix in NS that is PH-equivalent to B, then the
1-block of B′ has size n− 1.

Proof. If B is PH-equivalent to B′ in terminal form with block size less than n − 1, then the
non-one diagonal entries of the latter are powers of p, and their product is the determinant, pm.
Their lcm is thus strictly less than pm, and so the exponent of I(B′) 6= pm, a contradiction. •

In particular, if |detB| is a power of a prime and I(B) has exponent equalling |detB|, then
every terminal form PH-equivalent to B must have 1-block of size n− 1.

The following is completely elementary, and the use of self-injectivity is like cracking a walnut
with a hammer.

LEMMA 1.9 Let 0→ A→ B → C → 0 be a short exact sequence of finite abelian groups.
If any of the following holds,
(a) ExpB = ExpA and A is cyclic, or
(b) ExpB = ExpC and C is cyclic, or
(c) ExpB is square-free.

then the sequence splits.
Proof. Let d = ExpB; as ExpA and ExpC divide d, the sequence is a short exact sequence of
Zd-modules.

If ExpC = ExpB and C is cyclic, then C is free as a Zd-module, so the sequence splits. If
ExpA = ExpB and A is cyclic, then A is free and singly generated; since Zd is self-injective, A is
injective as a Zd-module, so the sequence splits.

13



If ExpB := d is square-free, then C, being a Zd-module, is projective, hence the sequence
splits. •

A consequence of the method of proof is the following somewhat interesting result.

LEMMA 1.10 Suppose that H ⊂ Zn of rank n, with invariant factors (f1, f2, . . . , fn).
Suppose that x +H has order fn (the exponent of Zn/H) in Zn/H. Then H + xZ ⊂ Zn

has invariant factors (1, f1, . . . , fn−1).

Proof. The onto map Zn/H → Zn/(H+xZ) has kernel (xZ+H)/H, which is free as a Zfn module,
so is a direct summand. Hence we can write Zn/H = (x+H)Z⊕D for some Zfn module D. Since
D ∼= Zfn and the sequence invariant factors is unique, D must have invariant factors 1, f2, . . . , fn−1

(delete the last one, and insert a one at the beginning). Obviously D ∼= Zn/(H + xZ). •
The following is presumably well-known, but useful. If G is an abelian group, then t(G)

denotes its torsion subgroup.

LEMMA 1.11 Let A be an r × n integer matrix. Then

t (Zn/ZrA) ∼= t
(
Zr/ZnAT

)
.

Proof. Let s = rankA; then s ≤ r, n. The first step is to reduce to the case that r = s = n.
To that end, we observe that the row space of A, ZrA is free of rank s; hence there exists

E ∈ GL(r,Z) such that EA
(

A′

0

)
, where A′ is s×n. Since A′ has rank s, there exists F ∈ GL(n,Z)

such that A′F =
(

A′′

0

)
, where A′′ is s× s. In particular,

EAF =

(
A′′ 0
0 0

)
.

Hence
Zn/ZrA ∼= Zn/ZrEAF ∼= Zs/ZsA′′ ⊕ Zn−s.

From F TATET = (EAF )T =
(

(A′′)T 0

0 0

)
, we similarly obtain Zn/ZrA ∼= Zs/Zs(A′′)T ⊕Zr−s.

So it suffices to show that if M ∈ Zs×s is of rank s, then Zs/ZsM ∼= Zs/ZsMT . But this
is straightforward. Let (f1, . . . , fs) be the sequence of invariant factors of M ; then there exist
J,K ∈ GL(s,Z) such that JMK = diag (f1, . . . , fs) := ∆. Obviously KTMTJT = ∆, so MT has
the identical sequence of invariant factors. •

LEMMA 1.12 Let A ∈ Zr×n, B ∈ Zn×r. If A has rank r, then there is a short exact
sequence,

0→ Zr/ZnB → Zn/ZnBA→ Zn/ZrA→ 0,

the maps induced by v 7→ vA and v 7→ v.

Proof. Since ZnBA ⊂ ZrA, the map from middle to the right term, v + ZnBA 7→ v + ZrA is
well-defined, and obviously onto. Its kernel is ZrA/ZnBA. The map v + ZnB 7→ vA + ZnBA is
clearly well defined, and maps onto the kernel; it suffices to show it is one to one. But vA ∈ ZnBA
entails v = wBA for some w ∈ Zn, whence (v − wB)A = 0. However, A is r × n and of rank r, so
right multiplication by A is one to one. Thus v = wB, and the map is one to one. •

Weirdly, even under the (strong) hypotheses that A,B are square of the same size and with
nonzero determinant, it need not be true that Zn/ZnAB ∼= Zn/ZnBA (both of these are torsion).
The following is presumably well-known.
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Set A =
(

1 1

0 2

)
. Then AAT =

(
2 2

2 4

)
, so Z2/Z2AAT ∼= Z2 ⊕ Z2. On the other hand,

ATA =
(

1 1

1 5

)
, and thus Z2/Z2ATA ∼= Z4. Label B = AT .

In general, the sequence of torsion subgroups of a short exact sequence is not exact (take
0→ Z→ Z→ Z2 → 0 where the middle map is multiplication by 2); however, in this case, it is.

COROLLARY 1.13 Suppose A ∈ Zr×n, B ∈ Zn×r, and BA has rank r. Then there is a
short exact sequence,

0→ Zr/ZnB → t (Zn/ZrBA)→ t (Zn/ZrA)→ 0.

Proof. Since B has rank (at least, hence exactly) r, Zr/ZnB is finite, hence torsion. Suppose
v +ZrA is a torsion element of the third term in the short exact sequence in the previous lemma.
Then there exists a positive integer N such that Nv ∈ ZrA. Since ZrBA ⊂ ZrA and they
have equal ranks, there exists an integer M such that MZrA ⊂ ZrBA. Hence MNv ∈ ZrBA.
Therefore, all pre-images in the middle term, of v+ZrA, lie in the torsion subgroup of Zn/ZrBA.
In particular, the right map is onto.

Since Zr/ZnB is finite, it maps to the torsion subgroup of the middle term, and exactness of
the original sequence now yields exactness of the sequence of torsion subgroups. •

Now suppose that B ∈ NSn, and form Bop. From (Bop)TB = ∆ = diag (m(1), . . . ,m(n)),
we deduce (setting B = A, etc), a short exact sequence 0 → Zn/Zn(Bop)T → ⊕Z/Zm(i) →
Zn/ZnB → 0. By 1.11, the first term is isomorphic to Zn/ZnBop. This yields a short exact
sequence,

0→ J(Bop)→ ⊕Z/m(i)Z→ J(B)→ 0.

We also have BTBop = ∆ (by applying the transpose); this permits us to reverse the roles of
B and Bop, and we obtain another short exact sequence,

0→ J(B)→ ⊕Z/m(i)Z→ J(Bop)→ 0.

By 1.7 and 1.9, if either J(B) or J(Bop) is cyclic, or more generally, if either J(B) or J(Bop)
is a free Zd-module, then the sequence splits; similarly, if the exponent, d, of J(B) is square-free,
the sequence splits. There are examples to show that neither of these need split. Unfortunately,
because we are taking isomorphisms at various points, the extensions themselves need not be
PH-invariants. However, splitting (and not splitting) are PH-invariants.

EXAMPLE 1.14 The extension 0 → J(B) → ⊕Zm(i) → J(Bop) → 0 need not split; in fact,
J(B)⊕ J(Bop) need not be isomorphic to ⊕Zm(i).

To construct an example, suppose that n = 3 and d is a power of a prime p. If we can find B ∈ NS3
such that detB = d, and both J(B) and J(Bop) are not cyclic, then the extension cannot be split.
We note that J(B)⊕ J(Bop) cannot be generated by 3 elements, since it is a p-group and has at
least four elementary divisors. But the list [[mi]] consists of n = 3 elements, so that ⊕Zm(i) has
three generators; in particular, ⊕Zm(i) 6∼= J(B)⊕ J(Bop).

So it suffices to find a matrix B with these properties. For any prime p, set

B =




1 1 1
0 p p2

0 0 p3


 so that Bop =




p3 0 0
−p2 p 0
p− 1 −1 1


 .

Since the cokernel of C :=
(

p p2

0 p3

)
is Zp3⊕Zp, J(B) ∼= Zp3⊕Zp (in Z2/Z2C, there is no element of

order p4, but there are elements of order p3; alternatively, subtract p times the first column from
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the second, to create diag (p, p3)); similarly, the cokernel of
(

p 0

−p2 p3

)
is Zp3 ⊕ Zp, so this is also

J(Bop). Hence J(B)⊕J(Bop) has elementary divisors [[p3, p3, p, p]], and is thus not 3-generated as
an abelian group. In this case, m(1) = m(3) = p3 and m(2) = p2. •

There is another invariant of PH-equivalence, concerning a particularly strong form of splitting.
The imbeddings J(B) → Z1×n/Z1×n∆ and J(Bop) → Z1×n/Z1×n∆ (we will sloppily abbreviate
Z1×n/Z1×n∆ to J(∆) from now on) are given by first identifying J(B) = Z1×n/Z1×nB with
Z1×n/Z1×nBT (1.11 and 1.12), and then with the latter’s image in J(∆), given by v + r(BT ) 7→
vBop + Z1×n∆, and then doing the same with J(Bop).

This gives us two subgroups of J(∆), Y (B) := r(Bop)/r(∆) ∼= J(B) and Y (Bop) := r(B)/r(∆) ∼=
J(Bop) (note how the op has switched). Denote by πB : J(∆)→ J(B) and πBop : J(∆)→ J(Bop)
the two quotient maps in the short exact sequences. Then we can ask whether the image of J(B)
in J(∆) (that is, Y (B)) maps under πB onto J(B), that is, πB(Y (B)) = J(B). This of course
entails that πB splits, but is stronger than that (there are easy examples wherein πB splits, but this
property does not hold). We say that B super-splits when this occurs (it is a two-sided property,
as we will see).

LEMMA 1.15 Let B ∈ NSn. The following are equivalent.
(a) B is super-splitting;
(b) r(B) + r(Bop) = Z1×n;
(c) r(B) ∩ r(Bop) = r(∆).

Remark. Since (b) and (c) are symmetric under the interchange B ↔ Bop, we deduce that B
super-splits iff Bop does. It is also now clear that super-splitting is a PH-invariant (which was
not at all clear from the definition, since the latter uses identifications such as that of J(B) with
Z1×n/Z1×nBT ).

Proof. Obviously, r(∆) ⊆ r(B) ∩ r(Bop) directly from (Bop)TB = BTBop = ∆, and the map πB
is v + r(∆) 7→ v + r(B).
(a) implies (b). The map πB sends Y (Bop) = r(B)/r(∆) to zero, but is an isomorphism when
restricted to Y (B) = r(Bop)/r(∆). Hence (r(B) + r(Bop))/r(∆) has cardinality |J(B)| · |J(Bop)|,
and the latter is det∆ = |Z1×n/Z1×n∆|. If r(B) + r(Bop) were strictly contained in Z1×n, then
J(∆) would be strictly larger than |J(B)| · |J(Bop)|, a contradiction.
(b) implies (c). We have the map J(B) × J(Bop) → Z1×n/Z1×n∆ (given by the identifications
of J(B) with Y (B) and J(Bop) with Y (Bop)), and this is onto by hypothesis (b). Since the
cardinalities are the same, the map is an isomorphism. However, (r(Bop)+r(B))/(r(B)∩r(Bop)) ∼=
r(Bop)/(r(B)∩ r(Bop)) + r(B)/(r(B)∩ r(Bop)) ∼= J(B)× J(Bop), so again by cardinality, r(B)∩
r(Bop) = r(∆).
(c) implies (a). Using the standard isomorphisms (as in (b) implies (c)), we have that r(Bop) +
r(B)/r(∆) is the direct sum, and by cardinality, we obtain (b). Ontoness of πB is then immediate.
•

We know that if J(B) or J(Bop) is cyclic, or a free Zd-module (where d = ExpJ (B)), then
both sequences J(B) → J(∆) → J(Bop) and J(Bop) → J(∆) → J(B) split. But not all of

them super-split. For example, if B ∈ NSn,n−1 and B =
(

In−1 a

0 d

)
where a = (a1, . . . , an−1)

T is

unimodular modulo d, then B is super-split iff 1 +
∑
a2i is relatively prime to d (this is obtained

by looking at criterion (b) modulo d). Since we can easily solve 1 +
∑
a2i ≡ 0 mod d if n, d ≥ 3

(with all ai relatively prime to d), we have found many examples wherein the sequences split, but
B is not super-split.

At one possible opposite extreme is the case that B is Hermite- (not just PHermite-) equivalent
to Bop. This means that B = EBop for some E ∈ GL(n,Z), or equivalently, that r(B) = r(Bop).
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These obviously are not super-split. There are lots of examples; for instance, if B ∈ NSn,n−1 and
is weakly indecomposable, then it follows from the results of section 5 that B PH-equivalent to
Bop implies B is Hermite-equivalent to Bop, and necessary and sufficient conditions were given in
that section.

(There are examples, even at size three, of B ∈ NSn with B PH-equivalent to Bop but not
being Hermite equivalent; the smallest d for which this occurs seems to be 133.)

There are other possibilities, e.g,, r(Bop) is strictly contained in r(B); examples with detB = p
(a prime) are easy to obtain (since r(B) is a maximal proper subgroup of Z1×n, there are only
three possibilities: either B super-splits (r(Bop) not contained in r(B)), Bop is Hermite-equivalent
to Bop (r(Bop) = r(B)), or there exists noninvertible F such that Bop = FB (r(Bop) is strictly
contained in r(B)). All three occur.

2 PH-equivalence for some terminal forms

Let n, d > 1 and consider all the terminal forms with 1-block size n − 1 and determinant d;

that is, matrices of the form Ba :=
(

I n−1 a

0 d

)
, where a = (ai)

T is in Z(n−1)×1 and satisfies

gcd {d, a1, . . . , an−1} = 1 and 0 ≤ ai < d for all i. Since we can add or subtract multiples of
the bottom row to the others at any time in a sequence of PH-equivalences, we may regard the ai
as elements of Zd.

We wish to describe PH-equivalence for this class of matrices. Since the absolute value of
the determinant is a PH-invariant for matrices in NS , we may fix the determinant, denoted d;
so the problem boils down to the column a. There is an obvious action of Sn−1 on a, and this
are implemented by left and right multiplication of B by the corresponding permutation matrix.
Hence at any time, we may assume that the entries of a are, for example, increasing. Alternatively,
we can regard a merely as a list, thereby disregarding the action of Sn−1.

The equivalence relation on (Zd)
(n−1)×1 (that is, the columns a) induced by PH-equivalence

between the corresponding Ba (with d fixed of course) is more complicated than merely given by
permutations.

First, we describe a well-known action of Sn (not Sn−1) on A
n−1 where A is a finite abelian

group; for convenience, A is written multiplicatively. The permutation representation of Sn on An

admits the diagonal δ := {(z, z, . . . , z) | z ∈ A} as a set of fixed points. Thus there is an action of Sn

on the quotient group An/δ ∼= An−1. To see just what the resulting action is, pick y = (ai) ∈ An−1;
lift it to an element of An by setting y′ = (y, 1) (since A is written multiplicatively, 1 means the
identity element). Apply the permutation action of Sn to y′.

For π ∈ Sn, if π fixes the point {n}, then it comes from an element of Sn−1, so we just define
π(y) to be the first n − 1 coordinates of y′, the obvious thing. Otherwise, there exists j < n
such that π(j) = n, so that the last coordinate of π(y′) is aj and a 1 appears in the π(n)-entry.
Multiply the vector π(y) by a−1

j . Now the final entry is 1, so we can define π(y) to be the first

n− 1-coordinates of a−1
j π(y′). The multiplication operator is equivalent to performing the group

action with the diagonal element (a−1
j , a−1

j , . . . , a−1
j ) to π(y′), hence is compatible with the quotient

action.

(Replacing n by n+1 and A by Z—this time viewed additively—this is the Weyl group action
of Sn+1 on the dual of the maximal torus of SU(n+ 1).)

Denote this action ΠA,n : Sn → AutAn−1. Now replace A by Z∗
d, the group of (multiplica-

tively) invertible elements in Zd (so φ(d) = |Z∗
d|). Suppose that a ∈ (Zd)

n−1 consists of elements
relatively prime to d, that is, members of Z∗

d. Then we will see that the PH-equivalence class of
Ba consists of a slightly twisted Sn-orbit of a under ΠZ∗

d
,n.

However, if some of the entries of a are zero divisors in Z∗
d, then the situation becomes pear-

shaped. We may permute the entries so that the first k are invertible, and the rest are zero-divisors.
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Then we can apply Sk+1 to the column of the first k, obtaining (for each element of the group) an
element a−1

j —and instead of multiplying merely the top k entries by a−1
j , we multiply all of a by

it.

This of course preserves the entries that are zero-divisors in the ring Zd, whose locations are
unmoved. It also preserve the ideals the elements generate, e.g., there are the same number of
zeros in the new element as in the original, the same number that are divisible by any prime p that
divides d as in the original, etc.

The upshot is that there is no group structure (except when n = 2) on the equivalence classes,
but instead a union of actions of various groups.

When n = 2, Ba is PH-equivalent to Ba′ iff aa′ ≡ 1 mod d; this is easy, and can be done
directly, since we are dealing only with the transposition matrix. For n > 2, if each of the ai
is not relatively prime to d, then the equivalence class is simply the set of permutations of the
entries, that is, via the action of Sn−1—in this case, there is an obvious normal form, arranged
monotonically.

If ai are all relatively prime to d, then the action is given by permutations and a twisted
multiplication by each of the a−1

i modulo d; it looks like these should generate a larger orbit,
but they don’t. (So if all ai = −1, it is not equivalent to anything else.) The orbit consists of{
(−a1a−1

j , . . . , a−1
j , . . . ,−an−1a

−1
j )
}
, together with (ai) itself, and all their permutations.

To verify these claims, suppose UBaP = Ba′ . First, we note that if also U1BaP = Ba′′

(where Ba, Ba′ , and Ba′′ are all terminal) with the same P , then Ba′ = Ba′′ . This follows from
the equalities in MnQ, P = B−1

a U−1Ba′ = B−1
a U−1

1 Ba′′ , whence U−1Ba′ = U−1
1 Ba′′ , so that

U1U
−1Ba′ = Ba′′ . Set V = U1U

−1 ∈ GL(n,Z). From the form of the Bs (first n− 1 columns are

standard basis elements), V =
(

In−1 X

0 t

)
; since the lower right entries of both Bs are d, t = 1, and

we have a′ + dX = a′′; but this simply means that a and a′ are coordinatewise congruent modulo
d; since we have assumed the entries are in the interval 0 ≤ a′′i , a′i < d, this forces a′ = a′′.

Thus for each permutation matrix P , there is a most one a′ for which UBaP = Ba′ for some
U ∈ GL(n,Z) (and of course, there may be none).

Let B and B′ be matrices in NSn, both in terminal form. Suppose there exists a permutation
matrix P together with U in GL(n,Z) such that UB = B′P ; then we say P is realizable over B
(in other words, there exists B′ in terminal form, etc).

Suppose that B =
(

I n−1 a

0 d

)
; its 1-block is size n−1. Let π be the permutation corresponding

to the right action by P on columns (that is, if P takes the first column to the second, then
π(1) = 2).

If π(n) = n, then B′ = PBP−1 is also in terminal form, since a has been replaced by Qa
(a permutation of the entries of a) where P = Q ⊕ 1. So in this case, all of Sn−1 is realizable.
Morever, if P ′ is realizable over B and P = Q⊕1, then PQ is also realizable, so that the realizable
permutation matrices form a coset space over Sn−1. However, this is fairly complicated.

For a ∈ Z(n−1)×1 such that cont {a, d} = 1, recall that Ba =
(

In−1 a

0 d

)
. We will determine

precisely the permutation matrices P such that there exist a′ ∈ Z(n−1)×1 such that B′
a satisfies

UBa = Ba′P for some U ∈ GL(n,Z). This is not the full realizability problem, since P may be
realizable over B, but the outcome, B′, although in terminal form, need not have its 1-block of
size n− 1. (We have already seen such an example.)

For an integer d > 1, Z∗
d will denote the group of multiplicatively invertible elements in the

ring Zd (formerly, we just considered the latter as an additive group). If x is an integer relatively
prime to d, then x−1 will denote a representative y such that xy ≡ 1 mod d.

PROPOSITION 2.1 Let d > 1 be an integer. Let P be a permutation matrix of size n
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with corresponding permutation π, and a ∈ Z(n−1)×1 such that cont {a, d} = 1. Then P is
realizable over Ba with Ba′ = UBaP

−1 having 1-block of size n − 1 iff either π(n) = n or
aπ(n) is invertible modulo d. In the latter case, modulo d,

a′t ≡
{ −aπ(t)a−1

π(n) if t 6= π−1(n)

a−1
π(n) if t = π−1(n).

Remark. It is important to emphasize that this result describes only PH-equivalence between
terminal forms of NSn-matrices, both of which have 1-block size n − 1. It says only a limited
amount about PH-equivalences between terminal forms only one of which has 1-block size n − 1
(essentially, the statement that each permutation matrix P can contribute at most one new terminal
form). In particular, if gcd {ai, d} > 1 for all i, then the only choices for P are those corresponding
to Sn−1—in this context. Where we are allowed to choices for terminal B′ that have a smaller
1-block, we can obtain more realizable P .

Remark. For n = 3, this type of action of the symmetric group was discussed in [R].

Proof. First, suppose that UBa = Ba′P for some U ∈ GL(n,Z), and π(n) 6= n. Then the ith
column of UBa is Uei, except when i = n, in which case, it is U

( a
d

)
. On the other hand, the ith

column of Ba′P is the π−1th column of Ba′ , which is eπ−1 , unless π(i) = n, in which case it is(
a′

d

)
.

In particular,

Uei =





eπ−1(i) if i 6∈ {n, π(n)}
(
a′

d

)
if i = π(n)

U

(
a
d

)
= eπ(n).

We have that n− 2 of the columns of U are standard basis vectors and the π(n)th column is
(

a′

d

)
;

let (hj)
T be the nth column of U . The basic vectors represented in the columns exclude en and

eπ(n); hence in the π(n) and nth rows of U , there are at most two nonzero entries, a′π(n) and hπ(n),
& d and hn, respectively.

Now we can apply this to the third equation, and obtain (after sorting through the subscripts
and cases),

aπ(t) + a′taπ(n) + htd = 0 if t 6= n, π−1(n)

a′π−1(n)aπ(n) + hπ(n)d = 1.

The second equation says that aπ(n) is invertible modulo d, and a′π−1(n) ≡ aπ(n) mod d. Now that
we know that aπ(n) is invertible modulo d, the first equation yields the rest of what we want.

As to the converse, we can almost reconstruct U from the equations; the a′i are defined up to
multiples of d (so we can perform additional elementary row operations if necessary to ensure that

0 ≤ a′i < d. There is only one additional condition; |detU | = 1 iff
∣∣∣det

(
a′
π(n) hπ(n)

d hn

)∣∣∣ = 1, that is,

a′π(n)hn − hπ(n)d = ±1, which is easily arranged (since a′π(n) is invertible modulo d).

The case that π(n) = n has already been discussed. •
In particular, the number of i such that gcd {ai, d} = 1 is an invariant of this equivalence

relation, as is for each prime p dividing d and each m, the number of ai such that pm divides ai
since up to permutation, we are multiplying the entries by an invertible modulo d, except in one
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place, where an invertible is replaced by another invertible. Both of these are also obtainable from
I(Ba) as in Lemma 1.2 above. Generically the number of elements in the equivalence class of Ba

is
(n− 1)! · |{i | gcd {d, ai} = 1}| ,

but it could be less. Observe that if ai = aj ∈ Z∗
d, on taking a permutation π such that π(n) = i,

the corresponding a′, is up to permutation (that is, the Sn−1-action), obtained by multiplying all
the entries by −a−1

i and replacing one of the −1 terms that result by a−1
i ; the same set, up to the

Sn−1 action, will arise from a permutation sending n 7→ j. In this case, different permutations,
even modulo Sn−1 are realizable, but yield the same matrices.

For n = 2, of course the only possible action is a 7→ a−1 (modulo d). In particular,

(
1 a
0 d

)
is PH-equivalent to

(
1 a′

0 d′

)

iff d = d′ and either of a′ ≡ a±1 mod d.
It also allows us to conclude that




1 0 2
0 1 3
0 0 6


 and




1 0 4
0 1 3
0 0 6




are not PH-equivalent. As they are respectively equivalent to




1 1 2
0 2 0
0 0 3


 and




1 1 1
0 2 0
0 0 3


 ,

the latter two are not PH-equivalent to each other either. All four matrices have J(B) ∼= Z6.
If two matrices B,B′ ∈ NSn,n−1, then there is a relatively efficient procedure for deciding

whether they are PH-equivalent. The determinants must be the same, d, and each has a list [[a]],
[[a′]] (consisting of the integers in the last column, above the d). There are only n cosets of Sn/Sn−1,
and we just have to test those for which the corresponding element of [[a]] is relatively prime to d
(testing for relative primeness of ai and d requires at most OOO (ln ai) steps, usually much less), and
for each one of those, do the operation described in Proposition 2.1, and check whether the new
list is that of a′. To make it more efficient, we may rearrange the lists as they appear so they are
descending, etc. This amounts to sorting lists of nonnegative integers with a fixed upper bound,
d−1, on the entries. An easy algorithm (good if d≪ n) is for each i = 0, 1, . . . , n−1, decide which
of the numbers in {0, 1, 2, . . . , d− 1} ai is, and keep d running counts. The final counts determine
the ordering.

If merely one of them has 1-block size n − 1, then we first test whether B′ does as well, by
deleting the ith column and testing whether the resulting row space is all of the standard copy
of Zn−1—one way is to take the n determinants of the submatrices of size n − 1, and see if their
greatest common divisor is one (it would be enough to show their gcd is relatively prime to the
determinant of B′). If B′ is already in terminal (or merely upper triangular) form, this will likely
be very fast.

3 A family of invariants

We will use lattice in the sense of partially ordered sets with least upper and greatest lower bounds.
In this section, we introduce and investigate a family of invariants which form a lattice of

abelian groups with factor maps between them.
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Fix n, and for 1 ≤ i ≤ n, let pi : Z1×n → Z be the coordinate maps, and let S = {1, 2, . . . , n}.
Let Ω ⊂ 2S. For B ∈ NSn, define BΩ ∈ NS |Ω| (up to PH-equivalence) as follows. Delete from
B the columns whose index is not in Ω (thus, if 1 6∈ Ω, delete the first column of B) to create
an n × |Ω| matrix, each of whose columns has content one. The rank of the resulting matrix is
exactly |Ω|, since the set of columns of B was linearly independent to start with. By applying
elementary (integer) row operations to B with columns deleted, we can obtain a matrix of the

form
(

C

0

)
where C is square of size Ω. Since elementary row operations preserve the content of

columns, C ∈ NS |Ω|. All choices for such C are Hermite- (and therefore PHermite-) equivalent
(within NS |Ω|). We choose one, and call it BΩ.

An alternative approach (leading to the same thing) is to consider the PH-equivalence class
of B as a means of studying the row space of B, r(B) ⊂ Zn, up to the restriction of the action of
the permutation matrices acting on the right (that is, as column permutations). When we delete
the columns not corresponding to elements of Ω and take the row space of the resulting matrix,
and use that to define r(BΩ), without defining BΩ(!).

If Ω = S, then BΩ = B. If Ω consists of a singleton, then the resulting column, being
unimodular, row-reduces to the first (or any) standard basis element of Zn×1, and thus BΩ = (1),
the size one identity matrix.

Define, for each i = 1, 2, . . . , n, the subset Ω(i) = S \ {i}.
If Ω′ ⊂ Ω, let PΩ′,Ω : Z1×Ω → Z1×Ω′

, and PΩ : Z1×n → Z1×Ω be the obvious projection maps
(sometimes we will rewrite the last as ZΩ). Then PΩ(r(B)) = r(BΩ) (and similarly for PΩ′,Ω), thus
inducing the well-defined, onto group homomorphisms pΩ : J(B) → J(BΩ) and pΩ′,Ω : J(BΩ) →
J(BΩ′). It is routine to verify that the maps are transitive (that is, if Ω′′ ⊂ Ω′ ⊂ Ω, then
pΩ′′,Ω′ ◦ pΩ′,Ω = pΩ′′,Ω). In case there is ambiguity about which B they are referring to, we will
occasionally use pBΩ .

Now suppose that B and B′ belong to NSn, and there is a PH-equivalence between them.
Then we claim this implies that there exists a permutation of S together with a compatible family
of group isomorphisms J(BΩ) → J(BπΩ). This is trivial: if we apply an element of GL(n,Z),
the row space is unchanged, and we obtain the identity maps. If we permute columns, π is the
corresponding permutation, etc. We thus see that not only is J(B) a PH-equivalence, but so is (for
example), the set of maps J(B)→ J(BΩ) where we restrict the Ωs to have the same cardinality.

The lattice of maps and quotient groups pΩ′,Ω : J(BΩ)→ J(BΩ′) will be denoted J (B). This
is a fairly strong invariant, as we will see later, but it is also somewhat more difficult to calculate
(except in special cases), compared to the list [[J(B)Ω]]|Ω|=n−1.

LEMMA 3.1 The lattice of finite abelian groups and homomomorphisms, J (B), is a
PH-invariant for matrices B in NSn. If k ≤ n, then the list [[J(BΩ)]]|Ω|=k is also a PH-
invariant.

When we put k = n − 1, we obtain the list of n groups [[J(BΩ(i))]]. This contains a lot of
information (although generally less than J (B)).

Originally, the intent of developing J(BΩ) was to find a finer invariant that J(Bop): even
together with |detBop| (another PH-invariant) J(B) does not determine the family {J((Bop)Ω)},
or
{
J((Bop)Ω(i))

}
. More interestingly, those Ω for which J(BΩ) = {0} play a particularly important

role. For example, we will see there exists Ω of cardinality r such that J(BΩ) = {0} iff B is PH-
equivalent to a terminal form whose 1-block size is at least r. This is practically tautological, but
provides a useful way of constructing interesting examples.

We also have a second family of PH-invariants, specifically, J (Bop). In general (BΩ)
op is

not PH-equivalent to (Bop)Ω, nor need they yield isomorphic invariants. So we have to be careful
with respect to the notation, that is, construct the opposite, Bop, first, then the cut-down matrices,
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(Bop)Ω. However, I could not decide whether (J((Bop)Ω))Ω∈2S is determined by (J(BΩ))Ω∈2S , that
is, whether for B,B′ ∈ NSn, such that (J(BΩ)) ∼= (J(B′

Ω)) (as a family, that is, J (B) ∼= J (B′)
implies J (Bop) ∼= J (B′op)). This will discussed in more detail in section 6.

Recall that r(B) frequently denote Z1×nB, re-inforcing the idea that it is the subgroup of
Z1×n generated by the rows of B.

LEMMA 3.2 Suppose that B ∈ NSn. Then ker pΩ is spanned by {Ej + r(B)}i/∈Ω.

Proof. Obviously PΩ)(Ej) is zero if j /∈ E, so that Ej + r(B) ∈ ker pΩ for all j /∈ Ω.

Suppose for v ∈ Zn that PΩ(v) ∈ r(BΩ). Then there exist ai ∈ Z and corresponding rows ri
of B such that PΩ(v)−

∑
aiPΩ(ri) = 0. Thus the only nonzero entries of w := v−∑ airi can only

appear in position j where j 6∈ Ω. We can thus write w =
∑

Ωc bjEj , and so v ∈ r(B) +
∑

Ωc EjZ.
•

COROLLARY 3.3 If Ω′ ⊂ Ω, then ker pΩ′,Ω is spanned by
{
Ej + r(B) +

∑
i∈ΩEiZ

}
j∈Ω\Ω′ .

Proof. One inclusion is obvious; for the other, suppose that pΩ′,Ω(v + ker pΩ) = 0. Then pΩ′(v +
r(B)) = 0. Hence by the preceding, there exist integers ai and bj (j /∈ Ω′) such that a−∑ airi =∑

j∈Ω′c bjEj . If j 6∈ Ω, then Ej + r(B) ∈ ker pΩ; thus the right side decomposes as
∑

j∈Ω\Ω′ bjEj

plus an element of ker pΩ. •
As a consequence, if Ω′ ⊂ Ω and J(BΩ′) is generated (as an abelian group, or as a Zd-module)

by k elements, then J(BΩ) has a generating set of cardinality at most k + |Ω| − |Ω′|.
As usual, Sn will denote the full permutation group on S = {1, 2, . . . , n}; sometimes this will

be identified with Pn, the group of n× n permutation matrices.

PROPOSITION 3.4 Let B, B′ belong to NSn. Necessary and sufficient for J (B) ∼= J (B′)

is the following condition:
there exist π ∈ Sn and an isomorphism φ : J(B)→ J(B′) such that for all i, φ(ker pBΩ(i)) =

ker pB
′

Ω(πi).

Proof. Necessity is obvious, so let us prove sufficiency. Let d be exponent of J(B) (which by the
isomorphism, is also the exponent of J(B′). If P is the permutation matrix representing π−1, then
we can replace B′ by B′P , and thus assume that π is the identity.

By the preceding characterization of ker pΩ, for any i, we obtain φ(〈Ei+r(B)〉) = φ(ker pBΩ(i)) =

ker pB
′

Ω(i) = 〈Ei + r(B′)〉. Hence for any proper subset Ω, φ (〈Ei + r(B)〉i 6∈Ω) = 〈Ei + r(B′)〉i 6∈Ω.

By the preceding proposition, φ(ker pBΩ ) = ker pB
′

Ω . Then we define the map φΩ : J(BΩ) → J(B′
Ω)

in the obvious way, v+ r(B) +
∑

i/∈ΩEiZ 7→ φ
(
v + r(B′) +

∑
i/∈ΩEiZ

)
; this is well defined by the

preceding sentence, and is an isomorphism. Thus the following diagram commutes.

J(B)
φ
✲ J(B′)

J(BΩ)

pBΩ

❄ φΩ
✲ J(B′

Ω)

pB
′

Ω

❄

If Ω′ ⊂ Ω, then from PΩ′,Ω ◦ PΩ = PΩ′ , the corresponding diagram with BΩ replaced by BΩ′

and B replaced by BΩ also commutes. Hence φ induces an isomorphism of lattices of quotient
groups, J (B) ∼= J (B′). •
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COROLLARY 3.5 Suppose B,B′ ∈ NSn and J(B) is cyclic. Sufficient for J (B) ∼= J (B′) is
that J(B) ∼= J(B′) and there exist π ∈ Sn such that for all Ω, |J(BΩ)| = |J(B′

πΩ)|.
Proof. Any quotient of J(B) (and therefore of J(B′) is cyclic and therefore their cardinality
determines uniquely their isomorphism class (so that J(BΩ) ∼= J(B′

πΩ) and the kernel (as cyclic
groups have at most one subgroup of given cardinality). Now the preceding proposition applies. •

Particularly useful are the J(BΩ(i)) (recall that Ω(i) = S \ {i}, the subset of {1, 2, . . . , n}
missing only i). We define NSn,m to consist of the elements B ∈ NSn which have a terminal form
with 1-block of size at least m. Thus NSn,n−1 consists of elements of GL(n,Z) (trivially, these
have 1-block size n) and those B ∈ NSn with a terminal form having 1-block of size n− 1.

A matrix B ∈ NSn is decomposable if it is PH-equivalent to a direct sum of matrices in NS ,
and indecomposable otherwise. it is weakly indecomposable if it is not PH-equivalent to a matrix
of the form 1⊕ C where C ∈ Mn−1Z (if such C exists, it is necessarily in NSn−1).

LEMMA 3.6 Suppose that B ∈ NSn.
(a) B ∈ NSn,m iff there exists Ω ⊂ 2S with |Ω| = m and J(BΩ) = 0.
(b) B ∈ NSn,n−1 iff there exists i such that J(BΩ(i)) = 0.
(c) B is weakly indecomposable iff for all i = 1, 2, . . . , n, the kernel of pΩ(i) : J(B) →

J(BΩ(i)) is not zero.

Proof. (a) If such an Ω exists, the set of Ω-truncated rows of B contain a Z-basis for ZΩ; by

rearranging the rows of B, we can assume that the top |Ω| rows of B, (B(i))
|Ω|
i=1, satisfy (PΩ(B(i)))

is a basis for ZΩ. By permuting the columns, we can also assume that Ω = {1, 2, . . . , |Ω|}. Then
the upper left |Ω|×|Ω| corner of the current B belongs to GL(|Ω|,Z) (since the rows form a Z-basis
for ZΩ). Hence there exists E ∈ GL(n,Z) of the form E = F ⊕ IΩc with F ∈ GL(|Ω|,Z) such

that EB =
(

I|Ω| X

Y Z

)
. The obvious row operations allow us to reduce to the case that Y = 0.

Now we can apply the procedure of [TSCS] to put Z itself in terminal form. There is nothing to
prevent additional 1s from appearing, so when we proceed to fix X (by appling row operations
corresponding to the rows of the new Z) so that the n× n matrix is in terminal form, the identity
block size may have become larger. The resulting matrix is a terminal form with 1-block size at
least |Ω|.

If B has a terminal form C =
(

I|Ω| X

0 Z

)
, then with Ω = {1, 2, . . . , |Ω|}, we have CΩ consists

of the first Ω standard basis elements as columns, hence J(CΩ) = 0. Since B is PH-equivalent
to C, there exists Ω′ (obtained from a permutation in Sn, hence of equal cardinality) such that
J(BΩ′) = 0.
(b) Apply (a) to subsets consisting of n− 1 elements.

(c) If B is PH-equivalent to 1 ⊕ C, then ker pCΩ(1) is spanned by the image of the standard basis

element E1; but this already belongs to r(C), so the kernel is zero. Conversely, suppose ker pBΩ(i) =

0. Then Ei ∈ r(B) (by 3.2 above); applying the obvious row operations to eliminate all the other
nonzero entries in the ith column, and then rearranging the columns (moving the ith column to
the first), we see that the resulting matrix is a direct sum. •

EXAMPLES 3.7 Matrices B ∈ NS3 (NS4) such that J(B) is cyclic, but neither B nor Bop

has a size two (respectively, three) 1-block terminal form.

(i) Let

B =




1 1 8
0 2 6
0 0 15


 ; B−1 =




1 − 1
2
− 1

3
0 − 1

2 − 1
5

0 0 1
15


 .

23



As detB = 30 is square-free, Z3/Z3B is cyclic. It is easy to check that the list of J(BΩ(i)) is
[[Z5,Z3,Z2]], so B has no size two 1-block terminal forms by 3.6(b).

From the inverse, we see that the [[m(i)]] = [[6, 10, 15]] (the smallest positive integer to make
the corresponding row integral), and thus

Bop =




6 0 0
−3 5 0
−2 −2 1


 .

Thus detBop = 30, so again Z3/Z3Bop = Z30. It is straightforward to verify [[J((Bop)Ω(i))]] is
[[Z5,Z3,Z2]] (again); since none of them are zero, Bop has no size two 1-block terminal forms.
(ii) A different type of example arises from decomposable matrices. Recall that B ∈ NSn is
decomposable if there exists a matrix B′ = A ⊕ C ∈ NSn that is PH-equivalent to B (from the
fact that B′ ∈ NSn, it follows easily that both A and C belong to their corresponding NSj).

Set A =
(

1 1

0 3

)
and C =

(
1 1

0 5

)
, and define B = A ⊕ C. Each of A and C belong to NS2, so

B ∈ NS4. Moreover, Bop = Aop ⊕ Cop, so detB = detBop = 15. The latter being square-free,
both J(B) and J(Bop) are cyclic.

However, for any i, J(BΩ(i)) has a direct summand which is one of A or B (this is true for any
direct sum); in this case, both A and B are not invertible, so J(A) and J(B) are both nonzero.
Thus J(BΩ(i)) is not zero for any i, so B 6∈ NS4,3, and similarly, Bop /∈ NS4,3 by 3.6(b). •

Now we want to address the near-ubiquity of matrices some but not all of whose terminal
forms have 1-block size n − 1. A useful PH-equivalence tool (found in [AALPT]) is that C and
C ′ are PH-equivalent (via the permutation matrix P or its inverse) iff C ′PC−1 has only integer
entries. We use this frequently, without further comment.

Let B denote the n × n integer matrix
(

In−1 a

0 d

)
, with d > 1, where a = (a1, . . . , an−1)

T ∈
Z(n−1)×1, and assume B is in terminal form. Thus cont {a, d} = 1 and 0 ≤ ai < d.

Now let n − 1 > r > 1 be an integer, and dr+1, . . . , dn be integers exceeding 1 such that

d =
∏
dj . Form the matrix C =

(
I r X

0 diag (dr+1,...,dn)

)
; also assume that C ∈ NS , so that the

content of any column is one. Here X ∈ Zr×(n−r).
Let P be a permutation matrix. We want to establish conditions (in terms of all the variables)

so that UB = CP for some U ∈ GL(n,Z). Since detB 6= 0, B−1 exists as an element of MnQ, and
so existence of such a U implies CPB−1 ∈ MnZ; but this is also sufficient as |detCPB−1| = 1.
As B−1 is particularly easy to calculate, the conditions are not difficult to obtain.

Let π denote the permutation corresponding to the action of P on the right; that is, if right
multiplication sends the ith column to the jth column, then π(i) = j. We have (zeros are omitted)

U0 := CPB−1 =
1

d




I r X
dr+1

dr+2

. . .

dn



P




d −a1
d −a2

. . .
...

d −an−1

1



.

Let S ⊂ {1, 2, . . . , n} be the image of {1, 2, . . . , r} under π, and T its complement. First, we must
have n ∈ S. If not, say n = π(k) (with k > r), then the kth row of CP is just (0 0 0 . . . 0 dk).
Thus the kn entry of the product is dk/d, which by hypothesis is not an integer. Thus n ∈ S.

We calculate the kn entry of the product for where k > r; set t = π(k). By the preceding,
t 6= n. The kth row of CP is dkEt (where Ei are the standard basis elements of Z1×n). Thus the
kn entry is −dkat/d. We deduce the following
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(1) for all t ∈ T , d/dπ−1(t) divides at.
Now we calculate the ln entries of the product for l ≤ r; the crucial case is m = π−1(n). The

mth row of CP has 1 as its final entry, zeros in the entries corresponding to S, and various xs
(entries of X, too complicated to establish a notation for) in the entries corresponding to T . Then
the mn entry of dU0 is −∑t∈T xm,π−1(t)at + 1, so this expression is divisible by d. This yields

(2) gcd
{
{at}t∈T ∪ {d}

}
= 1.

It also yields a corresponding condition on the mth row of X.
For l 6= m, the condition is a let-down. In this case, the lth row of CP has a one in the π(l) 6= n

position and various xs located in coordinates corresponding to T (which does not include n). This
yields that −aπ(l) +

∑
xl,tat is divisible by d. So we obtain the additional (semi-) condition.

(21/2) every as (for s ∈ S \ {n} is an additive combination of {at}t∈T modulo d.
Suppose a is given, and we want to decide whether C and P exist so that with CPB−1 is

an integer matrix. Then conditions (1), (2) are necessary, and (21/2) is a consequence of (2).
Moreover, conditions (1) and (2) imply something drastic about the dis, namely that they must
be mutually coprime (that is, gcd {di, dj} = 1 if i 6= j).

To see this, from (1), we may write at = ht(d/dπ−1(t)), which we can rewrite as a product of
all the dis with dπ−1(t) replaced by ht. If p is a prime dividing both di and dj (with i 6= j), then
it obviously divides all the at, contradicting (2). We also see that each ht is relatively prime to
dπ−1(t) (for the same reason). The fact that B is reduced entails ht < dπ−1(t) as well, although this
does not seem useful.

Hence dis are mutually coprime. In particular, if d has exactly f distinct prime divisors, then
n − r ≤ f (no prime can divide two of the dis); when d is a power of single prime, this gives an
alternative but much more tedious proof of Lemma 1.8, that the 1-block size is constant on terminal
forms PH-equivalent to B. This means that if we write d =

∏
pm(p) in its prime decomposition,

the only factorizations permitted here are those with such that for all i, and all p dividing d, we
must have either p does not divide di or pm(p) does, and in the latter case, p cannot divide the
other djs.

Now suppose that d and a, the partition S∪̇T , etc satisfy the necessary conditions (1) and
(2) (and their consequences) with corresponding factorization and indexing d =

∏
i>r di. Then we

can pick X (r = |S| is already determined) and P so as to construct the corresponding C. This is
straightforward.

As a consequence, we have the following result about non-stability of 1-block sizes.

PROPOSITION 3.8 Let d be a positive integer, and n > 2. Suppose B belonging to NSn
and with |detB| = d has the property that every terminal form has 1-block size n − 1.
Then d is a power of a prime.

In contrast, we have the following sufficient conditions to have a 1-block of size n− 1.

LEMMA 3.9 Let n ≥ 3. Suppose that B ∈ NSn, and let p, q be distinct primes.
(i) If B is PH-indecomposable and |detB| = pq, then B ∈ NSn,n−1;
(ii) If B is PH-indecomposable, |detB| = pr where r ≥ 1, and J(B) is cyclic, then B ∈

NSn,n−1.

(iii) If n = 3, J(B) is cyclic, and |detB| = paqb for some a, b ∈ N, then B ∈ NS3,2.
Remark. These results do not contradict 3.8, since these say only that at least one terminal form
has 1-block size n− 1.

Proof. Suppose n ≥ 4 and |detB| = pq. We may assume that B is in terminal form; if the form

does not already have 1-block size n− 1, then its terminal form is
(

In−1 X

0 diag (p,q)

)
(up to possible

transposition of the primes). Label the two columns of X, Y and Z. Each column consists of zeros
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and numbers between 1 and p − 1 (respectively, between 1 and q − 1). Set S = {j | Yj 6= 0} and
T = {l | Zl 6= 0}. If S ∩ T is empty, then up to a permutation of the indices, the terminal form
is a direct sum of matrices, contradicting PH-indecomposability. Hence we may select k ∈ S ∩ T .
Then J(BΩ(j)) is a quotient of Z2/〈(p, 0), (0, q), (Xk, Yk)〉, and the relative primeness (Yk to q, Xk

to p) yields that this is zero. Hence J(BΩ(j)) = 0, so B ∈ NSn,n−1.

(ii) Write B =
(

In−k X

0 D

)
in terminal form with D being k×k upper triangular and having nontrivial

powers of p along its diagonal, the powers appearing in increasing order of size. Suppose k > 1 (if

k = 1, then B already has 1-block size n− 1). The lower right 2× 2 block is of the form
(

pa x

0 pb

)
,

where a ≤ b, and if x 6= 0, then pa ≤ (pb, x). In the latter case, pa divides x.

Now the image of En + r(B) (as an element of J(B)) is easily seen (from the upper triangular
form) to be of order exactly pb, and thus z := pb−1En + r(B) has order p. Similarly En−1 +
(x/pa)En + r(B) has order exactly pa in J(B), and thus y := pa−1En−1 + (x/p)En has order p as
well.

Since J(B) is cyclic, there is at most one subgroup of each order, and thus there exists v
relatively prime to p such that y − vz ∈ r(B). But this is impossible, as easily follows from the
form of D.

If instead, x = 0, then we set y = En−1, and deduce the same conclusion. Hence k = 1.

(iii) Suppose n = 3 and detB = prqs. Put B in terminal form; if it does not have a 1-block of size
two, then

B =




1 a b
0 c d
0 0 f


 ,

where (a, p) = 1, cont(b, d, f) = 1, cf = prqs, and c ≤ (d, f). We will show that BΩ(1) = (0); this
implies that B ∈ NS3,2. Sufficient is that cont(ad− bc, cf, af) = 1. Without loss of generality, we
may relabel the primes so that q|f .

If d = 0, then J(B) ∼= Zc ⊕ Zf ; the latter being cyclic entails that (c, f) = 1, which forces
c = pr, d = qs. Then (ad− bc, f) = (bpr, qs); since p 6= q, and (b, q) = 1, we have (ad− bc, f) = 1.
Also, cont(ad− bc, c, a) = cont(bpr, pr, a) = 1, so cont(ad− bc, cf, af) = 1.

If d 6= 0, then (d, f) ≥ c > 1. We may interchange p and q if necessary, and thus assume
that q|(d, f). If q|c as well, is routine to see that J(B) cannot be cyclic (since q would divide all

the entries of
(

a d

0 f

)
). Hence c = pt for some 1 ≤ t ≤ r. Since the content of the third column is

one, we must have (b, q) = 1. Then (ad− bc, q) = (bc, q) = 1. It remains to show that if p|f , then
(ad− bc, p) = 1.

If p does not divide d, then (ad− bc, p) = (ad, p) = 1.

Hence we may assume that p|d. Then p cannot divide f , as then it would divide all the entries

of
(

a d

0 f

)
, which contradicts cyclicity of J(B). Thus f can only be a power of q, so c = pr and

f = qs. Hence p does not divide f , and we are done. •
Example 3.7(i) shows that (i) can fail if |detB| is a product of three distinct primes. If we

try to generalize 3.8(i) by assuming |detB| = p2q, B is PH-indecomposable, and J(B) cyclic, the
result fails already at n = 4: require q < p, and set

B =




1 0 0 1
0 1 1 p
0 0 q p
0 0 0 p2



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Then B ∈ NS4 and is in terminal form. Since gcd(p, q) = 1, there exists U ∈ GL(2,Z) such that

(q p)U = (1 0), and since absolute determinant are preserved,
(

q p

0 p2

)
U =

(
1 0

x ±p2q

)
. It follows

that J(B) is cyclic of order p2q.

It is also routine to calculate [[BΩ(i)]] = [[Zq,Zp,Zp,Zq]]. Since none of them are zero, B 6∈
NS4,3 (3.6(b)). If B were equivalent to A ⊕ C and both A and C have determinants bigger than
1, then two of the four in the list would have to have direct summands isomorphic to J(A) and
the other two would have direct summands isomorphic to J(B). This would force J(A) ∼= Zp and
J(B) ∼= Zq (or vice versa), entailing |detB| = pq, a contradiction. The only remaining possibility
is that B is PH-equivalent to a matrix of the form 1⊕C where C ∈ NS3—but this is excluded by
the fact that none of the kernels of pΩ(i) are trivial (3.6(c)).

Now we can obtain some results about relations between J(B) and J(Bop). Let πB : J(∆)→
J(B) and πBop : J(∆)→ J(Bop) be the respective onto maps in the two short exact sequences; these
are given by v+r(∆) 7→ v+r(B) and v+r(∆) 7→ J(Bop) respectively. Then Ei+r(∆) 7→ Ei+r(B)
and to Ei + r(Bop) (via πBop). It follows from 3.1 that πB(ker p

∆
Ω(i)) = ker pBΩ(i), and the same

with Bop replacing B. We claim that ker pBΩ(i), ker p
Bop

Ω(i), and Zm(Z)
∼= ker p∆Ω(i) are isomorphic to

each other.
Since πB restricts to an onto map from ker p∆Ω to ker pBΩ(i), it suffices to show the map is one

to one. If for some positive integer t, tEi + r(∆) maps to zero (under πB), then tEi ∈ r(B), i.e.,
tEi = wB for some w ∈ Z1×n. From the original definition of m(i), we must have m(i) divides t.
Hence the restriction of πB is an isomorphism. The same applies with Bop replacing B. Thus we
have the following.

LEMMA 3.10 Let B ∈ NSn. For each i, ker pBΩ(i) and ker pB
op

Ω(i) are cyclic of order m(i), the
isomorphism ker p∆Ω(i) → ker pBΩ(i) being induced by the restriction of πB.

COROLLARY 3.11 Let B ∈ NSn. Then
(a) m(i) = |J(B)|/|J(BΩ(i))| = |J(Bop)|/|J((Bop)Ω(i))|;
(b) |detBop| = | detB)|n−1∏

n

i=1
|J(BΩ(i))|

;

(c) |J((Bop)Ω(i))| = | detB|n−1

m(i)·
∏

n

i=1
|J(BΩ(i))|

.

Proof. Part (a) is an immediate consequence of Lemma 3.10. For (b), we have
∏

i

(
|J(B)|/|J(BΩ(i))|

)
=∏

m(i); the latter is det∆ = |J(B)| · |J(Bop)|, and now we can solve for |J(Bop)| = |detB|. Part
(c) is a consequence of (a) and (b). •

Corollary 3.11(a) entails that ∆ = diag (|J(B)|/|J(BΩ(i))|), so is determined by J(B) and
J(BΩ(i))a small fragment of J (B). However, it is difficult to see how to obtain the embedding (up
to equivalence) J(B)→ J(∆) from J (B).

Parts (b) and (c) imply that |J(Bop)| and the |J((Bop)Ω(i))| are determined by |J(B)| and
the |J(BΩ(i))|; see the discussion in section 6 concerning the Duality conjecture.

There is a form stronger than m(i) = |J(B)|/|J(BΩ(i))|. Identify, as usual, J(B) with
r(Bop)/r(∆). We define ∆Ω(i) to be the square matrix with ith row and column deleted, and
of course, J(∆Ω(i)) is ⊕j 6=iZm(j)).

COROLLARY 3.12 For each i = 1, 2, . . . , n there are short exact sequences 0 → J(B) →
J(∆Ω(i))→ J((Bop)Ω(i))→ 0 and 0→ J(Bop)→ J(∆Ω(i))→ J(BΩ(i))→ 0.

Proof. Let π : J(∆)→ J(Bop) be the quotient map in the original short exact sequence. We have
seen that π maps ker p∆Ω(i) isomorphically onto ker pB

op

Ω(i). This allows us to define π : J(∆Ω(i)) →
J((Bop)Ω(i)), via π; explicitly, v + r(∆) +EiZ 7→ v + r(Bop) + EiZ.
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Now consider r(Bop)/r(∆), the kernel of π. We claim that r(Bop) ∩ EiZ ⊆ r(∆). Pick
wBop = tEi+v∆; writing ∆ = BTBop, we have (w−vBT )Bop = tEiZ. From the original definition
ofm(i), we must havem(i) divides t. Sincem(i)Ei ∈ r(∆), we have that r(B)/r(∆) misses ker p∆Ω(i).

Thus the composed map r(Bop)/r(∆)→ J(∆)→ J(∆Ω(i)) is one to one, and clearly contained in
the kernel of π. Since |r(B)/r(∆)| = |J(Bop)| and |J(Bop)| · |J(B)| = |det∆|/m(i) = det∆Ω(i),
the sequence 0→ r(B)/r(∆)→ J(∆Ω(i))→ J(Bop)Ω(i))→ 0 must be exact.

The other sequence comes from interchanging B with Bop. •
Let Ω ⊂ 2S and j 6∈ Ω. There are natural onto homomorphisms J(∆Ω\{j}) → J((Bop)Ω)

and J(∆Ω\{j}) → J(BΩ); but it is very difficult to relate their kernels to obvious invariants of B
and Bop respectively. It is not clear (but likely true) that there are exact sequences J(BΩ(i)) →
J(∆Ω(i))→ J(Bop) or J(BΩ(i))→ J(∆Ω(i,j))→ J(Bop)Ω(j)) for all i 6= j.

4 Size n 1-block

In this section, we deal with B ∈ NSn such that B has a terminal form with 1-block size n; we
write this as B ∈ NSn,n−1. Computations are relatively tractible, and lead to conjectures for
general B in NSn, that can be proved in our restricted case. We will see in subsequent sections
that the density of NSn,n−1 in NSn approaches approximately .845 as n→∞ (already at n = 6,
the density exceeds .8), so that this special cases covers a large proportion of matrices.

In addition, computations are also easy in the case that Bop ∈ NSn,n−1. The density (or even
whether it exists) of NSn,n−1 ∪ NSopn,n−1 in NSn is not known, but I speculate that it exists and
is at least .99.

Perhaps the most important reason for studying this special class is that it is easier to formulate
and verify conjectures than in the general case. Results 1.7, 3.3, and 3.11 were obtained first for
matrices in NSn,n−1, suggesting their validity in general. (Of course, not everything extends in
this fashion!)

Let B =
(

I n a

0 d

)
where a = (a1, a2, . . . , an−1)

T ∈ Zn−1, d is a positive integer exceeding one,

cont(d, a) = 1, and the entries of a are ordered so that gcd(d, ai) are monotone decreasing. We
call this a standard form for C ∈ NSn,n−1 if C is PH-equivalent to B in this form. There can be
several standard forms, arising from the column entries being permuted.

Standard forms are terminal, and every C ∈ NSn,n−1 is PH-equivalent to one in standard

form. To arrange the latter, from the definition, there is a matrix of the form B′ =
(

I n a′

0 d

)

PH-equivalent to C, which is almost in standard form, the only obstruction being that the entries
of a′ need not be ordered. However, we can conjugate B′ by any permutation matrix of the form
Q = P ⊕ {1} (where P is a permutation matrix of size n − 1). Then Q−1B′Q is still in terminal
form, but the a′ entries have been permuted (according to the permutation induced by Q).

PROPOSITION 4.1 Suppose that B =
(

I n−1 a

0 d

)
∈ NSn,n−1 is in standard form. Then

Bop =




D 0n−1

−a1

(d,a1)
−a2

(d,a2)
. . . −an−1

(d,an−1)
1


 and is PH-equivalent to




1 −a1

(d,a1)
. . . −an−1

(d,an−1)

0n−1 D


 ,

where D = diag
(

d
(d,ai)

)
∈ Mn−1Z. The matrix on the right is in terminal form, and

m(i) = d/(d, ai).
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Proof. As B−1 =
(

In−1 −a/d

0 1/d

)
, we see that m(i) = d/(d, ai), and B

op = (∆B−1)T . Conjugating

with the obvious cyclic permutation puts it into the indicated form. It is in terminal form, since
(d/(d, ai)) is increasing. •

LEMMA 4.2 Let B =
(

I n−1 a

0 d

)
be in terminal form, with a = (a1, . . . , an−1)

T . Then

(i) J(B) ∼= Zd and J(Bop) ∼= ⊕n−1
i=1 Zd/(ai,d);

(ii) if n ∈ Ω, then J(BΩ) ∼= Zgcd(d,cont(ai;i∈Ω)), and if n 6∈ Ω, J(BΩ) = {0};
(iii) if n ∈ Ω, then J((Bop)Ω) ∼= ⊕i∈Ω\{n}Zd/(ai,d), and if n 6∈ Ω, then J(Bop)Ω) is isomorphic

to any quotient of ⊕i∈Ω\{n}Zd/(ai,d) by a cyclic subgroup of order lcm{d/(ai, d) | i ∈ Ω}.

COROLLARY 4.3 Suppose C ∈ NSn,n−1 and is PH-equivalent to B in standard form with
determinant d. Then
(i) J(BΩ) = 0 if n 6∈ Ω, and otherwise, J(BΩ) ∼= Zcont({ai}i∈Ω∪{d});

(ii) J(Bop) ∼= ⊕Zd/(d,ai) and J((Bop)Ω) ∼= ⊕i∈ΩZd/(d,aj) if 1 ∈ Ω; J((Bop)Ω(1)) ∼= J(Bop)/A

where A is cyclic of order equalling d.

Proof. All the computations easily follow from the forms in the previous result, together with
Exp J(Bop) = Exp J(B) = d. •

As a consequence of this and 3.5, for all B ∈ NSn,n−1, the lattice J (B) determines J (Bop).
Whether this is true for all B ∈ NSn is unknown (this is the duality conjecture of section 6.

A special case arises when all J(BΩ(i)) = 0. This implies J(BΩ) = 0 for all proper Ω ⊂ S, and
occurs iff (ai, d) = 1 for all i. Other special cases will be addressed in section 5.

COROLLARY 4.4 Suppose that B ∈ NSn has absolute determinant d. Then J(BΩ(i)) = 0

for all i if and only if, in one (or all) of its standard forms, all ai are relatively prime to
d. When this occurs, J((Bop)Ω) ∼= Z

|Ω|−1
d .

Proof. Since one of J(BΩ(i)) is zero, B ∈ NSn,n−1, and so we can assume B is in standard form.
Then (i) of the preceding, with Ω = Ω(i) yields (ai, d) = 1 for all i. The converse is trivial. The
rest follows from 4.3(ii). •

Recall what it means for B ∈ NSn to super-split (end of section 1).

LEMMA 4.5 Suppose B =
(

In−1 a

0 d

)
∈ NSn,n−1 where a = (ai)

T ∈ Z1×(n−1)

(i) Sufficient for B to super-split is that 1 +
∑
a2i /(d, ai) be relatively prime to d.

(ii) If all ai are relatively prime to d, then the condition in (i) is also necessary for B to
super-split.

Remark. It is probably true that the condition (d, ai) = 1 is unnecessary.

Proof. Necessary and sufficient for Z1×nB + Z1×nBop = Z1×n is that the same hold modulo d,
since r(∆) ⊆ r(B) ∩ r(Bop). Necessary and sufficient for this to occur is that the set of all n× n
determinants obtained from the 2n rows of

(
B

Bop

)
has content relatively prime to d. If we take

the first n− 1 rows of B and the bottom row of Bop, we obtain the matrix

C =

(
I n−1 a

− a1

(d,a1)
, . . . ,− an−1

(d,an−1)
1

)
.

The determinant of this is 1 +
∑
a2i /(d, ai). This yields (i).

When (ai, d) = 1 for all i, modulo d, the only nonzero row of Bop is the bottom one, and it
is simply (−aT , 1). Modulo d, the bottom row of B is zero—so the only combination of rows to
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give a nonzero determinant (modulo d) consists of the top n− 1 rows of B with the bottom row of
Bop, which is the matrix C. Super-splitting thus implies (detC, d) = 1, proving (ii).

It is of interest to give criteria for both B and Bop to belong to NSn,n−1. These will be used
when we determine when J (B) ∼= J (Bop) and the stronger property that B be PH-equivalent to
Bop.

COROLLARY 4.6 Let B ∈ NSn. The following are equivalent.
(a) J(B) and J(Bop) are cyclic;
(b) ⊕Zm(i)

∼= Z2
d for some d > 1.

Proof. (a) implies (b). Set d = Exp J(B) = Exp J(Bop); the groups being cyclic, they are cyclic
of order d. By 1.13, the sequence J(B)→ ⊕Zm(i) → J(Bop) splits.

(b) implies (a). Since Exp ⊕ Zm(i) = d, we have Exp J(B) = Exp J(Bop) = d. From
∣∣⊕Zm(i)

∣∣ =
|J(B)| · |J(Bop)|; as the exponent of a group is at most the order, we deduce |J(B)| = |J(Bop)| = d;
since the exponents equal the order, the groups are cyclic. •

The following is an obvious consequence of the preceding.

COROLLARY 4.7 Suppose that B ∈ NSn,n−1, and has determinant of absolute value d.
The following are equivalent.
(i) Bop ∈ NSn,n−1;
(ii) J(Bop) is cyclic;
(iii) |detBop| = |detB|;
(iv) ⊕Zm(i)

∼= Z2
d;

(v) in (a) standard form, gcd(d/(d, ai), d/(d, aj)) = 1 for all i 6= j.

5 Dual-conjugacy and dual-compatibility

When is J (B) ∼= J (Bop) (as lattices of groups), or the stronger condition, B is PH-equivalent to
Bop? An obvious way to obtain such examples (of the stronger property) is to take B = C ⊕ Cop

(since, as is evident from 1.6 or otherwise, (A ⊕ A′)op = Aop ⊕ (A′)op). To avoid such trivial
examples, we recall notions of indecomposability, applied to subgroups of Z1×n, not just to matrices.

Let H ⊂ Zn be a subgroup of H of full rank, and for which there exists no m > 1 such that
H ⊂ mZn (this corresponds to the content one condition of all the columns in the corresponding
matrix). As usual, let S = {1, 2, . . . , n}. We say that H ⊂ Zn is decomposable if there exists a
proper subset T ⊂ S such that H = H1 ⊕H2 where H1 × {0} ⊂ ZT × {0}, H2 ⊂ {0} ×ZS\T , and
neither H1 nor H2 is contained in any mZn for m > 1. As defined, this is clearly a PH-invariant
property. If H ⊂ Zn is not decomposable, then it is indecomposable.

If we translate this back to square matrices (with H = r(B)), then B ∈ NSn is (PH)-
indecomposable iff the corresponding subgroup is indecomposable. The same applies to weak
indecomposability.

So we look for PH-indecomposable B ∈ NSn such that either J (B) ∼= J (Bop) [B is dual-
compatible] or B is PH-equivalent to Bop [B is dual-conjugate]. With indecomposability and
1-block size n− 1, the first property is fairly drastic; the second property is even more drastic.

We make an obvious comment about the ordered n-tuple (not merely the list, with which we
have been dealing up to now) (J(BΩ(i))

n
i=1). Suppose B,C ∈ NSn, and B is PH-equivalent to C.

Thus there exists a permutation matrix P and U ∈ GL(n,Z) such that B = UCP . The invertible
matrix U has no effect on the subgroups spanned by subsets of the columns of CP . Let π be
the permutation induced by U , extended in the obvious way to subsets of S. We must have, for
all Ω, J(BΩ) = J((CP )Ω) = ZΩπ−1

/ZΩπ−1

CΩπ−1 . If we specialize to Ω(i) := S \ {i}, we have
J(BΩ(i)) ∼= J(CΩ(iπ−1)).
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In particular, if J(BΩ(i)) are distinct (meaning, mutually nonisomorphic), then π is uniquely
determined, and thus P is uniquely determined—so we know exactly which P to use (this can also
be extended to the permutation action on J (B), but we never use use this), and thus if B is PH-
equivalent to C, then the P is uniquely determined (by the n−1-tuples of abelian groups (J(BΩ(i)))
and (J(CΩ(i)))). Thus to show PH-equivalence, it is necessary and sufficient that CPB−1 have
only integer entries.

In the special case that P must be the identity (that is, J(BΩ(i)) ∼= J(CΩ(i)) for all i and the
J(BΩ(i)) are pairwise nonisomorphic), then the test is merely that CB−1 have only integer entries.

If B is in terminal form with 1-block size n − 1, then B−1 is especially simple: if B =
(

I n−1 a

0 d

)

(where a = (a1, . . . , an−1)
T ), then B−1 =

(
In−1 −a/d

0 1/d

)
.

LEMMA 5.1 Suppose B,C ∈ NSn and the following conditions hold.
(a) For all i = 1, 2, . . . , n, J(BΩ(i)) ∼= J(CΩ(i)).
(b) The J(BΩ(i)) are pairwise nonisomorphic.
Then B is PH-equivalent to C iff CB−1 ∈MnZ iff B is Hermite equivalent to C.

Remark. It can happen that (a) holds, but the conclusion does not. There are examples with
J(BΩ(i)) ∼= Z13 for all i, as is the case for J(Bop)Ω(i)), and B is PH-equivalent to Bop. However
BopB−1 is not an integer matrix, so B cannot be Hermite equivalent to Bop.

Proof. Suppose B = ECP where E ∈ GL(n,Z) and P is a permutation matrix. Then the
permutation corresponding to P , call it π, induces isomorphisms J(BΩ(i)) ∼= J(CΩ(πi)) directly
from the equation. The two conditions (a) and (b) together force π to be the identity permutation,
hence P = I , and thus B = EC.

If B is PH-equivalent to C, then |detB| = |detC|, and thus detCB−1 = ±1. Thus CB−1 ∈
MnZ entails that CB−1 ∈ GL(n,Z). •

PROPOSITION 5.2 Let B be a weakly indecomposable element of NSn,n−1, and let
|detB| := d =

∏
p∈U p

m(p) be the prime factorization of the absolute determinant of B.
Then B is dual-compatible (that is, J (B) ∼= J (B) as lattices of abelian groups) iff the
following holds.
(†) There exists a partition U = ∪̇n−1

i=1 Ti with |Ti| ≥ 1 such that on defining d(i) =∏
Ti
pm(p), we have J(BΩ(i)) ∼= Zd/d(i), up to a permutation on the indices.

Remark. In other words, B is PH-equivalent to

B′ =

(
In−1 a
0 d

)

where a = (a1, . . . , an−1)
T satisfies d(i) = d/(ai, d). Just observe that J(B′

Ω(i)) = Z(d,ai) for

i ≤ n− 1; of course, J(B′
Ω(n)) = (0).

Proof. We may assume that B is already in terminal form, and of the form B =
(

I n−1 a

0 d

)
, where

a = (a1, . . . , an−1)
T and cont(a1, . . . , an−1; d) = 1. We have already seen (4.1) that J(BΩ(i)) ∼=

Z(d,ai) for 1 ≤ i ≤ n− 1, and J(BΩ(n)) = (0).

We also have, by 4.1, that detBop =
∏
d/(ai, d) and J((Bop)Ω(i)) = ⊕j 6=iZd/(aj ,d) for 1 ≤

i ≤ n− 1, and moreover, J((Bop)Ω(i)) ∼= ⊕Zd/(aj ,d)/Zlcmd/(ai,d). Since J (B) ∼= J (Bop), we must
have d =

∏
d/(ai, d); since J(B) is cylic, so must J(Bop) be; this forces d/(aj, d) to be pairwise

relatively prime.
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Let U be the set of prime divisors of d; the fact that d/(aj , d) are pairwise relatively prime
and d is their product forces each d(i) := d/(aj, d) to be expressible as a product d(i) =

∏
Ti
pm(p)

for some partition U = ∪̇Ti of U . If any of the Ti were empty, we would obtain the corresponding
di = 1, so that (ai, d) = d; that 0 ≤ ai < d forces ai = 0. But then B would be, up to a
permutation, decomposable as 1⊕C for some C ∈ NSn−1, contradicting weak indecomposability.
Hence |Ti| ≥ 1. The rest of necessity is straightforward.

Conversely, suppose that B satisfies the conditions. We may assume it is in terminal form, and
the ai satisfy d = (ai, d)d(i). Then it is easy to verify that J(BΩ) and J((B

op)Ω) are isomorphic,
and the isomorphisms are compatible with the projections, pΩ,Ω′ . •

THEOREM 5.3 Let B be a weakly indecomposable dual-conjugate matrix in NSn,n−1

with n ≥ 3. There exists a partition U = ∪̇n−1
i=1 Ti with |Ti| ≥ 1 such that on defining

d(i) =
∏

Ti
pm(p) such that B is PH-conjugate to a matrix of the form

B′ =

(
In−1 a
0 d

)

where a = (a1, . . . , an−1)
T satisfies di = d/(ai, d), and on writing vi = ai/(ai, d) (where

(vi, di) = 1), we have ∑
v2i
∏

p∈T c
i

pm(p) ≡ −1 mod d.

Conversely, any such B′ is dual-conjugate, and B is Hermite-equivalent to Bop.

Remark. The congruence condition can be rewritten in much simpler form, suitable for computing
with. It imposes a strong condition on the possible determinants d for which such matrices exist.

Proof. By 5.2, we can assume B is already in the form described therein; with vi defined as
ai/(ai, d), we have ai = vi

∏
T c
i
pm(p). We see that J(BΩ(i)) = Z(ai,d) for 1 ≤ i ≤ n − 1, and

J(BΩ(n)) = 0. The set
{
Z(ai,d)

}
∪ {(0)} consists of n distince elements (none of the ai can be

relatively prime to T since the partition is nontrivial).
Now consider Bop; this is given in 4.1, and we have (if i 6= n) J((Bop)Ω(i)) is ⊕j 6=iZdj

; as the
dj are pairwise relatively prime, J(Bop)Ω(i)) ∼= Zd/

∏
j 6=i

dj

∼= Z(a(i),d) 6= (0). Now assume that B

is dual-conjugate. Then Bop ∈ NSn,n−1, so at least one of the collection J(Bop)Ω(j)) must equal
zero; hence j = n. In particular, we have J(BΩ(i)) ∼= J((Bop)Ω(i)) for all i = 1, 2, . . . , n.

From B PH-equivalent to Bop, lemma 5.1 applies, and thus the only choice for permutation
matrix P such thatB = EBopP with E ∈ GL(n,Z) is P = I ; in particular, B is Hermite-equivalent

to Bop. Hence BopB−1 is an integer matrix. But B−1 =
(

In−1 −a/d

0 1/d

)
, and the computation of

BopB−1 is particularly easy: the constraint that all the entries be integers is exactly the sum of
squares condition, resulting from the (n, n) entry of the product.

The converse is completely straightforward. •
In the case of n = 2 (in the proof, we used n ≥ 3 in order to obtain that none of the ai could be

zero—equivalently, divisible by d—so that the J(BΩ(i)) are distinct), the condition on B =
(

1 a

0 d

)

(this time, a is just an integer), that a2 ≡ −1 mod d. Such an a will exist iff all odd primes
dividing d are congruent to one modulo 4, and 4 does not divide d. For larger n, the situation is
much more complicated.

For example, to obtain B ∈ NSn,n−1 that is weakly indecomposable, dual-conjugate, of de-
terminant d, the partition condition requires that d have least n − 1 distinct prime divisors (so
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that a nontrivial partition of U is possible). If d is a square (and has at least n− 1 distinct prime
divisors), the pair (d, n) can be realized iff d is odd, and every prime divisor is congruent to one
modulo four. But if d/2 is a square, the condition is more complicated: there should exist an odd

prime such that
(

−2
p

)
= 1, and all primes q with

(
−2
q

)
6= 1 must be congruent to 1 modulo 4.

And if d is 2k times a square for some k ≥ 2, the pair cannot be realized at all.
The equation in (5.3) can be rewritten in much simpler form. Write d = 2m(2)

∏
pm(p). The

Chinese remainder theorem implies solvability of the equation is equivalent to v2i
∏

p∈T c
i
pm(p) ≡ −1

mod qm(q) for every prime q in Ti, for all i; that is, the negative product is a square modulo qm(q).
For odd q, we can replace qm(q) by q, and if q = 2, by 8 if m(2) ≥ 3, and we can delete the
condition if m(q) = 2. So the conditions for the existence of solutions to the equation boil down
(after deleting the even powers of primes) to

(−1
q

) ∏

p∈T c
i
; odd m(p)

(
p

q

)
= 1 for all odd q ∈ Ti, for all i,

−
∏

p∈T c
i
; odd m(p)

p is a square modulo 2m(2) if 2 ∈ Ti

If m(2) = 0 or 1, the last condition is vacuous; if m(2) ≥ 3, the term 2m(2) can be replaced by 8.
These are fairly drastic conditions on the possible determinants. For example, if d is an odd

square, then all the prime divisors of d must satisfy
(

−1
p

)
= 1, that is, p ≡ 1 (mod 4), and if d is

an even square, then there are no partitions possible, that is, there does not exist B ∈ NSn,n−1

such that detB = ±d and B is PH-equivalent to Bop. In some other situations, some partitions
will work and others won’t.

Things change if we ask merely for indecomposable dual-conjugate matrices in NSn (note the
switch to indecomposable: for any B in NSn, B ⊕ Bop is trivially an dual-conjugate member of
NS2n). For example, we can realize (p3, 3) for any odd prime p (not all of these are Hermite-
equivalent to their opposite, unlike the situation in Theorem 5.3), while (8, 3) is not realizable—
but (8, 4) is. Since in these examples U consists of a single prime, the situation is obviously quite
different when we drop the requirement on the 1-block size.

6 Duality?

Now we refer to definitions and results in Appendix A. We discuss what we have called the duality
conjecture (briefly, J (B) ∼= J (B′) implies J (Bop) ∼= J ((B′)op)), and prove it for a class of
matrices.

Let n > k, let d be an integer, and let X be an (n−k)×k matrix with integer entries between
0 and p− 1 inclusive; assume that the content of each column of X is relatively prime to d. Form
the matrices (as X varies),

B(X) =

(
In−k X
0 dIk

)
.

Each of these is in terminal form. Obviously J(B(X)) ∼= Zk
d, and Exp J(B(X)) = Zd. So we

can regard J(B(X))Ω as Zd-modules. It is easy to calculate J(B(X)Ω(i)). If every row of X has

content relatively prime to d (a reasonable assumption), then J(B(X))Ω(i)
∼= Zk−1

d for every i. If
we further assume that every j × j submatrix of X has nonzero determinant which is relatively

prime to d (in particular, all entries of X are units modulo d), then J(B(X)Ω) ∼= Z
|Ω|−1
p . This is

equivalent to the matrix
(

X

Ik

)
belonging to F(nk)

(n, k), if we regard the entries of X as belonging

to Zd (see the comment between Propositions A.5 and A.6 in AppendixA).
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In these case, the lists [[J(B(X))Ω]]|Ω|=j are thus useless for distinguishing J (B(X)) from
J (B(X ′)). However, we can say when J (B(X)) ∼= J (B(X ′)), by appealing to the orbit spaces
under the actions of W (n)×GL(k,Zd), as discussed in AppendixA.

Let us make a minimal assumption on the Xs: they have no zero rows (modulo d). This is
equivalent to B(X) being weakly indecomposable, and entails that ker pΩ(i) is nonzero (Lemma
3.6).

For each B(X), define an explicit isomophism J(B(X)) → Zk
p = Zp × Zp × · · · × Zp (with

k copies of Zp), sending (for j = 1, . . . , k) En−k+j + r(B(X)) to ej := (0, . . . , 0, 1, 0, . . . , 0), the 1
appearing in the jth position. Since the kernel of J(B(X))→ J(B(X)Ω(i)) is Ei + r(B(X)) (here

i ∈ {1, 2, . . . , n}), we can identify the kernels with the following subgroups of Zk
p: for i ≤ n − k,

〈−ri(X)〉 (the ith row of X, viewed as an element of Zk
p), since Ei+(0n−k, ri(X)) ∈ r(B(X)), and

for i > n− k, ei−(n−k).
Putting the generators into an n × (n − k) column with entries in Zp, we obtain the matrix

M(X) :=
(

−X

Ik

)
(although the minus sign plays no role in terms of subgroups, it does play a role

when we work out the corresponding φ). Obviously M(X) ∈ F (n, k).
Now Aut J(B(X)) = GL(k,Zd), and we have a natural action ofW (n)×GL(k,Zd) on F (n, k).

If two points, say M(X) and M(X ′) are in the same orbit, then there exists an automorphism
ψ : J(B(X)) → J(B(X ′)) such that the subsgroups match, that is, there exists a permutation π

such that ψ(〈Ei + r(B(X))〉) = 〈Eπi + r(B(X))〉. This is exactly the condition, ψ(ker p
B(X)
Ω(i) ) =

ker p
B(X′)
Ω(πi)

discussed in 3.4. HenceM(X) being in the same orbit asM(X ′) implies that J (B(X)) ∼=
J(B(X ′)). The converse is straightforward.

For example, suppose d = p a prime, n = 5, and k = 2. Form F10(5, 2) over Zp. The
condition that M(X) belongs to this is simply that every entry of X is relatively prime to p, all
pairs of rows of X are linearly independent modulo p (that is, the three 2 × 2 determinants are
invertible modulo p). When p = 5 or 7, there is only a single orbit (that is, W (5)×GL(2,Zp) acts
transitively on F10(5, 2)), whereas when p > 7, the action is not transitive. In the former case,
M(X),M(X ′) ∈ F10(5, 2) implies J (B(X)) ∼= J (B(X ′)); but in the latter (p > 7), we can choose
M(X),M(X ′) in different orbits, and then J (B(X)) 6∼= J (B(X ′)).

From the earlier comments, M(X) ∈ F10(5, 2) implies J(B(X)Ω) ∼= Z
k+|Ω|−n
p for all Ω, i.e.,

J(B(X)Ω) depends only on Ω. If we put p = 11, the presence of more than two orbits yields
an example of two matrices, B and B′ with the property that J(B)Ω ∼= J(B′)Ω for all Ω, but
J (B) 6∼= J (B′).

Duality. We state the duality conjecture.

DUALITY CONJECTURE Suppose B,B′ ∈ NSn and J (B) ∼= J (B′). Then J (Bop) ∼=
J ((B′)op).

This is known if J(B) is cyclic, or if either of B or Bop belongs to NSn,n−1 (Corollary 3.5).
The conjecture is also true when both B = B(X) and B′ = B(X ′) above, as we will show. We will
put the conjecture in the form of a possible generalization of the dualities established in Appendix
A. There is also a stronger form.

CONSTRUCTIVE DUALITY CONJECTURE Determine J (Bop) from J (B).

A small step in this direction appears in 3.11: ∆, detBop, and |J((Bop)Ω(i))| are determined
from detB and the |J(BΩ(i))|.

Suppose that B = B(X) and B′ = B(X ′). Then B−1 =
(

In−k −X/d

0 I k/d

)
. If we assume that all

rows of X have content relatively prime to d, then ∆ = dI , and thus Bop =
(

dI n−k 0

−XT I k

)
. It is not
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in terminal form, but this does not matter. We wish to verify the duality conjecture for a subclass
of these matrices.

It is easy to check that J(Bop) ∼= Zn−k
d (this also follows from the short exact sequence,

0 → J(B) → Zn
d → J(Bop) → 0; here I = Zn/dZn since ∆ = dI n), so that its automorphism

group is GL(n−k,Zd). Identifying the kernels of pB
op

Ω(i) with the rows of XT , we form the analogue

of M(X), that is, N(X) =
(

I n−k

XT

)
.

Then M(X)TN(X) = 0, and it easily follows from Appendix A that the map φ therein sends
[M(X)]→ [N(X)]. We do the same thing for M(X ′) and N(X ′), and then we have the sequence
of implications (from the main result of the Appendix),

J (B) ∼= J (B′) =⇒M(X),M(X ′) are in the same orbit =⇒
N(X),N(X ′) are in the same orbit =⇒ J (Bop) ∼= J ((B′)op).

So the duality conjecture is true for matrices in this class. •
The duality conjecture can be rephrased so that it vaguely resembles the results in AppendixA.

Let B ∈ NSn and define d = Exp J(B) = Exp J(B′) (1.7); we view J(B) and J(Bop) as Zd-
modules. Let E = End J(B) and Eo = EndJ(Bop). Then Aut J(B) is just the group of units of
E, and Aut J(Bop) is the group of units of Eo.

The centres of E and Eo are both Zd (this is true for the endomorphism ring of any finite
abelian group with exponent d). Pick a representative for a generator of each of ker pBΩ(i), and form

them into a column of size n, that is, an element of J(B)n. Let Pn be the group of permutations
of n-element sets, and defined Dn to be the diagonal matrices with entries from Z×

d , and define
W (n) to be PnDn. Then we view J(B)n as a set with the obvious W (n)× Aut J(B) action. We
do the same with Bop. Then the duality conjecture boils down to a bijection between these orbit
spaces.

In the B(X) examples, the corresponding rings E and Eo are just MkZd and Mn−kZd, and in
particular, they are Morita equivalent; moreover, J(B) and J(Bop) are free Zd-modules. In general,
E and Eo are not Morita equivalent and neither J(B) nor J(Bop) need be free Zd-modules.

In addition, the condition on the elements of the column, that they generate a cyclic subgroup
corresponding to a ker pΩ(i) is somewhat restrictive. For example, if n = 3 and J(B) ∼= Zp2 ⊕ Zp

(lots of such examples exist), then J(BΩ(i)) must be cyclic (by 3.2 and 3.3). Hence we must rule
out pZp2 ⊕ 0 as a subgroup appearing as ker pΩ(i), hence (p, 0) cannot appear as an entry in the
column.

Perhaps the key feature of the B(X) matrices is that J(B(X)) and J(B(X)op) are free Zd-
modules, and thus E is Morita equivalent to E′. In addition, their ranks add up to exactly the
right number, in order that the duality of Appendix A can be applied; this is a consequence of
∆ = dI .
A bilinear function. The identification of J(B) and J(Bop) with subgroups of J(∆) := Z1×n/r(∆)
leads to a bilinear function, potentially useful for the duality conjecture.

Given B ∈ NSn, B
op, and ∆, as usual, let d = Exp J(B) = lcm {m(i)} where ∆ =

diag (di). Then d∆
−1 is an integer matrix, and we define the bilinear function, Z1×n ×Z1×n → Z

given by 〈〈v,w〉〉 = vd∆−1wT . This clearly induces a faithful bilinear function Z1×n/Z1×n∆ ×
Z1×n/Z1×n∆ → Zd, denoted 〈〈v,w〉〉d, which is vd∆−1wT modulo d, and the overlines indicate
equivalence classes modulo r(∆).

Recall from the discussion at the end of section 1, the two subgroups of J(∆), Y (B) :=
r(Bop)/r(∆) ∼= J(B) and Y (Bop) := r(B)/r(∆) ∼= J(Bop), which are the images of J(B) and
J(Bop) in the two short exact sequences discussed therein.
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Now we note that Y (B) and Y (Bop) are dual (even if they are equal, as could well be the
case, e.g., if B is Hermite-equivalent to Bop (examples appear in Theorem 5.3). Specifically, if
〈〈xB, y〉〉d = 0 for all x, then y ∈ Y (Bop) = r(B)/r(∆). To see this, we have xBd∆−1yT ∈ dZ for
all x; then B∆−1yT has only integer coefficients. Replacing ∆−1 by B−1((Bop)T )−1, we see that
((Bop)T )−1yT has only integer coefficients; applying the transpose, it follows that y(Bop)−1 has
integer coefficients, and thus y ∈ r(Bop). The reverse inclusion is trivial. So the dual of Y (Bop) is
Y (B) with respect to this bilinear function on J(∆), and vice versa.

In particular, we can realize elements of J(∆) as Zd-module homomorphisms J(∆) → Zd,
with those that kill Y (Bop) coming from elements in Y (B) (and again, vice versa).

So now the duality conjecture can be translated to this setting. Pick a set of n elements of
J(B) (or better, Y (B)), each generating the cyclic subgroup which is the kernel of pBΩ(i), and form

them into a column, M , that is, an element of Y (B)n×1. On the right, Aut J(B) acts, and on
the left, PnDn, where Dn consists of diagonal matrices with entries in Z×

d . We do the same with
J(Bop). Each entry of M can be viewed as a module homomorphism J(∆)→ Zd, so we can view
M , essentially the transpose, as a Zd-module homomorphism M̃ : J(∆)n → Zn

d . Then the kernel
should correspond to the analogous matrix made out of Bop, rather than B, as in the arguments
in Appendix A. But it is not clear how to proceed.

The identifications of J(B) with r(Bop)/r(∆) and the corresponding one interchanging B
with Bop are particularly well-behaved with respect to applying pΩ. We can create ∆Ω, obtained
by deleting all the rows and columns indexed by an integer not in Ω, and it is easy to check
that ((Bop)Ω)

TBΩ = ∆Ω (let ci(·) denote the ith column; then (Bop)TB = ∆ simply means
ci(B

op)T cj(B) = m(i)δij , and the columns of BΩ and B are identical unless they are completely
eliminated. The results in 3.10–3.12 suggest that more can be done along these lines.

7 Densities for PH-equivalence to 1-block size n− 1

Here we give estimates for the likelihood that a matrix B ∈ NSn has a terminal form with 1-block
of size at least n − 1. Although we give an explicit formula, valid for each n, it is difficult to
compute with; however, it converges (as n→∞) to a product of two known constants, the Landau
totient, and the reciprocal of

∏∞
2 ζ(k),

ζ(2) · ζ(3)
ζ(6)

· 1

ζ(2)ζ(3)ζ(4) . . .
∼ .845

This is almost double the likelihood that B ∈ MnZ has a Hermite normal form with at least n− 1
ones [MRW]. The methods derive from that reference, with a few added twists.

First, we obtain an upper bound. Suppose that B ∈ MnZ. Then B ∈ NSn iff modulo
every prime, each column is not zero. That by itself together with usual notion of natural density
(see [MRW] for very clear explanations) says that the likelihood that B is in NSn is 1/ζ(n)n =
1− n2−n −OOO (n3−n), which goes to one quickly.

Now suppose that B ∈ MnZ is PH-equivalent to a terminal form having 1-block size at least
n−1. Then for every prime p, the matrix B+pMnZ ∈ MnZp has rank at least n−1. The converse
fails—examples are ubiquitous. Let TFn denote the collection of matrices in MnZ PH-equivalent
to a matrix with at least n− 1 ones in its terminal form (for large n, TFn ∩NSn is practically the
same as TFn, so we do not require members of the latter collection to be in NSn). This does give
an upper bound for the natural density (assuming it exists) of TFn.

In fact, we can do a bit better. For fixed n and for every prime p, let πp : MnZ → MnZp be
the usual modulo p onto homomorphism. We define a property for n× n matrices in terms of its
reduction modulo every prime. We say that a matrix B ∈ MnZ is of deficiency at most s if for
every prime p, the image, πp(B) has rank at least n− s. For fixed n, the collection of these has a
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natural density, and if n ≥ (s+ 1)2, it is

1

ψ(s+1)2+2 · ζ((s+ 1)2) · ζ((s+ 1)2 + 1) · . . . · ζ(n) ,

where ψ(s+1)2+2 is defined as
∏

p f(1/p) where f is a function (given explicitly below) with the

property that f(z) = 1 − z−(s+1)2+2 + OOO
(
z−(s+1)2+3

)
(except for small primes, the product is

more or less ζ((s+ 1)2 + 2)). At s = 1 (so for n ≥ 4), the outcome is at least .845, at s = 2, it is
bigger than .99, at s = 3, it is at least .9999, and each addition of one to s results in the difference
from one approximately squaring.

The case of s = 1 gives the upper bound.
However, when we look at the original problem, density of TFn, the situation is more compli-

cated, and the best we can do is to use the inclusion-exclusion principle to obtain a formula, which
is difficult to evaluate, except for small or large n.

Throughout this section, we refer to natural density of families of integer matrices, although
most of the effort is spent on counting matrices modulo primes, and multiplying the results over all
the primes. The problem is then to relate the relatively easily obtained infinite product expressions
to the usual or somewhat stronger notion of natural density, as discussed, for example, in [MRW,
Ma].

The methods of [op cit] can be used to justify the expression natural density, and we will
outline what has to be done, at various points.
Upper bound. Fix integers s, n with n > (s+1)2+1 and let p be a prime. The normalized number of

matrices in MnZp of rank at least n−s (that is, divided by the cardinality of MnZp, which is pn
2

) is

given by Landsberg’s theorem [L] (quoted in Appendix A) as
(∏n

i=1(1− zi)
)
(1 +

∑
1≤j≤s cj(z))

∣∣∣
z=1/p

where

cj(z) =
zj

2

(1− zn)(1− zn−1) . . . (1− zn−j+1)

(1− z)2(1− z2)2 . . . (1− zj)2 ,

although for some computations we could take the simplified (and slightly less accurate)

cj ∼
zj

2

(1− z)2(1− z2)2 . . . (1− zj)2 .

By Proposition B.2, the Maclaurin series of as =
(∏(s+1)2−1

i=1 (1− zi)
)
(1 +

∑
1≤j≤s cj(z)) (or cj

replaced by its simpler form) expands as 1− z(s+1)2+2 +higher order terms. Then the normalized
number of matrices of rank at least n− s in MnZp) is

ns,p := as ·
n∏

i=(s+1)2

(1− zi)

∣∣∣∣∣∣
z=1/p

Form the infinite product ψn,s =
∏

p as(1/p) (this converges—very fast—since (s+1)2+2 ≥ 2).

Then
∏

p np is ψn,s/
(
ζ((s+ 1)2) · ζ((s+ 1)2 + 1) · . . . · ζ(n)

)
. For very large n, ψn,s is extremely

close to 1 (just as ζ(n) is). So as n→∞, the limiting value is

(1)
1∏

j≥(s+1)2 ζ(j)
.
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The case of interest occurs when s = 1, and an easy computation reveals that a1 = 1 − z6
(exactly!). Hence

(2)

∏

p

n1,p =
1

ζ(6) ·∏n
j=4 ζ(j)

=
ζ(2)ζ(3)

ζ(6)
· 1∏n

j=2 ζ(j)
.

The left factor is Landau’s totient constant (On-line Encyclopedia of Integer Sequences [oeis]
A082695); about 1.94 . . . ; the right factor, for large n, is about .436 [MRW] (with extremely fast
convergence in n), so the product is about .845 or so. As n increases, the value decreases.

When s = 2, the limiting value in (1) is in excess of .99, and when s = 3, the limiting value
exceeds .9999 (with the distance from 1 approximately squaring with each addition of 1 to s).

To check that the expressions
∏

p np, (1), and (2) really do represent natural densities (that
is, the number of B ∈ MnZ with all entries in [−N,N) such that for every prime p, the rank

of πp(B) ∈ MnZ is at least n − s, divided by (2N)n
2

, tends as N → ∞ to the corresponding
expression), we note that the method of [MRW] works almost verbatim. Specifically, the Chinese
remainder theorem argument in the proof of [MRW, Lemma 3] applies here, as does the argument
of [MRW, Lemma 4]. This is made easier by the fact that we are defining the property of matrices
in terms of properties modulo every prime. In contrast, when we deal with TFn∩NSn, there does
not appear to be simple characterization of the set by properties modulo p.

In particular, if n ≥ 6, the density of matrices M ∈ MnZ with the property that for every
prime p, the rank of πp(M) is at least n − 1 is given by the expression in (2), and is at least the
limiting value as n→∞. This gives an upper bound for the (upper) density of matrices such that
M ∈ TFn ∩NSn.
Counting TFn ∩ NSn. First, we count the number of matrices b ∈ MnZp the leftmost n − 1
columns form a linearly independent set, and the last column is not zero. (If this happens modulo
p for every prime p, then the original matrix belongs to NSn ∩ TFn.) This is almost the same as
a special case of [M; Corollary 7].

There are Np = (pn− 1)(pn− p) · · · (p− 1) full rank matrices. If the last column is dependent
on the preceding n − 1 columns and they form a linearly independent set, then we can write it
cn =

∑
i<n aici; since we have required that the last column be not zero, we must also have

(ai) 6= (0, 0, . . . , 0), and every such choice will do. The number of (n− 1)× n matrices of full rank
is just Np/(p

n − pn−1). Thus the total number of matrices whose set of leftmost n− 1 columns is
not zero and whose nth column is not zero is

Np ·
(
1 +

pn−1 − 1

pn − pn−1

)
= pn

2

(1− 1/p)(1− 1/p2) · · · (1− 1/pn)

(
1 +

1− 1/pn−1

p(1− 1/p)

)

= pn
2

(1− 1/p)(1− 1/p2) · · · (1− 1/pn)
1− 1/pn

1− 1/p

= pn
2

(1− 1/p2) · · · (1− 1/pn−1)(1− pn)2.

This yields that the natural density (see below) of B ∈ NSn such that removing the last column

yields a matrix with full row space (equivalently, the Hermite normal form of B is
(

In−1 a

0 d

)
) is

(*)
1

ζ(2) · ζ(3) · . . . ζ(n− 1) · ζ(n)2 .
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This differs from the natural density of matrices with Hermite normal form with at least n − 1
ones [Ma, Corollary 7] only by the extra factor of 1/ζ(n), which appeared because we insisted that
the last column be nonzero (in order to ensure that it came from a matrix in NSn).

As in all of these computations, the 1 − 1/p factor that appears in Np/p
n2

has conveniently
been wiped out, thereby removing the singularity that would have arisen from ζ(1). If Φ is a
subset of {1, 2, . . . , n}, let DΦ be the set of matrices in NSn such that for every j ∈ Φ, the gcd of
the (n − 1) × (n − 1) determinants of the matrix with the jth column deleted is one. Clearly, if
|Φ| = |Φ′| and DΦ has a natural density, then so does DΦ′ and their natural densities are equal.

That this number is the natural density for this problem is practically immediate from the
special case of [Ma, Corollary 7] with d1 = d2 = · · · = dn−1 = 1 in the notation there—the only
(slight) difference is that we have insisted here the the final column be unimodular, so nonzero
modulo every prime. This resulted in the extra factor of ζ(n).

We have just shown that if |Φ| = 1, then DΦ has a natural density, given by the number in
(*). Now ∪DΦ, where Φ ranges over all one-element sets, is precisely the set of B ∈ NSn such that
B is PH-equivalent to a terminal form with at least n− 1 ones.

The inclusion-exclusion formula now can be used. We will obtain a density for every DΦ. At
various points, it will be convenient to use a variable z which will be evaluated at z = 1/p for p
prime.

Say |Φ| = s > 1; then we may assume that Φ = {n, n− 1, . . . , n− s+ 1}, that is, correspond-
ing to the final s columns. Again, if we restrict to invertible matrices, there are Np; otherwise,
the first n − 1 columns constitute a linearly independent set, and we can write cn =

∑
i<n aici.

Only this time, we also require that if i ∈ Φ, then ai 6= 0 (this occurs iff the ith column can be
expressed as a linear combination of all the other columns; it also guarantees all the columns are
nonzero). Hence the number of choices for the (ai) is p

n−|Φ|(p− 1)|Φ|−1 = pn−s(p− 1)s−1. Hence
the normalized number of such matrices is

Np

pn2

(
1 +

pn−s(p− 1)s−1

pn − pn−1

)
= (1− 1/p) . . . (1− 1/pn)

(
1 +

(1− 1/p)s−2

p

)
; setting z = 1/p,

= (1− z)(1− z2) . . . (1− zn)
(
1 + z(1− z)s−2

)

Denote by fs the polynomial (now in the variable z) (1 − z)
(
1 + z(1− z)s−2

)
; this is (1− z)(1 +

z − (s− 2)z2 + . . . ), so fs = 1− (s− 1)z2 +OOO
(
z3
)
. This permits us to define a function (which it

turns out is entire),

F (s) :=
∏

p

fs(1/p) =
∏

p

(
1− ps−1 − (p− 1)s−1

ps

)
.

Provided the (now, complex) s is such that for every prime p, ps−1 − (p − 1)s−1 6= ps (this
simplifies), it is easy to check that F is analytic on a neighbourhood of s, and a routine verification
assures us that at any of the trivial zeros, t, lims→t Fs/(s − t) exists and is not zero, hence F
is also analytic on neighbourhoods of the zeros; so F is entire. Its zeros are precisely the set,{
s ∈ C

∣∣ ∃ prime p such that ps = ps−1 − (p− 1)s−2
}
; this can be rewritten as

{
1 +

(2k + 1)πi+ ln(p− 1)

ln p
p−1

}

p∈SpecZ, k∈Z

The reciprocals of the moduli of the zeros is thus absolutely summable along any infinite strip of
the form |Im z| < N .
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The values of F at various integers are interesting, and will play a role in what follows.

F (0) =
∏

p

(
1 +

1

p(p− 1)

)
; this is ζ(2)ζ(3)/ζ(6) ∼ 1.94, the Landau totient constant, again

F (1) = 1

F (2) =
∏

p

(
1− 1

p2

)
=

1

ζ(2)

F (3) =
∏

p

(
1− 2p− 1

p3

)
; the carefree constant, ∼ .426 [M]

The values at the other integers (both positive and negative) have likely appeared before, but I
couldn’t locate them in the huge literature on constants. The density of DΦ (when |Φ| = s > 1) is
thus

F (s)

ζ(2) . . . ζ(n)
.

Once again, we may use the methods of [Ma, section 4] to justify the natural density. With
this, we also see that the inclusion-exclusion principle applies (first to subsets of TFn∩NSn inside

[−N,N)n
2

and their translations, then letting N →∞).
For s = 2, the density of DΦ is 1/ζ(2)2ζ(3) . . . ζ(n). The inclusion-exclusion principle reveals

that the density of matrices in NSn PH-equivalent to a terminal form with 1-block size at least
n− 1 is

(**)

n
ζ(n) −

(n2)
ζ(2) +

∑n
j=3 (−1)j−1

(
n
j

)
F (j)

ζ(2)ζ(3) . . . ζ(n)
.

The leading term does not involve F (1), as we would have expected; however, for large n, 1/ζ(n) is
practically 1 = F (1); and we have substituted F (2) = 1/ζ(2). Now we have to estimate this. The
denominator converges extremely rapidly, and has been calculated as around .44 for large (and not
so large) n [Ma]. Also, {F (j)}j∈N forms a decreasing, log convex sequence, as easily follows by
taking the logarithmic derivative of F . The logarithmic derivative, F ′/F , is analytic except at the
zeros of F , and is given by ∑

p

ln(1− 1/p)
(

p
p−1

)s−1

(p− 1) + 1
.

This converges uniformly on compact subsets of |Im s| < π/ ln 2. Viewed as a real function (that
is, restricting s to be real), each summand is the negative of a completely monotone function and
F is nonnegative on R, so that F is logarithmically completely monotone (meaning that F > 0
and −F ′/F is completely monotone) which implies F is completely monotone.

With single-digit accuracy, I managed to approximate (with pencil and paper) the values of
the expression in (**) for n = 3, 4, 5, 6; they are respectively, .55, .6, .7, .8. The last is surprisingly
close to the upper bound computed from (2) above, which is (ζ(2)ζ(3)/ζ(6)) ·1/ζ(2)ζ(3) · · · ∼ .845.
This suggests that the numerator of (**) tends to ζ(2)ζ(3)/ζ(6); in other words, that the upper
bound be approximately achieved. We will prove this after putting it in a more recognizable form.

Let us rewrite the numerator, substituting innocuously (when n is large) F (1) = 1 for 1/ζ(n)
and F (2) = 1/ζ(2); then, subtracting the expression from F (0) = ζ(2)ζ(3)/ζ(6), we obtain

D(n) := F (0)− nF (1) +

(
n

2

)
F (2)− · · · + (−1)nF (n) =

n∑

i=0

(−1)n
(
n

i

)
F (i).
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We will show
lim

n→∞
D(n) = 0.

This is equivalent to the numerator in (**) converging (in n) to F (0) = ζ(2)ζ(3)/ζ(6).
A function f : R→ R is completely monotone if (−1)nf (n)(r) ≥ 0 for all n ∈ Z+ and r ∈ R

(here f (n) is the nth derivative); it is logarithmically completely monotone if f(r) > 0 for all r
and ln f is completely monotone. It is known that logarithmically completely monotone functions
are completely monotone.

Let ∆ denote the usual difference operator, acting on functions on Z or R, that is, ∆f(k) =
f(k + 1) − f(k). If f : Z → R satisfies (−1)n∆nf(k) ≥ 0 for all n ∈ Z+ and k ∈ Z, then we say
that f is completely monotone.

It is routine that D(n) = (−1)n∆nF (0); so it is enough to show that (−1)n∆nF (0) → 0,
which turns out to be completely elementary. Consider dn(k− 1) = dn(k) + dn+1(k− 1); iterating
this, we quickly see that since all dn(m) ≥ 0, we have dn(k − 1) ≥ jdn+j(k). As dn+j(k) ≥ 0, this
forces dn+j(k) = OOO (1/j); in particular, dn(k)→ 0 as n→∞.

Now suppose that f : R → R is completely monotone; then it is routine to see that f |Z (or
any other discrete subgroup) is completely monotone (in the sense of functions on Z). By the
higher order mean value theorem, given r ∈ R, and n ∈ Z+, there exists ξ ∈ [r, r + n] such that
∆nf(r) = f (n)(ξ); setting r = k ∈ Z, the sign of ∆nf(k) is the same as the sign of f (n)(ξ) at some
real number, and we are done.

The following is elementary, and presumably standard.

PROPOSITION 7.1 Suppose that f : Z→ R is completely monotone. Then for all k ∈ Z

lim
N→∞

N∑

j=0

(−1)j∆jf(k) exists and equals f(k − 1).

Remark. Formally, this means that I +
∑∞

j=1(−1)n∆n = (I + ∆)−1 (as would be expected from
the power series expansion) when applied to completely monotone functions (and therefore to the
vector space they span).

Proof. Apply I+∆ to the expression on the left of the display; this yields (I+(−1)N+1∆N+1)f(k) =
f(k) + dN+1(k)→ f(k). On the other hand, (I + ∆)f(k − 1) = f(k).

Set gN (l) :=
∑N

i di(l). Then (I +∆)gN(l) = f(l)+dN+1(l), but also (I +∆)gN(l) = gN (l+1).
Setting l = k−1, we have g(k) = f(k−1)+dN+1(k−1); this says |gN (k)−f(k−1)| ≤ dN+1(k−1),
which goes to zero as N →∞. •

PROPOSITION 7.2 The restriction of F to R is logarithmically completely monotone.

Proof. With lnF given above, we note that F |R is strictly positive, and the logarithmic derivative
F ′/F = (lnF )′ is a locally convergent (on compact subsets of the strip |Im z| < π/ ln 2) sum of
terms each of which is the negative of a completely monotone function. •

COROLLARY 7.3 The natural density of matrices in TFn ∩ NSn increases upwards (as
n→∞) to

ζ(2)ζ(3)

ζ(6)
· 1

ζ(2) · ζ(3) · ζ(4) · · · ∼ .845.

Remark. In fact, it also follows from the last two propositions that if T (n) is the (strong) natural
density of TFn ∩ NSn, then {T (n)} is increasing, and if ǫ(n) is the difference between the limit
and T (n), then

∑
ǫ(n) <∞. So convergence is somewhat faster than expected.
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Motivation. Why the emphasis on 1-block size n − 1 (for PH-equivalence classes of matrices in
NSn)? For one thing, if B and B′ are in terminal form with 1-block size n, we can easily decide
(from Proposition 2.1) whether they are PH-equivalent (and the procedure can be made very fast).

For another, the condition that B ∈ NSn have a terminal form with 1-block size n, for n ≥ 6,
has density at least .8, tending in n to .845 . . .—meaning five out of six random matrices should
have such a terminal form.

If we consider 1-block size at least n−2 instead, the upper bound is then in excess of .99; so if
the upper bound is achieved (as n→∞), then for sufficiently large n, over 99% of random integer
matrices will have a terminal form with 1-block size at least n− 2. This suggests that it might be
worthwhile obtaining the analogue of Proposition 2.1 for n− 2, describing the equivalence classes
containing terminal form of this type).

For the classification, it would be reasonable to determine the likelihood that at least one of B
and Bop be PH-equivalent to a terminal form with 1-block size n− 1. The simplest possible form
of inclusion-exclusion would yield a likelihood of 2a − b where a is the likelihood that B have a
terminal form with 1-block size n− 1 (about .845 as just calculated above), and b is the likelihood
that both B and Bop have such a terminal form. Computing b appears to be difficult (b 6= a2; the
properties are not independent). Towards this, the characterizations for J(B) and J(Bop) to both
belong to NSn,n−1 (Corollary 4.6) might be useful.

8 Topological isomorphism for topologically critical groups

In this section, we state some well-known and not-so-well known results about topologically critical
groups; see also [H]. Suppose G→ V and H →W are group homomorphisms from abelian groups
to ordered real Banach spaces. We say f : G → H is continuous if there exists continuous and
linear F : V → W whose restriction to G is f (typically, the images of G and H will be dense
in their respective Banach spaces; in this case, continuity is equivalent to the usual notion with
respect to the relative topologies on G and H).

A subgroup G of Rn is topologically critical of rank n + 1 if it is free of rank n + 1 and
dense. Any subgroup of lesser rank of a topologically critical group is discrete. In this section
(only), when we regard g ∈ G as an element of Rn, we denote it ĝ. Associated to a topologically
critical group is an isomorphism class of rank n + 1 subgroups of R, TO (G), defined as follows.
Select any ordered Z-basis for G, (gi)

n+1
i=1 . Since {gi}ni=1 generates a discrete subgroup, it is a

real basis for Rn; hence we can write ĝn+1 =
∑
αiĝi. It is easy to check that {1, α1, . . . , αn} is

rationally linearly independent, and so we may form the subgroup of R, Z+
∑
αiZ, of rank n+1.

Every topologically critical subgroup of Rn is topologically isomorphic to the group generated by
{ei;

∑
ejαj} (where ei are the standard basis elements of Rn) by this construction (for example,

see [H]).

Topologically critical groups have an interesting property: every subgroup is either dense
(those of full rank) or discrete (those of lesser rank).

Let TO (G) denote the isomorphism class of the inclusion Z+
∑
αiZ ⊂ R, that is, with respect

to continuous maps. Alternatively, we may view the group as a totally ordered group (the ordering
inherited from R), and use order-preserving group isomorphisms between G = Z +

∑
αiZ; the

resulting equivalence classes are the same, since in this case, any continuous map is either order-
preserving or its negative is.

LEMMA 8.1 Suppose G and H are topologically critical groups such that TO (G) ∼=
TO (H). Then H and G are continuously isomorphic.

Proof. Suppose {αi}ni=0 and {βi}n+1
i=1 are subsets of R that are linearly independent over the

rationals, and αn+1 = 1 = −βn+1, and moreover,
∑
αiZ =

∑
βiZ (as subgroups of R). Let

G = 〈ei; en+1 :=
∑n

i=1 αiei〉 be the (dense) subgroup of Rn, where {ei}ni=1 is the standard basis
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for Rn. Then there exist {hi}ni=1 such that G =
∑
hiZ and hn+1 =

∑n
i=1 βihi.

For each i = 1, 2, . . . , n, there exist integers ai,t (t = 0, 1, . . . , n) such that αi =
∑n+1

t=1 βiait.
Complete (ait) to an (n+ 1)× (n+ 1) matrix A by defining an+1,t = δn+1,t (so the bottom row is
(0, 0, . . . , 0, 1).

Set gi = ei (to avoid confusion between the standard bases) for i = 1, 2, . . . , n+ 1. Define for
each j = 1, 2, . . . , n+ 1,

hj =
∑

i=1

ai,jgi

(so here we are using AT ). Obviously, hj ∈ G. We first show that hn+1 =
∑n+1

t=1 βtht. On one
hand,

hn+1 =
n+1∑

i=1

ai,n+1gi

=
n∑

i=1

(ai,n+1 + an+1,n+1αi)gi; on the other hand,

n∑

t=1

βtht =
n∑

t=1

βt

n+1∑

i=1

ai,tgi

=
n∑

t=1

βt

(
n∑

i=1

ai,tgi + αiβtan+1,t

)

=

n∑

i=1

gi ·
(

n∑

t=1

ai,tβt + 0

)

=
n∑

i=1

gi · (αi − βn+1ai,n+1).

Since βn+1 = −1, we are done.
As
∑
αiZ =

∑
βiZ, we can find the inverse map (both are free abelian groups of rank n+1 to

A; this takes the hj to gj , and it follows immediately that
∑
hjZ =

∑
gjZ, and the rank condition

guarantees that the sums are direct. •

9 Basic critical dimension groups

A dimension group is a direct limit of simplicial (partially ordered abelian) groups; see [G], the
standard reference for partially ordered abelian groups, for far more information than can be given
here. By [Gr], [EHS], a partially ordered abelian group G is a dimension group iff it is unperforated
(for n ∈ N and g ∈ G, ng ≥ 0 entails g ≥ 0) and satisfies Riesz interpolation (for ai, bj ∈ G with
i, j ∈ {1, 2} with ai ≤ bj for all i, j, there exists c ∈ G such that ai ≤ c ≤ bj for all i, j). All
partially ordered groups will be abelian.

An order unit of a partially ordered group G is an element u ∈ G+ such that for all g ∈ G,
there exists n ∈ N such that −nu ≤ g ≤ nu. A partially ordered abelian group is simple if every
nonzero element of G+ is an order unit. A trace (or state) of G is a nonzero positive real-valued
group homomorphism; it is normalized at the order unit u if its value thereat is 1. The collection
of normalized traces, denoted S(G,u) and equipped with the point-open (weak) topology, is a
compact convex subset of a Banach space. The value group of a trace τ is simply τ(G), its set of
values.

The real vector space consisting of convex-linear continuous (affine) real-valued functions
f : S(G,u)→ R is denoted AffS(G,u). It is a Banach space with respect to the supremum norm.
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There is a natural order preserving group homomorphism, the affine representation (with respect
to u), ̂: (G,u) → AffS(G,u) given by g 7→ ĝ, where ĝ(τ) = τ(g) for τ ∈ S(G,u). This imposes a
pseudo-norm topology on G, which is a norm if the affine representation is one to one.

When G is a dimension group, S(G,u) is a Choquet simplex. When G is also simple, there
is a complete characterization available, the affine representation G → AffS(G,u) (with respect
to any, or equivalently all, choices of order unit u) has dense range, and G+ \ {0} consists of
{g ∈ G | ĝ is strictly positive}. The converse is also true.

A trace is pure (or extremal) if it is not a proper convex-linear combination of other traces.
The extremal boundary (of S(G,u)), denoted ∂eS(G,u), consists of the pure normalized traces.
When S(G,u) is finite-dimensional, it is a simplex in the usual sense (as a compact convex subset
of Euclidean space), and in that case, AffS(G,u) can be identified with Rn for some integer n, the
standard basis elements identified with the pure traces (possibly with normalization). The strict
ordering on Rn or AffS(G,u) is the partial ordering whose positive cone consists of the strictly
positive functions.

A consequence is that if G is a simple dimension group with finitely many, say n, pure traces
and the kernel of the affine representation is zero, then G is order isomorphic to a dense subgroup
of Rn equipped with the strict ordering. The pure traces are just (up to renormalization) the
coordinate maps.

We say a simple dimension group G is critical if it is free of rank n+1 and has n pure traces.
By the preceding, this means it can be identified with a dense subgroup of Rn, and since the partial
ordering determines the topology (here the affine representation is automatically one to one), it is
also topologically critical.

We are interested in classification of critical groups. It turns out that there is a class of them
whose classification incorporates PH-equivalence.

A critical group is called basic if it is order isomorphic to a dense subgroup of Rn (equipped
with the strict ordering) with generators {e1, . . . , en;

∑
αiei}, where ei are the standard basis

elements, and αi are real numbers. For a subgroup so generated, density is equivalent to the set
{1, α1, . . . , αn} being rationally linearly independent. We will give a characterization that avoids
such a specific realization, referring only to internal properties.

Critical, and especially basic critical groups, are a useful source of examples. For example, in
[BeH], we translated Akin’s notion of good measure on a Cantor set to dimension groups, and we
were able use these to illustrate various properties of good and non-good traces. Following [BeH],
we say that a trace τ on a dimension group G is good if for all b ∈ G+ and a ∈ G such that
0 < τ(a) < τ(b), there exists a′ ∈ G+ such that a′ ≤ b and τ(a′) = τ(a). For simple dimension
groups, this is equivalent to a much simpler criterion (in context), that the image of ker τ in the
affine representation of G be norm-dense in τ⊢ := {h ∈ AffS(G,u) | h(τ) = 0}.

This lead to the definition of ugly for a trace on a dimension group; τ is ugly if ker τ has
discrete image in AffS(G,u) and the trace τ ⊗ 1Q on G⊗Q is good.

For sets of traces, there are corresponding definitions, which become rather complicated—but
if S(G,u) is finite-dimensional, and Ω ⊂ ∂eS(G,u), the relevant ones for this article reduce to the
following:

(i) Ω is good if whenever b ∈ G+ and a ∈ G satisfy 0 < τ(a) < τ(b) for all τ ∈ Ω, then there
exists a′ ∈ G+ such that a− a′ ∈ ker Ω := ∩τ∈Ω ker τ and a′ ≤ b

(ii) Ω is ugly if the image of kerΩ is discrete in AffS(G,u) and the extension of Ω to a set of
traces on G⊗Q is good.

These are not equivalent to the definitions in general; the restriction to Ω ⊂ ∂eS(G,u) allowed
considerable simplification. Among other things, these correspond to faces in S(G,u). For critical
groups in general and any nonempty family of traces, ker Ω, being a subgroup of rank at most
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n− 1, is automatically discrete. So the definition of ugly simplifies further.
Necessarily, when G is a basic critical group, for all pure traces τ , rank τ(G) = 2, and this

forces all the pure traces to be ugly. Conversely, the pure trace τ is ugly if rank τ(G) = 2. There
are examples (for every n ≥ 2, that is, rank at least 3) of critical groups all of whose pure traces
are ugly, and even with the additional property that {τi(G)} are mutually order isomorphic as real
subgroups, that are not basic (or even a modest extension, to be defined later, almost basic).

Let r be a real number that is neither rational, quadratic, nor cubic over the rationals; that is,
the set

{
1, r, r2, r3

}
is linearly independent over the rationals. Let G be the subgroup ofR3 spanned

by {E1 := (1, 1, 1), E2 := (1, 1, r), E3 := (1, r, 0), E4 = (r, 0, 0)}. The set of four 3× 3 determinants
of the spanning set is rationally linearly independent. Hence G is dense in R3, and thus with the
strict ordering, is a critical group (of rank three).

The pure traces on G are the three coordinate maps, denoted τi. Then we see that τ1(G) =
Z + rZ = τ2(G) = τ3(G), free of rank two. In all three cases, the kernel is free of rank two,
and since the affine representation is one to one, and since the kernels are discrete subgroups, the
corresponding pure traces are ugly. However, as we will see later, G is not basic.

This leads to a class of non-basic critical groups free of rank n + 1 such that all τi(G) are
equal and rank two (hence all the pure traces are ugly). Pick r such that {1, r, . . . , rn} is rationally
linearly independent (that is, either r is transcendental or its algebraic degree is at least n + 1).
Define elements of Rn

Fn = ( r 0 0 . . . 0 0 0 )

Fn−1 = ( 1 r 0 . . . 0 0 0 )

Fn−2 = ( 1 1 r . . . 0 0 0 )

... . . .

F1 = ( 1 1 1 . . . 1 1 r )

F0 = ( 1 1 1 . . . 1 1 1 )

That is, Fi has i − 1 zeros (for i ≥ 1), immediately preceded by r, which in turn is immediately
preceded by enough ones to fill up the row. Let Mi be the n × n matrix obtained by deleting
Fi, and throwing together the rest of the Fjs. Then detM0 = rn and |detM1| = rn−1 as is
easily seen from the lower triangular forms. For i > 1, Mi is a block lower triangular matrix, and
it is straightforward to check that detMi = rn−i(1 − r)i−1. (At one point, multiply the matrix
rNT + I + N + N2 + . . . by I − N , creating an upper triangular matrix. See the lemma below.)
Next we claim that the set

{
rn, rn−1, rn−2(1− r), . . . , r(1− r)n−2, (1− r)n−1

}
spans

∑n
i=0 r

iQ,
which is easily checked by induction. Hence the set is rationally linearly independent.

Thus G ≡ G(n, r) is a critical group of rank n+ 1, so with the strict ordering inherited from
Rn is a simple dimension group with n pure traces, the latter arising as the coordinate functions.
Their value groups, that is the ranges of the pure traces, are all equal to the rank two group,
Z+ rZ. In particular, their kernels are necessarily of rank n−1 and discrete (the latter from being
a critical group), and it easily follows that they are all ugly. We will soon show that if n > 2, then
G(n, r) is not basic (or even satisfy a more general property, almost basic).

We have G(n, r) ⊂ (Q + rQ)n of rank n + 1 and G is dense in Rn; we have assumed r does
not satisfy a rational equation of degree n or less.

LEMMA 9.1 Let N be the lower triangular k × k matrix with 1s in the (j + 1, j) entries
and zeros every where else. Let r be any number, and set Q = rNT + I +N +N2 + . . . .
Then detQ = (1− r)k−1.

Proof. Multiply Q from the left by I −N (which has determinant 1); the outcome is I − rNNT +
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rNT . Now NNT is just the identity matrix less the first 1, so that (I −N)Q is upper triangular,
with diagonal entries (1, 1− r, 1 − r, . . . , 1 − r. Hence detQ = (1− r)k−1. •

Basic critical groups admit rather strong properties. The first is that every proper subset of the
pure trace space is ugly. For a simple dimension group (G,u) with one to one affine representation
and finite-dimensional S(G,u), and Ω ⊂ ∂eS(G,u), the definition of ugliness of Ω simplifies to (i)
kerΩ := ∩τ∈Ω ker τ is discrete, and (b) kerΩ⊗Q is dense in Ω⊥ = {h ∈ AffS(G,u) | h|Ω ≡ 0} (Ω
can be replaced by the face it spans).

When (G,u) is critical of rank n + 1, and Ω ⊂ ∂eS(G,u), then it is fairly easy to decide
whether Ω is ugly. First, every subgroup of rank n or less is automatically discrete, hence any
Z-linearly independent subset is real linearly independent. Second, if Ω ⊆ ∂eS(G,u), then Ω⊥

has (real) dimension exactly n − |Ω| (the set of pure traces is a dual basis for AffS(G,u)). The
following is then immediate. Note that although the definition involves a choice of order unit, the
criterion does not. In other words, it does not matter at which order unit u we choose to normalize
the traces.

LEMMA 9.2 Let (G,u) be a critical group of rank n, and let Ω be a proper set of pure
traces. Then Ω is ugly iff rank ker Ω = n− |Ω|.

It is trivial that if G is basic, then the criterion is satisfied for every proper subset Ω of
∂eS(G,u). However, there exist non-basic but critical groups which also have the property that
for every proper Ω ⊂ ∂eS(G,u), Ω is ugly. In this case, there is a finite obstruction to being basic.

In the examples above, r is a real number that satisfies no nonconstant rational polynomial
of degree n or less, and we formed the group G(n, r) ⊂ Rn. These are critical dimension groups
with the interesting property that for all pure traces τ , τ(G) are equal to each other. Equality
of the value groups is not an invariant (since by changing the order unit, we change the value
groups), except in the case that we are looking at invariants for (G,u), that is, where u is specified.
However, what is an invariant is that all τ(G) be order-isomorphic as subgroups of the reals as τ
varies over the pure traces.

Moreover, in these examples, we have that rank τ(G) = 2, so that rank ker τ = n− 1; thus all
pure traces are ugly, just as in the case of basic critical groups. However, if n ≥ 3, rank (ker τ1 ∩
ker τn) = n−3 6= n−2; specifically, a Z-basis for the intersection is {Fn − F2, Fn−1 − F2, . . . , F3 − F2}).
Hence there exists a two-element subset of the pure trace space that is not ugly, so that if n ≥ 3,
these critical groups are not basic.

We analyze potential isomorphisms of critical groups of rank n+1 as follows. Begin with any
ordered Z-basis, {v1, v2, . . . , vn, vn+1}, which we regard as elements of R1×n, that is, rows of real
numbers. We construct an (n+ 1)× n real matrix A by letting its ith row be vi.

Applying any element of GL(n + 1,Z) to A (from the left) just changes the Z-basis, hence
leaves the group they generate the same.

As in the earlier sections, let P (n,R)+ denote the group weighted permutation matrices of size
n with only positive weights—that is, the set of products P∆ where P is a permutation matrix,
and ∆ is a diagonal matrix with only strictly positive real entries along the diagonal. The group
of order-automorphisms of R1×n with respect to either the strict or the usual ordering is just
P (n,R)+, and since any order isomorphism between critical groups (necessarily of the same rank)
extends uniquely to an order automorphism of R1×n (after identifying the two sets of pure traces),
we have that the order isomorphisms between critical groups are determined by right actions of
P (n,R)+.

So we can act on A from the left by GL(n + 1,Z) and from the right by P (n,R)+. In
particular, we can permute rows, we can permute columns, perform elementary row operations
(over the integers), and multiply columns by positive real scalars. If after a sequence of such
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actions, we arrive at a matrix A′ where the the top n×n part is just the identity, then the critical
dimension group is basic.

We illustrate this with a simple example, the case n = 2 of G(n, r). Here r is a real number
that is not quadratic or rational. Let G = 〈(r, 0), (1, r), (1, 1)〉 ⊂ R2. We have the following series
of transformations,




1 1
1 r
r 0


 7→




1 1
0 r − 1
r 0


 7→



r 0
0 r − 1
1 1


 7→




1 0
0 1
1
r

1
r−1


 .

Thus G is basic (since {1, 1/r, 1/(r − 1)} is linearly independent over Q iff
{
1, r, r2

}
is). It also

satisfies the property that τ(G) are mutually isomorphic as τ varies over the pure trace space.

Suppose A is partitioned as
(

B

α

)
, where B is n × n (so α = (α1, . . . , αn) is just the bottom

row), and now assume that B is a rank n matrix (necessary for it to yield a critical group anyway)
with only integer entries. Some of the time (but not always), we restrict the actions of GL(n+1,Z)
to be those of GL(n,Z)×{1}, that is, performing only elementary row operations not affecting the
bottom row, B. Necessary and sufficient for the row space of A to be a critical dimension group is
that the set {1, α1, . . . , αn} be rationally linearly independent.

Since multiplying on the right by weighted positive diagonal matrices preserves order isomor-
phism, we may assume that each column of B is unimodular (of course, the corresponding entry
of α is multiplied by a rational at the same time). Hence we may assume that B ∈ NSn.

Every U ∈ GL(n,Z) and permutation matrix P yields an order isomorphism of the dimension
group (by extending U to C = U ⊕ (1)), so we may assume that B is in terminal form.

In particular, if the terminal form is simply the identity (of size n), then G is basic. More
generally, let G′ be the subgroup of Rn generated by the rows of the current matrix, renamed

A =
(

B

α

)
; as we have observed, this is order isomorphic to G. The pure traces are still the

coordinate functions, τi. It is easy to check that τi(G
′) = Z+αiZ, and the latter being of rank two

implies that all pure traces are ugly. But more is true. If we manipulate further using GL(n,Q)
(that is rational elementary row operations), we can reduce B to the identity matrix. This means
that G′⊗Q is order isomorphic to G0⊗Q for some basic critical group G0. It follows immediately
that every proper subset of the pure trace space of G′ is ugly.

We investigate the converse. For any critical dimension group with pure trace space ∂eS(G,u) =
{τi}, set Ji = kerΩ(i). It is easy to see that either Ji = {0} or rankJi = 1. In the latter case, pick
a generator xi for Ji (we only have two choices, ±xi). Now form E ≡ E(G) :=

∑
xiZ where the i

varies over those such that Ji is not zero. The xi are the same as those in the original construction
of the invariant for the integer part of G.

The latter ensures that the isomorphism G → G′ induces a group isomorphism E(G) →
E(G′), and thus yields an isomorphism G/E(G) → G′/E(G). In particular, the torsion parts are
respectively isomorphic. We claim that this induces an isomorphism Tor(G/E(G))→ J(Bop). We
are not done yet, since G = (

∑
fjZ)⊕ αZ as abelian groups.

It suffices to show that r(B)/X(B) (a subgroup of G/E(G)) is exactly the torsion part of
G/E(G) (and similarly with C replacing B). Since the former is torsion, we have inclusion. Now
suppose that g + E(G) is a torsion element in G/E(G). There thus exists n > 0 such that
ng ∈ E(G), in particular, we can write ng as an integer combination of elements of xi, so that
ng ∈∑ fjZ (as the xi ∈

∑
fjZ). On the other hand, since {fj} ∪ {α} is a Z-basis for G, we may

write g uniquely as
∑
tjfj +mα, so that ng =

∑
ntjfj +nmα; since ng ∈

∑
fjZ, we deduce nmα

is in the span of fj , which of course is impossible unless nm = 0, that is, m = 0. So g ∈ ∑ fjZ,
and thus g +E(G) ∈ r(B)/X(B). Of course, the same works with C replacing B.
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First,
∑
xiZ = ⊕xiZ (routine). Next, E and G/E are invariants for order isomorphism; that

is, any order isomorphism between critical dimension groups G1 → G2 maps E(G1) isomorphically
(as abelian groups, of course) onto E(G2), so that the induced map on their cokernels G1/E(G1)→
G2/E(G2) is also an isomorphism.

When G is basic, G/E ∼= Z, as is obvious from its matrix A representing it. When every
proper subset of the pure trace space is ugly, then the torsion-free rank of G/E is one, but it may
have torsion elements. If not every proper subset is ugly, then the torsion-free rank of G/E must
exceed one, and there can also be torsion. The following is practically tautological.

LEMMA 9.3 Let G be a critical dimension group. Then G is basic iff G/E(G) ∼= Z.

Proof. One way is trivial. Suppose G/E ∼= Z. Then G→ G/E splits, and thus we may find y ∈ G
such that E ⊕ yZ = G. We can write E = ⊕xiZ, and since the rank of E is n, there are n of
the xi. Now each xi vanishes at all the traces except τi; by replacing xi by −xi if necessary, we
can also assume that τi(xi) > 0. Set u =

∑
xi, so that τi(u) = τi(xi) > 0 for all i. Thus u is an

order unit. Now renormalize the traces with respect to u, that is, τi is replaced by σi := τi/τi(xi).
Then σi(xj) = δij (Kronecker delta), and in the affine representation with respect to u, each xj
simply maps to the jth standard basis element. Now y (or more accurately ŷ) is a real linear
combination of xi, say ŷ =

∑
αix̂i. As G has dense range, it easily follows that {1, α1, . . . , αn} is

rationally linearly independent, and we have exhibited an order-isomorphic copy of G as a basic
critical group. •

In the examples we just computed, we see that the torsion-free part is rank one (also follows
from the fact that all proper sets of pure traces are ugly). The torsion part is determined by the
elementary divisors in the final form. Here is a simple example. Set f1 = (1, 1), f2 = (0, 2), f3 =
(α, β) where {1, α, β} is linearly independent over the rationals, and set G = 〈f1, f2, f3〉 = ⊕fiZ.
The matrix A is already reduced as far as it can be (if we insist that the top 2× 2 matrix has only
integer entries),

A =




1 1
0 2
α β


 .

Then ker τ1 = f2Z, so we set x1 = f2; ker τ2 = (2f1 − f2)Z, so we set x2 = 2f1 − f2. But
〈x1, x2〉 = 〈2f1, f2〉, so G/E ∼= Z ⊕ Z2; in particular, this dimension group is not basic. (It is the
presence of the 1 in the (1, 2) entry, that ensures that we obtain 2-torsion; if f1 = (1, 0) instead,
then the group would be basic, since we could divide the second column by 2).

Now let n = 3, and define fi to be the four rows of the matrix




1 0 11
0 1 2
0 0 12
α β γ


 ,

where {1, α, β, γ} is rationally linearly independent. Then x1 = 12f1 − 11f3 (up to sign), x2 =
6f2 − f3, and x3 = f3. Then the torsion subgroup of G/E, that is, J(Bop), is isomorphic to
Z12 ⊕ Z6, which has 72 elements, not the expected 12 = 1× 2× 6.

We will see (next section) that the invariant really boils down to PH-equivalence, together
with an action on the bottom row.

When n = 2, we saw an example of a basic critical group such that τ(G) are all isomorphic
as τ varies over all (two) pure traces. When n > 2, the corresponding construction G(n, r), does
not yield a basic critical group, but we can still construct basic ones with this property.
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Let r be a positive real number that satisfies no nontrivial integer polynomial of degree n or
less. Then the set {1, r, r/(1 + r), r/1 + 2r, . . . , r/(1 + (n− 1)r)} is rationally linearly independent.
This is an easy exercise, which becomes trivial if we assume r is transcendental. Hence there is
a basic critical group whose last row is (r, 1/(1 + r), . . . , 1/(1 + (n − 1)r)). The respective value
groups of the pure traces are Z+rZ,Z+(r/(1+jr)Z (1 ≤ j ≤ n−1). But these are all isomorphic
(multiply Z+ (1/(1 + jr)Z by 1 + jr; this is an order isomorphism to (1 + jr)Z+ rZ = Z+ rZ).

10 Isomorphisms between almost basic critical groups

A critical group of rank n + 1 is almost basic if it is order isomorphic to a dimension group G

given by the matrix
(

B

α

)
where B ∈ MnZ; necessarily (in order to have dense image in Rn),

rankB = n and {1, α1, . . . , αn} is rationally linearly independent. As above, we may assume that
all the columns of B are unimodular, that is, B ∈ NSn. We will show that two almost basic groups
(with corresponding (B,α) and (B′, α′) are order isomorphic iff B = UB′P (with U ∈ GL(n,Z)
and P a permutation matrix, i.e., B is PH-equivalent to B′) and one of α± α′P ∈ r(B). We also
obtain an internal characterization of almost basic among critical groups, independent of how it is
realized, that is, every subset of ∂eS(G,u) is ugly.

Suppose r and s are irrational real numbers. Then the critical groups of rank 2 (n = 1), Z+rZ
and Z+ sZ with orderings inherited from the reals, are order-isomorphic iff r is in the PGL(2,Z)-
orbit of s, that this, there exist integers a, b, c, d such that |ad − bc| = 1 and r = (as+ b)/(cs+ d)

[ES]. This easily follows from (as+ b)Z+ (cs+ d)Z = Z+ sZ when
(

a b

c d

)
∈ GL(2,Z). For n > 1

and basic critical groups, perplexingly, the role of PGL(2,Z) is replaced by the semi-direct product
Zn ×π×ρ (Sn × {±1}) where Sn is the symmetric group. This is abelian by finite, rather different
from PGL(2,Z). A similar, but somewhat more restrictive description for isomorphism classes of
almost basic groups, follows from the same result.

Notation for the statement of the theorem. LetB ∈ MnZ be of rank n. Suppose α = (α1, . . . , αn) ∈
R1×n is such that {1, α1, . . . , αn} is rationally linearly independent. Form the augmented matrix

B =
(

B

α

)
∈ R(n+1)×n. Set GB,α to be the subgroup of R1×n generated by the rows of B. Then

GB,α is a critical dimension group of rank n+1. If the content of ith column of B is δi ∈ Q, then
applying ∆−1 on the right, where ∆ = diag (δ1, . . . , δn), we see that B

′′ := B∆−1 is still an integer
matrix, but now in NSn, and GB,α

∼= GB′′,α∆−1 as partially ordered abelian groups. Hence (at a
cost of multiplying the entries of α by various fractions of the form 1/k), we may assume that B
is already in NS.

THEOREM 10.1 Let GB,α and GB′,α′ be almost basic critical groups, where B,B′ ∈ NSn.
If they are order isomorphic, then there exists C ∈ GL(n+1,Z) and ∆P ∈ P (n,R)+ (with
P a permutation matrix) such that CB∆P = B′. Moreover,

(i) In the n, 1 partition of C =
(

U c

r t

)
, c = (0, 0, . . . , 0)T ∈ Z(n−1)×1, U ∈ GL(n,Z), and

t ∈ {±1}.
(ii) ∆ = I and UBP = B′.

(iii) α′ belongs to one of ±αP + r(B).

In particular, GB,α
∼= GB′,α′ iff (ii) and (iii) hold.

Remark. Condition (iii) says that one of α′ ± αP belongs to the row space of B.

Proof. First, suppose that B and B′ are in NS , α is given (so that GB,α is a critical group), and
B is PH-equivalent to B′. Then it is elementary that GB,α

∼= GB′,απ (as partially ordered groups),
where π effects a permutation of the entries. To see this, suppose UBP = B′ where U ∈ GL(n,Z)
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and P is a permutation matrix. Let C = U ⊕ 1. Then

C

(
B
α

)
P =

(
UBP
αP

)
=

(
B′

αP

)
,

and of course, αP is just a permutation of α. By our usual construction, this yields an order
isomorphism GB,α → GB′,αP .

Thus given full rank B ∈ MnZ and α such that {1} ∪ {αi} is rationally linearly independent,
there exists a terminal B′′ ∈ NSn such that GB,α is order isomorphic to GB′,α′ (where α is obtained
from α by applying some weighted permutation to the latter).

Hence we may suppose that α and α′ are given (and satisfy the usual rational linear inde-
pendence condition), B and B′ are terminal forms in NSn, and there is an order isomorphism
GB,α → GB′,β . We will show (i–iii) hold.

The isomorphism entails there exist C ∈ GL(n+1,Z) and a weighted permutation matrix with
positive real entries (here factored as diagonal times permutation), ∆P , such that CB∆P = B′.

Partitioning the matrices as we did before and writing B =
(

I s X

0 D

)
and B =

(
I s′ X′

0 D′

)
, in terminal

form (thus D is upper triangular with positive increasing entries along the diagonal, none of the
them 1, etc)

(
U c
r t

)(( I s X
0 D

)

α

)
∆P =



(
I s′ X ′

0 D′

)

α′


 .

Our objective is to show that the column c = (c1, . . . , cn)
T is zero, and we achieve this by exploiting

the numerous zeros in the matrices. Then it is elementary that ∆ must be the identity and
UBP = B′, and moreover, |detU | = 1 is immediate.

From the equation,

(
U c
r t

)(
B
α

)
∆ =

(
B′P−1

αP−1

)
, we obtain,

(UB + cα)∆ = B′P−1

rB + tα = α′P−1.

One of the columns of B′P−1, say the hth, is the first standard column basis element. Hence for
all i,

((UB)ih + ciαh) δh =

{
1 if i = 1

0 if i > 1.

Hence if i > 1, (UB)ih + ciαh = 0. As the first term and ci are integers, and {1, αh} is rationally
linearly independent, we deduce ci = 0 (and (UB)ih = 0). Assume c1 6= 0; we will obtain a
contradiction.

Write U = {γij}. As the first column of B is the first standard basis element, we have
(UB)i1 = γi1. Thus (γi1 + ciα1)δ1 ∈ Z (as these are the entries of a column of B′P−1). Hence for
i > 1, γi1 ∈ δ−1

1 Z (as the corresponding ci are zero). If for some i > 1, γi1 6= 0, then δ1 is rational.
From γ11 + c1α1 ∈ δ−1

1 Z together with rational linear independence of {1, α1}, we deduce c1 = 0,
a contradiction. Hence γi1 = 0 for all i > 1.

Now consider the second column of UB; as B is upper triangular, (CB)i2 = γi1B12 + γ22B22,
and B22 6= 0. Hence

γi1B12 + γi2B22 + ciα2 ∈
1

δ2
Z.
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If i > 1, this simplifies to γi2B22 ∈ δ−1
2 Z; thus if γi2 6= 0 for some i > 1, then δ2 is rational.

Hence, γ11B12 + γ12B22 + c1α2 ∈ δ−1
2 Z ⊂ Q. As c1 6= 0, rational linear independence of {1, α2} is

impossible, a contradiction. Hence γi2 = 0 for i > 1.
Thus the first, second, and n+ 1st columns of the matrix C ∈ GL(n+ 1,Z) are




γ11
0
0
...
0
r1



,




γ12
0
0
...
0
r2



,




c1
0
0
...
0
t



.

These generate a subgroup of rank only two, so that rankC < n+1. This final contradiction shows
that c1 = 0, and thus c is zero.

Thus C =
(
U 0
r t

)
, and so 1 = |detC| = |tdetU |. Thus t = ±1 and U ∈ GL(n,Z), and of

course the equations simplify to UB∆ = B′P−1. Since B and B′ are invertible in MnQ, this forces
δi ∈ Q+ for all i. In particular, there exists an integer N such that N∆ is an integer matrix (with
positive entries).

As B and B′ have all their columns unimodular, so do UB (as U ∈ GL(n,Z)) and B′P−1.
Thus the content of the ith column of NUB∆ is Nδi while that of NB′P−1 is just N . Hence
Nδi = N , so ∆ = I . Thus (finally)

UBP = B′

rB ± αP = α′.

This yields (i–iii), and the final statement is a consequence of this and the remarks early in the
proof. •

PROPOSITION 10.2 Let n > 1, α = (α1, . . . , αn), α
′ = (α′

1, . . . , α
′
n) ∈ Rn be such that both

{αi}ni=1 ∪ {1} and {α′
i}ni=1 ∪ {1} are linearly independent over the rationals. The basic

critical dimension groups Gα and Gα′ (generated by {e1, . . . , en, α} and {e1, . . . , en;α′}
respectively) are order isomorphic iff α′ is in the orbit of α under the action of Zn ×Π×ρ

(Sn × Z2).

Proof. Here B = B′ = I , so the criterion of the theorem simplifies to α′ ± αP ∈ Z1×n. •

COROLLARY 10.3 Almost basic critical groups of rank at least three admit no nontrivial
order-automorphisms.

Proof. From CB∆P = B (the order-automorphisms on a critical group automatically extend to
order-automorphisms of the closure, Rn, hence must be given by weighted permutation matrices),
the preceding yields ±α + rB = αP . If π is the permutation induced by P , and π(i) = j 6= i for
some i and j, then αj±αi ∈ Z; but this contradicts the rational linear independence of {1, αi, αj}.
Hence P is the identity. Thus by the preceding B = UBP = UB; as B is of full rank, this forces
U to be the identity, and thus the only automorphism is the identity. •

This contrasts with the critical groups discussed in [H]; those arise from integral orders in
totally real fields with one real embedding discarded, and are classified by their ideal class structure.
In those cases, there are plenty of order automorphisms, arising from some of the units in the
number field.

For an abelian group J , the torsion-free rank of J , that is, the rank of J modulo its torsion
subgroup, is denoted tf rankJ .
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PROPOSITION 10.4 Let G be a critical group of rank n + 1, with n > 1. Let u be any
order unit for it. The following are equivalent.
(a) the torsion-free rank of G/E(G) is one;
(b) for all σ ∈ ∂eS(G,u), the intersection ∩τ∈∂eS(G,u)\{σ} ker τ is nonzero;
(c) there exists a basic critical group G′ such that G⊗Q is order-isomorphic to G′ ⊗Q;
(d) every proper subset of ∂eS(G,u) is ugly;
(e) G is almost basic.

Proof. (a) iff (b): Property (b) is equivalent to rankE(G) = n (since the sum
∑
xiZ is direct),

which is equivalent to tf rankG/E(G) = 1.

(b) implies (c). For each i, there exists xi ∈ G unique with respect to the properties∩τj∈∂eS(G,u)\{τi} ker τj =
xiZ and τi(xi) > 0. Then E(G) :=

∑
xiZ is free of rank n and there exists y ∈ G such that

G0 = E(G)⊕ yZ is of finite index in G. As G is dense in Rn, so is G0.

As a subgroup of G of rank less than n+ 1, E(G) is discrete; being of rank n, any Z-basis for
it is also an R-basis for Rn. Hence there exist αi ∈ R such that y =

∑
αixi. Density of G0 in Rn

entails that {1, αi, . . . , αn} be rationally linearly independent, and G0 is a dimension group with
respect to the strict ordering, which obviously agrees with the relative ordering inherited from G,
and its pure traces are the restrictions of τi, which we will also call τi.

Set u =
∑
xi, so that τi(u) = τi(xi) > 0 for all i. Thus u is an order unit in both G0

and G. Normalize the traces of G0 with respect to u—the pure traces are now τ̃i given by
τ̃i(g) = τi(g)/τi(u). The normalized traces now satisfy τ̃i(xj) = δij (Kronecker delta). Hence
the embedding (G0, u)→ AffS(G0, u) realizes G0 as a basic critical group.

Since G0 is of finite index in G, G0 ⊗Q = G⊗Q.

(c) implies (d). For any trace τ on any dimension group G, ker τ ⊗ 1Q = (ker τ) ⊗ Q. Thus
rank ker τ = rank ker(τ ⊗ 1Q). As G is critical, every subgroup of less rank than n+ 1 is discrete,
and the result follows.

(d) implies (e). For a pure trace τi, let Ω(i) be the complement of {τi} in ∂eS(G,u). As Ω(i) is
ugly, ∩τ∈Ω(i) ker τ is not zero, and being discrete and spanning Ω(i)⊥ over the reals, it must be
rank one. As it is a subgroup of a free group, it is free, so it equals xiZ for some xi ∈ G, and we
may assume τi(xi) is positive. Now we are in a position to use the method of proof in (b) implies
(c), coming up with a basic critical group G0 of finite index in G. There thus exists an integer N
such that NG ⊆ G0, and NG is obviously order isomorphic to G, while G0 ⊂ Zn. Any subgroup
of a free group is free, so we can find the desired basis.

(e) implies (a). Trivial. •

11 Unperforation of quotients

In this section, we want to ensure that the quotient pre-ordered groups of almost basic critical
groups by kernels of subsets of ∂eS(G,u) are themselves almost basic; the crucial property is that
these quotients are unperforated. We will prove the following. This construction is what motivated
the J (B) invariant of PH-equivalence.

PROPOSITION 11.1 Let G be an almost basic critical group of rank n + 1. Let Ω ⊂
∂eS(G,u), and define L = kerΩ := ∩τ∈Ω ker τ . Then G/ kerΩ, equipped with the quotient
ordering, is an almost basic critical group with pure trace space Ω.

This boils down to showing the quotient is unperforated, something that is obvious for basic
critical groups (and the quotients are themselves basic critical groups), but not so obvious for almost
basic ones. This provides an alternative path to the definition of I(BΩ) as the torsion subgroup of
GΩ/E(GΩ) where GΩ = G/ kerΩ (for Ω ⊂ ∂eS(G,u), the latter identified with {1, . . . , n}).
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The following is a slight improvement on [BeH, Appendix B, Propositions 1 and 2], not covered
by the results there.

LEMMA 11.2 Let (G,u) be a simple unperforated group with order unit, and let L be
a convex subgroup of G such that G/L is torsion-free. Suppose that the closure of the
image of L, L, in Aff S(G,u), contains a subgroup of the form D+P , where D is a rational
vector space and P is generated by nonnegative elements of Aff S(G,u), and L/(D + P )

is torsion. Then equipped with the quotient ordering, G/L is unperforated.

Remark. For example, if G is basic, say with generators {ei;
∑
αjej}, and L = kerS (where

S ⊂ {τi}), then L is generated by {ei}{i| τi 6∈S}. Each ei has image in AffS(G,u) = Rn as ei itself,

which is nonnegative in the affine function space (of course, the ei is not in the positive cone of G,
since the ordering is the strict one). By [BeH, Appendix B], the quotient is nicely behaved.

The lemma above removes the density condition on D + P (that it be dense in L) [op.cit.],
and replaces it with a different requirement. This is particularly useful when L is already discrete,
hence closed in the affine representation; then D = 0, but P need only be a subgroup; this will
automatically be closed, so that L need not equal P . But the lemma here says that sufficient for
unperforation is that rankP = rankL <∞, which is easy to verify for almost basic critical groups.

Proof. The convexity condition (which in the simple case boils down to L∩G+ = {0}) is sufficient
to guarantee that the quotient pre-ordering is a partial ordering, that is, an element that is both
positive and negative must be zero.

If kg+L = L, then torsion-freeness of the quotient entails g ∈ L. Hence we may assume that
kg + L ∈ (G/L)+ \ {0}.

Suppose g ∈ G and k is a positive integer such that kg+L ∈ G+\{0}. We may thus find x ∈ L
such that kg + x is an order unit. Let ǫ = infσ∈S(G,u) σ(kg + x) = infσ∈S(G,u)

̂(kg + x)(σ) > 0.
There exists a positive integer N such that Nx̂ is in the norm closure of D + P . Select an integer
M to be determined (as a function of k and N).

We may find d ∈ D and p ∈ P such that ‖Nx̂−d−p‖ < ǫ/M . There exists (from the definition
of D), d′ ∈ D such that d = Nkd′; so ‖Nx̂−Nkd′ − p‖ < ǫ/M . We may write p = p1 − p2 where
pi ≥ 0 and pi ∈ P (in particular, pi ∈ L).

There exists f ∈ L such that ‖f̂ − d′‖ < ǫ/M and qi ∈ L such that ‖q̂i − pi‖ < ǫ/M . In
particular q̂i ≥ −ǫ111/M as functions on S(G,u).

Set

z = Nkg +Nkf +Nkq1 = Nk(g + f + q1).

If we can show z ∈ G+, then as G itself is unperforated, it would follow that g + f + q1 ∈ G+, and
so g + L is in the positive cone of the quotient. So it suffices to show z ∈ G+.

We have

z −N(kg + x) = Nkf +Nkq1 − (Nx−Nkf − q1 + q2)−Nkf − q1 + q2

= Nkq1 + q2 − (Nx−Nkf − q1 + q2); evaluating at σ ∈ S(G,u),
σ(z) ≥ Nσ(kg + x) +Nkσ(q1) + σ(q2)− ‖Nx̂−Nkf̂ − q̂1 + q̂2‖

≥ Nǫ− Nkǫ

M
− ǫ

M
− ‖Nx̂−Nkd′ − p‖ −Nk‖f̂ − d′‖ − ‖q̂1 − p1‖ − ‖q̂2 − p2‖

≥ ǫ
(
N − Nk + 1

M
− 1

M
− Nkǫ

M
− 2

M

)

= ǫ

(
N − 2Nk + 4

M

)
.
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If we select M > 2k + 4/N (e.g., M = 2k + 6), ẑ is strictly positive, so that z is an order unit of
G, and we are done. •

COROLLARY 11.3 Suppose G is a simple dimension group with an order unit u. Let L be
a convex subgroup of G such that G/L is torsion-free and the image of L in Aff S(G,u) is
discrete. Sufficient for G/L to be a simple dimension group (with respect to the quotient
ordering) is that there exist a subgroup L0 of L such that L/L0 is torsion, and the image
of L0 is generated by its nonnegative elements (with respect to the usual ordering on
Aff S(G,u)). In this case, the trace space of (G/L, u+ L) is a closed face of S(G,u).

Proof. Since the image of L is discrete, its image is already closed in AffS(G,u); the hypothesis

ensures that L̂0 = P satisfies L̂/P is torsion, so the preceding applies with D = 0. Hence G/L is
unperforated. Simplicity is automatic.

Since L/L0 is torsion, if τ ∈ S(G,u) kills L0, it automatically kills L. Hence L⊢ = L⊢
0 . Let

P+ = P ∩AffS(G,u)+ (the latter with the usual, not the strict ordering), so that P = P+ − P+.
Since L0 maps to P , and P⊢ = (P+)⊢, we have that L⊢ is a (closed) face, call it F , of S(G,u). In
particular, F is a Choquet simplex.

Let φ be a trace of G/L; then φ induces a trace of G, with kernel containing L. Thus
φ ∈ L⊢ = F . Conversely any element of F kills L and thus induces a trace on G/L. Hence the
map S(G/L, u + L) → F is an affine bijection; it is obviously continuous, so by compactness of
S(G/L, u+ L), it is an affine homeomorphism.

Select an element h ∈ AffF ; this lifts to an element j ∈ AffS(G,u). Given ǫ, there exists g ∈ G
such that ‖ĝ− j‖ < ǫ, that is, supσ∈S(G,u) |σ(g)− j(σ)| < ǫ. This implies supσ∈F |σ(g)− j(σ)| < ǫ,
and together with the affine homeomorphism, this forces the image of G/L to be dense in AffF ,
hence in its affine representation (with respect to u+ L). As G/L is unperforated and simple, its
ordering must be the strict one inherited from affine functions on a Choquet simplex, and thus
G/L is a dimension group. •

COROLLARY 11.4 If G is an almost basic critical group and Ω ⊂ ∂eS(G,u), then G/ kerΩ

is a simple dimension group whose pure trace space is Ω.

Proof. Let F be the face spanned by Ω (since AffS(G,u) is a finite dimensional simplex, it is
simply the convex hull of Ω). By Proposition 10.4(c), there exists a basic critical group G0 of finite
index in G (whose relative ordering agrees with its usual one). Then kerΩ ∩ G0 is generated by
elements with nonnegative image in AffS(G,u), and this is of finite index in kerΩ. By the result
above, G/ kerS is a simple dimension group, and its pure trace space is just the set of extreme
points of F , which is Ω. •

Connections to PH-equivalence. This was the starting point for the development of (J(Bop
Ω ))Ω⊂S ,

the directed family of PH-invariants; when G is generated by the row space of B and α, then the
torsion subgroup of GΩ/E(GΩ) is just I(BΩ).

For almost basic critical groups, GB,α, GB′,α′ with
(

B

α

)
,
(

B′

α′

)
∈ Rn×(n+1) such that B,B′ ∈

MnZ and detB,detB′ 6= 0, we immediately reduce to the case that B,B′ ∈ NSn, by factoring
out a positive diagonal matrix, as in section7. Then by Theorem 10.1, GB,α is order-isomorphic
to GB′,α′ iff B is PH-equivalent to B′ and the permutation involved in the PH-equivalence sends
to α to α′.
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For example, if

Bα :=




1 0 15
0 1 2
0 0 30
α1 α2 α3


 and B′

α′ :=




1 0 5
0 1 6
0 0 30
α′
1 α′

2 α′
3


 ,

given α = (α1, α2, α3) (with {1, α1, α2, α3} rationally linearly independent), there is no choice of
α′ = (α1, α2, α3) such that GB,α is order isomorphic to GB′,α′ , since from Example 3.3 (first two
matrices), B and B′ are not PH-equivalent.

If we set B = B′ to be the leftmost example in Example 3.3 (the 3 × 3 integer matrix in Bα
above), and let α = (

√
2,
√
3,
√
5) and α′ = (

√
3,
√
2,
√
5), then even though the integer matrix

parts are the same, the resulting critical dimension groups are not order isomorphic, because the

permutation π = (12) and its corresponding matrix P =
(

0 1

1 0

)
⊕ (1) does not fix B, as follows

from Proposition 2.1, with no invertible elements in the column (modulo d = 30).

Appendix A. A general duality result

This appendix gives fairly general duality results about orbits under natural actions, that appear
in section 6. Here R will be a not necessarily commutative ring (of course with 1), but not much
additional effort is required to prove the corresponding results over noncommutative rings.

Let R be a ring, and n > k be positive integers. A matrix with entries from a ring will be
called invertible if it is square and two-sided invertiblesometimes we add two-sided, for emphasis.
We follow [C] in saying an n × k matrix M is completable if there exists an n × (n− k) matrix
W such that the n × n matrix (W M) is invertible. Invertibility of this matrix is equivalent to
the columns constituting an R-basis for Rn×1

R (as a right R-module).
If instead, n < k, then we say M is completable if there exists a (k − n)× k matrix W such

that the k × k matrix
(

W

M

)
is invertible. If n = k, then completable is simply invertible.

These notions date back to the origins of K-theory.
The ring of n×nmatrices will be denoted MnR, but the set of non-square rectangular matrices

with k rows and n columns will be denoted Rk×n. We denote by GL(k,R) (or simply GL(k) if no
ambiguity will result) the group of invertible matrices in MnR. The group of invertible elements
of R will be denoted R×.

The next two lemmas are obvious.

LEMMA A.1 Let M ∈ Rn×k with n > k ≥ 1. The following are equivalent.
(a) M is completable;
(b) the set of columns of M can be enlarged to a basis of size n of Rn×1 as a right

R-module;
(c) there exists a right R-submodule L of Rn×1 that is free on n−k generators such that

L⊕M(Rk×1) = Rn×1.

LEMMA A.2 Let M ∈ Rn×k with k > n ≥ 1. The following are equivalent.
(a) M is completable;
(b) the set of rows of M can be enlarged to a basis of size k of RR

k×1 as a left R-module;
(c) there exists a left R-submodule L of R1×k that is free on k − n generators such that

L⊕ (R1×n)M = R1×k.

LEMMA A.3 Let A,B,C be respectively in Mn−kR, R(n−k)×k, and MkR with C ∈ GL(k,R),

and set E :=
(

A B

0 C

)
∈MnR. Then A ∈ GL(n− k,R) iff E ∈ GL(n,R).
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Proof. Suppose that E is invertible. Let U be the inverse of E; partitioned in the same way as E,

we can write U =
(

Q S

T V

)
, and we have

(
I n−k 0
0 I k

)
= UE =

(
QA QB + SC
TA TV + V C

)

= EU =

(
AQ+ BT AQ+BT

CT CV

)
.

From CT = 0 (second matrix, lower left), and invertibility of C (two-sided invertibility, that is),
we deduce T = 0 (of the appropriate dimensions). From the upper left corners of each matrix, we
then have AQ = QA = I n−k, so A ∈ GL(n− k,R).

Conversely, suppose that A is invertible. Multiply E on the left by A−1 ⊕ C−1 ∈ GL(n,R),

resulting in
(

I n−k A−1B

0 Ik

)
; this has inverse

(
In−k −A−1B

0 Ik

)
, so E is a product of two invertible

matrices, hence is invertible. •
A ring R is stably finite if for all matrix rings MnR and elements x ∈ MnR, x is right

invertible implies x is invertible. This is a two-sided condition, and is equivalent to onto right
module homomorphisms x : Rn×1 → Rn×1 always being isomorphisms, or equivalently, if the left
module homomorphism RR

1×n ← RR
1×n : x is onto, then x is an isomorphism.

The ring R has the property that stably free modules are free (SFF) if whenever Rn ∼= Rk⊕Q
as right R-modules, then Q is free. This property is also right/left symmetric. This property also
harkens back to the origins of K-theory, e.g., what was formerly Serre’s conjecture, now known as
the Quillen-Suslin theorem.

Finally, R has invariant basis number (IBN) if Rm ∼= Rn as right R-modules implies m = n.
This is again left/right symmetric, and it is easy to check that stably finiteness implies IBN. The
reverse implication is well known not to be truee.g., the ring generated by the unilateral shift and
its transpose (defined on l2(Z+)) has the IBN property but is not stably finite. However, SFF and
IBN together imply stable finiteness. (Proof : Suppose that the right R-module homomorphism
x : Rn → Rn is onto. It splits since the image is free; this yields Rn ∼= Rn ⊕ Q for the module
Q = kerx. SFF implies that Q is free, and IBN entails that it must be free on zero generators,
hence zero. So x is an isomorphism.)

For the computations in section6, we only deal with rings of the form R = Zd. All of these,
and Z itself, satisfy both SFF and stable finiteness (the latter being trivial, since the rings are
commutative).

Kaplansky [K, p 498] had a limited definition of Hermite rings. TY Lam [La, p 26] defines
Hermite to mean a ring satisfying SFF. Cohn [C, 0.4] refers to a ring satisfying SFF and IBN as an
Hermite ring (Charles Hermite was French, so the initial H is pronounced as a stop, requiring an,
not a; this practise is adopted in [K] and many subsequent papers). To avoid confusion, particularly
in view of the main subject of this paper, we will not use this term at all, nor IBN.

Sometimes, to emphasize the chirality of a module (left or right) over the ring R, we place a
subscripted R beside it: thus RQ means Q considered as a left module, and QR means as a right
R-module.

LEMMA A.4 Let R be a stably finite ring satisfying SFF. Suppose n > k are positive
integers. Let M ∈ Rn×k. The following are equivalent.
(a) The set of columns of M is a right R-module basis for a free direct summand of

Rn×1
R .

(b) There exists W ∈ Rn×(n−k) such that U := (W M) ∈ GL(n,R).
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(c) The left R-submodule of RR
1×n spanned by the rows of M is all of RR

1×n.

Remark. It is not sufficient (in (c)) that the row space be free on k generators—R = Z yields an
example.

Remark. The right versus left hypotheses are important (unless R is commutative), as shown in
ExampleA.5.

Proof. (a) implies (b). Let V be the (right) submodule of Rn×1 spanned by the columns of V ;
by hypothesis, it is free with k generators, and there exists a submodule X of Rn×1 such that
Rn×1 = X ⊕ V . Since V is free, SFF implies that X is free, and stable finiteness guarantees that
it is free on n− k generators. Label them w1, w2, . . . , wn−k, and let W be the resulting n× (n− k)
matrix (whose ith column is wi). From the direct sum decomposition, the set of columns of
U = (W M) is a basis for Rn×1. Thus the map U : Rn×1 → Rn×1 is a homomorphism of right
R-modules which is onto. Stable finiteness now yields that U is (two-sided) invertible.

(b) implies (c). Given U = (W M) invertible, define the map of left modules, RR
1×n ← RR

1×n : U
(given by right multiplication of course, hence the weird notation). This is an isomorphism (since U
is invertible). Now consider the images ofM andW separately. Identifying RR

1×(n−k) and RR
1×k

with respectively the submodules of RR
1×n having zeros in the bottom k positions and zeros in

the top n − k positions, we have that the respective ranges satisfy (RR
1×n)W ⊂ RR

1×(n−k) and
(RR

1×n)M ⊂ RR
1×(k). Since U (as a homomorphism of left modules) is onto, the sum of the two

ranges is all of (RR
1×n), and since the respective images have zero intersection, it follows that

(RR
1×n)M = RR

1×(k). But this is precisely condition (c).

(c) implies (b). Again, viewM as a left module homomorphism RR
1×k ← RR

1×n :M . Hypothesis
(c) says that M is onto, so splits. Hence there exists V ∈ Rk×n such that VM is the identity on

RR
1×k (one of the peculiarities of left module homomorphisms is that they compose in the correct

order, unlike what we’re used to with right modules). Moreover, we have a direct sum decomposi-
tion L kerM ⊕Z = RR

1×n, where L kerM is the kernel ofM as a left module homomorphism, and
Z is obtained from the splitting, and moreover, left multiplication by M induces an isomorphism

RR
1×k ← Z.

As in the proof of (a) implies (b), SFF and stable finiteness imply that L kerM is free on n−k
generators. Identifying RR

1×k with the submodule of RR
1×n consisting of elements whose leftmost

n− k entries are zero (and similarly RR
1×(n−k) with the obvious complementary submodule), we

define W ∈ Rn×(n−k) acting (on the right of course) as an isomorphism RR
1×(n−k) ← L kerM ,

and zero on Z.

Now define the n × n matrix U = (W M), and observe that is range (as a left module
homomorphism) is all of RR

1×n. As R is stably finite, this implies that U is invertible.

(b) implies (a). Let Z be the inverse of U = (W M). Invertibility entails that the set of columns
of U is a basis for Rn×1. Let V1 be the right R-module span of the set of columns of W , and V2
the span of the set of columns of M .

Then Rn×1 = V1 + V2; from the fact that the set of all columns is a basis, we have Rn×1 =
V1 ⊕ V2. Since any subset of a basis is itself a basis for the submodule it generates, we have that
V2 is free, necessarily on the k generators arising from the columns of M . •
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Suppose that n > k. Define the following subsets of rectangular matrices over R.

C(n, k) =
{
M ∈ Rn×k

∣∣ M is completable
}

C ′(n, k) =
{
M ∈ Rk×n

∣∣ M is completable
}

F (n, k) =
{
M ∈ Rn×k

∣∣ M contains a set of k rows whose corresponding matrix is invertible
}

F ′(n, k) =
{
M ∈ Rk×n

∣∣ M contains a set of k columns whose corresponding matrix is invertible
}

Fi(n, k) =
{
M ∈ Rn×k

∣∣ M contains exactly i sets of k rows whose corresponding matrix is invertible
}

for each i = 1, 2, . . . ,

(
n

k

)

F ′
i (n, k) =

{
M ∈ Rk×n

∣∣ M contains exactly i sets of k columns whose corresponding matrix is invertible
}

for each i = 1, 2, . . . ,

(
n

k

)
.

If R is a local ring (in the not necessarily commutative setting, this means that R modulo its
Jacobson radical is a division ring), then C(n, k) = F (n, k). It is probably true that C(n, k) =
F (n, k) for some n > k implies that R is local.

It can happen that some of the Fi(n, k) are empty when i is at or near the maximum. For
example, if R is the finite field Zp with p prime, then with n = 5 and k = 2,

(
5
2

)
= 10, and F10(5, 2)

is empty for p = 2 or 3, while F9(5, 2) is empty if p = 2. However if R is an infinite field, then
F(nk)

(n, k) is generic (and if the field is R or C, its complement in F (n, k) is just a union of lower

dimensional varieties).
Set Dn to be the group of invertible diagonal n× n matrices with entries from R× (the group

of invertible elements of R), and let Pn denote the group of n× n permutation matrices (regarded
as elements of GL(n,R)). The group they generate (consisting of weighted permutation matrices),
will be denoted W (n). Then W (n) acts from the left on each of the sets C(n, k), F (n, k), Fi(n, k)
and GL(k,R) acts on the right, yielding a W (n)×GL(k,R) action; similarly, GL(n,R) acts from
the left on C ′(n, k), F ′(n, k), F ′

i (n, k), yielding an action of GL(k,R)×W (n) on each of these.
We see that F (n, k) = ∪̇Fi(n, k) (i = 1, 2, . . . ,

(
n
k

)
), and it is not difficult to see that F (n, k) ⊂

C(n, k) (below). We denote their orbit spaces by replacing the roman capital letters by their script
forms, e.g., C(n, k), C′(n, k), etc.

We will obtain what amounts to duality by showing that there exists a natural bijection
F(n, k)→ F ′(n, n− k), which restricts to dualities Fi(n, k)→ F ′

i(n, n− k) for each i = 1, . . . ,
(
n
k

)

(conveniently,
(
n
k

)
=
(

n
n−k

)
). The corresponding groups implementing the actions are W (n) ×

GL(k,R) and GL(n − k,R) × W (n). When R is commutative (or more generally admits an
anti-automorphism), there are bijections F ′

i(n, n − k) → Fi(n, n − k) (determined by composing
the anti-automorphism with transpose), yielding bijections Fi(n, k) → Fi(n, n − k); if the anti-
automorphism is either the identity or involutive, these are dualities.

For C(n, k), at the moment, the situation requires an additional hypothesis: that R be stably
finite and satisfy SFF (even if R is commutative). Then there is a duality C(n, k) → C′(n, n− k)
that extends the duality F(n, k)→ F ′(n, n− k), and the same comments about the presence of an
anti-automorphisms apply.

My colleagues, Kirill Zaynullin and Damien Roy, pointed out that if R = F is a field, then one
of the dualities, F(n, k)→ F(n, n− k), is implied by the usual Grassmannian duality, Gr(k, n)→
Gr(n− k, n). To see this, pick M ∈ Fn×k; its columns form a basis for a k-dimensional subspace
of Fn×1; the right action by GL(k, F ) (given by elementary column operations) has no effect on
the subspace, and the duality takes the transpose and looks at its kernel.
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If R is commutative, we will see that the dualities F(n, k) → F(n, n − k) and Fi(n, k) →
Fi(n, n − k) are implemented by [M ] → [N ] where the columns of N constitute a right basis for
the kernel of the map MT : Rn×1 → Rk×1. This is particularly simple, as MTN = 0 iff NTM = 0.
However, if R is not commutative, the transpose does not do what we expect. For example, at one
point in the argument of the commutative case, we would use the obvious fact that if g ∈ MkR is
invertible, then so is gT . This is no longer the case in the noncommutative situation; in fact, it
is almost never true. Example A.5 illustrates this. This is a minor modification of an example in
[GKKL], the main result of which is that a ring R in which the transpose of invertibles is always
invertible, must be commutative modulo its Jacobson radical.

EXAMPLE A.5 [GKKL] Suppose R is a ring and there exist elements x, y ∈ R such that
xy − yx is invertible (in R). Then there exists g ∈ GL(2, R) such that gT is a two-sided
zero divisor in M2R.

Set g =
(

1 x

y xy

)
. Elementary column operations (using right multiplications) reveal that g is

invertible, in fact even a product of elementary matrices; explicitly,

g−1 =

(
1 + xe−1y −xe−1

−e−1y e−1

)
=

(
1 −x
0 1

)(
1 0
0 e−1

)(
1 0
−y 1

)
,

where e = xy − yx. However, gT =
(

1 y

x xy

)
kills the column

(
−y

1

)
and the row (−x 1), so

a :=
(

−y

1

)
(−x 1) =

(
yx −y

−x 1

)
satisfies agT = gTa = 0.

Any division ring which is not commutative admits such a pair x, y, as does any ring containing

a full set of matrix units (e.g., x =
(

0 1

0 0

)
and y =

(
0 0

1 0

)
, and similar examples for larger sets of

matrix units). •
In particular, we must avoid the temptation to use the transpose. We avoid it by sometimes

considering matrices as left R-module homomorphisms, acting on the right. (An alternative is to
use the opposite ring of R; however, I found this extremely confusing.) We use the weird but
logical notation, RQ2 ← RQ1 : x, to denote the left module homomorphism x from Q1 to Q2, the
subscripted Rs on the left of the names of the modules emphasizing the fact that they are left
modules.

First, we show that F (n, k) ⊂ C(n, k). Pick M ∈ F (n, k); there exists a permutation P ∈ Pn

such that the bottom k rows of PM constitutes an invertible matrix, g ∈ GL(k,R). Then PMg−1 =(
X

Ik

)
. Set W0 =

(
In−k

0

)
(where the zero matrix is size k × (n − k)). Then h :=

(
W0 PMg−1

)

is invertible (by the lemma about upper triangular matrices iff), and set W = P−1W0, and U =
(W M). Then PU(I n−k ⊕ g−1) = h, so U = P−1h(I n−k ⊕ g) is a product of invertibles, hence
is invertible. Thus M ∈ C(n, k). The same argument (not using the transpose) works to show
F ′(n, k) ⊂ C ′(n, k).

To construct the map on equivalence classes, pick M ∈ C(n, k), and view M as a homomor-
phism of left modules, RR

1×k ← RR
1×n : M (it acts by right multiplication, of course). Denote its

kernel, L kerM . By A.3(a implies c), the image ofM is all of RR
1×k, so the map splits; in particu-

lar, L kerM is a direct summand, and there exists a submodule Q such that R1×n = L kerM ⊕Q,
and the restriction to Q of right multiplication by M is an isomorphism R1×k ← Q. In particular,
Q is free on k generators as a left module. Now we make the assumption,
(*) L kerM is free (as a left R-module) on n− k generators.

(We will see later that this applies if either M ∈ F (n, k) or R satisfies SFF and stable
finiteness.) Pick a basis with n−k generators, {r1, r2, . . . , rn−k} ⊂ R1×n. Let N be the (n−k)×n
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matrix whose ith row is ri. We will show that the assignment M → N (which is highly dependent
on choices of bases) yields a well-defined map [M ] 7→ [N ] on the orbit spaces.

First, we claim that N ∈ C ′(n, n− k). But this is easy: let W be the k × n matrix consisting

of a k-element basis for Q. Then the rows of V :=
(

W

N

)
constitute an n element basis for RR

1×n,

and it is immediate that V is invertible.
Next, if we choose a different n − k-element basis for L kerM and corresponding N ′, there

exists g ∈ GL(n − k,R) such that gN = N ′ (express each element of one basis as a left linear
combination of the the elements of other basis; the matrices of coefficients are mutually inverse).

If we replace M by wMh where w ∈ W (n) and h ∈ GL(k), we observe that L ker(wMh) =

L ker(wM) = (L kerM)w−1. Thus if we choose a basis for L kerwM , (si), and form the matrix
N (whose rows are the si, then N := Nw will have rows constituting a basis for L kerM (recall
that W (n) acts on the right of rows, multiplying by a weighted permutation matrix). Thus if M
belongs to theW (n)×GL(k)-orbit ofM0, then any choice for N (that is, whose rows form a basis)
will belong to the GL(n− k)×W (n) orbit of (any choice of) N0, and N ∈ C ′(n, n− k).

All this was under the assumption (*). Now assume that M ∈ F (n, k); we claim that (*)

holds. By assumption, there exists P ∈ Pn and g ∈ GL(k,R) such that M0 := PMg−1 =
(

X

Ik

)
. It

is an easy computation (essentially column-reduced echelon form, but with noncommuting entries)
that L kerM0 is spanned as a left R-module by the rows,

{(−ej ;Xj,n−k+1,Xj,n−k+2, . . . ,Xj,n)}n−k
j=1 ej is the jth standard basis element of RR

1×(n−k),

and the module is clearly free on these generators, and a direct summand (with complementary
basis {Es}ns=n−k+1 where {Ei} is the standard basis for RR

1×n. In particular, (*) holds.

But we have more: N ∈ F ′(n, n − k): if we choose the displayed basis, then N =
(

−In−k

X

)
,

which clearly belongs to F ′(n, n− k).
Thus the assignment, φ : [M ]→ [N ], sends F(n, k)→ F ′(n− k). If M ∈ Fi(n, k), for each of

the i sets of k rows yielding an invertible matrix, there exists a distinct permutation matrix P such
that PM has that particular set of k rows moved to the bottom (of course different permutations
can yield the same subset of i rows), and we easily see from the preceding explicit form that for
each, there is a corresponding subset of n − k columns in N . This yields a one to one map from
the sets of k rows ofM constituting an invertible matrix to the sets of n−k columns of N yielding
an invertible matrix. To show it is a bijection, we work in reverse.

Begin with N ∈ C ′(n, n− k), and consider the map of right modules, N : Rn×1 → R(n−k)×1.
By A.4(a), it is onto, so the map splits, and we a direct sum decomposition of right modules,
kerN ⊕Q = R1×n, with the restriction of N to Q being an isomorphism with R1×(n−k). If kerN
is free on k generators, then we send N to any matrix whose set of k columns is a basis for kerN
(in parallel with what we did before). Now suppose N ∈ F (n, n− k); by applying a permutation

matrix and pre-multiplying it by an element of GL(n−k), we may assume hNP =
(

−I n−k

X

)
. Then

kerhNP = kerNP = P−1 kerN , and we see that the kernel is spanned by the rows of
(

X

Ik

)
. It

follows that if N came from anM ∈ F (n, k), then we recoverM up to the action ofW (n)×GL(k).
In particular, this yields an inverse map [N ] 7→ [M ], and we obtain that φ is a bijection

F(n, k) → F ′(n, n− k); moreover, parallel arguments show that the inverse map sends F ′
i(n, n−

k)→ ∪j≥iFj(n, k). Combined with the previous, we must have φ(Fi(n, k)) = F ′
i(n, n− k).

For the action of W (n)×GL(k,R) on F (n, k) or C(n, k), we define the stabilizer of a point,
M , to be the subgroup of Pn consisting of

{P ∈ Pn | PDMg =M for some D ∈ Dn and g ∈ GL(k)}
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(and similarly with respect to the actions on F ′(n, k) and C ′(n, k)). It is easy to check that this
is a subgroup of Pn (which we typically identify with Sn), with the usual properties of stabilizers,
e.g., if M and M ′ are in the same W (n)×GL(k) orbit, then the stabilizer of M is isomorphic to
that ofM ′ via an inner automorphism of Pn (of course, the word inner is only significant if n = 6).

Thus far, we have most of the following.

PROPOSITION A.6 Let R be any ring and n > k ≥ 1. Then the map φ induces bijections
Fi(n, k))→ F ′

i(n, n− k) for each of i = 1, 2, . . . ,
(
n
k

)
. Moreover, it induces isomorphisms on

the stabilizers.

Proof. We have already seen that φ is a bijection. SelectM in F (n, k), and constructN ∈ Fn×(n−k)

such that MTN is zero, as in the definition of φ. Suppose P belongs to the stabilizer of M ; then
PDMg =M for (D, g) ∈ D×GL(k). ThusMT (DT )−1PN = 0. Since the columns of N constitute
a basis for kerMT , it follows there exists h ∈ GL(n − k) such that (DT )−1PNh = N . Since we
can write (DT )−1P = P (P−1(DT )−1P ) and the second factor is diagonal, we have that P belongs
to the stabilizer of N . It follows by interchanging M and N , that their stabilizers are equal. •

It is clear from the definitions that an n × k matrix of the form U(X) :=
(

X

I k

)
belongs to

F (n, k), and moreover, every orbit in F (n, k) contains a matrix of this form. More interestingly,
such a matrix U(X) belongs to Fm(n, k), where m =

(
n
k

)
, if and only if all s × s submatrices of

X are invertible, for all s = 1, 2, . . . , k. In particular, all the entries of X have to be invertible
(corresponding to s = 1), and if k > 1, then all matrices of the form

(
xi(1),j(1) xi(1),j(2)
xi(2),j(1) xi(2),j(2)

)

(s = 2) have to be invertible as well. There are thus
∑k

j=1

(
n−k
j

)(
k
j

)
=
(
n
j

)
− 1 conditions.

PROPOSITION A.7 Let R be a stably finite ring satisfying SFF. Then the map φ induces
a bijection C(n, k)→ C′(n, n− k).
Proof. First, we show that (*) holds; that is, if M ∈ C(n, k), then L kerM is free on n − k
generators. As in the proof above, we have that RR

1×n = L kerM ⊕ Q where Q is a free left R-
module (because the restriction of right multiplication byM to Q is an isomorphism with RR

1×k).
By SFF, L kerM is free, and by stable finiteness, it can only be free on n − k generators. Hence
(*) holds.

Thus the corresponding N exists, and we showed above that N ∈ C ′(n, n− k). In particular,
φ is a well-defined map C(n, k)→ C′(n, n−k). Now we can work in reverse to show it is a bijection.
Pick Z ∈ C ′(n, n− k); write kerZ ⊕Q = Rn×1 as right R-modules, with Z restricted to Q being
an isomorphism. Then Q is free, so SFF implies kerN is free, and stable finiteness yields freeness
on exactly k generators; pick such a basis. Define M to be the matrix whose ith column is the ith
basis element. It is easy to check that if we construct the corresponding N , the R-module span of
its rows will be that of N , and both being bases, they are bases for the same submodule, hence
there exists g ∈ GL(n− k) such that gN = N . This shows that the map C′(n, n− k)→ C(n, k) is
the inverse to φ. •

Suppose that R is commutative, or more generally, admits an anti-automorphism ψ (for com-
mutative rings, we can take the identity; if R is a *-ring, we can take *). Then there is a (relatively)
natural map (depending on ψ) C′(n, n−k)→ C(n, n−k) (and corresponding maps on the F s): send
M to ψ(M)T (defining ψ on matrices entrywise). So composing this with φ, we obtain bijection
Fi(n, k)→ Fi(n, n− k) (and if R satisfies SFF and is stably finite, on the corresponding Cs).

In particular, if R is commutative, and we take the identity as ψ, the columns of N are given
by a basis for kerMT , where we regard MT : Rn×1 → Rk×1 as a homomorphism of right modules.
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Then MTN = 0 and thus NTM = 0, and we quickly see that the map φ really does behave like a
duality. Similarly, if we assume that ψ is involutive (as in *-rings), then there is a natural duality
F(n, k)→ F ′(n, n− k)→ F(n, k) implemented via ker(M∗)T .

If, however, ψ is just an anti-automorphism, there are still mutually inverse bijectionsF(n, k)→
F ′(n, n−k) and vice versa, but they are not really the same (the first is implemented by kerψ(M)T ,
the reverse by kerψ−1(MT )).

Suppose that k = 2, n = 5, and F = Zp for a prime p. We note that the orbit space of
F10(5, 2) can be interpreted as the orbit space of the collection of 5 (distinct)-element subsets of
1-dimensional projective space over Zp, P1, acted upon by PGL(2,Zp). Since PGL(2,Zp) acts
3-transitively on P1, it is easy to check that it acts transitively on F10(5, 2) if p = 5 or 7 (but
not for any larger prime—the order of F10(5, 2) does not divide that of PGL(2,Zp) if p > 7). In
particular, the result above shows that PGL(3,Z7) acts transitively on F10(5, 3)—something that
is routine to check with a computer (it suffices to show that the stabilizer of one or any point has
at most six elements), but extremely tedious to check by hand.

Appendix B. A truncated reciprocal formula

David Handelman & Damien Roy

Fix a prime p. The following goes back to 1893.

THEOREM B.1 [L] The number of rank n− s matrices in GL(n,Zp) is

Cs :=

(
(pn − 1) . . . (pn − pn−s−1)

)2

(pn−s − 1) · (pn−s − p) . . . (pn−s − pn−s−1)
.

Now we can prove the result of this section. The limiting case of this is the identity [HW,
19.7], due to Euler. However, we cannot obtain the result below simply by truncation, since there
is a bonus of an extra bit in the exponent of the error term.

PROPOSITION B.2 Let n, s be positive integers, with n > (s + 1)2 + 1, and let z be a
variable. Then as functions analytic on the open unit disk, we have




(s+1)2−1∏

i=1

(1− zi)




1 +

s∑

j=1

zj
2

(1− z)2(1− z2)2 · · · (1− zs)2


 and




(s+1)2−1∏

i=1

(1− zi)




1 +

s∑

j=1

zj
2

(1− zn)(1− zn−1) . . . (1− zn−j+1)

(1− z)2(1− z2)2 . . . (1− zs)2




are polynomials, and their Maclaurin expansions are

1− z(s+1)2+2 + higher order terms.

Proof. Since (s+1)2−1 ≥ 2s, it follows that all the denominators of the right factor are eliminated
by the left (count the multiplicities of the various roots of unity that are zeros of the denominators,
and do the same for the first 2s terms in the product on the left). Hence the polynomial assertion
is verified.
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With Np =
∏n−1

i=0 (p
n − pi) being the number of invertible matrices, we have,

Cs =
Np∏n−1

i=0 (p
n − pi)

·
(
(pn − 1) . . . (pn − pn−s−1)

)2

(pn−s − 1) · (pn−s − p) . . . (pn−s − pn−s−1)

= Np ·
(pn − 1) . . . (pn − pn−s−1)

((pn − pn−s)(pn − pn−s+1) . . . (pn − pn−1)) · ((pn−s − 1)(pn−s − p) . . . (pn−s − pn−s−1))

= pn
2 · Np

pn2 ·
p(n−s)(n−s−1)/2(pn − 1)(pn−1 − 1) . . . (ps+1 − 1)

pn(n−1)/2 ((ps − 1)(ps−1 − 1) . . . (p− 1)) · ((pn−s − 1)(pn−s−1 − 1) . . . (p− 1))

= pn
2 · Np

pn2 ·
p(n−s)(n−s−1)/2(pn − 1)(pn−1 − 1) . . . (pn−s+1 − 1)

pn(n−1)/2 ((ps − 1)(ps−1 − 1) . . . (p− 1))
2 ; divide by pn

2

and set z = 1/p;

Cs

pn2 =
Np

pn2 ·
zs

2

(1− zn)(1− zn−1) . . . (1− zn−s+1)

(1− z)2(1− z2)2 . . . (1− zs)2 :=

(
n∏

i=1

(1− zi)
)
· cs(z).

Set c0 = 1, and let m(z) =
∏n

i=1(1− zi). We see that each cs(z) is analytic on the unit disk;
moreover, for each prime p, m(1/p)

∑n
j=0 cj(1/p) = 1, since the unnormalized forms count the total

number of matrices; this equality is also true at z = 0. Since each of the factors is analytic on the
open disk, and the product agrees with the constant function 1 on a limit point ({0, 1/2, 1/3, . . . }),
it follows that the product, m · (∑n

j=0 cj) is 1 on the unit disk. We use this to determine some
Maclaurin coefficients. Each ci is expressed as

zi
2

(1− z)2 . . . (1− zi)2 × (1− zn)(1− zn−1) . . . (1− zn−s+1).

When we expand this in its Maclaurin expansion, we see that ci = zi
2

+2zi
2+1+terms of higher order.

Now suppose that s2 ≤ n, and consider the truncated sum,
∑s

i=0 ci. The missing terms are
of the form mp · ct where t > s. It follows immediately that the smallest degree term in the

Maclaurin expansion of what is missing is z(s+1)2 + 2z(s+1)2+1. Thus Es :=
∑n

i=0 ci −
∑

i>s ci =

1− z(s+1)2 − 2z(s+1)2+1 + terms of higher order.

Now truncate m at (s+ 1)2 − 1, that is, ms =
∏

i≤(s+1)2−1(1− zi). Then

m−ms = ms · ((1− z(s+1)2)(1− z(s+1)2+1) · · · − 1)

= ms · (−z(s+1)2 − z(s+1)2+1 − z(s+1)2+2 + . . . )

= −z(s+1)2(1 + z + z2 + . . . ) · (1− z)(1− z2)(1− z3) . . .
= −z(s+1)2(1− z2 + . . . ); so

ms = m+ z(s+1)2(1− z2 + . . . ).
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Now we have

ms · Es = m+ z(s+1)2(1− z2 + . . . ) ·
(

n∑

i=0

ci −
∑

i>s

ci

)

= 1−m
∑

i>s

ci +
(
z(s+1)2(1− z2 + . . . )

)
Es

= 1−
(
(1− z)(1− z2) . . . · (cs+1 + . . . )

)
+
(
z(s+1)2(1− z2 + . . . )

)
(1 + z + 2z2 + . . . )

= 1− (1− z − z2 + z3 + . . . )z(s+1)2(1 + 2z + 5z2 + . . . ) + z(s+1)2(1 + z + z2 + . . . )

= 1− z(s+1)2
(
(1 + z + 2z2 + . . . )− (1 + z + z2 + . . . )

)

= 1− z(s+1)2+2 + . . . .

This is exactly the desired assertion for the more complicated product. For the less complicated
(first) product, from n−j+1+j2 > (s+1)2+2 (this is equivalent to n+1 > (s+1)2+2), the extra
terms in the numerator of the right hand term do not contribute to any Maclaurin series terms of
degree less than or equal (s+ 2)2 + 2, so the first product has the same Maclaurin expansion up
to that degree. •

The simpler expression (the first one) does not involve n and product behaves as 1−z(s+1)2+2(1+
OOO (z)) without reference to n. If we let s→∞, then the left function converges uniformly on com-
pact subsets of the open unit disk to the Euler function, and since the latter has no zeros, it follows
that the infinite sum on the right also converges uniformly on compact subsets, so is also analytic
on the open disk; necessarily, the limit is the reciprocal of the Euler function, giving yet another
proof of the identity [HW, 19.7]. For all values of s that we could calculate with, the coefficients
of the higher order terms oscillate in a particularly interesting way, and the maximum increases as
s does, according to Maple.

Appendix C. Counting PH-equivalence classes

In [ALTPP], the authors compiled tables of PH-equivalence isomorphism types, based on (what
amounts to) d = |detB| and |detBop| for n = 3 and 4. Using Proposition 2.1, one can obtain
explicit formulas for the the numbers of equivalence classes that contain a terminal form with
1-block size n− 1 of determinant d, and subdivide it according to the possible values of |detBop|.
Aside from the complicated nature of the expressions, these only deal with 1-block size n− 1.

In this appendix, we will see that the lower bound obtained for the number of PH-classes of
C ∈ NSn of determinant d obtained in Lemma C.1,

Fn(d) :=
φ ∗ J2 ∗ · · · ∗ Jn−1

n!

is asymptotically (in d) correct (with an estimate of a factor 1 + d−1), when d is square-free. We
do this by showing that the vast majority of the Sn-orbits on “weakly terminal” matrices (defined
below) of determinant d are of full size, that is, n!, via estimates (and in some cases, exact formulas)
for numbers of matrices fixed by an arbitrary permutation.

A matrix C is called weakly terminal, if it is in Hermite normal form and belongs to NS ;
in particular, it is upper triangular, and its (1, 1) entry is 1. It is quite easy to count the weakly
terminal matrices of given size and determinant.

Let C be a weakly terminal matrix of size n, let π ∈ Sn be a permutation, and let P ≡ Pπ

be the permutation matrix right multiplication by which implements π as a permutation of the
set of columns. There exists U ≡ UP ∈ GL(n,Z) such that CP := UCP is in Hermite normal
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form, and in fact, given P , CP is unique. If C ′ and C ′′ are weakly terminal matrices such that C ′

such that C ′ = UCP for some permutation matrix P and U ∈ GL(n,Z), and C ′′ = U ′′CP (same
permutation matrix), then C ′′ = U ′′(U−1C ′P−1)P = U ′′U−1C ′, so that C ′′ is Hermite equivalent
to C ′—but both are in Hermite normal form, so must be equal.

Since the property of being inNS is preserved by Hermite equivalence, it follows that {CP }P∈Sn

is a finite set consisting of weakly terminal elements, and an orbit, under the action of Sn. More-
over, this orbit must contain at least one terminal matrix (since every matrix is PH-equivalent to
a terminal matrix, and terminal implies weakly terminal). Thus the orbits of the form {CP }P∈Sn

(with C varying over weakly terminal matrices) are in bijection with the PH-equivalence classes of
C ∈ NSn.

In particular, for fixed weakly terminal C (weakly terminal is required, since otherwise CP is
not necessarily uniquely determined) is an Sn-space. The difficulty in counting arguments is that
the orbits need not all be full, that is, there will be some fixed points—CP = C for some nontrivial
permutation matrix P .

One case in which the orbit will be full (of cardinality n!) occurs when J(CΩ(i)) are dis-
tinct. The obvious action of P (acting on the columns) implements a permutation of the n-tuple,
(J(Ω(1), J(Ω(2)), . . . , J(Ω(n))) (the subsequent left action by the unimodular matrix does not
affect the order of these groups). If J(CΩ(i)) are distinct, this action is just the permutation rep-
resentation of Sn on a set with n elements. It follows that the orbit of the action C 7→ CP is
full.

For π ∈ Sn, let P ≡ Pπ denote the permutation matrix right multiplication by which imple-
ments π as a column permutation. Then a weakly terminal matrix C ∈ NSn is fixed by π (or
P ≡ Pπ) iff CPC−1 has only integer entries. For a subgroup H of Sn and a positive integer d,
Let Z(H)(d) denote the set of all weakly terminal matrices of determinant d that are fixed by all
elements of H. When H is the cyclic group generated by π, we use the notation Z(π)(d). The car-
dinality of Z(π)(d) is denoted S(π)(d) (and similarly for subgroups H). The function d 7→ S(π)(d)
is multiplicative (in the number-theoretic sense) for all π.

There is an obvious procedure for counting PH-equivalence classes. First, we count all the
weakly terminal matrices of fixed determinant d (done in Lemma C.1). Then we count the number
of weakly terminal matrices whose orbits are not full, and subtract them off, keeping track of the
number of PH-equivalence classes they constitute, and apply Burnside’s lemma. When n = 3, it
is barely possible to do this, but for larger sizes, obtaining the exact number seems horrible. (In
fact, when n = 3, we obtain a convenient subdivision into various cases with 1-block size two, and
the remainder; this goes most smoothly when d is square-free.)

However, for n arbitrary and d prime (and thus for d square-free), we can obtain relatively
explicit formulas for S(π)(d) for every π ∈ Sn; since the matrices with orbit size less than n! must
be in Z(π) for some non-identity π ∈ Sn, we can easily obtain an upper bound for the number of
PH-equivalence classes. This will verify the conjecture below when d is square-free.

Recall the definition of the kth Jordan totient, Jk(n) = nk
∏

p|n(1− p−k). Then J1 = φ, Jk is

multiplicative (in the number-theoretic sense), and Jk(d) counts the number of content one columns
of size k + 1 with d in the bottom entry, and all the other entries belonging to {0, 1, . . . , d− 1}.
Recall that for multiplicative functions f and g, f ∗ g, the convolution, is defined by (f ∗ g)(t) =∑

x|d f(x)g(d/x), and is multiplicative; moreover, f ∗g = g∗f . There is an identity for constructing

Jk, namely if ξk is the multiplicative function n 7→ nkφ(n), then ξk−1 ∗ ξk−2 ∗ · · · ∗ ξ1 ∗ φ = Jk.
(The Dirichlet series for the function on the left telescopes.)

LEMMA C.1 Let d be a positive integer. For n > 1, the number of weakly terminal n×n
matrices of determinant d is

(φ ∗ J2 ∗ · · · ∗ Jn−1) (d).
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Proof. This simple proof is by induction on n. If n = 2, we are counting the matrices
(

1 a

0 d

)
where

0 ≤ a < d and (a, d) = 1—the number of choices for a is obviously φ(d).
For n > 2, given a weakly terminal matrix C say with (n, n) entry x (which divides d, as the

matrix is upper triangular), deleting the last row and column, yields a weakly terminal matrix of
size n−1, and with determinant d/x; moreover the nth column has content one. Conversely, given
a weakly terminal matrix of size n − 1 and a content one column of size n, we created a weakly
terminal matrix of size n by attaching the column, and embroidering n − 1 zeros on the bottom,
and of course the determinant multiples.

If Hj(t) denotes the number of weakly terminal matrices of size j and determinant t, we thus
have Hn−1(t) = (φ ∗ J2 ∗ · · · ∗ Jn−2) (t) by the induction hypothesis, and

Hn(d) =
∑

x|d

Jn−1(x)Hn−1(d/x)

= (Jn−1 ∗H(n− 1))(d) = (Hn−1 ∗ Jn−1)(d)

= (φ ∗ J2 ∗ · · · ∗ Jn−1) (d),

completing the induction. •
Set F (n, d) = (φ ∗ J2 ∗ · · · ∗ Jn−1) (d). It follows immediately that F (n, d)/n! is a lower bound

for the number of PH-equivalence classes of matrices in NSn of determinant ±d.
CONJECTURE For d a positive integer, the number of PH-equivalence classes of matrices
in NSn having determinant ±d is

(φ ∗ J2 ∗ · · · ∗ Jn−1)(d)

n!
·
(
1 +

(
n
2

)

d
(1 + ooo (1))

)
.

One way to proceed, and even obtain a slightly sharper result is as follows. Fix n, then d, and
a permutation π ∈ Sn, and its corresponding matrix P (right multiplication by which implements
π as a column permutation. We wish to obtain an asymptotic estimate for the number of weakly
terminal n×n matrices C of determinant d invariant under the action of P , that is, CPC−1 ∈ MnZ.

Let K(π) denote the number of cycles in the decomposition of the permutation π associated
to P ; fixed points of course are 1-cycles, so are counted. Then K(π) is just the co-rank of the
matrix I − P , that is, n = rank (I − P ) +K(π), as it simply counts the algebraic and geometric
multiplicities (they are the same for permutation matrices) of 1 as an eigenvalue of P .

Motivated by the counting arguments above, the following is likely to be true.

SPECIFIC CONJECTURE Let π ∈ Sn be a non-transposition. Then for all ǫ > 0,

S(π)(d)
F (n, d)

= ooo
(
dK(π)−n+ǫ

)
.

Without ǫ, the specific conjecture fails (in Appendix C, we will see that when n = 3 and π is
a 3-cycle, then S(π)(d)/S(I )(d) is infinitely greater than d−2).

If the specific conjecture were true, the conjecture preceding it would follow (as we will see
when we discuss S(π) when π is a transposition). Of course, it would be sufficient to prove this
when d is restricted to powers of primes.

Presumably, this is part of a theory of an arithmetic version of varieties, corresponding to
subvarieties having measure zero when imbedded in a variety.
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We will show that the original conjecture is correct when limited to square-free d.

LEMMA C.2 Let H be a subgroup of Sn, and π ∈ Sn. Then for all d > 0,

S(H)(d) = S(πHπ−1)(d).

Proof. Fix d, and let Q be the permutation matrix representing π. Select a permutation matrix
P that corresponds to an element of H, and suppose weakly terminal C is fixed under the action
of P , that is, CPC−1 ∈ MnZ. There exists U ≡ UC,Q ∈ GL(n,Z) such that UCQ−1 is in Hermite
normal form; since both left multiplication by elements of GL(n,Z) and right multiplication by
permutation matrices preserveNSn, UCQ−1 is itself weakly terminal, and of the same determinant
as C (it is of the same absolute determinant, but being in Hermite normal form, the determinant
is positive). In addition, UC,Q is unique (with respect to the property that UCQ−1 is in Hermite
normal form), as detC = d 6= 0.

Next, we observe that

UCQ−1(QPQ−1)QC−1U−1 = U(CPC−1)U−1 ∈ MnZ.

Since this is true for every P corresponding to an element of H, we have a set map Z(H)(d) →
Z(πHπ−1)(d) given by C 7→ UC,QCQ

−1. Since C is itself weakly terminal, it follows that
UUCQ−1,Q−1 must be U−1

C,Q, so the corresponding map Z(πHπ−1)(d))→ Z(H)(d) is the inverse of

the original. This shows that C 7→ UC,QCQ
−1 is a bijection. •

Define for each positive integer k, Nk : N→ N via

Nk(d) =
∣∣{z ∈ Zd

∣∣ zk = 1
}∣∣ .

The Chinese remainder theorem implies that for each k, the function Nk is multiplicative. The
following is routine, and follows from Z∗

pm being cyclic of order pm−1(p − 1) when p is odd, and
isomorphic to Z2m−2 ×Z2 when p = 2 (with the interesting convention that Z2−1 ×Z2 is the trivial
group).

LEMMA C.3 For a prime p,

Nk(p
m) = pmin{vp(k),m−1} ·

{
gcd {p− 1, k} if p is odd, or pm = 2

2 if p = 2 and m ≥ 2.

If k is an odd prime, then lnNk(d) ≤ | {p|d | p ≡ 1 mod k} | · ln k, and in general, Nk(d) ≤
2kw(d)+1, although the latter is almost always a gross overestimate.

Let π ∈ Sn, and let i ∈ {1, 2, . . . , n} (n will be fixed). Define the orbit of i with respect to π,
Oπ(i) (or O(i) if π is understood), to be

{
πk(i)

}
k∈Z

.

For π ∈ Sn, let Pπ (or P if π is understood) be the corresponding permutation matrix that
implements the action of π on the columns of n×n matrices by right multiplication. If C is weakly
terminal, then C is fixed by the action of π (or P ) if CPC−1 has only integer entries: explicitly,
CP−1 is put in Hermite normal form by a matrix U ∈ GL(n,Z), that is, UCP−1 is in Hermite
normal form; then UCP−1 = C iff U = CPC−1, which is equivalent (since the determinant of the
right side is plus or minus one) to CPC−1 having only integer entries.

We will determine S(π)(d) exactly, when d is square-free. We obtain a formula involving some
of the orbits of π and their cardinalities, relating to Jordan totients. It is explicit enough that we
can easily verify the specific conjecture for square-free d.
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As before fix n and fix d as well. Let 2 ≤ j ≤ n, and let u = (a1, a2, a3, . . . , aj−1, d, 0, 0, . . . , 0)
T ∈

Zn such that 0 ≤ ai < d and gcd {d, a1, . . . , aj−1} = 1. Let C ≡ C(j, u) be the weakly terminal
matrix whose jth column is u, and whose ith column for i 6= j is the standard basis elements
Ei ∈ Zn. In other words, C − I has exactly one nonzero column, and it is u−Ej . Note that C so
constructed is automatically weakly terminal.

Define

Vj ≡ Vj(d) = {C ∈ MnZ | detC = d; C is weakly terminal; the only nonzero column of C − I is the jth.}

The definition forces the jth column to be of the form u as given above.
Given π ∈ Sn, we will determine the number of matrices C ∈ Vj such that C is invariant

under π, that is, for which CPπC
−1 ∈ MnZ. If d = p, a prime, then every weakly terminal C

of determinant d is in Vj for some j, so we obtain S(π)(p) as a sum over j = 2, . . . , n of these
numbers. This yields a formula for S(π)(d) when d is square-free. The formula is sufficiently
explicit to determine asymptotic behaviour (that is, for large, square-free d).

Begin with C ≡ C(j, u) ∈ Vj , and P ≡ Pπ. The ith column of CP is given by

(CP )i =

{
Eπ−1(i) if i 6= π(j)

u =
∑

l≤j−1 alEl + dEj if i = π(j).

Thus the entries are given by

(CP )i,m =





1 if i 6= π(j) and i = π(m)

0 if i 6= π(j) and i 6= π(m)

am if i = π(j) and m < j

d if i = π(j) and m = j

0 if i = π(j) and m > j.

Extend the definition of ai, so that aj = d and al = 0 if l > j. We will usually write πk rather than
π(k) (unless ambiguity may result) from now on. We can thus write the mth row of CP , (CP )(m)

as

(CP )(m) = ameπj +

{
eπm if m 6= j

0 if m = j.

(We are using the convention that Ei represent the standard basic columns, while ei represent the
standard basic rows, so that ekEl is the matrix product whose outcome is δkl.)

Now C−1 is calculated easily by factoring C into a product of a diagonal matrix and a unipo-
tent. The outcome is that all the columns of C−1 except the jth are just the standard ba-
sic columns, and the jth column is d−1(−a1, . . . ,−aj−1, 1, 0, 0, . . . , 0)

T . In particular, (C−1)j =

d−1
(
Ej −

∑
i≤j−1 aiEi

)
.

We see immediately that CPC−1 has only integer entries iff its jth column does. We calculate
the entries of the jth column.

(CPC−1)m,j = (CP )(m)(C−1)j

=





−amaπj

d +





−aπm

d if m,πm 6= j

0 if m = j
1
d if m 6= j and πm = j.

if πj 6= j

am

d
+

{ −aπm

d if m 6= j

0 if m = j.
if πj = j.
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Now we count the π-invariant matrices in Vj . First suppose that π(j) = j. Then the conditions
for all the entries to be integers boil down to aπm ≡ am mod d for all m 6= j. Hence, if m 6= j,
then am 6= 0 implies ai 6= 0 for all i ∈ O(m). Thus am 6= 0 entails O(m) ⊆ {1, 2, . . . , j − 1}.
Conversely, if O(m) ⊆ {1, 2, . . . , j − 1}, we can put any value in we like for am, and the same value
for ai as i varies over the orbit of m. The only constraint is that the resulting column u must have
content one. The number of such columns is thus exactly Js(j)(d) (the Jordan totient) where s(j)
is the number of orbits that are contained in {1, 2, . . . , j − 1}.

So if π(j) = j, the number of matrices in Vj(d) that are fixed by the action of π is exactly
Js(j)(d). (If s(j) = 1, J1 = φ, the usual totient; if s(j) = 0, the outcome is zero.)

Now suppose that π(j) 6= j. First, we consider conditions arising from the coefficients corre-
sponding to O(j), the orbit of j itself. Suppose the orbit of j has k > 1 elements, so that if m = πj,
then m,πm, . . . , πk−2m are distinct from each other and j, and all but the last one satisfies πs 6= j
(if k = 2, then all we have is {m}).

For k > 3, we deduce a2m ≡ −aπm, and then aπmam ≡ −aπ2m, until we reach aπk−3mam ≡
−aπk−2m, and finally, aπk−2m ≡ −1. We can rewrite these as functions of am, obtaining aπm ≡
−a2m, aπ2m ≡ a3m, and for r ≤ k − 2, aπrm ≡ (−am)r+1, and finally (−am)k ≡ 1 mod d. So we
have Nk(d) choices for am, and every other ai for i ∈ O(j) \ {j} is determined by the choice of am.

For k = 2 and k = 3, the same result applies (and is easily checked); the indexing was
confusing.

Now we come to am form 6∈ O(j). Then the equations become aπm ≡ −amaπj , aπ2m ≡ ama2πj ,
and in general aπrm = am(−aπj)r (this is true for all r). Thus the choice of aπj (which has to be
a kth root of unity in Zd) and the choice of am will determine the rest of the ai for i ∈ O(m).
However, there are constraints on the choice of am if k(m) := |O(m)| is not divisible by k = |O(j)|.
Write k(m) = ck + f with c ≥ 0 and 0 ≤ f < k. Then am ≡ aπk(m)m ≡ am(−aπj)k(m) ≡ aπfm ≡
am(−aπj)f . Hence am(1− (−aπj)j) ≡ 0 mod d.

Set z = −aπj , so that zk ≡ 1 mod d. The restriction, that am(1−zf ) ≡ 0, is trivial if zf ≡ 1.
At this point, for simplicity, we assume that d is a prime. In that case, 1 − zf is a zero divisor
iff zf ≡ 1, and am can be anything; otherwise, am = 0 is forced. Moreover, if zf ≡ 1, then the
remaining ai, determined by aπrm = am(−aπj)r, are consistent with the conditions for invariance.
Hence there are exactly gcd {f, p− 1} = gcd {k(m), k, p− 1} selections for aπj for which we obtain
p choices for am, and for all the rest (Nk(p) − gcd {k(m), k, p− 1}), there is exactly one choice,
ai = 0 for all i in the orbit of m. If k divides k(m), then the latter does not occur (as f = 0).

Now we can count the number of matrices in Vj(p) fixed by π, for p prime.
(a) If πj = j, there are Js(j)(p), where s(j) is the number of π-orbits in {1, 2, . . . , j − 1}.
(b) Suppose πj 6= j. If O(j) is not contained in {1, 2, . . . , j}, then there are zero choices. Assuming
O(j) ⊆ {1, 2, . . . , j} (that is, j = maxO(j)), select z in Z∗

p with order dividing |O(j)|, and set
aπj = −z. For each of the s(j) orbits in {1, 2, . . . , j − 1}, we select m in the orbit, and either
set am to zero (if z|O(m)| 6= 1) or let it be arbitrary (if z|O(m)| = 1), and define the ai for other
i ∈ O(m) according to the formulas. The constraint that the column must have content one is
automatically satisfied, since aπj ≡ −z is relatively prime to p.

For z fixed, the number of choices (with aπj ≡ −z) is thus (provided O(j) ⊂ {1, 2, . . . , j})

p|{O(m)|O(m)⊂{1,2,...,j} and z|O(m)|≡1 mod p}|.

Now we sum this over all choices for z, of which there are gcd {|O(j)|, p− 1} (the number of kth
roots of unity in Z∗

p).
Finally, we observe that if d is prime, then the set of weakly terminal matrices in MnZ of

determinant d is simply ∪̇nj=2Vj(p), since a matrix in Hermite normal form with prime determinant
can only have one column that is not the corresponding standard basis element. This leads to the
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following expression. Recall that s(j) ≡ s(j, π) is the number of π-orbits that are contained in
{1, 2, . . . , j − 1}
PROPOSITION C.4 Let π ∈ Sn. Then for a prime p,

S(π)(p) =
∑

{2≤j≤n|πj=j}

Js(j,π)(p)

+
∑

{2≤j≤n|πj 6=j and Oπ(j)⊆{1,2,...,j}}

∑

{z∈Z∗
p| z|Oπ(j)|=1}

p|{O(m)|O(m)⊂{1,2,...,j} and z|O(m)|≡1 mod p}|.

If π is a transposition, then by Lemma C.2, we may assume that π = (12). In that case, there
are n − 2 fixed points, and s(j, π) = j − 2 for j ≥ 3. The second sum reduces to the case that
j = 2, and there are exactly two solutions to z2 ≡ 1 mod p if p is odd (z ≡ ±1), and just one if
p = 2. So we obtain

n−2∑

l=1

Jl(p) +

{
2 if p is odd

1 if p = 2.

The left sum is pn−2+pn−3+ · · ·+p− (n−2) = (pn−1−1)/(p−1)−n+1; perhaps unsurprisingly,
this is φ1 ∗ J2 ∗ · · · ∗ Jn−2(p). It is easy to see than any nonidentity permutation other than a
transposition will have leading term at most pn−3.

If π is a cycle of order n, then the count is hardly anything, just Nn(p) = gcd {n, p− 1}.
Now we make some crude estimates for the number of PH-equivalence classes of determinant

±d matrices in NSn, denoted PH(n, d), when d is square-free. We see that ∪π 6=IZ(π)(d) consists
of the weakly terminal matrices (of determinant d) whose orbit size is strictly less than n!. Let
F (n, d) = (φ∗J2∗ · · · ∗Jn−1)(d), the number of weakly terminal matrices of size n and determinant
d. Let T be the set of transpositions in Sn, together with the identity element. By Burnside’s
lemma (actually the lemma that is not Burnside’s) and Lemma C.2,

PH(n, d) =
F (n, d) +

∑
π 6=I S(π)(d)
n!

=
F (n, d) +

(
n
2

)
S(12)(d) +∑π∈Sn\T

S(π)(d)
n!

We know that if π is any of the
(
n
2

)
transpositions, then S(π)(p)/F (n, p) ≤ 1/p; hence for d square-

free, S(π)(d)/F (n, d) ≤ 1/d, and if π is not a transposition, then S(π)(p)/F (n, p) ≤ OOO
(
1/p2−ǫ

)

(as d→∞) for all ǫ > 0, hence S(π)(d)/F (n, d) ≤ 1/d2−ǫ. Thus

F (n, d)

n!

(
1 +

(
n
2

)

d
(1− ooo (1))

)
≤ PH(n, d) ≤ F (n, d)

n!

(
1 +

(
n
2

)

d
+

n!

d2−ǫ

)

for all ǫ > 0. This is not effective until d≫ n!, but it does yield the conjecture (for square-free d).

COROLLARY C.5 If n ≥ 3 is fixed and d is square-free, then the number of PH-equivalence
classes of matrices in NSn of determinant ±d is given by

PH(n, d) = (φ ∗ J2 ∗ · · · ∗ Jn−1)(d)

n!

(
1 +

(
n
2

)

d

(
1 +OOO

(
1

d1−ǫ

)))
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For general d (not assumed to be square-free), we can obtain results for transpositions. For
each integer k > 1, define the functionMk : N→ N via

Mk(d) =
∣∣{(a, t1, t2, . . . , tk−1) ∈ Zk

d

∣∣ a2 = 1 and for all i, ti(a+ 1) = 0
}∣∣ .

By the Chinese remainder theorem, eachMk is multiplicative.
We also define the multiplicative function Pk(d) : N→ Z+, via

Pk(d) =

{
Jk(
√
d) if d is a square

0 if d is not a square.

Informally, Pk(d) = χ2(d) ·Jk(
√
d), where χ2 is the indicator function of the set of square integers.

LEMMA C.6 For p a prime,

Mk(p
m) =





pm(k−1) + 1 if p is odd

2k−1 if pm = 2

22(k−1) + 2k−1 if pm = 4

2m(k−1) + 2(m−1))(k−1) + 2k if 8 divides pm.

Proof. If a = −1, then there are pm(k−1) choices for (t1, . . . , tk−1). If a = 1 and p is odd, as 2 is
invertible in Zd, we must have ti = 0, that is, just one solution. When p is odd, the solutions to
a2 = 1 are exactly ±1, hence we have a total of pm(k−1) + 1 solutions.

If p = 2 and a = 1, the number of t such that 2t ≡ 0 mod 2m is 2; hence this case accounts for
2k−1 solutions. Whenm ≥ 3, there are two other roots of a2 = 1, 2m−1±1. When a = 2m−1−1, the
equations reduce to 2m−1ti ≡ 0 mod 2m, so there are 2(m−1)(k−1) solutions. When a = 2m−1 + 1,
the equations become 2(1+ 2m−2)ti ≡ 0 mod 2m, and as the middle factor is invertible, there are
just 2k−1 solutions.

When pm = 2, a = 1 is the only square root of 1, so there are 2k−1 (preceding paragraph, first
line) solutions, as indicated in the statement of the result. If pm = 4, then there are two roots
of 1, ±1; we have 22(k−1) solutions from a = −1 (first line of first paragraph) plus 2k−1 solutions
arising from a = 1 (first line of second paragraph).

Finally if pm = 2m with m ≥ 3, we have 2m(k−1)+2k−1+2(m−1)(k−1)+2k−1 solutions, arising
respectively from a = −1, 1, 2m−1 − 1, 2m−1 + 1. •

Recall that we have abbreviated (φ ∗ J2 ∗ · · · ∗ Jn−1)(d) to F (n, d).

LEMMA C.7 Let π ∈ Sn be a transposition, with n > 2. For d a positive integer, the
number of n×n weakly terminal matrices of determinant d that are invariant under π is

S(π)(d) = (φ ∗ J2 ∗ · · · ∗ Jn−3 ∗ Pn−2 ∗Mn−1) (d).

Proof. As d 7→ S(π(d)) is multiplicative, we may assume d = pm. By Lemma C.2, we may assume
that π interchanges n− 1 and n. Fix (k, l) with k+ l ≤ m, and let C be a weakly terminal matrix
whose last two diagonal entries are respectively pk and pl, respectively. Denote the entries above
the diagonal by ai,j as usual; for convenience, denote an−1,n = a. Let P be the permutation matrix
corresponding to π, that is, right multiplication by it implements the interchange of the last two

columns. Then I − P = 0n−2 ⊕
(

1 −1

−1 1

)

The condition that C is π-invariant is equivalent to CPC−1 ∈ MnZ, equivalently, C(I −
P )C−1 ∈ MnZ. To calculate (I − P )C−1, we need only calculate the bottom 2× 2 block of C−1,
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which is found in a matter of seconds to be p−(k+l)
(

pl −a

0 pk

)
. Thus, letting C0 be the upper n− 2

square block of C,

C(I − P )C−1 =
1

pk+l




C0 a1,n−1 a1,n
a2,n−1 a2,n

...
...

an−2,n−1 an−2,n

0 pk a
0 0 pl




(
0n−2 ⊕

(
pl −(a+ pk)
−pl a+ pk

))
.

This multiplies easily (we can ignore C0), and we deduce necessary and sufficient conditions for all
the entries to be integers:
(i) for all 1 ≤ j ≤ n− 2, aj,n ≡ aj,n−1 mod pk;
(ii) for all 1 ≤ j ≤ n− 2, (aj,n − aj,n−1)(a+ pk) ≡ 0 mod pk+l;
(iii) a ≡ 0 mod pk

(iv) p2l ≡ 0 mod pk+l

(v) p2k ≡ a2 mod pk+l

From (iv), we must have k ≤ l. We may write a = pka0 by (iii), with a0 < pl−k (as C is
weakly terminal). Then (v) yields a20 ≡ 1 mod pl−k. By (i), we may write aj,n = aj,n−1 + tjp

k,
for some tj < pl−k. Then (ii) translates to tj(1 + a) ≡ 0 mod pl−k. Conversely, if l > k, given
a20 = 1 and tj satisfying tj(1 + a) = 0, then for each choice of (a1,n−1, a2,n−1, . . . , an−2,n−1)

T , we
obtain a fixed point of π. If l = k > 0, then a = 0, and ti = 0 for all i, so we obtain exactly one
solution for each (a1,n−1, a2,n−1, . . . , an−2,n)

T . Finally, if l = k = 0, there is only once choice.
The arbitrary weakly terminal matrix in the upper block, C0, is of determinant pm−k−l and

size n − 2; thus there are F (n − 2, pm−k−l) choices for C0. For the (n − 1)st column, there are
no constraints on the entries (assuming k ≤ l), so there are Jn−2(p

k) choices (since the column
has to be unimodular). Finally, once the (n− 1)st column entries are determined, we have, by the
previous paragraph, Mn−1(p

l−k) choices. Hence the number of weakly terminal matrices is (on
setting t = l − k)

S(π)(pm) =
∑

k+l≤m, k≤l

F (n− 2, pm−k−l)Jn−2(p
k)Mn−1(p

l−k)

=
∑

2k+t≤m

F (n− 2, pm−2k−t)Jn−2(p
k)Mn−1(p

t)

=
∑

K+t≤m

F (n− 2, pm−K−t)Pn−2(p
K)Mn−1(p

t)

= ((φ ∗ J2 ∗ · · · ∗ Jn−3) ∗ Pn−2 ∗Mn−1) (p
m)

The third line is obtained from the second line via the observation that ifK is odd, then Pn−2(p
K) =

0. •
If n = 3, the result is P1 ∗ M2, and if n = 4, the result is φ ∗ P2 ∗ M3 (J1 = φ and J0 is

the constant function). So for π a transposition, S(I ) − S(π) = (φ ∗ J2 ∗ · · · ∗ Jn−3) ∗ (Jn−2 ∗
Jn−1 − Pn−2 ∗ Mn−1), which is sufficient to show S(π)(d)/F (n, d) = OOO (1/d). So the conjecture
(for general d) would be true if the specific conjecture were true (as it almost certainly is).

Appendix D: counting PH-equivalence classes of size 3

Here we obtain exact counts for various situations involving the PH-equivalence classes when the
matrix size is 3, without assuming the determinants are square-free (as always, we are assuming
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the matrices are in NS). For example, those equivalence classes that contain a terminal matrix
with 1-block size two can be subdivided into three interesting subcases, and we can count each.
As a result, we show that in terms of PH-equivalence classes, those of fixed determinant with a
1-block size two matrix are generically swamped by those not containing one, even when we restrict
to square-free determinant (generally, for determinant d, the larger

∑
p|d 1/p is, the smaller is the

ratio of 1-block size two equivalence classes to the rest).
For n = 3, again by Burnside’s lemma, the number of PH-equivalence classes is

(1)
φ ∗ J2(d) + 3S(23)(d) + 2S(132)(d)

6
.

If m > 1 and p is a prime,

(φ ∗ J2)(pm) = (pm−2(p+ 1)2 + 1)pm−1(p− 1) = p2m(1 +
1

p
− 1

p2
− 1

p3
− 1

pm+1
+

1

pm
)

Atm = 1, the outcome is simply p−1+p2−1 = (p−1)(p+2). Hence as a function of d, it is a bit less
than d2

∏
p|d(p+1)(

∏
p|d(1− 1/p2)). At 2m, the outcome is asymptotically 9 · 22m−3(1−OOO (2−m))

Now φ ∗ J2(pm) = p2m + p2m−1 + . . . , so φ ∗ J2(d) = d2
∏

p|d(1 + 1/p+ 1/p2 + . . . ). We will

find that S(12)(pm) = pm + pm−1 − . . . , except for p = 2, when it begins 3 · 2m/4 rather than 2m,
so S(12)(d) ≤ d∏p|d(1 + 1/p+ 1/p2 ± . . . ) and S(132)(d) = ooo (dǫ) for all ǫ > 0; both of these will
result from exact expressions.

There are relatively straightforward asymptotic estimates: for example, with fixed n, the
number of equivalence classes of terminal forms with 1-block size n− 1 is bounded below by

max
{
(d− φ(d))n−1, φ(d)n−1

}

n!
.

However, there are some cases (with n = 3), wherein the formulas become quite simple. If
d is a prime or a product of two distinct primes, automatically all terminal forms have 1-block
size n − 1. More generally, we obtain exact numbers of PH-equivalence classes for fixed absolute
determinant d when n = 3.

Let w,w′, w′′ : N→ C be defined, respectively, by w(d) is the number of distinct prime divisors
of d, w′(d) is the number of distinct prime divisors of d that are congruent to 1 modulo 3, and
w′′(d) is 1 if 9 divides d, otherwise it is zero (so w′′ is the indicator function of 9N). Each of them
is additive (in the number-theoretic sense), so each of 3w, 3w

′

, and 3w
′′

is multiplicative.
We also defineM2,M : N→ C by setting, for d =

∏
p|d p

m(p),

M2(d) =





1 if m(2) = 0

2 if m(2) = 1

6 if m(2) = 2

3 · 2m−2 + 4 if m(2) ≥ 3.

M(d) =M2(d)
∏

odd p|d

(pm(p) + 1)

Obviously,M andM2 are multiplicative, but not completely multiplicative.
Recall that N3(d) denotes the number of solutions to the polynomial X3 − 1 = 0 in Zd.

On replacing X by −X, we see that N3 also counts the solutions to X3 = −1. By the Chinese
remainder theorem, the function N3 is multiplicative. The following is completely elementary.
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LEMMA D.1 N3 = 3w
′+w′′

.

Proof. Both sides are multiplicative, so it suffices to show equality for d = pm, with p prime.
The set of solutions to X3 − 1 = 0 is a subgroup of Z∗

d of exponent three or 1. If p ≡ 2 mod 3,
|Z∗

d| = φ(pm) = pm−1(p − 1) is relatively prime to 3, so the solution is unique. In this case,

N3(p
m) = 1 = 3w

′(d)+w′′(d). If p ≡ 1 mod 3, Z∗
d is cyclic of order pm−1(p − 1); the latter

is divisible by 3, and as the group is cyclic, it has a unique subgroup of order three. Hence
N3(p

m) = 3 = 3w
′(d)+w′′(d).

Finally, if p = 3, withm = 1, Z∗
3 is order two, so N3(3) = 1 = 3w

′(3)+w′′(3); if m ≥ 2, then Zd is
cyclic of order 2 ·3m−1, hence has a unique subgroup of order 3, and thus N3(d) = 3 = 3w

′(d)+w′′(d).
•

LEMMA D.2 Let p be a prime, and m a positive integer. The number of solutions (y, k)

to the equations Y 2 − 1 = 0 and (Y + 1)K = 0 in Zpm is

M(pm) =





pm + 1 if p is odd



2 if pm = 2

6 if pm = 4

3 · 2m−1 + 4 if p = 2 and m ≥ 3

Proof. Since Zpm/pm−1Z ∼= Zp and the latter is embedded in the former, if y2 = 1, then we can
write y = w + pts for some some w ∈ {0, 1, 2, . . . , p− 1}, 1 ≤ t ≤ m − 1 (so if m = 1, the second
summand disappears), and (p, s) = 1 with 1 ≤ s ≤ p − 1, or y = w. In the field Zp, the only
solutions are ±1, so w = ±1. Thus 1 = y2 = 1 + pts(±2 + pts2). As (p, s) = 1, we must have pm

divides pt(±2 + pts2).
If p is odd, then ±2+pts2 is invertible in Zpm , which forces y = ±1. When y = −1, we can set

k to be any element of Zpm , so we obtain pm choices, (−1, k). When y = 1, y + 1 = 2 is invertible
modulo p and thus modulo pm, and so the only choice is (1, 0). Hence there are pm + 1 solutions.

If p = 2, and m = 1, then obviously y = 1 and then k can be anything, i.e., we obtain two
solutions, {(1, 0), (1, 1)}. If m = 2, there are two square roots of unity in Z4, ±1 (or {1, 3} if
you prefer); if y = −1, we obtain the four solutions (−1, k), while if y = 1, there are only two,
{(1, 0), (1, 2)}. Thus when m = 2, there are a total of 6 solutions.

If p = 2 and m ≥ 3, there are now four square roots of 1, y = ±1 + 2m−1u where u ∈ {0, 1},
as follows easily from 2m dividing 2t(±2 + pts2). If y = −1, we have the 2m solutions {(−1, k)};
if y = 2m−1 − 1, then y + 1 = 2m−1, so we obtain 2m−1 solutions,

{
(2m−1 − 1, 2j)

}
0≤j<2m−1 . If

y = 1+ 2m−1u, then y + 1 = 2(1 + 2m−2u); as the second factor is a unit (since m ≥ 3), it follows
that in order that k(y+1) = 0, we must have 2m−1 divides k. Hence in both cases, there are only
two solutions.

Thus if 8 divides pm, we must have 2m + 2m−1 + 4 solutions in total. •
By the Chinese remainder theorem, the number of solutions (k, y) ∈ (Zd) of the equations

Y 2 = 1 and (Y + 1)K = 0 isM(d).
Now we determine S(23)(pm) and S(132)(pm). The generic weakly terminal matrix is given

by

C =




1 a b
0 e gy
0 0 gx


 , and its inverse is C−1 =

1

egx



egx −a ayg − be
0 gx −gy
0 0 e


 ∈ M3Q,

where all of {a, b, e, g, y} are nonnegative and a < e, y < x, b < gx, and gcd {a, e} = gcd {b, g} =
gcd {x, y} = 1 (by convention, gcd {0,m} = m). When we have a permutation acting on C, it
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also acts on the triple (J(CΩ(i)))
3
i=1 by permuting according to its action on the columns. Since

the three invariants for the generic matrix are, in order (that is, deleting the first column, then
deleting the second column), (Z(δ,gx),Zg,Ze) where δ = agy − be (the determinant of the upper
right block), if for example π = (23) or (132) and C is invariant under the action of π (meaning
that CPπC

−1 ∈ M3Z), then we must have e = g.
Define the multiplicative functions, χ2 and P ,

χ2 is the indicator function of the set of square integers and

P(d) = χ2(d) · φ(
√
d).

LEMMA D.3 For d a positive integer, the number of weakly terminal 3 × 3 matrices of
determinant d that are invariant under a transposition π ∈ S3 is

S(π)(d) = (P ∗M)(d).

Proof. This is Lemma C.7.
•

This isn’t useful unless we can describe the resulting convolution product. The formula below
when p = 2 is obtained by considering a number of special cases, and then summing geometric
series; it did not seem worthwhile to transcribe the tedious argument.

LEMMA D.4 (a) If p is an odd prime and π is a transposition, then

S(π)(pm) = (P ∗M)(pm) = pm + pm−1 + 1 +

{
pm/2 − pm/2−1 if m is even

−p(m−1)/2 if m is odd.

(b) For p = 2,

S(π)(2m) = (P ∗M)(2m) =





2 if m = 1

7 if m = 2

12 if m = 3

2m + 2m−3 + 2m/2 − 1 if m ≥ 4 and is even

2m + 2m−3 + 2(m−1)/2 + 2(m−3)/2 if m ≥ 5 and is odd.

Proof. When p is odd and s > 0,M(ps) = ps + 1 andM(1) = 1. Taking into account the latter,
we have

S(π)(pm) =
∑

0≤n≤m/2

φ(pn)pm−2n +
∑

0≤n<m/2

φ(pn)

= pm + 1+ (p− 1)
∑

1≤n≤m/2

pm−n−1 + p⌊(m−1)/2⌋

= pm + 1+





(p− 1) p
m−1−pm/2−1

p−1
+ pm/2 if m is even

(p− 1) p
m−1−p(m−1)/2

p−1
if m is odd.

= pm + pm−1 + 1 +

{
pm/2 − pm/2−1 if m is even

−p(m−1)/2 if m is odd.

75



When p = 2, the computation is more complicated because of the definition ofM(2r). Fortu-
nately, there is still massive cancellation, and after a battle keeping track of the limits of summation,
we obtain the result in the statement of the lemma. •

In particular, the number of invariant C is d ·∏p|d, p odd(1 + 1/p± . . . ) · α(v2(d)) where α is

the function obtained in the last lemma, divided by 2v2(d) (for m ≥ 4, α(m) = 1 + 1/8 + . . . ; the
dependence on the exponent, m, is tiny if m is large).

Now to deal with Z(132)(d), the set of weakly terminal matrices invariant under the permu-
tation matrix corresponding to (123) or (132). This is fairly horrible, but is not as bad as it could
be. It is marginally better to use (132), rather than (123) (the groups they generate are the same,
but the computations are a bit less tedious in the former case).
S(π)(d) with π = (132). From the column action, we have e = g = (δ, gx) (the last equality, in the
presence of the first, is equivalent to (δ, x) = 1), so d = e2x. The equations are then

−a2 + b ≡ 0 mod e; ay − b− y2 ≡ 0 mod x; a2y − ab− by + 1 ≡ 0 mod ex.

Rewrite the third one as (a2 − b)y + 1− ab ≡ 0 mod ex. Taking this modulo e, we obtain ab ≡ 1
mod e, which in combination with the first, yields a3 ≡ 1 mod e (and also b3 ≡ 1 mod e). Write
b = a2 + ke, where k is defined modulo x. Plugging this into the second and third equations yields

−key + 1− ab ≡ 0 mod ex; y2 − ay + a2 + ke ≡ 0 mod x.

The former yields −key − a3 − ake+ 1 ≡ 0 mod ex, so ke(y + a) ≡ 1− a3 mod ex. Multiplying
the second displayed equation by y + a yields ke(y + a) ≡ −(y3 + a3) mod x, whence y3 ≡ −1
mod x. Since e|(ab − 1), we also have −ky ≡ (1 − ab)/e mod x. In particular, if x 6= 1, then k
(and thus b) is uniquely determined by y modulo x.

We recall from Lemma D.1 that X3 ± 1 = 0 each has three distinct solutions in Zpm iff p ≡ 1
mod 3 or 9|pm, and otherwise each has one.

Now set d = pm, e = xn, and x = pr with 2n+ r = m. First, suppose that n = 0, so r = m,
and the equations boil down to a = 0, y3 ≡ −1 mod pm, b ≡ y2 mod pm (so b is determined by
y), and by ≡ −1 mod x, but the last is a consequence of the second last.

If p ≡ 2 mod 3 or pm = 3, then y3 ≡ −1 entails y ≡ −1 mod pm. Hence b ≡ 1 mod pm,
so there is exactly one solution for (a, b, y) = (0, 1,−1). If p ≡ 1 mod 3 or 9|pm, there are three
choices for y, and thus a total of three choices for (a, b, y) when n = 0.

Now suppose that n > 0. If r = 0, then m = 2n, and the only conditions imposed are a3 ≡ 1
mod pn, y = 0, and b ≡ a2 mod pn = ex. Hence we obtain three solutions for (a, y, b) if p ≡ 1
mod 3 or 9|pm (since b is determined by a), and 1 otherwise.

Finally suppose that n, r > 0, so that 1 ≤ n < m/2. Here y is defined modulo pr = x and b is
defined modulo pn+r = ex. We have a3 ≡ 1 mod pn, and we can write b = a2 + kpn (where k is
defined modulo pr). We also have y3 ≡ −1 mod pr, that is, (−y)3 ≡ mod pr.

If p ≡ 2 mod 3, then a = 1 (defined modulo pn) and y = −1 (defined modulo pr), and thus
kpn ≡ 1 + 1 + 1 mod pr. This forces (since both n and r are positive), p = 3 a contradiction, so
that in this case, there are no solutions.

If pm = 3, then n+ r = 1, contradicting n, r > 0.
If p ≡ 1 mod 3 or 9|pm, there are three choices for a, and also for y. However, they are

not independent of each other. Modulo p, either y + a is 0 (which corresponds to taking the
same cube root of ±1) or invertible. But if p|(y + a), as in the previous paragraph, we obtain
kpn ≡ −(y2− ay+ a2) mod pr ≡ −3a2 + pX mod pr. This yields a contradiction, unless p = 3—
and in that case, we have m ≥ 2, so either r = 1 (in which case k has three values), or n = 1 and
r > 1, and in that case k is uniquely determined.
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Finally, if p ≡ 1 mod 3 or 9|pm and y + a 6= 0 mod p, then there are six choices for (a, y),
namely so that y + a is invertible modulo p, hence modulo any power of p, and for each of these,
the equation k(y + a) ≡ (1− a3)/e mod pr uniquely determines k.

Now we count all these possibilities. Let H(t) be 1 if t is odd, and 2 if t is even. If p ≡ 2
mod 3, there are zero solutions for n, r > 0, giving us a total of 1 solution (arising from n = 0)
plus an additional 1 iff m is even. So the formula is H(m(p)).

If p ≡ 1 mod 3, we obtain 3 solutions from the case n = 0 plus an additional 3 if m is even
(r = 0), plus

∑
1≤n<m/2 6 = 6⌊(m− 1)/2⌋. Here the formula is 6⌊(m(p)− 1)/2⌋+3H(m(p)). This

is 3(m(p)− 1) + 6 = 3(m(p) + 1) if m(p) is even, and 3(m(p)− 1) + 3 = 3m(p) if m(p) is odd, so
we can rewrite the expression as 3(m(p) +H(m(p))− 1).

Now we look at the totals for the various situations. We recall r = m − 2n, so that r = 0
entails m is even and r = 1 entails m is odd. If p ≡ 2 mod 3, then

S(132)(pm) = 1 + 0 +H(m)− 1 = H(m).

If p ≡ 1 mod 3, then

S(132)(pm) = 3 +
∑

1≤n<m/2

6 + 3(H(m)− 1)

= 3 + 6⌊m− 1

2
⌋+ 3(H(m)− 1)

=

{
3m+ 3 if m is even

3m if m is odd.

If pm = 3, then

S(132)(3) = 1.

Finally, if p = 3 and m ≥ 2,

S(132)(3m) = 3 +
∑

1≤n<m/2

6 + 3(H(m)− 1) + 1

=

{
3m+ 4 if m is even

3m+ 1 if m is odd.

We can combine these in one gigantic formula,

S(132)(d) = 2|{p|d|p≡2 mod 3;m(p) even}|·3w′(d)·
∏

p|d, p≡1 mod 3

(m(p)+H(m(p))−1)·





1 if m(3) ≤ 1

3m(3) + 4 even m(3) > 0

3m(3) + 1 odd m(3) > 1

It is not necessary for the counting formula, but a similar computation (much easier than the
others) reveals that the number of S3-invariant weakly terminal matrices of determinant d is

S(S3)(d) = 2w(d) ·
{

1 if m(3) = 0
m(3)+1

2
if m(3) > 0.

In particular, Z(123)(d) = Z(S3)(d) iff d is a square all of whose prime divisors are congruent to
1 modulo 3, and in that case, their cardinality is 2w(d).
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Equation (1) at the beginning of this section now yields the number of PH-equivalence classes
of C ∈ NS3 with determinant ±d:

PH(3, d) := (φ ∗ J2)(d) + 3(P ∗M)(d) + 2S(132)(d)
6

.

The last term is too complicated to expand compactly, but it is given explicitly above. When d is
square-free, the formula simplifies considerably, and we will discuss this later.

We see from Lemma D.4 and the formula for φ∗J2 that (1−1/p2)S(23)(pm) ≤ (φ∗J2)(pm)/pm,
so S(23)(d)/(φ ∗ J2(d) ≤ ζ(2)/d. And similarly, S(132)(d) = ooo

(
d−2+ǫ

)
· φ ∗ J2(d). The number of

PH-equivalence classes, PH(3, d) thus satisfies

1 +
3

d
≤ PH(3, d)

(φ ∗ J2)(d)/6
≤ 1 +

3ζ(2)

d
+ ooo

(
1

d2−ǫ

)

for all ǫ > 0. This of course is close to the Conjecture of Appendix B, when n = 3. The little oh
term may be unnecessary.
1-block size two PH-equivalence classes. We now investigate the number of PH-equivalence classes
of fixed absolute determinant that contain a 1-block size two weakly terminal (and thus terminal)
matrix, so that we can compare them with the total number of PH-equivalence classes. This time,
the set of matrices that we are looking at are not invariant under the action of S3, so somewhat
different methods are used.

So fix d > 1, and consider the PH-equivalence classes having a 1-block size two terminal form.
We perform operations within the ring Zd. The third column of one of these terminal forms is



a1
a2
d


 ,

where the the ideal generated by {a1, a2} is Zd (when we regard ai as elements of Zd), and
0 ≤ ai < d (when we regard ai as integers).

Now we count the number of of PH-equivalence classes of matrices B ∈ NS3 with absolute
determinant d, having a terminal form with 1-block size two.

Recall the multiplicative function w′ : N→ Z+; w′(d) is the number of distinct prime divisors
of d that are congruent to 1 modulo 3.
Case 1: J(Bop) ∼= Z2

d. In this case, by Corollary 1.4 (even without the hypothesis that B has
1-block size 2), B has a terminal form,




1 0 a1
0 1 a2
0 0 d


 ,

where gcd {a1, d} = gcd {a2, d} = 1. We now view the entries of the truncated column (a1, a2)
T as

elements of Z∗
d. The equivalence class of such a truncated column, renamed (x, y)T , is given by

{(
x
y

)
,

(
y
x

)
,

(
x−1

−x−1y

)
,

(
−x−1y
x−1

)
,

(
−xy−1

y−1

)
,

(
y−1

−xy−1

)}
.

Most of these equivalence classes have size six, but some have size 1, 2, or 3. We count the latter,
and then obtain a fairly simple formula for the number of equivalence classes.
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1a. Equivalence class size 1. There is only one element with this property, explicitly (−1,−1)T .
1b. Equivalence class size 3. An inspection of the six possible elements in the equivalence class
reveals that the only such with exactly three elements are those of the form,

{(
x
x

)
,

(
−1
x−1

)
,

(
x−1

−1

)}
,

provided x 6= −1. There are thus φ(d)− 1 equivalence classes here, covering 3φ(d)− 3 elements.
1c. Equivalence classes of size 2. These are of the form

{(
α
β

)
,

(
β
α

)}
,

where α3 = −1, β = −α2, and α 6= −1. To count the number of choices for α (and β), we first
observe that if p is a prime exceeding 3, then the equation z3 = −1 has a solution other than −1 in
Zp iff −3 is a square modulo p, equivalently iff p ≡ 1 mod 3, and when this occurs, the solutions
are distinct. It is easy to verify that these properties hold for any power of p as well.

If p = 3, then −1 is the only solution to z3 = −1 modulo 3, but modulo any higher power of
3, there are exactly 3 distinct solutions: modulo pm, the solutions are

{
pm−1 − 1, 2pm−1 − 1,−1

}
,

including −1.
If p = 2, then there is only one solution to z3 = −1 modulo 2m.
Write d = 3m(3) ·∏p∈P p

m(p)
∏

q∈Q q
m(q) where P is the set of primes congruent to one modulo

three, and Q is the set of primes (including 2) congruent to two modulo three. By the Chinese
remainder theorem, the number of solutions (including −1) to the equation z3 = −1 is thus 3|P | ·3a
where a = 0 if m(3) ≤ 1 and otherwise equals 1. After discarding the solution x = −1 (which
is in 1a), the number of columns covered is 3w

′(d)+a − 1, accounting for half as many equivalence
classes.

The remaining columns (out of the original φ(d)2) have six-element equivalence classes. Hence
the total number of equivalence classes is

φ(d)2 − 1− (3φ(d)− 3)− (3w
′(d)+a − 1)

6
+1+(φ(d)−1)+3w

′(d)+a − 1

2
=
φ(d)2 + 3φ(d) + 2 · 3w′(d)+a

6
,

where a = 0 if m(3) ≤ 1, and 1 otherwise.
This is worth stating as a result on PH-equivalence classes.

PROPOSITION D.5 (Case 1) For d a fixed positive integer, the number of PH-equivalence
classes of matrices B ∈ NS3 with |detB| = d and |J(Bop)| = d2 is

φ(d)2 + 3φ(d) + 2 · 3w′(d)+w′′(d)

6
.

Proof. The only thing we have to note is that if |J(Bop)| = |detB|2 for B ∈ NS3, then by Lemma
1.3 and Corollary 1.4, B has a terminal form of the type discussed in case 1 above (it also follows
that J(Bop) ∼= (Zd)

2). •
Case 2: Exactly one of {a1, a2} is invertible modulo d. In this case, a1 6≡ a2 mod d. By 2.1, the
equivalence classes are then of the form,

{(
x
y

)
,

(
x−1

−x−1y

)
,

(
y
x

)
,

(
−x−1y
x−1

)}
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where x ∈ Z∗
d and y 6∈ Z∗

d. The only possible equivalence classes with fewer than four elements are
those with two, and this occurs iff x = x−1 and y = −x−1y; this reduces to x2 = 1 and (1+x)y = 0.
By Lemma D.2, the number of choices for (x, y) isM(d).

Now the only case in which y can be a unit occurs when x = −1, and in that case y can be
anything. So to obtain the number of solutions in which y is a nonunit, we simply subtract φ(d)
fromM(d). The number of solutions to x2 = 1 and (1+x)y = 0 for (x, y) ∈ Z∗

d× (Zd \Z∗
d) is thus

N2(d) :=M(d)− φ(d)

All of the other possible 2φ(d) · (d − φ(d)) columns have four-element equivalence classes; hence
the total number of equivalence classes for case 2 is

2φ(d) · (d− φ(d))− 2N2(d)

4
+N2(d) =

φ(d) · (d− φ(d)) +N2(d)

2
.

PROPOSITION D.6 (Case 2) The number of PH-equivalence classes corresponding to
case 2 is

φ(d) · (d− φ(d)− 1) +M(d)

2
.

Case two corresponds to all the situations in which J(Bop) contains a proper direct summand
isomorphic to Zd but |J(Bop)| < d2. The remainder are covered by case 3.

Case 3: Both a1 and a2 are nonunits in Zd. This can be restated as J(BΩ(i)) is not zero for exactly
two choices of i. Since B ∈ NS3, we also have to have gcd {a1, a2, d} = 1, equivalently, that in Zd,
the ideal generated by {a1, a2} is the improper one.

So let (x, y)T correspond to such a truncated column; for most of this, we regard them as
integers (rather than elements of Zd), each with gcd {x, d} , gcd {y, d} > 1, and of course, 1 ≤
x, y ≤ d − 1 (we cannot have x = 0, y = 0, or x = y, since gcd {x, y, d} = 1). All the equivalence
classes here consist of exactly two elements (the column and its flip), so it is simply a matter of
counting the number of pairs, and dividing by two.

First, we note that if w(d) = 1 (that is, d is a power of a single prime), then there are no

equivalence classes. So we assume k := w(d) ≥ 2, and write d =
∏k

i=1 p
m(i)
i , and S = {1, 2, . . . , k}.

For a subset Ω of S, write dΩ =
∏

i∈Ω p
m(i)
i and DΩ =

∏
i∈Ω pi. Thus d∅ = D∅ = 1, dS = d, and

D := DS =
∏

p|d p.

For an eligible truncated column (x, y)T , we may write uniquely x = DΩ1
· t1, y = DΩ2

· t2,
subject to the following conditions:

(i) Ωi 6= ∅
(ii) Ω1 ∩ Ω2 = ∅
(iii) for all p ∈ Ωc

i , gcd {ti, p} = 1.

We see that since 1 ≤ x, y < d, we have 1 ≤ ti < d/DΩi
. If we fix the ordered pair (Ω1,Ω2),

then the number of choices for ti is

d

DΩi

∏

j∈Ωc
i

(
1− 1

pj

)
.
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Thus the number of eligible truncated columns corresponding to fixed (Ω1,Ω2) is the product,

d

DΩ1

∏

j∈Ωc
1

(
1− 1

pj

)
· d

DΩ2

∏

j∈Ωc
2

(
1− 1

pj

)
=

d2

DΩ1∪Ω2

·
∏

p|d

(
1− 1

p

)
·
∏

j∈Ωc
1∩Ωc

2

(
1− 1

pj

)

= dφ(d)

∏
j∈Ωc

1∩Ωc
2

(
1− 1

pj

)

DΩ1∪Ω2

= φ(d)2 · 1

φ(DΩ1∪Ω2
)

Now let Ω be a subset of S, say with |Ω| = s; the number of ways of writing it as a disjoint union
of Ω1 and Ω2 (maintaining the ordering) with neither being the empty set, is zero if s ≤ 1, and
otherwise

s−1∑

i=1

(
s

i

)
= 2s − 2.

Define the polynomial f(x) =
∏

p|d(1 + x/(p− 1)).
The total number of truncated columns is thus

φ(d)2
k∑

s=2

(2s − 2)
∑

|Ω|=s

1

φ(DΩ)
= φ(d)2


1 +

k∑

s=0

(2s − 2)
∑

|Ω|=s

1

φ(DΩ)




= φ(d)2 (1 + f(2)− 2f(1))

= φ(d)2


1 +

∏

p|d

(
1 +

2

p− 1

)
− 2

∏

p|d

(
1 +

1

p− 1

)


=
φ(d)2

φ(D)


∏

p|d

(p+ 1)− 2
∏

p|d

p+
∏

p|d

(p− 1)




= dφ(d)


∏

p|d

(
1 +

1

p

)
− 2 +

∏

p|d

(
1− 1

p

)


The number of equivalence classes for case three is half of this.

PROPOSITION D.7 (Case 3) The number of PH-equivalence classes of B ∈ NS3 with
|detB| = d corresponding to case 3 is

dφ(d)

2


∏

p|d

(
1 +

1

p

)
− 2 +

∏

p|d

(
1− 1

p

)
 .

When
∑

p|d 1/p is large, the two rightmost summands are small compared to
∏
(1 + 1/p); in

that case, this is asymptotic with (provided we choose ds so that
∑

p|d 1/p becomes arbitrarily

large)
d2

2

∏

p|d

(
1− 1

p2

)
.
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Given ǫ, there exists N such that
∑

p≥N 1/p2 < ǫ; hence given M , we can find d ≡ d(ǫ) such that∑
p|d 1/p

2 < ǫ and
∏

p|d(1 + 1/p) > M . It follows that the least upper bound for the number of

equivalence classes is at least d2/2 (and we can choose square-free d to asymptotically reach this).
On the other hand, initially, we only have a choice of (d − φ(d))2/2 columns, so this is the best
possible (and note that φ(d)/d→ 0 for these sequences).

This means that case 3 overwhelms the other two cases (asymptotically) for the appropriate
choice of ds (with large numbers of prime divisors). On the other hand, with few prime divisors
(or simply small

∑
p|d 1/p), cases 1 and 2 together are dominant. With just one prime divisor, case

3 is empty.
An amusing example occurs when d(j) is the product of the first j primes. Then

lim
j→∞

number of case 3 PH-equivalence classes for B ∈ NS3 with |detB| = d(j)

d(j)2
=

1

2ζ(2)
.

For case 2 with the same sequence, the number of PH-equivalence classes is asymptotic to φ(d)d/2,
which is smaller. With case 1, the number is about φ2(d)/6, smaller still. So in the display we
could replace “case 3” by PH-equivalence classes that contain a terminal form with 1-block size
two.

If B is classified in case 3, then I(Bop) ∼= Zd; however, there are also examples as part of case 2
with the same property (case 2 examples with I(Bop) ∼= Zd automatically have the property that
Bop also has a terminal form with 1-block size two; however, not all case 3 classes satisfy this).

There are a couple of situations in which we can go directly to the number of PH-equivalence
classes, without requiring the restriction to those with 1-block size n− 1.

LEMMA D.8 If B ∈ NS3 and d := |detB| is either a prime or of the form pq for distinct
primes p and q, then B is PH-equivalent to a terminal form with 1-block size 2.

Remark. We have seen that the conclusion can fail if d is a product of three distinct primes, in
fact, d = 30 = 2 · 3 · 5, and of course, it can also fail if d = p2.

Proof. This is a special case of 3.9. •
Adding the results from case 1, case 2, and case 3 yields the next result, without referring to

the general horrible formula (1).

PROPOSITION D.9 Suppose the positive integer d is of one of the following forms,
d = p, 2p, pq where p and q are distinct odd primes. Then the number of PH-equivalence
classes of B ∈ NS3 such that |detB| = d is

p2 + 4p+ 1 + 2 · 3w′(p)

6
if d = p

2p2 + 5p− 1 + 3w
′(d)

3
if d = 2p

φ(d)(3d− 2φ(d) + 3) + 2 · 3w′(d)

6
+ d+ 1 if d = pq,

where w′(d) is the number of distinct prime divisors of d that are congruent to 1 modulo
3.

The number of equivalence classes with |detB| = 2p is itself divisible by p iff p ≡ 2 mod 3.
There is one more bit of low-hanging fruit.
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PROPOSITION D.10 If p is a prime, then the number of PH-equivalence classes of B ∈ NS3
with |detB| = p2 := d is given by the number of PH-equivalence classes for 1-block size
two of determinant d (cases 1 and 2 for d = p2) plus the number of PH-equivalence
classes for case 1 with d = p. This is

7 if p = 2

p4 + p3 + 2p2 + p+ 1 + 2 · 3w′(d)(1 + 3w
′′(d))

6
if p 6= 2.

Proof. Let B ∈ NS3 have determinant ±p2. Any of its terminal forms has diagonal either (1, 1, p2)
or (1, p, p). In the former case, it has a terminal form with 1-block size two, so is covered by cases
1, 2, and 3; however, for a power of prime, case 3 is empty.

Suppose that the diagonal is (1, p, p). Then the terminal form must be

B′ :=




1 b1 b2
0 p 0
0 0 p


 ,

where 1 ≤ bi < p and gcd {b1, p} = gcd {b2, p} = 1 (recall the condition in the terminal form that
the diagonal entry in the second row from the bottom must be less than or equal to the greatest
common divisor of the bottom diagonal entry and the entry immediately above; this explains the
zero in the (2, 3) position). Now for i = 1, 2, 3, each of I(BΩ(i)) is Zp, a trivial computation. Hence
B′ (and thus B) is not PH-equivalent to a terminal form with 1-block size two, so these equivalence
classes are disjoint from the former case.

However, if we calculate B′op, we find that it is PH-equivalent to a 1-block size two terminal
form, with determinant p, corresponding to case 1 of the latter class:

B′op =




p 0 0
−b1 1 0
−b2 0 1


 ∼




1 0 −b2
0 1 −b2
0 0 p


 .

(The PH-equivalence was implemented by conjugation with the permutation matrix that transposes
1 and 3.) Thus op implements a bijection between the current matrices and the matrices covered by
case 1 for d = p, and of course, this bijection preserves PH-equivalence classes. Hence the number
of equivalence classes arising from terminal forms with diagonal (1, p, p) is the same as the number
from case 1 of the equivalence classes with d = p. •

The function w′′ is nonzero only when p = 3; in that case, the outcome is 138/6 = 23, which
of course agrees with the entry for I = 9 in [ALPPT]. For p > 3, the expression simplifies (?) to

p4 + p3 + 2p2 + p+ 1 + 4 · 3w′(d)

6
.

I was relieved to find that for p = 5 (w′(d) = 0), and p = 7 (w′(d) = 1), this yields 135 and 477
respectively, agreeing with the table entries for I = 25 and 49.

Table 1 of [ALTPP] was particularly useful in checking examples in order to see whether the
formulas were very likely correct! With other values of d than those covered in D.8, there will be
PH-equivalence classes that contain no terminal forms with 1-block size 2.

When n = 4, formulas are still possible, but it would take a lot of Sitzfleisch to work out all
the possible equivalence classes and their quantities.
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The formulas simplify considerably when we consider only square-free choices for d; for ex-
ample, the number of weakly terminal matrices with determinant fixed, is

∏
p|d(φ ∗ J2)(p) =∏

p|d(p
2 + p − 2) = φ(d)d

∏
p|d(1 + 2/p). For π a transposition, by Lemma D.4, S(π)(d) =∏

p|d S(π)(p) = d
∏

p|d; p 6=2(1 + 1/p), and S(123)(d) = 3w
′(d). Thus for square-free d,

PH(3, d) =
dφ(d)

∏
p|d

(
1 + 2

p

)
+ 3d

∏
p|d; p 6=2(1 + 1/p) + 2 · 3w′(d)

6
.

(Recall w′(d) is the number of distinct prime divisors of d that are congruent to 1 modulo 3.)
The middle term is 3

∏
p|d(1 + p) if d is odd and 2

∏
p|d(1 + p) if d is even. I tested the

formula in Corollary D.12 against Table 1 in [ALPPT] (recalling that their I is our d) for values of
d = 30, 42, 70, 102, 105, 154, 165, 182, 186, 190, 195, 210, as well as numerous choices of primes and
products of two primes. Agreement was complete—so I am confident that the formula is correct!
[This is somewhat miraculous, as the formula is a sum of four formulas, each rather delicate.]

The first term is by far the largest, so the number is 6−1φ(d)
∏

p|d(p+2) · (1+OOO (1/d)). This

is the same as (φ∗J2(d))/6 for square-free d. This is also true if d is restricted to squares of primes
(Proposition D.10).

Something rather startling occurs when we subtract from this the number of PH-equivalence
classes that contain a 1-block size two matrix (the latter is the sum of the three numbers obtained
from cases 1,2, and 3). Recall from section 7, the difference operator ∆, defined by ∆f(x) =
f(x+ 1)− f(x).
PROPOSITION D.11 Let d be a square-free integer. The number of PH-equivalence
classes of C ∈ NS3 with |detC| = d and C is not equivalent to a terminal form with
1-block size two is

φ(d)∆3fd(−1)
6

,

where fd(x) =
∏

p|d(x+ p).

The factor φ(d) likely arises from an action of Z∗
d on the equivalence classes, presumably

(b, y) 7→ (b, y)z as z varies over Z∗
d (a similar phenomenon exists for the number obtained in case

3). The appearance of the third difference operator is rather mysterious. The dominant term in
∆3fd(−1), at least when

∑
p|d 1/p is large, is

∏
p|d(p+ 2). We obtain that if d(m) is a sequence of

square-free integers such that
∑

p|d(m) 1/p→∞ as m→∞, then

|{PH-equivalence classes of C ∈ NS3 with |detC| = d(m), no terminal form with 1-block size two}|
|{PH-equivalence classes C ∈ NS3, |detC| = d(m), a terminal form 1-block size two}| ·∏p|d(m)(1 + 1/p)

→ 1

3
.

If d is a product of one or two primes, then ∆3fd(−1) = 0, consistent with Proposition D.9. If
d = pqr, a product of three primes, then ∆3fd(−1) = 6, so the number of PH-equivalence classes
not equivalent to a terminal form with 1-block size two is φ(d), and in fact, the action of Z∗

d is just
that of Z∗

d on itself. For example, with d = 30, we take

C =




1 1 4
0 2 5
0 0 15


 ; Cop ∼




1 2 4
0 3 5
0 0 10


 := D.

Both are in terminal form, with [[J(C);J(CΩ(i)]] ∼= [[Z30;Z3,Z5,Z2]] ∼= [[J(D);J(DΩ(i)]]. Hence
neither is PH-equivalent to a terminal form with 1-block size two. The 8 PH-equivalence classes of
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determinant ±30 matrices in NS3 with no terminal form having 1-block size two are obtained by
multiplying the (b, gy)T truncated column, (2, 5)T , by the integers relatively prime to 30, that is,
1, 7, 11, 13, 17, 19, 23, 29 (that these are all primes is not entirely a coincidence), and then reducing
modulo 15.

More is true: Cop is not PH-equivalent to C (even though their invariants are identical). By
calculating the ordered triples (J(CΩ(i))) and (J(DΩ(i))), we see that if C were PH-equivalent toD,
then the relevant permutation matrix P would have to correspond to the transposition (13). But
a simple computation reveals that with this P , DPC−1 has non-integer coefficients (specifically,
the (1, 3) entry is 1/6).
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