
ar
X

iv
:1

30
9.

77
64

v2
  [

co
nd

-m
at

.s
ta

t-
m

ec
h]

  9
 A

pr
 2

01
4

On the frequencies of patterns of rises and falls

J. M. Luck
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Abstract

We investigate the probability of observing a given pattern of n rises and falls in
a random stationary data series. The data are modelled as a sequence of n+ 1
independent and identically distributed random numbers. This probabilistic
approach has a combinatorial equivalent, where the data are modelled by a
random permutation on n + 1 objects. The probability of observing a long
pattern of rises and falls decays exponentially with its length n in general.
The associated decay rate α is interpreted as the embedding entropy of the
pattern. This rate is evaluated exactly for all periodic patterns. In the most
general case, it is expressed in terms of a determinant of generalized hyperbolic
or trigonometric functions. Alternating patterns have the smallest rate αmin =
ln(π/2) = 0.451582 . . ., while other examples lead to arbitrarily large rates. The
probabilities of observing uniformly chosen random patterns are demonstrated
to obey multifractal statistics. The typical value α0 = 0.806361 . . . of the rate
plays the role of a Lyapunov exponent. A wide range of examples of patterns,
either deterministic or random, is also investigated.

Keywords: Data series, Patterns, Rises and falls, Entropy, Multifractals,
Combinatorics, Permutations

1. Introduction

Consider a data series, such as e.g. the daily temperature at a given weather
station over one year. The most obvious features of such a data series are its
rises and falls. Physics and other branches of science provide plenty of examples
of datasets where the statistics of geometrical features, such as maxima and
minima, or rises and falls, is of central interest. One example from statistical
physics is provided by energy landscapes, which are ubiquitously present in
theoretical studies of systems ranging from glasses to proteins [1].

In this work we investigate the probability of observing a given pattern of n
rises and falls in a random stationary data series. This question has hardly
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been addressed so far in the physics literature, in strong contrast with the
statistics of extreme values, which has recently attracted a lot of attention in
many areas, including random walks, disordered systems, growth processes and
random matrices [2, 3, 4, 5, 6, 7].

The setting of the present work is meant to provide a null model, to which
real data could be compared. A first attempt has been made recently in this
direction, with the analysis of microarray time series data in genetics [8]. We
model the data series as a sequence of n+ 1 i.i.d. (independent and identically
distributed) random numbers xi drawn from a continuous distribution. As these
random numbers will only occur in inequalities, their distribution can be chosen
to be uniform on the unit interval. This probabilistic approach is exposed in
Section 3. An equivalent combinatorial approach (see Section 4) is obtained
by coarse-graining the random numbers according to the permutation which
brings them to an increasing order. We are thus led to model the data as a
uniformly chosen random permutation on n + 1 objects. This line of thought
dates back to the pioneering study of alternating permutations by André [9, 10],
and it has since then been addressed regularly in the mathematical literature [11,
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28] (this list of
references is not meant to be exhaustive). To close, let us mention that the
combinatorial approach to our problem pertains to the more general topic of
patterns in permutations, which has been for long an active area of discrete
mathematics [29, 30, 31].

2. Summary of results

Our goal is to provide a comprehensive and self-contained exposition of the
calculation of the frequencies of patterns of rises and falls in a random stationary
data series. We aim at using a language accessible to a broad readership in
statistical physics. Let us give the detailed setup of this paper and summarize
our findings.

The probabilistic and combinatorial approaches, respectively exposed in Sec-
tions 3 and 4, provide two equivalent definitions of the probability Pn(ε1 . . . εn)
of observing a given pattern ε1 . . . εn of n rises and falls. The equivalence be-
tween both approaches has already been underlined in several works [8, 21, 23,
24, 25, 27, 28]. It will become clear in the following that each approach has its
advantages: the probabilistic one is more suitable for analytical investigations,
while the combinatorial one results in a simple recursive structure, lending itself
to exact numerical calculations.

In Section 5 we show explicit results for small patterns (up to n = 4). We
then present a heuristic analysis demonstrating that the probability of observing
a pattern is essentially determined by its excursion, as long as its length is
modest.

In the remainder of the paper, the emphasis is on asymptotic properties in
the regime of most interest, at least from the viewpoint of statistical physics,
i.e., where the length n of the pattern is large. In this regime the probability
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Pn(ε1 . . . εn) typically falls off exponentially as

Pn ∼ e−αn. (1)

The decay rate α will be our central object of interest. This quantity can be
viewed as the embedding entropy of the binary pattern ε1 . . . εn, i.e., the entropic
cost per unit length for embedding this pattern into a sequence of i.i.d. random
numbers. It is worth noticing that the above definition is entirely parameter-
free. If all the 2n patterns of length n had equal probabilities Pn = 2−n, the rate
would be constant and equal to α = ln 2. The observed wide range of possible
values of the rate α, from αmin = ln(π/2) = 0.451582 . . . to infinity, testifies the
richness of the problem.

Periodic patterns are investigated in sections 6, 7, and 8. As already men-
tioned, the subject is an old classic of discrete mathematics. Our comprehensive
approach allows us to recover many known results by more elementary means,
and often to express them in simpler terms. Section 6 is a self-contained presen-
tation of some of the beauties of the historical example of alternating patterns,
for which the rate α assumes its minimal value αmin. Section 7 deals with the
family of p-alternating periodic patterns, whose motif (unit cell) consists of p−1
rises followed by a fall. The rate reads α = ln z0, where z0 is the smallest real
positive zero of a generalized trigonometric function. In Section 8 we show how
the rate α can be evaluated exactly for an arbitrary periodic pattern, with any
period p ≥ 2: z0 is now the smallest zero of a determinant of generalized hyper-
bolic or trigonometric functions, whose size is at most p/2. Many examples are
treated explicitly.

The rest of the paper covers entirely novel areas. Sections 9 and 10 serve
as an intermezzo. In Section 9 we deal with examples of aperiodic patterns
which are built from three classical self-similar sequences: Fibonacci, Thue-
Morse, and Rudin-Shapiro. The probabilities Pn exhibit an exponential decay,
characterized by a well-defined rate α, modulated by a fractal amplitude which
reflects the self-similarity of the underlying sequence. Section 10 is devoted to
chirping patterns, consisting mostly of rises, whereas falls are more and more
scarce (or vice versa). In this case the probabilities Pn are found to decay
super-exponentially. Their asymptotic form is predicted more precisely in the
situation of most interest where the density of falls follows a power law.

Section 11 is devoted to the heart of the problem, namely the statistics of the
probabilities Pn if patterns are chosen in various ensembles of random patterns
of fixed length n. The uniform ensemble, where all patterns are considered with
equal weights, is studied thoroughly. The probabilities Pn of generic patterns
have the typical rate α0 = 0.806361 . . . The latter number can be interpreted
as a Lyapunov exponent. The whole set of probabilities Pn is shown to obey
multifractal statistics, with a non-trivial spectrum of multifractal dimensions
f(α), increasing from f(αmin) = 0 to f(α0) = 1. Other ensembles of random
patterns of fixed length n, namely the ensemble at fixed concentration c of rises
and a symmetric Markovian ensemble defined by a persistence probability r,
are also investigated. The probabilities Pn now generically decay according to
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effective typical rates β(c) and γ(r), which depend continuously on the ensemble
parameters.

Two appendices are respectively devoted to the explicit correspondence be-
tween the combinatorial and probabilistic approaches (Appendix A) and to
generalized hyperbolic and trigonometric functions (Appendix B).

3. Probabilistic approach

The probabilistic approach goes as follows. The data series is modeled by a
sequence of n+1 i.i.d. random numbers xi (i = 0, . . . , n), drawn from the uniform
distribution on the unit interval [0, 1]. This sequence of random numbers yields
a pattern ε1 . . . εn of n rises and falls defined as follows. For i = 1, . . . , n:

If xi > xi−1, there is a rise at the ith place, and εi = +,
If xi < xi−1, there is a fall at the ith place, and εi = −. (2)

Let us start with the example shown in Figure 1. This configuration obeys
the inequalities x0 < x1 < x2 > x3, and therefore yields the pattern ++−. The
probability of observing this pattern reads

P3(+ +−) =

∫ 1

0

dx0

∫ 1

x0

dx1

∫ 1

x1

dx2

∫ x2

0

dx3

=

∫ 1

0

dx3

∫ 1

x3

dx2

∫ x2

0

dx1

∫ x1

0

dx0

=
1

8
. (3)

x0

x1

x2

x3
+

+
−

Figure 1: An example of a configuration of 4 random numbers.

Let us now turn to the general case. The probability of an arbitrary pattern
ε1 . . . εn can be calculated recursively by conditioning on xn. Let fn(x) dx be
the probability that the sequence x0, . . . , xn yields the pattern ε1 . . . εn and that
x < xn < x+ dx. The conditional densities fn(x) obey the recursion relations:

If εn = +, then fn(x) =

∫ x

0

fn−1(y) dy,

If εn = −, then fn(x) =

∫ 1

x

fn−1(y) dy,

(4)
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with the initial condition f0(x) = 1. It follows that fn(x) is a polynomial in x
with degree n. We have

Pn(ε1 . . . εn) =

∫ 1

0

fn(x) dx. (5)

This recursive scheme has already been described in [23, 24, 28]. For the example
of Figure 1, we get

f1(x) =

∫ x

0

dy = x,

f2(x) =

∫ x

0

f1(y) dy =
x2

2
,

f3(x) =

∫ 1

x

f2(y) dy =
1− x3

6
,

P3(+ +−) =

∫ 1

0

f3(x) dx =
1

8
. (6)

The second of the nested integral expressions (3) is thus recovered.

4. Combinatorial approach

In the combinatorial approach the data series is modeled by a permutation σ,
chosen uniformly among the (n + 1)! permutations on n + 1 objects labelled
i = 0, . . . , n. Such a permutation yields a pattern ε1 . . . εn, defined as follows.
For i = 1, . . . , n:

If σi > σi−1, there is a rise at the ith place, and εi = +,
If σi < σi−1, there is a fall at the ith place, and εi = −. (7)

The pattern ε1 . . . εn is said to be the up-down signature of the permutation σ.
Let us again consider the example shown in Figure 1. We have

x0 < x3 < x1 < x2. (8)

Let us coarse-grain this configuration of random numbers by representing it as a
permutation σ. The rule is that the inverse permutation σ−1 gives the order of
indices in the inequalities (8). We thus have σ−1 = (0312),1 and so σ = (0231),
which indeed yields the pattern + +−.

How many permutations on 4 objects yield the pattern ++− ? This simple
question can be solved by inspection. There are 3 such permutations: (0132),
(0231) and (1230). We thus recover the result (see (3))

P3(+ +−) = 3

4!
=

1

8
. (9)

1We use the one-line notation σ = (σ0σ1 . . . σn).

5



It is indeed clear that all the 4! permutations on 4 objects are equally probable.
This observation demonstrates (on an example) the equivalence between the
probabilistic approach of Section 3 and the present combinatorial one (see [8,
21, 23, 24, 25, 27, 28]).

Let us now turn to the general case. The number An(ε1 . . . εn) of permuta-
tions on n+1 objects yielding a given pattern ε1 . . . εn of n rises and falls can be
calculated by an efficient recursive scheme, which seems to have been discovered
several times independently [14, 19, 20]. The gist of the method is similar to
that of the probabilistic approach. It consists in conditioning the permutation σ
on its last entry σn, and to relate the patterns formed by n+ 1 and n objects.
Let an,j be the number of permutations which yield the pattern ε1 . . . εn and
have σn = j. These numbers can be shown to obey the recursion relations

If εn = +, then

{
an,0 = 0,
an,j = an,j−1 + an−1,j−1 (j =

−−−−−→
1, . . . , n),

If εn = −, then
{
an,n = 0,
an,j = an,j+1 + an−1,j (j =

←−−−−−−−−
0, . . . , n− 1),

(10)

with the initial condition a0,0 = 1. Arrows indicate the order in which the
recursion relations have to be used. We thus build a triangular array of integers:

a0,0
a1,0 ↔ a1,1

a2,0 ↔ a2,1 ↔ a2,2
a3,0 ↔ a3,1 ↔ a3,2 ↔ a3,3

a4,0 ↔ a4,1 ↔ a4,2 ↔ a4,3 ↔ a4,4

(11)

At the nth row, all arrows go from left to right if εn = +, and from right to left
if εn = − (see (26) for an example).

The requested numbers of permutations

An(ε1 . . . εn) =

n∑

j=0

an,j (12)

can also be read off from the array an,j . We have indeed

If εn+1 = +, then An = an+1,n+1,
If εn+1 = −, then An = an+1,0.

(13)

Finally, the probability that a random permutation on n+ 1 objects yields the
pattern ε1 . . . εn reads

Pn(ε1 . . . εn) =
An(ε1 . . . εn)

(n+ 1)!
. (14)

To close, let us write down explicitly the correspondence between the prob-
abilistic and combinatorial approaches. For a given pattern ε1 . . . εn, the prob-
abilistic approach involves the nth degree polynomial fn(x), which has n + 1
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coefficients, while the combinatorial one involves the n+ 1 integers an,j . These
two sets of numbers carry the same information. The precise correspondence,
to be established in Appendix A, is summarized by the formula

fn(x) =

n∑

j=0

an,j
xj(1− x)n−j

j!(n− j)!
. (15)

5. Explicit results for small patterns

Table 1 presents explicit results for patterns of length up to n = 4. For
each length n, the 2n patterns are listed in lexicographical order. For each pat-
tern ε1 . . . εn, the Table gives the number An(ε1 . . . εn) of permutations yielding
that pattern and the corresponding probability Pn(ε1 . . . εn), obtained by means
of (10), (12), and (14). These numbers exhibit the expected up-down and left-
right symmetries. They also manifest a scatter which increases rapidly with n.

n = 1

ε1 A1 P1 ε1 A1 P1

+ 1 1/2 − 1 1/2

n = 2

ε1ε2 A2 P2 ε1ε2 A2 P2

++ 1 1/6 −+ 2 1/3
+− 2 1/3 −− 1 1/6

n = 3

ε1ε2ε3 A3 P3 ε1ε2ε3 A3 P3

+++ 1 1/24 −++ 3 1/8
+ +− 3 1/8 −+− 5 5/24
+−+ 5 5/24 −−+ 3 1/8
+−− 3 1/8 −−− 1 1/24

n = 4

ε1ε2ε3ε4 A4 P4 ε1ε2ε3ε4 A4 P4

++++ 1 1/120 −+++ 4 1/30
+ + +− 4 1/30 −++− 11 11/120
+ +−+ 9 3/40 −+−+ 16 2/15
+ +−− 6 1/20 −+−− 9 3/40
+−++ 9 3/40 −−++ 6 1/20
+−+− 16 2/15 −−+− 9 3/40
+−−+ 11 11/120 −−−+ 4 1/30
+−−− 4 1/30 −−−− 1 1/120

Table 1: Explicit results for all patterns of rises and falls of length up to n = 4: numbers
An(ε1 . . . εn) of permutations and probabilities Pn(ε1 . . . εn).
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The data shown in Table 1 can be analyzed in the following heuristic way.
The probability Pn(ε1 . . . εn) can be expected to be strongly penalized for pat-
terns which make large excursions in the vertical direction. This notion can be
formalized as follows. To the pattern ε1 . . . εn we associate a random walk with
steps εi, i.e.,

hi = hi−1 + εi, (16)

with h0 = 0, and we define the excursion of the pattern as the variance of the
position of that walk:

∆2
n(ε1 . . . εn) =

1

n+ 1

n∑

i=0

h2
i −

(
1

n+ 1

n∑

i=0

hi

)2

=
n(n+ 2)

6(n+ 1)
+

2

(n+ 1)2

∑

1≤i<j≤n

i(n+ 1− j)εiεj . (17)

For a fixed length n, the patterns with the largest excursion are the two
straight ones, consisting only of rises, or of falls, for which we have

∆2
n =

n(n+ 2)

12
. (18)

These patterns also have the smallest probabilities. Consider for definiteness
the rising pattern (ε1 . . . εn = + · · ·+). The probabilistic approach yields

fn(x) =
xn

n!
, (19)

while the combinatorial approach yields

an,j = δn,j , An = 1, (20)

where the Kronecker symbol δn,j equals 1 if j = n and 0 else. There is indeed
one single permutation yielding the rising pattern, namely the identity (σj = j
for all j). Both approaches consistently give

Pn =
1

(n+ 1)!
. (21)

This factorial decay corresponds to a logarithmically divergent rate

α(n) ≈ lnn− 1, (22)

and so αmax =∞.
The patterns with the smallest excursion are the two alternating ones, +−

+− · · · and −+−+ · · ·, for which we have

∆2
n =

1

4
(n odd), ∆2

n =
n(n+ 2)

4(n+ 1)2
(n even). (23)
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0

 ln
 P

n

n=2
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n=4
n=5
n=6

Figure 2: Logarithmic plot of probability Pn against reduced excursion ∆2
n/(n+1) for

all patterns of length n = 2 to 6. Symbols: data for individual patterns. Straight
lines: least-square fits.

These patterns, which will be investigated thoroughly in Section 6, are also
known to have the largest probabilities [13, 19]. The corresponding rate α takes
its minimum value αmin = ln(π/2) (see (41)).

More generally, we observe (see Figure 2) that the probability Pn and the
excursion ∆2

n are strongly anti-correlated.
The observed negative correlation however progressively fades away as the

length of patterns is increased. Figure 3 shows a plot of exact numerical data2 for
the absolute correlation coefficient |cn| between ∆2

n and lnPn for lengths up to
n = 30. The fit to the data suggests that this coefficient falls off asymptotically
as n−1/2.

A statistical analysis of the probabilities Pn adapted to their behavior for
large lengths n, based on the multifractal formalism, will be presented in Sec-
tion 11.1.

6. Alternating patterns

This Section is devoted to the historical example of alternating patterns
+ − + − + − · · ·, studied long ago by André in the framework of alternating
permutations [9, 10].

2Throughout the following, the expression exact numerical data refers to results obtained
by iterating numerically the combinatorial recursion (10).
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n

0.5

0.6

0.7

0.8

0.9

1

|c
n|

Figure 3: Absolute correlation coefficient |cn| between ∆2
n and lnPn against length n.

Black symbols: exact numerical data for lengths up to n = 30. Full red line: fit of the
data for n ≥ 10 to the form cn = a(n+ n0)

−1/2.

6.1. Probabilistic approach

We have ε2k = − and ε2k+1 = +, and so the recursion (4) for the polynomials
fn(x) takes the form

f2k+1(x) =

∫ x

0

f2k(y) dy, f2k(x) =

∫ 1

x

f2k−1(y) dy. (24)

We thus obtain

f0(x) = 1, f1(x) = x, f2(x) =
1

2
(1− x2),

f3(x) =
x

6
(3 − x2), f4(x) =

1

24
(1− x2)(5 − x2), . . . (25)

Integrating over x, using (5) and (14), we recover the first few entries of the
sequence (27).

6.2. Combinatorial approach

The construction (11) of the array of integers an,j takes the following form:

0
0 → 1

1 ← 1 ← 0
0 → 1 → 2 → 2

5 ← 5 ← 4 ← 2 ← 0
0 → 5 → 10→ 14→ 16→ 16

61← 61← 56← 46← 32← 16← 0

(26)

The above boustrophedon construction [32] seems to date back to Seidel [33].
The word boustrophedon, from two words of ancient Greek meaning ox and
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turn, applies to writing systems where the direction of drawing is alternatively
changed line after line from right to left and left to right, somewhat like the mo-
tion of a plough in a field. The resulting sequence for the numbers of alternating
permutations:

A0 = 1, A1 = 1, A2 = 2, A3 = 5, A4 = 16, A5 = 61,

A6 = 272, A7 = 1385, A8 = 7936, A9 = 50521, . . . (27)

to be investigated below, is referred to as sequence A000111 in the OEIS [34],
where many further references and links are given. The integers An have been
referred to as the up-down Euler-Bernoulli numbers or the Entringer numbers,
and they have received many combinatorial interpretations.

6.3. Generating-series method

The probabilistic recursion (4) can be solved analytically by means of gen-
erating series, for any periodic pattern. We explain the method in detail in the
present case of alternating patterns, and apply it to other patterns in Sections 7
and 8. Let us mention that such generating series can also be derived by purely
combinatorial means. That route however requires an advanced knowledge of
the theory of symmetric functions [26].

Introduce the generating series

F (z, x) =
∑

n≥0

fn(x)z
n (28)

and

Π(z) =
∑

n≥0

Pnz
n =

∑

n≥0

An
zn

(n+ 1)!
=

∫ 1

0

F (z, x) dx. (29)

In the present case, it is advisable to set

F (z, x) = F0(z, x) + F1(z, x), (30)

where

F0(z, x) =
∑

k≥0

f2k(x)z
2k, F1(z, x) =

∑

k≥0

f2k+1(x)z
2k+1. (31)

The recursion (4) translates to the coupled integral equations

F0(z, x) = 1 + z

∫ 1

x

F1(z, y) dy, F1(z, x) = z

∫ x

0

F0(z, y) dy, (32)

or, equivalently, to the coupled differential equations

∂F0

∂x
= −zF1,

∂F1

∂x
= zF0, (33)
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with boundary conditions F0(z, 1) = 1, F1(z, 0) = 0, and, finally, to the single
differential equation

∂2F0

∂x2
= −z2F0, (34)

with boundary conditions F0(z, 1) = 1, ∂F0(z, 0)/∂x = 0. The solution to the
latter equation reads

F0(z, x) =
cos zx

cos z
, F1(z, x) =

sin zx

cos z
. (35)

Using (32), we have

Π(z) =
1

z
(F1(z, 1) + F0(z, 0)− 1) . (36)

We thus obtain the explicit expression3

Π(z) =
sin z + 1− cos z

z cos z
=

1

z
(tan z + sec z − 1) . (37)

Splitting the above result, we get

tan z =
∑

k≥0

P2kz
2k+1 =

∑

k≥0

A2k
z2k+1

(2k + 1)!
,

sec z = 1 +
∑

k≥0

P2k+1z
2k+2 = 1 +

∑

k≥0

A2k+1
z2k+2

(2k + 2)!
. (38)

This is the main result obtained by André [9, 10].
To be complete, let us mention that the above expressions imply the fol-

lowing relationships between the probabilities Pn of alternating patterns, or
equivalently the Euler-Bernoulli or Entringer numbers An of alternating permu-
tations, and the Bernoulli numbers Bn, the Euler numbers En, and the value of
Riemann’s zeta function at even integers:

P2k = (−)k 2
2k+2(22k+2 − 1)

(2k + 2)!
B2k+2 =

2(22k+2 − 1)

π2k+2
ζ(2k + 2),

P2k+1 = (−)k+1 E2k+2

(2k + 2)!
. (39)

The asymptotic behavior of the probabilities Pn is governed by the first pole
at π/2 of the generating series Π(z). We thus obtain the exponential decay

Pn ≈
8

π2

(
2

π

)n

. (40)

3tan z = sin z/ cos z, sec z = 1/ cos z.
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The rate α assumes its minimal value

αmin = ln(π/2) = 0.451582 . . . (41)

This result already appears in the physics literature, albeit in some disguised
form, in an investigation of the one-dimensional Ising spin glass at zero temper-
ature by Derrida and Gardner [35].

7. p-alternating patterns

We pursue our investigation with the periodic patterns with any period p ≥ 2
whose motif (unit cell) consists of p−1 rises followed by one single fall. In other
words, we have εkp+q = + for q = 1, . . . , p−1 and εkp = −. These p-alternating
patterns have been investigated in [15, 16, 24, 26, 28].

7.1. General solution

The generating-series method of Section 6.3 extends to p-alternating patterns
as follows. Setting

F (z, x) =

p−1∑

q=0

Fq(z, x), Fq(z, x) =
∑

k≥0

fkp+q(x)z
kp+q, (42)

the recursion (4) translates to the coupled integral equations

F0(z, x) = 1 + z

∫ 1

x

F1(z, y) dy,

Fq(z, x) = z

∫ x

0

Fq−1(z, y) dy (q = 1, . . . , p− 1), (43)

or, equivalently, to the differential equation

∂pF0

∂xp
= −zpF0, (44)

with boundary conditions F0(z, 1) = 1 and ∂qF0(z, 0)/∂x
q = 0 (q = 1, . . . , p−1).

The solution reads

Fq(z, x) =
Tp,q(zx)

Tp,0(z)
(q = 0, . . . , p− 1), (45)

where the Tp,q are the generalized trigonometric functions introduced in Ap-
pendix B. The generating series Π(z) of the probabilities Pn then reads

Π(z) =
1

zTp,0(z)

(
p−1∑

q=1

Tp,q(z) + 1− Tp,0(z)

)
. (46)
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This result has been obtained by purely combinatorial means by Mendes and
Remmel [26]. The corresponding numbers An of p-alternating partitions have
been called generalized Euler numbers and investigated in [36, 37].

For p ≥ 3, the expression (46) has two main novel features with respect to
its analogue (37) for alternating permutations (p = 2). These properties also
apply to arbitrary periodic patterns, to be investigated in Section 8.

(i) The denominator Tp,0(z) is an entire function of zp. It therefore has p
smallest zeros sitting at the vertices of a regular p-gon, i.e., zq = z0ω

q

(q = 0, . . . , p − 1), where z0 is real positive, and ω = e2πi/p (see (B.3)).
We thus obtain an asymptotic decay of the probabilities Pn of the form

Pn ≈ Cn e−αn, (47)

where the rate α is given by

α = ln z0, (48)

while the other zeros zq are responsible for the occurrence of a periodic
amplitude Cn of n with period p (to be illustrated in Figure 4 below). This
periodic modulation does not occur in the case of alternating patterns
(p = 2). The expression (37) indeed has no pole at z = −z0 = −π/2, as
its numerator also vanishes there.

(ii) If periodic patterns are deduced one from the other by a cyclic permuta-
tion, such as those defined by the motifs (− ++), (+ −+) and (+ +−),
they share the same rate α, but different periodic amplitudes. This phe-
nomenon too is absent for p = 2, because of up-down symmetry.

7.2. The case p = 3 (+ +−)
The generating series Π(z) reads (see (B.18))

Π(z) =
3− e−z − 2 ez/2 cos

z
√
3

2
+ 2
√
3 ez/2 sin

z
√
3

2

z

(
e−z + 2 ez/2 cos

z
√
3

2

) . (49)

We have
z0 = 1.849812 . . . , α = 0.615084 . . . (50)

The resulting sequence for the numbers of 3-alternating permutations:

A0 = 1, A1 = 1, A2 = 1, A3 = 3, A4 = 9, A5 = 19,

A6 = 99, A7 = 477, A8 = 1513, A9 = 11259, . . . (51)

is referred to as sequence A178963 in the OEIS [34], where an expression equiv-
alent to (49) is also given.
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7.3. The case p = 4 (+ ++−)
The generating series Π(z) reads (see (B.19))

Π(z) =
sinh ζ sin ζ +

√
2 cosh ζ sin ζ − cosh ζ cos ζ + 1

z cosh ζ cos ζ
, (52)

with ζ = z/
√
2. We have

z0 =
π√
2
= 2.221441 . . . , α = 0.798156 . . . (53)

The resulting sequence for the numbers of 4-alternating permutations:

A0 = 1, A1 = 1, A2 = 1, A3 = 1, A4 = 4, A5 = 14,

A6 = 34, A7 = 69, A8 = 496, A9 = 2896, . . . (54)

is referred to as sequence A178964 in the OEIS [34], where an expression equiv-
alent to (52) is also given.

Figure 4 illustrates the modulation of the exponential decay of the proba-
bilities Pn by a periodic amplitude Cn of the pattern length n with period p
(see (47)).

20 24 28 32 36 40
n

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

ln
 P

n+
αn

Figure 4: Plot of lnPn + αn ≈ ln Cn for 4-alternating patterns against the pattern
length n in some range, illustrating the modulation of the exponential decay of the
probabilities Pn by the periodic amplitude Cn (see (47)).

7.4. Behavior of the rate as a function of p

It is of interest to investigate the behavior of the rate α as a function of the
period p of the p-alternating patterns.

In the regime where p is large, it is legitimate to approximate the full gen-
eralized trigonometric function Tp,0 by the first two terms of its series expan-
sion (B.15), i.e., Tp,0(z) ≈ 1− zp/p!. We thus obtain the estimates

z0 ≈ (p!)1/p, α ≈ ln p!

p
, (55)
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implying the asymptotic logarithmic growth

α ≈ ln p− 1. (56)

Figure 5 shows a plot of the rate α against p. The large-p approximation is
observed to be extremely accurate, except for p = 2 and 3. Corrections to (55),
due to higher-order terms in the expansion (B.15), are indeed exponentially
small in p.

1 2 3 4 5 6 7 8
p

0

0.5

1

1.5
α

Figure 5: Rate α for p-alternating patterns against their period p. Black symbols:
exact values. Full red line: result (55) of the large-p approximation.

8. Arbitrary periodic patterns

We now turn to the analysis of an arbitrary periodic pattern with period
p ≥ 2, whose motif consists of p − ν rises and ν falls. If ν = 0 or ν = p,
the pattern is one of the straight ones discussed in Section 5. Without loss of
generality, we can assume 1 ≤ ν ≤ p/2 (otherwise exchange the roles of rises
and falls). Finally, as we are chiefly interested in the rate α, we can use cyclic
invariance (see point (ii) below (48)) to ensure that the motif ends with a fall.

8.1. General form of the solution

The generating-series method of Section 6.3 extends to the general case as
follows. Using again the splitting (42) of the generating series F (z, x), the
recursion (4) translates to the differential equation

∂pF0

∂xp
= (−1)νzpF0, (57)

with F0(z, 1) = 1, while the p− 1 other boundary conditions (q = 1, . . . , p− 1)
read:

If εp−q = +, then ∂qF0/∂x
q(z, 0) = 0,

If εp−q = −, then ∂qF0/∂x
q(z, 1) = 0.

(58)
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The differential equation (57) appears in [24] and [28]. Let us show that
its solution can be simply expressed in terms of the generalized hyperbolic and
trigonometric functions introduced in Appendix B. Consider for definiteness
the case where ν is even. We are led to look for F0(z, x) as a linear combination
of generalized hyperbolic functions:

F0(z, x) =
∑

q

Cq(z)Hp,q(zx), (59)

where the sum runs over the ν indices q such that εp−q = −. Imposing the
boundary conditions at x = 1 yields a system of ν linear equations for the
coefficients Cq(z). The key object is the denominator ∆(z) of the solution to
the latter system. It is a ν × ν determinant of generalized hyperbolic functions
Hp,q(z). If ν is odd, the same holds with generalized trigonometric functions. In
both cases, ∆(z) is an entire function of zp. As a consequence, the asymptotic
decay of the probabilities Pn is given by the formulas (47), (48) in full generality,
where z0 is the smallest real positive zero of ∆(z).

8.2. An explicit example: the motif (+ +−−)
Let us illustrate the above formalism on the example of the motif (++−−).

We have p = 4 and ν = 2. The expansion (59) reads

F0(z, x) = C0(z)H4,0(zx) + C1(z)H4,1(zx). (60)

The boundary conditions at x = 1 are

C0(z)H4,0(z) + C1(z)H4,1(z) = 1,

C0(z)H4,3(z) + C1(z)H4,0(z) = 0. (61)

We thus obtain

C0(z) =
H4,0(z)

∆(z)
, C1(z) = −

H4,3(z)

∆(z)
, (62)

where ∆(z) is the determinant of the 2× 2 system (61), i.e.,

∆(z) = H4,0(z)
2 −H4,1(z)H4,3(z) =

1

2
(cosh z cos z + 1). (63)

We obtain after some algebra

2z∆(z)Π(z) = (sin z − cos z + 1)(cosh z − 1)

+ (sin z + cos z + 1) sinh z. (64)

We have
z0 = 1.875104 . . . , α = 0.628664 . . . (65)

The resulting sequence of numbers of permutations

A0 = 1, A1 = 1, A2 = 1, A3 = 3, A4 = 6, A5 = 26,

A6 = 71, A7 = 413, A8 = 1456, A9 = 10576, . . . (66)
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is referred to as sequence A058258 in the OEIS [34], where an expression equiv-
alent to (64) is also given.

The four examples (27), (51), (54), and (66) seem to exhaust the list of se-
quences of numbers of permutations with prescribed up-down signatures which
are given in the OEIS [34], together with the corresponding exponential generat-
ing series. The sequence of numbers of 5-alternating permutations is also given
there as sequence A181936, but without the corresponding generating series.
The latter is given by (46) for p = 5. This result is however not very useful from
a merely computational viewpoint, as the expressions of generalized hyperbolic
and trigonometric functions for periods p > 4 are rather cumbersome.

8.3. Two falls per motif

Let us consider a general pattern with period p whose motif contains two falls
separated by distances a and b. We have therefore εq = + except εa = εa+b = −,
and so p = a+ b and ν = 2.

The formalism of Section 8.1 leads to

∆(z) =

∣∣∣∣
Hp,0(z) Hp,a(z)
Hp,b(z) Hp,0(z)

∣∣∣∣ = Hp,0(z)
2 −Hp,a(z)Hp,b(z). (67)

It is again worth investigating the behavior of the rate α in the regime
where a and b are large. Following the lines which led to (55), we thus obtain
the estimate

z0 ≈ (a! b!)1/p. (68)

We have thus again a logarithmic growth law, of the form

α ≈ ln peff − 1, peff =
(
aa bb

)1/p
. (69)

The effective period peff interpolates between peff ≈ p if the falls are close to
each other (i.e., a≪ p or b≪ p) and peff ≈ p/2 if a and b are nearly equal (i.e.,
a ≈ b ≈ p/2).

8.4. Three falls per motif

Consider a pattern with period p whose motif contains three falls separated
by distances a, b and c. We have therefore p = a + b + c and ν = 3. The
formalism of Section 8.1 leads to

∆(z) =

∣∣∣∣∣∣

Tp,0(z) Tp,c(z) Tp,b+c(z)
−Tp,a+b(z) Tp,0(z) Tp,b(z)
−Tp,a(z) −Tp,a+c(z) Tp,0(z)

∣∣∣∣∣∣
. (70)

Notice that all the minus signs are located in the lower triangle.
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8.5. Four falls per motif

Consider a pattern with period p whose motif contains four falls separated
by distances a, b, c and d. We have p = a+ b+ c+ d and ν = 4. The formalism
of Section 8.1 leads to

∆(z) =

∣∣∣∣∣∣∣

Hp,0(z) Hp,d(z) Hp,c+d(z) Hp,b+c+d(z)
Hp,a+b+c(z) Hp,0(z) Hp,c(z) Hp,b+c(z)
Hp,a+b(z) Hp,a+b+d(z) Hp,0(z) Hp,b(z)
Hp,a(z) Hp,a+d(z) Hp,a+c+d(z) Hp,0(z)

∣∣∣∣∣∣∣
. (71)

The general structure of our prediction for the rate of arbitrary periodic
patterns clearly emerges from the expressions (67), (70) and (71).

8.6. Summary

Let us summarize our findings. For an arbitrary periodic pattern, with
any period p ≥ 2, the probabilities Pn have an asymptotic exponential decay,
modulated by a periodic function of the pattern length n with period p (see (47)).
The rate α is given by (48) in terms of the smallest real positive zero z0 of a
ν × ν determinant ∆(z) of generalized hyperbolic or trigonometric functions,
whose size ν is at most p/2. The rate is invariant under cyclic permutations of
the motif, under the exchange of rises and falls (up-down symmetry) and under
reversal (left-right symmetry). Finally, any two periodic patterns are related by
one of the above symmetries, they share the same rate, but different periodic
modulations in general.

Table 2 gives a list of irreducible motifs up to period p = 7, with the exact
numerical values of the corresponding rates. For each period, all symmetries
have been used in order to identify a minimal set of patterns. The motifs thus
obtained have been ordered according to increasing values of α. For all motifs
with periods up to p = 4, where analytical results have been derived, the Table
also lists the number of the equation giving the generating series Π(z) and the
OEIS reference [34] of the sequence An of numbers of permutations.

9. Deterministic aperiodic patterns

We have seen that the probabilities Pn of periodic patterns have an expo-
nential decay, modulated by an oscillatory function of the pattern length n. The
same property extends to a much wider class of patterns.

This holds in particular for patterns which are built from aperiodic se-
quences, such as e.g. the Fibonacci sequence. An interesting class of determinis-
tic aperiodic sequences are the self-similar sequences generated by substitutions
on a finite alphabet [38]. These sequences exhibit an intermediate degree of
order between periodic and random. Investigations of the properties of various
physical models defined on such sequences are reviewed in [39].

We shall successively consider three classic examples of such sequences: Fi-
bonacci, Thue-Morse, and Rudin-Shapiro (see [38] for historical references and
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p = 2

motif α equation OEIS
(+−) 0.451582 (37) A000111

p = 3

motif α equation OEIS
(+ +−) 0.615084 (49) A178963

p = 4

motif α equation OEIS
(+ +−−) 0.628664 (64) A058258
(+ + +−) 0.798156 (52) A178964

p = 5

motif α motif α
(+ +−+−) 0.542722 (+ + ++−) 0.958296
(+ + +−−) 0.740839

p = 6

motif α motif α
(+ +−+−−) 0.581879 (+ + ++−−) 0.866884
(+ + +−+−) 0.669441 (+ + +++−) 1.096722
(+ + +−−−) 0.799654

p = 7

motif α motif α
(+ +−+−+−) 0.516159 (+ + ++−+−) 0.797400
(+ +−++−−) 0.619535 (+ + ++−−−) 0.889929
(+ + +−+−−) 0.674316 (+ + +++−−) 0.988659
(+ + +−++−) 0.718458 (+ + ++++−) 1.217921

Table 2: List of irreducible motifs of periodic patterns up to period p = 7, with exact numerical
values of the rate α characterizing the asymptotic exponential decay of the probabilities Pn.
The equation number of the corresponding generating series Π(z) and the OEIS reference [34]
of the sequence An of numbers of permutations are also given when applicable (p ≤ 4).

details). In each case, we demonstrate by means of exact numerical calcula-
tions that the probabilities Pn exhibit an exponential decay, with a well-defined
rate α, modulated by an aperiodic amplitude, either bounded or very slowly
increasing, whose fractal structure reflects the self-similarity of the underlying
sequence (see Figures 6, 7, and 8).

Fibonacci sequence.

It is generated by the substitution

SFib :

{
A→ AB
B → A

(72)
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on two letters. Starting with A and iterating the above rules, we obtain the Fi-
bonacci sequence ABAABABAABAAB . . . This sequence is quasiperiodic, and
provides a one-dimensional analogue of the icosahedral quasicrystals discovered
in 1984 [40].

Interpreting every letter A as a rise (ε = +) and every letter B as a fall
(ε = −), we have thus constructed a family of patterns of any length n. Figure 6
shows a plot of exact numerical data for the quantity lnPn+αFibn for patterns
with length up to 1000. The following accurate value of the rate has been
obtained by fitting the data:

αFib = 0.562168 . . . (73)
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Figure 6: Plot of lnPn + αFibn against length n for Fibonacci patterns.

Thue-Morse sequence.

It is generated by the substitution

STM :

{
A→ AB
B → BA

(74)

which again acts on two letters. Starting with A and iterating the above rules, we
obtain the Thue-Morse sequence ABBABAABBAABABBA . . . This sequence
has many specific properties, including a purely singular continuous Fourier
transform [38]. Figure 7 shows a plot of the quantity lnPn + αTMn for the
patterns thus defined, with

αTM = 0.583018 . . . (75)
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Figure 7: Plot of lnPn + αTMn against length n for Thue-Morse patterns.

Rudin-Shapiro sequence.

It is generated by the substitution

SRS :





A→ AC
B → DC
C → AB
D → DB

(76)

acting on four letters. Starting with A and iterating the above rules, we obtain
the Rudin-Shapiro sequence ACABACDCACABDBAB . . . The rule is now to
read every A or C as a rise (ε = +) and every B or D as a fall (ε = −). The
binary sequence thus obtained again has many peculiar properties [38]. Figure 8
shows a plot of the quantity lnPn + αRSn for the patterns thus defined, with

αRS = 0.780693 . . . (77)

10. Chirping patterns

We have seen that the two straight patterns exhibit a factorial decay of the
probabilities Pn (see (21)), formally corresponding to an infinite decay rate.
More generally, patterns consisting mostly of rises, whereas falls become more
and more scarce (or vice versa), can be expected to yield a super-exponential
decay of the probabilities. We refer to these patterns as chirping, because the
density of falls slowly goes to zero. Besides being a birdsong, a chirp is indeed
also a signal whose frequency varies slowly in time.

Consider a chirping pattern consisting mostly of rises. The position n(k) of
the kth fall grows faster than linearly in k, and so the distance p(k) between
the kth fall and the (k − 1)st one grows indefinitely with k. If p were a large
fixed number, the pattern would be periodic, and so the probabilities Pn would
decay exponentially, with a rate α ≈ ln p − 1 growing logarithmically with the
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Figure 8: Plot of lnPn + αRSn against length n for Rudin-Shapiro patterns.

period p (see (56)). Now, in the presence of a slowly varying ‘period’ p(k), it
seems natural to estimate the probabilities as

lnPn ≈ −
∑

n(k)<n

p(k)(ln p(k)− 1). (78)

This estimate generalizes the result (68). It also agrees with an exact upper
bound for Pn, which has been conjectured to be asymptotically exact in the
regime where all the distances p(k) are large [25].

The above prediction can be made more precise in the case of a power-law
scaling

n(k) ≈ C kb, (79)

with a scaling exponent b > 1, so that the distance p(k) diverges itself as a
power law:

p(k) ≈ bC kb−1. (80)

Evaluating the sum in (78) as an integral, we thus obtain a super-exponential
decay of the form

lnPn ≈ −n
(
b− 1

b
lnn+ ln b− 2 +

1 + lnC

b

)
. (81)

The associated rate formally diverges logarithmically, as

α(n) ≈ b− 1

b
lnn. (82)

As the scaling exponent b can take any value in the range b > 1, there is a
continuum of logarithmically divergent effective rates α(n), bounded by the
worst case of the straight patterns (see (22)).

We have checked the above prediction against exact numerical data in the
following two cases.
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Square chirping patterns.

Falls occur at places given by the squares of the integers: n = k2 (k =
1, 2, . . .). We have b = 2, C = 1, and so (81) reads

lnPn ≈ −
n

2
(ln(4n)− 3). (83)

Triangular chirping patterns.

Falls occur at places given by the triangular numbers: n = k(k + 1)/2
(k = 1, 2, . . .). We have b = 2, C = 1/2, and so (81) reads

lnPn ≈ −
n

2
(ln(2n)− 3). (84)

Figure 9 shows a logarithmic plot of the probabilities Pn in both cases.
The data exhibit a super-exponential decay which is correctly described by the
asymptotic results (83), (84) (dashed lines), together with an undulation induced
by the distribution of falls.
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Figure 9: Logarithmic plot of the probabilities Pn of chirping patterns against length n.
Full undulating lines: exact data. Lower (black): square patterns. Upper (red):
triangular patterns. Dashed lines: asymptotic results (83), (84).

11. Random patterns

11.1. Uniform patterns: multifractal properties

We now turn to the statistical analysis of the probabilities Pn of observing
random patterns chosen in various ensembles. In this Section we consider a
pattern chosen uniformly among the 2n patterns ε1 . . . εn of fixed length n.

Figure 10 shows a plot of − lnP12 for the 4096 patterns of length n = 12,
listed in lexicographical order. This plot gives a picture of the behavior of
the rate α as a function of the pattern. We have indeed − lnP12 ≈ 12α. The
rate α is observed to exhibit a very erratic behavior, with structures at all scales.
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Figure 10: Plot of − lnP12 ≈ 12α of all patterns of length n = 12 in lexicographical
order.

This suggests that multifractal analysis [41, 42, 43] may provide the appropriate
framework for a quantitative analysis of these data.

Let us recall the basics of the multifractal formalism in a framework adapted
to the present case. The key object is the partition function

Zn(q) = 2n〈P q
n〉ε1...εn =

∑

ε1...εn

Pn(ε1 . . . εn)
q, (85)

where we have introduced the notation

〈X〉ε1...εn =
1

2n

∑

ε1...εn

X(ε1 . . . εn). (86)

The real parameter q plays the role of the inverse temperature β, while the role
of the energy of the configuration ε1 . . . εn is played by − lnPn(ε1 . . . εn).

If q = 2, 3, . . . is a positive integer, Zn(q) can be interpreted as the probability
that q random permutations, chosen independently and uniformly, have the
same up-down signature, i.e., yield the same pattern [21].

The set {Pn} is said to be multifractal if the partition function obeys an
exponential law of the form

Zn(q) ∼ 2−nτ(q), (87)

at least in some range of values of q. The function τ(q) is the analogue of a
free energy. The normalization of the probabilities implies Zn(1) = 1, hence the
obvious result

〈Pn〉ε1...εn = 2−n, (88)

and τ(1) = 0. We set
τ(q) = (q − 1)Dq, (89)
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where Dq is the generalized (Rényi) dimension of order q. If all the 2n patterns
of length n had equal probabilities Pn = 2−n, we would have Zn(q) = 2−n(q−1),
and therefore Dq = 1 for all q.

The scaling law (87) is commonly interpreted in terms of a multifractal spec-
trum of rates α. For a fixed α, consider the set N (α, dα) of patterns ε1 . . . εn
such that nα < − lnPn(ε1 . . . εn) < n(α + dα). In a generic multifractal situa-
tion, the set N (α, dα) has a well-defined dimension f(α), meaning that its size
(the number of its elements) grows exponentially as

|N (α, dα)| ∼ 2nf(α). (90)

The partition function may thus be estimated as

Zn(q) ∼
∫ ∞

0

e−nqα 2nf(α) dα. (91)

Evaluating the integral by the saddle-point method, we obtain the property that
the functions τ(q) and f(α) are related to each other by a Legendre transform:4

τ(q) + f(α) =
qα

ln 2
, q = ln 2 f ′(α), α = ln 2 τ ′(q). (92)

In the present case, exact numerical results demonstrate in an unambiguous
way that the scaling law (87) holds for q > 0, i.e., positive temperatures. This
observation corroborates and extends the findings of Mallows and Shepp [21],
who have established rigorously that the scaling law (87) holds whenever q =
2, 3, . . . is a positive integer.

For negative temperatures, i.e., q < 0, the growth of the partition function
is asymptotically governed by the patterns whose probabilities are the smallest,
i.e., the two straight ones (see (21)). The partition function therefore grows
super-exponentially as Zn(q) ≈ 2((n+ 1)!)|q|, for any negative value of q. This
behavior leads to the breakdown of the multifractal formalism. This is not an
artifact which could be circumvented easily. Indeed, there is actually a contin-
uum of patterns, including all the chirping ones, which yield a logarithmically
diverging effective rate α(n) (see (82)). More generally, any quantity which
has a high sensitivity to the smallest of the probabilities Pn will be affected by
logarithmic violations to scaling.

Let us proceed and describe quantitative results.
For q = 0, we have Zn(0) = 2n, hence τ(0) = −1, and so the support dimen-

sion takes the obvious value D0 = 1. More interestingly, taking the derivative
of (87) at q = 0, we obtain

〈lnPn〉ε1...εn = 2−nZ ′
n(0) ≈ −nα0. (93)

The very accurate numerical value

α0 = τ ′(0) ln 2 = 0.806361 . . . (94)

4Here and in the following, primes denote derivatives.
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has been obtained by an exact numerical evaluation of 〈lnPn〉ε1...εn up to n = 30.
The very fast convergence of the data toward the asymptotic linear law (93)
is illustrated in Figure 11. A similar kind of convergence is observed for all
subsequent quantities.
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Figure 11: Plot of 〈lnPn〉ε1...εn + 0.8063n against n up to n = 30. The red line has
slope −61× 10−6.

Considering higher-order derivatives of (87) at q = 0, we conclude that all
the cumulants of lnPn are extensive, in the sense that they grow asymptotically
linearly with n. We have in particular

varε1...εn lnPn = 〈(lnPn)
2〉ε1...εn − 〈lnPn〉2ε1...εn ≈ nw0, (95)

with
w0 = −τ ′′(0) ln 2 = 0.435600 . . . (96)

As a consequence, and in physical terms, the typical value α0 of the rate is
self-averaging. In other words, we have

lnPn ≈ −nα0 (97)

for almost all (long enough) patterns.
Interestingly enough, the typical rate α0 can also be interpreted as the Lya-

punov exponent of the random dynamical system defined by the recursion (4).
The mean value of the function fn(x), obtained by averaging at each step the re-
cursion (4) over both values of εn, has the simple expression 〈fn(x)〉ε1...εn = 2−n,
in agreement with the simple result 〈Pn〉ε1...εn = 2−n (see (88)). The typical

value of the function fn(x) however keeps fluctuating in a non-trivial way, and
it falls off as fn(x) ∼ e−nα0 , i.e., exponentially faster than the mean value, as
α0 − ln 2 = 0.113214 . . . > 0.

For q = 1, as already mentioned, the normalization of the probabilities Pn

ensures Zn(1) = 1. More interestingly, taking the derivative of (87) at q = 1,
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we predict that the entropy Σn of the set {Pn} grows as

Σn = −
∑

ε1...εn

Pn(ε1 . . . εn) lnPn(ε1 . . . εn) ≈ nD1 ln 2, (98)

with
D1 = τ ′(1) = 0.904475 . . . (99)

This number is referred to as the entropy (information) dimension.
Higher integer values of the index q are also of interest. Indeed, as recalled

above, the partition function Zn(q) is equal to the probability that q independent
random permutations yield the same pattern. We have τ(2) = 0.856199 . . .
(hence D2 = 0.856199 . . .), τ(3) = 1.647144 . . . (hence D3 = 0.823572 . . .), and
so on. The case of pairs of permutations (q = 2) has been investigated by
analytical means by Mallows and Shepp [21]. These authors have determined
the value of D2 in terms of the smallest zero of an explicit entire series. Their
approach however does not extend to higher values of q.

In the q →∞ limit, the growth of the partition function is governed by the
most probable patterns, i.e., the alternating patterns, with rate αmin = ln(π/2)
(see (41)). We thus get

D∞ =
αmin

ln 2
=

ln(π/2)

ln 2
= 0.651496 . . . (100)

The main outcome of multifractal analysis is given in Figure 12, showing
(left) the generalized dimensions Dq (for q > 0) against q/(q + 1) and (right)
the multifractal spectrum f(α) against α. The latter only makes sense in the
range αmin ≤ α ≤ α0, where f(α) grows from f(αmin) = 0 to f(α0) = 1.

0 0.2 0.4 0.6 0.8 1
q/(q+1)

0.6

0.7

0.8

0.9

1

   
D

q

D1

D2

D3

D∞

0.4 0.5 0.6 0.7 0.8 0.9
α

0

0.2

0.4

0.6

0.8

1

f(
α)

αmin

α0

Figure 12: Left: generalized dimensions Dq against q/(q + 1). Right: multifractal
spectrum f(α) against α in the range αmin < α < α0.
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11.2. Patterns at fixed concentration of rises

For uniformly chosen random patterns of length n, we have seen that the
logarithm of the probability Pn is self-averaging and characterized by the typical
rate α0. The same self-averaging property holds for more general ensembles of
random patterns.

A first interesting example consists in imposing the concentration c of rises,
i.e., in choosing at every place either a rise with probability c, or a fall with the
complementary probability:

εn =

{
+ with probability c,
− with probability 1− c.

(101)

Within this ensemble, the logarithm of the probability Pn is again self-
averaging, i.e., we have

lnPn ≈ −nβ(c), (102)

where the effective typical rate β(c) now depends on the concentration c of
rises. Figure 13 shows a plot of this quantity. Each data point is obtained by
averaging lnPn over 105 independent patterns of length n = 200.

For c = 1/2, the uniform ensemble is recovered, and so the rate takes its
minimal value β(1/2) = α0 = 0.806361 . . . As c goes to 0 (resp. 1), distances
between consecutive rises (resp. falls) become large. More precisely, these dis-
tances are exponentially distributed, with a mean value approximately equal to
1/c (resp. 1/(1− c)). Following the line of thought which led us to (78), we thus
obtain

β(c) ≈ − ln(c(1− c))−C (c→ 0 or 1), (103)

where C denotes Euler’s constant. This estimate provides a surprisingly good
description of the effective rate over the whole range of concentrations.
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Figure 13: Effective typical rate β(c) of the ensemble of random patterns at fixed
concentration c of rises, against c. Black symbols: numerical data. Full red line:
estimate (103).
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11.3. Symmetric Markovian patterns

Another interesting example consists of the patterns where rises and falls
are equally probable but correlated. The null model for this case is the sym-
metric Markovian ensemble, where εn is equal to εn−1 with some persistence
probability r, and to its opposite with the complementary probability:

εn =

{
+εn−1 with probability r,
−εn−1 with probability 1− r.

(104)

The logarithm of the probability Pn is again self-averaging, i.e., we have

lnPn ≈ −nγ(r), (105)

where the effective typical rate γ(r) depends on the persistence probability r.
Figure 14 shows a plot of this quantity.

For r = 1/2, the uniform ensemble is again recovered, and so we have
γ(1/2) = α0 = 0.806361 . . . As r goes to 0, a rise is followed by a fall with very
high probability, and vice versa. As a consequence, a typical pattern of the en-
semble consists of long alternating stretches, and so γ(r) goes to αmin = ln(π/2)
(see (41)). In the opposite limit (r → 1), a typical pattern consists of long
ordered stretches of rises and falls, whose lengths are again exponentially dis-
tributed, with a mean value scaling as 1/(1− r), and so

γ(r) ≈ − ln(1− r)−C (r → 1), (106)

where C again denotes Euler’s constant.
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Figure 14: Effective typical rate γ(r) of the symmetric Markovian ensemble of random
patterns, against the persistence probability r. Black symbols: numerical data. Full
red line: two-parameter fit incorporating the estimate (106).
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Appendix A. Explicit correspondence between the probabilistic and

combinatorial approaches

This appendix presents the explicit correspondence between the probabilistic
approach and the combinatorial one. For a given pattern ε1 . . . εn of n rises
and falls, the probabilistic approach (see Section 3) involves the nth degree
polynomial fn(x), which has n+1 coefficients, while the combinatorial one (see
Section 4) involves the n+1 integers an,j . These two sets of numbers carry the
same information.

The precise correspondence (15) between both descriptions can be estab-
lished as follows. Consider a permutation σ yielding the pattern ε1 . . . εn and
such that σn = j. The number xn is therefore the (j + 1)st one of the random
numbers x0, . . . , xn written in increasing order. In other words, fn,j(x) dx is
the probability of the following event: j numbers are in the interval [0, x], one
number is in the interval [x, x+dx], and the remaining n−j numbers are in the
interval [x+ dx, 1]. The latter probability is given by the multinomial formula

fn,j(x) dx =
(n+ 1)!

j!1!(n− j)!
xj(dx)1(1− x− dx)n−j , (A.1)

i.e. (to first order in dx),

fn,j(x) =
(n+ 1)!

j!(n− j)!
xj(1 − x)n−j . (A.2)

By definition, there are an,j permutations σ such that σn = j, among a total
of (n+1)!. Summing the expression (A.2) over j with the weights an,j/(n+1)!,
we get the result announced in (15), i.e.,

fn(x) =

n∑

j=0

an,j
xj(1− x)n−j

j!(n− j)!
. (A.3)

The inverse formula reads

an,j = j!(n− j)!

∮
dx

2πi

fn(x)

xj+1(1− x)n−j+1
, (A.4)

where the integration contour circles once around the point x = 0.
In order to be complete, let us check explicitly that the recursions (4)

and (10) are equivalent to each other. Assume the probabilistic recursion (4)
holds, and consider the case where εn = + (the other case can be dealt with in a
similar way). We have fn(0) = 0, implying an,0 = 0, and fn−1(x) = f ′

n(x). Now
consider the difference dn,j = an,j − an,j−1 for j = 1, . . . , n. The formula (A.4)
yields

dn,j =

∮
dx

2πi
fn(x)

(
j!(n− j)!

xj+1(1− x)n−j+1
− (j − 1)!(n− j + i)!

xj(1− x)n−j+2

)
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=

∮
dx

2πi
fn(x)

(
− d

dx

(j − 1)!(n− j)!

xj(1− x)n−j+1

)

=

∮
dx

2πi

(
d

dx
fn(x)

)
(j − 1)!(n− j)!

xj(1− x)n−j+1
(by parts)

=

∮
dx

2πi
fn−1(x)

(j − 1)!(n− j)!

xj(1− x)n−j+1

= an−1,j−1. (A.5)

This completes the explicit check of the equivalence between the probabilistic
approach and the combinatorial one.

Appendix B. Generalized hyperbolic and trigonometric functions

In this appendix we gather formulas and results on generalized hyperbolic
and trigonometric functions, which are used in the study of periodic patterns
(sections 7 and 8). Both families of functions are sometimes [16, 44] referred
to as Olivier functions [45]. Generalized hyperbolic functions are also described
in [46].

Generalized hyperbolic functions.

These functions provide a useful basis of solutions to the differential equation

f (p) = f, (B.1)

where p ≥ 2 is a given integer. Looking for a solution of the form eax, we are left
with the condition ap = 1. We thus obtain a basis of p exponential solutions:

Aj(x) = exω
j

(j = 0, . . . , p− 1), (B.2)

corresponding to a = ωj , where

ω = e2πi/p (B.3)

is the first pth root of unity.
It is advantageous to introduce the linear combinations

Hp,q(x) =
1

p

p−1∑

j=0

ω−qjexω
j

(q = 0, . . . , p− 1). (B.4)

The generalized hyperbolic functions thus defined provide another basis of so-
lutions to (B.1). They obey the first-order differential equations

H ′
p,q = Hp,q−1 (q = 1, . . . , p− 1), H ′

p,0 = Hp,p−1. (B.5)

The power-series expressions

Hp,q(x) =
∑

k≥0

xkp+q

(kp+ q)!
(B.6)
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are obtained by expanding the exponentials in (B.4). Another advantage of
these functions is the simple expressions of their Laplace transforms:

Ĥp,q(s) =
sp−q−1

sp − 1
. (B.7)

The first few generalized hyperbolic functions read

H2,0(x) = coshx,

H2,1(x) = sinhx, (B.8)

H3,0(x) =
1

3

(
ex + 2 e−x/2 cos

x
√
3

2

)
,

H3,1(x) =
1

3

(
ex − e−x/2 cos

x
√
3

2
+
√
3 e−x/2 sin

x
√
3

2

)
,

H3,2(x) =
1

3

(
ex − e−x/2 cos

x
√
3

2
−
√
3 e−x/2 sin

x
√
3

2

)
, (B.9)

H4,0(x) =
1

2
(coshx+ cosx),

H4,1(x) =
1

2
(sinhx+ sinx),

H4,2(x) =
1

2
(coshx− cosx),

H4,3(x) =
1

2
(sinhx− sinx). (B.10)

Generalized trigonometric functions.

The above construction can be transposed to the differential equation

f (p) = −f. (B.11)

Looking again for a solution of the form eax, we are left with the condition
ap = −1. We thus obtain a basis of p exponential solutions:

Bj(x) = exω
j+1/2

(j = 0, . . . , p− 1), (B.12)

corresponding to a = ωj+1/2.
We introduce the linear combinations

Tp,q(x) =
1

p

p−1∑

j=0

ω−q(j+1/2)exω
j+1/2

(q = 0, . . . , p− 1). (B.13)

The generalized trigonometric functions thus defined provide another basis of
solutions to (B.11). They obey the first-order differential equations

T ′
p,q = Tp,q−1 (q = 1, . . . , p− 1), T ′

p,0 = −Tp,p−1. (B.14)
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The power-series expressions

Tp,q(x) =
∑

k≥0

(−1)k xkp+q

(kp+ q)!
(B.15)

are obtained by expanding the exponentials in (B.13). Finally, their Laplace
transforms are

T̂p,q(s) =
sp−q−1

sp + 1
. (B.16)

The first few generalized trigonometric functions read

T2,0(x) = cosx,

T2,1(x) = sinx, (B.17)

T3,0(x) =
1

3

(
e−x + 2 ex/2 cos

x
√
3

2

)
,

T3,1(x) =
1

3

(
−e−x + ex/2 cos

x
√
3

2
+
√
3 e−x/2 sin

x
√
3

2

)
,

T3,2(x) =
1

3

(
e−x − ex/2 cos

x
√
3

2
+
√
3 e−x/2 sin

x
√
3

2

)
, (B.18)

T4,0(x) = cosh
x√
2
cos

x√
2
,

T4,1(x) =
1√
2

(
cosh

x√
2
sin

x√
2
+ sinh

x√
2
cos

x√
2

)
,

T4,2(x) = sinh
x√
2
sin

x√
2
,

T4,3(x) =
1√
2

(
cosh

x√
2
sin

x√
2
− sinh

x√
2
cos

x√
2

)
. (B.19)
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