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ON THE CONGRUENCE

1m + 2m + · · · + m
m ≡ n (mod m) WITH n | m

JOSÉ MARÍA GRAU, ANTONIO M. OLLER-MARCÉN, AND JONATHAN SONDOW

Abstract. We show that if the congruence above holds and n | m, then the

quotient Q := m/n satisfies
∑

p|Q
Q

p
+1 ≡ 0 (mod Q), where p is prime. The

only known solutions of the latter congruence are Q = 1 and the eight known
primary pseudoperfect numbers 2, 6, 42, 1806, 47058, 2214502422, 52495396602,
and 8490421583559688410706771261086. Fixing Q, we prove that the set of
positive integers n satisfying the congruence in the title, with m = Qn, is
empty in case Q = 52495396602, and in the other eight cases has an asymptotic
density between bounds in (0, 1) that we provide.

AMS 2010 Mathematics Subject Classification 11B99, 11A99, 11A07
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1. Introduction

This paper deals with power sums of the form

Sm(k) := 1m + 2m + 3m + · · ·+ km,

where m, k ∈ N := {1, 2, 3, . . .}. Power sums were first studied in detail by Jakob
Bernoulli (1654-1705), leading him to develop the Bernoulli numbers, as they are
known today. In fact, if we denote by Bi and Bi(x) the i-th Bernoulli number and
Bernoulli polynomial, then (see, e.g., [1])

(1) Sm(m) =
Bm+1(m+ 1)−Bm+1

m+ 1
.

In particular, much work has been done regarding divisibility properties of power
sums [6, 10, 11].

The general Diophantine equation

Sm(x) = yn

was considered by Scha̋ffer [15] in 1956. In particular he proved that this equation
has infinitely many solutions in positive integers x and y if and only if (m,n) ∈
{(1, 2), (3, 2), (3, 4), (5, 2)}. Moreover, for m ≥ 1 and n ≥ 2 he conjectured that if
the equation has finitely many solutions, then the only nontrivial solution (i.e., with
(x, y) 6= (1, 1)) is given by the case (m,n, x, y) = (2, 2, 24, 70). Jacobson, Pintér and
Walsh [8] verified the conjecture for n = 2 and even m ≤ 58. Bennett, Győry and
Pintér [2] have proved it for m ≤ 11 and arbitrary n.

Also related to power sums we mention the Erdős-Moser equation, which is the
Diophantine equation

(2) Sm(k) = (k + 1)m.

In a 1950 letter to Moser, Erdős conjectured that solutions to this equation do
not exist, except for the trivial solution 11 + 21 = 31. Three years later, Moser
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[13] proved the conjecture for odd k or m < 1010
6

. Since then, much work on the
Erdős-Moser equation has been done, but it has not even been proved that there
are only finitely many solutions. For surveys of work on this and related problems,
see [3, 12] and [7, Section D7].

Recently, Sondow and MacMillan studied modular versions of the Erdős-Moser
equation (2), in particular, the congruences

(3) Sm(k) ≡ (k + 1)m (mod k)

and

Sm(k) ≡ (k + 1)m (mod k2).

Among other results, they proved the following. (Here and throughout the paper,
p denotes a prime.)

Theorem 1 (Sondow and MacMillan [18] ). The congruence (3) holds if and only

if p | k implies m ≡ 0 (mod p − 1) and k
p + 1 ≡ 0 (mod p). In that case, k is

square-free, and if n is odd, then k = 1 or 2.

In the present paper we are interested in power sums of the form Sm(m). Observe
that if we put m = k in equation (3) we obtain Sm(m) ≡ 1 (mod m) where,
obviously, 1 divides m. This observation leads to the main goal of this paper,
namely, the study of the congruence

(4) Sm(m) ≡ n (mod m), with n | m.

In particular we prove that if (4) holds, then the quotient Q := m/n satisfies
the congruence

∑

p|Q

Q

p
+ 1 ≡ 0 (mod Q).

There are nine known positive integers that satisfy this congruence: Q = 1, 2,
6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086.
We show that for each of these values of Q, the set of solutions n to

SQn(Qn) ≡ n (mod Qn)

has positive asymptotic density strictly less than 1, except for Q = 52495396602
when the set of solutions is empty.

For instance, for Q = 1 (i.e., if m = n), the set of solutions to the congruence
Sn(n) ≡ n ≡ 0 (mod n) is precisely the set of odd positive integers (as proved in
[6]), whose asymptotic density is 1/2. ForQ = 2 (i.e., ifm = 2n), the set of solutions
to S2n(2n) ≡ n (mod 2n) is {1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 28, . . .}
(see [16, Sequence A229303]).

It is interesting to observe that Bernoulli’s formula (1) would allow us to restate
our results in terms of Bernoulli numbers. Nevertheless, we will not do so.

2. The congruence Sm(m) ≡ 1 (mod m)

Let us define a set S in the following way:

S := {m ∈ N : Sm(m) ≡ 1 (mod m)} .

The main goal of this section is to characterize the set S. In particular, we will see
that it consists of just five elements.

We first prove two lemmas.
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Lemma 1. Let P be a non-empty set of primes p such that

i) p− 1 is square-free, and

ii) if q is a prime divisor of p− 1, then q ∈ P.

Then P is one of the sets {2}, {2, 3}, {2, 3, 7}, or {2, 3, 7, 43}.

Proof. Since P is non-empty, condition ii) implies that 2 ∈ P .
If there exists an odd prime p ∈ P , then we can define a finite sequence of primes

recursively by

s1 = p,

sj = max{prime q : q | sj−1 − 1}.

This sequence is contained in P and, since it is strictly decreasing, there exists j
such that sj = 2. Then sj−1 = 2h + 1 and since 2 is the biggest prime dividing
sj−1 − 1, condition i) implies h = 1 and hence sj−1 = 3. If 3 < p, then in the same
way we get that sj−2 = 3l + 1 with l = 1 or 2, but since sj−2 is prime, l = 2 and
sj−2 = 7. If 7 < p, then one step further leads us to sj−3 = 43.

Now, if 43 < p, then sj−4 = 43t + 1 with t < 43. But the only primes in
{43t+1 : t < 43} are 173, 431, 947, 1033, 1291, 1549, 1721, and 173, 1033, 1549, 1721
do not satisfy condition i), while 431, 947, 1291 do not satisfy condition ii). Thus,
none of them belongs to P , a contradiction. Hence 43 = p. Therefore, in all cases
the sequence {sj} has at most three elements and the only possible values for s1 = p
are 3, 7, 43. This proves the lemma. �

Remark 1. Note that 2, 3, 7, and 43 are precisely the primes in [16, Sequence
A227007].

Lemma 2. Let N be a set of positive integers ν such that

i) ν is square-free, and

ii) if p is a prime divisor of ν, then p− 1 divides ν.

Then N ⊆ {1, 2, 6, 42, 1806}.

Proof. Let us define the set

S := {prime p : p | ν for some ν ∈ N},

If S 6= ∅, consider p ∈ S. By condition ii) we have that p−1 | ν for some ν ∈ N . By
condition i) ν is square-free and since p−1 divides ν, then p−1 itself is square-free.
Moreover, if q | p − 1 is prime, then also q | ν. Hence, we have just seen that S
satisfies both conditions in Lemma 1 so we conclude that S ⊆ {2, 3, 7, 43}.

Since the elements of N are square-free and satisfy condition ii), it is enough to
proceed by direct inspection to observe that the only possible elements of N are
1, 2, 6, 42, 1806, as claimed. �

In [5] the set {2, 6, 42, 1806}was characterized as the only square-free solutions to
G(n) = ϕ(n), where ϕ(n) is Euler’s totient function and G(n) stands for the number
of groups (up to isomorphism) of order n. In [9] it is proved that n = 1806 is the
only value for which the denominator of Bn equals n. In [4] and [17, Proposition
2] several different characterizations of the set {1, 2, 6, 42, 1806} were given. Here
we present one more in terms of divisibility properties of power sums.

Proposition 1. The set S consists of five elements, namely,

S = {1, 2, 6, 42, 1806}.
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Proof. Let m ∈ S, so that Sm(m) ≡ 1 (mod m). By Theorem 1, this implies
that m is square-free and that p − 1 divides m for every prime factor p of m.
Consequently, Lemma 2 applies to obtain that S ⊆ {1, 2, 6, 42, 1806}. The proof is
complete since equality can be verified computationally. �

Remark 2. The result in Proposition 1 was stated without proof by Max Alekseyev
in [16, Sequence A014117] after the first draft of the present paper was written.

We recall that an integer n ≥ 2 is called a primary pseudoperfect number if it
satisfies the equation

∑

p|n

n

p
+ 1 = n.

The only known primary pseudoperfect numbers are [3]

2, 6, 42, 1806, 47058, 2214502422, 52495396602, 8490421583559688410706771261086.

It is not known whether there are infinitely many. We have just seen that the
elements of S are 1 and the four primary pseudoperfect numbers 2, 6, 42, 1806.
In the following section a family of positive integers closely related to primary
pseudoperfect numbers will play a key role.

3. The congruences SQn(Qn) ≡ n (mod Qn)

For every Q ∈ N let us define the set

NQ := {n ∈ N : SQn(Qn) ≡ n (mod Qn)}.

The main goal of this section is to study the family of sets NQ. We will make
use of the following lemma [6] several times.

Lemma 3. Let d, k,m, and t be positive integers.

i) If d divides k, then

Sm(k) ≡
k

d
Sm(d) (mod d).

ii) Let pt be an odd prime power. Then

Sm(pt) ≡

{

−pt−1 (mod pt), if p− 1 | m;

0 (mod pt), otherwise.

iii) We have

Sm(2t) ≡











2t−1 (mod 2t), if t = 1, or t > 1 and m > 1 is even;

−1 (mod 2t), if t > 1 and m = 1;

0 (mod 2t), if t > 1 and m > 1 is odd.

The first step in our study is to see that Q is square-free whenever NQ 6= ∅.

Proposition 2. If NQ is non-empty, then Q is square-free.

Proof. Fix n ∈ NQ. As 1 is square-free, we may assume that Q > 1. Given
p | Q, let ps (s ≥ 1) be the greatest power of p dividing Q. Let pr (r ≥ 0)
be the greatest power of p dividing n. Since n ∈ NQ, we have SQn(Qn) ≡ n
(mod Qn), and hence SQn(Qn) ≡ n (mod pr+s). Since s ≥ 1 and pr+1 ∤ n, we get

SQn(Qn) 6≡ 0 (mod pr+s). Hence, as Lemma 3 i) gives SQn(Qn) ≡ Qn
pr+sSQn(p

r+s)

(mod pr+s), we get SQn(p
r+s) 6≡ 0 (mod pr+s). Now Lemma 3 ii) and iii) yield
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SQn(p
r+s) ≡ ±pr+s−1 (mod pr+s), where the sign depends on the parity of p.

Thus, ± Qn
pr+s p

r+s−1 ≡ n (mod pr+s), and in either case, since Qn
pr+s is coprime to

p and the greatest power of p dividing n is pr, we get that r + s − 1 = r, so that
s = 1 as claimed. �

Before we present our main theorem we need to prove the following easy lemma.

Lemma 4. Let Q and n be positive integers such that n is even and n ∈ NQ. Then

Q is also even.

Proof. Assume on the contrary that 2r (r > 0) is the greatest power of 2 dividing
n and that Q is odd. Then n ∈ NQ and Lemma 3 i) imply that SQn(2

r) ≡ 0
(mod 2r). But that contradicts Lemma 3 iii). �

We are now in a position to characterize the pairs (Q,n) such that n ∈ NQ. In
what follows we denote the set of primes dividing an integer k by

P(k) := {prime p : p | k}.

Theorem 2. Let Q and n be positive integers. Then n ∈ NQ if and only if the

following conditions both hold.

i) If p ∈ P(Q), then p− 1 | Qn and Q
p + 1 ≡ 0 (mod p).

ii) If p ∈ P(n) but p 6∈ P(Q), then p− 1 ∤ Qn.

Proof. Assume that n ∈ NQ, so that SQn(Qn) ≡ n (mod Qn). Then Proposition 2
implies that Q is square-free. Hence, we can put

Q =





∏

p∈P(Q)∩P(n)

p









∏

p∈P(Q)\P(n)

p



 := dQ′

and

n =





∏

p∈P(n)∩P(Q)

prp









∏

p∈P(n)\P(Q)

psp



 := n1n2.

Observe that d = gcd(Q,n) and Qn = (dn1)n2Q
′, and that dn1, n2, and Q′ are

pairwise coprime. Consequently, SQn(Qn) ≡ n (mod Qn) holds if and only if the
following three congruences all hold:

a) SQn(Qn) ≡ n (mod n2),
b) SQn(Qn) ≡ n (mod Q′),
c) SQn(Qn) ≡ n (mod dn1).

Let us analyze each case separately. (Note that by Lemma 4 the prime 2 cannot
appear in the decomposition of n2.)

a) SQn(Qn) ≡ n (mod n2) if and only if SQn(Qn) ≡ 0 (mod n2). This hap-
pens if and only if SQn(Qn) ≡ 0 (mod psp) for every p ∈ P(n) \ P(Q). By
Lemma 3 i), this happens if and only if SQn(p

sp) ≡ 0 (mod psp). Now, in
[6, Prop. 3] it is proved that, for odd m, Sk(m) ≡ 0 (mod m) if and only
if q− 1 does not divide k for every q prime divisor of m. Consequently, the
previous congruence holds if and only if p− 1 does not divide Qn.

b) Applying Lemma 3 i) we get that SQn(Qn) ≡ n (mod Q′) if and only if
dSQn(Q

′) ≡ 1 (mod Q′), i.e., if and only if dSQn(Q
′) ≡ 1 (mod p) for every

p ∈ P(Q) \ P(n). This is equivalent to dQ′

p SQn(p) ≡ 1 (mod p) which, by

Lemma 3 ii), holds if and only if p− 1 divides Qn and Q
p + 1 ≡ 0 (mod p).
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c) Applying Lemma 3 i) again and reasoning as in the previous cases, we get

that SQn(Qn) ≡ n (mod dn1) if and only if Q
p SQn(p

rp+1) ≡ prp (mod prp+1)

for every p ∈ P(Q) ∩ P(n). Hence, SQn(p
rp+1) 6≡ 0 (mod prp+1) and it is

enough to apply Lemma 3 ii) or iii).

To prove the converse, first observe that condition i) implies that Q is square-free.
Hence, we have the same decomposition Qn = (dn1)n2Q

′ again. Now, since the
implications in the points a), b) and c) were “if and only if”, the result follows. �

In the previous section we proved that 1 ∈ NQ if and only if Q ∈ {1, 2, 6, 42, 1806}
and hence Q = 1 or is a primary pseudoperfect number. We now introduce the
following definition.

Definition 1. An integer n ≥ 1 is a weak primary pseudoperfect number if it
satisfies the congruence

∑

p|n

n

p
+ 1 ≡ 0 (mod n).

In [18, Corollary 5] it was proved that the congruence Sm(k) ≡ 1 (mod k) holds
if and only if k is a weak primary pseudoperfect number and lcm{p−1 : prime p | k}
divides m.

Note that primary pseudoperfect numbers are trivially weak primary pseudop-
erfect numbers. Moreover, since the sum of the reciprocals of the first 58 primes is
smaller than 2, it follows that, if it exists, a weak primary pseudoperfect number
greater than 1 which is not a primary pseudoperfect number must have at least 58
different prime factors, and so must be greater than 10110.

Theorem 2 implies that the values of Q such that NQ 6= ∅ are weak primary
pseudoperfect numbers.

Corollary 1. If NQ 6= ∅, then Q is a weak primary pseudoperfect number.

Proof. Since NQ 6= ∅, Theorem 2 i) yields Q
p +1 ≡ 0 (mod p) for every prime p | Q.

Hence Q is square-free and
∑

p|Q

Q

p
+ 1 ≡

∏

p|Q

(

Q

p
+ 1

)

≡ 0 (mod Q)

and the result follows. �

As we already pointed out, the only known weak primary pseudoperfect num-
bers > 1 are the primary pseudoperfect numbers. Only eight of them are known.
Hence, the only known possible values of Q 6= 1 that could make NQ 6= ∅ are 2, 6,
42, 1806, 47058, 2214502422, 52495396602 and 8490421583559688410706771261086.
We know from Section 2 that 1 ∈ NQ if and only if Q ∈ {1, 2, 6, 42, 1806} so, in
these cases NQ 6= ∅ and obviously 1 = minNQ. In the following proposition, we
determine the minimal element of NQ when it exists, i.e., when NQ 6= ∅.

Proposition 3. Given a weak primary pseudoperfect number Q, define the integer

(5) nQ :=

{

lcm
{

p−1
gcd(p−1,Q) : p | Q

}

, if Q 6= 1;

1, if Q = 1.

Then NQ = ∅ if and only if q − 1 | QnQ for some prime q | nQ. Moreover, if

NQ 6= ∅, then nQ | n for every n ∈ NQ and, in particular, nQ = minNQ.
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Proof. Clearly p− 1 | QnQ for every prime p | Q. Moreover, Theorem 2 i) implies
that if n ∈ NQ, then nQ | n. Applying Theorem 2 ii) completes the proof. �

With this proposition we can analyze the four remaining values of Q for which
NQ could be non-empty.

Proposition 4. i) If Q ∈ {47058, 2214502422, 8490421583559688410706771261086},
then NQ is non-empty.

ii) The set N52495396602 is empty.

Proof. i) Using Proposition 3, since 47058 = 2×3×11×23×31, it can be computed
that

n47058 = lcm(1, 1, 5, 1, 5) = 5.

In the same way we get that n2214502422 = 5 and

n8490421583559688410706771261086 = 5× 100788283× 78595501069

= 39607528021345872635.

To conclude it is enough to apply Proposition 3.
ii) First of all, note that Q = 52495396602 = 2× 3× 11× 17× 101× 149× 3109. By

definition, both 5 =
10

gcd(10, 52495396602)
and 8 =

16

gcd(16, 52495396602)
divide

n52495396602. Hence, 5 | n52495396602 and 4 | 52495396602× n52495396602, so that the
second part of Proposition 3 implies that N52495396602 = ∅ as claimed. �

It is quite surprising that the set N52495396602 is empty. This fact implies that
the converse of Corollary 1 is false. Hence we only know eight values of Q for which
NQ 6= ∅. The following result summarizes this information.

Proposition 5. The only known values of Q for which NQ 6= ∅ are 1, 2, 6, 42, 1806,
47058, 2214502422, and 8490421583559688410706771261086.

Next section deals with the asymptotic density of these sets.

4. About the asymptotic density of NQ

In this section we focus on the known cases when NQ is non-empty. In particular
we are interested in studying their asymptotic density, δ(NQ), which we show exists.
For instance, the case Q = 1 was studied in [6, Theorem 1], where it was proved
that N1 is the set of odd positive numbers and hence has asymptotic density 1/2.

Here, we study the cases when Q is a weak primary pseudoperfect number and
the previous fact will appear as a particular case. Since the elements of NQ are
always multiples of nQ, a description of the complement nQN \NQ will be useful.
Recall that p denotes a prime number.

Proposition 6. Let Q be a weak primary pseudoperfect number such that NQ 6= ∅.
Then

nQN \NQ =
⋃

d|Q

Wd(Q),

where the sets Wd(Q) are given by

Wd(Q) :=

{

Kp
nQ

D

p− 1

d
: p ∤ Q, d | p− 1, D = gcd

(

nQ,
p(p− 1)

d

)

, K ∈ N

}

.
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Proof. Let n ∈ N such that n 6∈ NQ. Then, due to Theorem 2 ii), there exists a
prime p ∤ Q such that p | n and p− 1 | Qn. This implies that Qn = Ap(p − 1) for

some A ∈ N. Hence, if we put d = gcd(Q, p− 1) we have that n = B p(p−1)
d , where

B = dA/Q is an integer because p ∤ Q. Finally, since we want n to be a multiple of
nQ it follows that B = K

nQ

D as claimed. �

When nQ = 1, then D = 1 and Proposition 6 can be particularized in the
following way.

Corollary 2. Let Q ∈ {1, 2, 6, 42, 1806}. Then

N \NQ =
⋃

d|Q

Wd(Q),

where

Wd(Q) =

{

K
p(p− 1)

d
: p ∤ Q, d | p− 1, K ∈ N

}

.

In the cases when nQ = 5, i.e., when Q = 47058 or 2214502422, we can also
give a somewhat simpler version of Proposition 5. Note that, in these cases,

gcd
(

nQ,
p(p−1)

d

)

= gcd(nQ, p(p− 1) = 1 or 5 because 5 ∤ Q.

Corollary 3. Let Q ∈ {47058, 2214502422}. Then

5N \NQ =
⋃

d|Q

W
(1)
d (Q) ∪

⋃

d|Q

W
(2)
d (Q),

where the sets W
(i)
d (Q) are given by

W
(1)
d (Q) :=

{

K
p(p− 1)

d
: p ∤ Q, 5 | p(p− 1), d | p− 1, K ∈ N

}

,

W
(2)
d (Q) :=

{

5K
p(p− 1)

d
: p ∤ Q, 5 ∤ p(p− 1), d | p− 1, K ∈ N

}

.

The remaining value, Q = 8490421583559688410706771261086, does not admit
such a simple decomposition because in this case nQ is not prime. In any case, we
are in a position to conclude the paper by giving bounds for the asymptotic density
of NQ for the known non-empty cases. But first we introduce a technical lemma.

Lemma 5. Let A := {ak}k∈N and {ck}k∈N be two sequences of positive integers,

and for k ∈ N define the arithmetic progression

Bk := {ak + (s− 1)ck : s ∈ N}.

If
∑∞

k=1 c
−1
k is convergent and A has zero asymptotic density, then

⋃∞
k=1 Bk has an

asymptotic density.

Proof. Let us denote Bn :=
⋃∞

k=n+1 Bk and ϑ(n,N) := card([0, N ] ∩Bn). Then

ϑ(n,N) ≤ card([0, N ] ∩A) +N
∞
∑

k=n+1

1

ck
.

From this, we get

δ̄(Bn) = lim sup
ϑ(n,N)

N
≤ lim sup

card([0, N ] ∩ A)

N
+

∞
∑

k=n+1

1

ck
=

∞
∑

k=n+1

1

ck
.
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Now, for every n, the set
⋃n

k=1 Bk has an asymptotic density δn, and we have

δn ≤ δ

(

∞
⋃

k=1

Bk

)

≤ δ

(

∞
⋃

k=1

Bk

)

= δ

(

n
⋃

k=1

Bk ∪Bn

)

≤ δn + δ̄(Bn)(6)

≤ δn +

∞
∑

k=n+1

1

ck
.

Now, the sequence δn is non-decreasing, bounded (by 1) and, hence, convergent.
Moreover, since

∑∞
k=1 c

−1
k is convergent we have that

∑∞
k=n+1 c

−1
k converges to zero

as n → ∞. Taking these facts into account, if we take limits in (6) we obtain that

δ

(

∞
⋃

k=1

Bk

)

= lim
n→∞

δn = δ

(

∞
⋃

k=1

Bk

)

and hence
⋃∞

k=1 Bk has an asymptotic density, as claimed. �

Remark 3. Note that Lemma 5 implies that if a set S is the union of arithmetic
progressions of the form {n ck : n ∈ N} such that the series

∑∞
k=1 c

−1
k converges,

then S has an asymptotic density.

Proposition 7. For every weak primary pseudoperfect number Q, the set NQ has

an asymptotic density δ(NQ). Moreover, δ(NQ) is strictly smaller than 1/nQ.

Proof. If NQ = ∅, the result is clear from definition (5).
On the other hand, if NQ 6= ∅, then Proposition 6 shows that nQN \NQ is the

union of arithmetic progressions with difference

D(Q, d, p) :=
nQ

gcd(nQ, p(p− 1)/d)

p(p− 1)

d
,

where p is a prime not dividing Q and d is a divisor of Q such that d | p− 1.
Taking into account that the series

∑

p
1

p(p−1) is convergent, it is clear that

∑

p prime
d|Q

1

D(Q, d, p)
< ∞.

Consequently, by Remark 3, it follows from Lemma 5 (with A = {0}) that nQN\NQ

has an asymptotic density and, hence, so does NQ. Moreover, since NQ ⊂ nQN, it
follows that δ(NQ) < 1/nQ as claimed. �

Proposition 7 not only shows that, for every weak primary pseudoperfect number
Q, the set NQ has an asymptotic density, but also gives an upper bound for δ(NQ).
The following result shows that δ(NQ) > 0 if NQ 6= ∅.

Theorem 3. For every weak primary pseudoperfect number Q such that NQ is

non-empty, the asymptotic density of NQ is strictly positive.

Proof. Fix a weak primary pseudoperfect number Q such that NQ 6= ∅. By Propo-
sition 3, if we consider

nQ = minNQ,

then it follows that nQ divides every element in NQ.
Let y be a positive integer and consider the set

My := {nQm : prime p | m =⇒ p < y}.
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We want to study the asymptotic behavior of [0, N ] ∩My ∩NQ when N → ∞.
First, we observe that

(7) card([0, N ] ∩My) =
N

QnQ
(ρ(y) + o(1)) as N → ∞,

where ρ(y) :=
∏

p≤y(1− 1/p). Moreover, [14, Formula 3.25] states that if y ≥ 285,
then

ρ(y) >
e−γ

log y

(

1−
1

2 log2 y

)

.

Hence, if we choose y > 285 and taking into account that e−γ > 0.56 we obtain
that

(8) ρ(y) >
0.5

log y
.

Now, assume that y ≥ Q and let N ≥ nQm ∈ My is such that nQm 6∈ NQ. If
this is the case, condition ii) in Theorem 2 must fail (because condition i) trivially
holds due to the form of nQm). This means that, if prime p | m, then p−1 | QnQm
(because the primes dividing m are greater than y > Q). If we put p− 1 = dt with
d | QnQ and t | m, then m is divisible both by t and dt+ 1, and therefore by their
product (because they are coprime) and t > y/d. For fixed d and t, the number of
m ≤ N/QnQ divisible by t(dt+ 1) is

⌊

N

QnQt(dt+ 1)

⌋

≤
N

dQnQt2

and we want to sum all of them over d | QnQ and t > y/d.
If we keep d fixed and sum over all t > y/d and we further assume that y ≥ 2QnQ

(and hence, y/d ≥ 2) we get that

∑

t>y/d

x

dQnQt2
<

2N

yQnQ
.

Consequently, if τ denotes the number-of-divisors function, then

(9)
∑

d|QnQ

t>y/d

N

dQnQt2
≤

2τ(QnQ)N

QnQy
.

Now, if we take y > max{285, 2QnQ}, putting together (7), (8) and (9) we obtain
that, if N → ∞,

(10) card([0, N ] ∩My ∩NQ) ≥
1

QnQ

(

0.5

log y
−

2τ(QnQ)

y

)

N(1 + o(1)).

Finally, since log y grows more slowly than y, we can choose y > max{285, 2QnQ}
such that the main term in (10) is positive. This means that the asymptotic density
of NQ (which exists due to Proposition 7) is positive, as claimed. �

Observe that Proposition 7 and Theorem 3 give upper and lower bounds for
the asymptotic density of NQ when NQ is non-empty. The remaining results are
devoted to giving tighter bounds.
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Proposition 8. We have the inequalities

0.0560465 < δ(N47058) < 0.0800567,

0.0070565 < δ(N2214502422) < 0.0800567.

Proof. For Q ∈ {47058, 2214502422} Corollary 3 implies that

5N \NQ =
⋃

d|Q
p prime

Ud,p(Q),

where

Ud,p(Q) :=















{

5K p(p−1)
d : K ∈ N

}

, if p ∤ Q, 5 ∤ p(p− 1), d | p− 1;
{

K p(p−1)
d : K ∈ N

}

, if p ∤ Q, 5 | p(p− 1), d | p− 1;

∅, otherwise.

If pi denotes the ith prime number, we have that

(11) δ(
⋃

i≤50
d|Q

Ud,pi
(Q)) < δ(5N \NQ) ≤ δ(

⋃

i≤50
d|Q

Ud,pi
(Q)) +

∑

i>50
d|Q

δ(Ud,pi
(Q)).

Computing the primitive elements of the union of Ud,pi
(Q) for i ≤ 50 we obtain

the set

S50 := {10, 35, 235, 285, 335, 695, 2985, 3775, 5135, 8515, 8555, 8755, 17015, 18145,

22005, 28355, 41255, 69305, 79655, 128255}

and consequently
⋃

i≤50
d|Q

Ud,pi
(Q) =

⋃

t∈S50

{Kt : K ∈ N}.

Now, using Mathematica, the inclusion-exclusion principle leads to

δ(
⋃

i≤50
d|Q

Ud,pi
(Q)) =

48357225625417447595522734010896225250266313

403167008827681283131141033075588326251331565
.

Using now
∑

p
1

p(p−1) = 0.7731566690497 . . . and δ(Ud,pi
(Q)) ≤ d

pi(pi−1) , and

doing some computations, we can also obtain an upper bound for
∑

i>50
d|Q

δ(Ud,pi
(Q))

which, together with (11), leads to the desired bounds. �

Proposition 9. We also have the inequalities

0.583874 < δ(N2) < 0.584604,

0.70405 < δ(N6) < 0.707659,

0.78215 < δ(N42) < 0.79399,

0.7747 < δ(N1806) < 0.812570.
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Proof. For every Q ∈ {2, 6, 42, 1806}, using Corollary 2 we have that

N \NQ =
⋃

d|Q
p prime

Ud,p(Q),

where

Ud,p(Q) :=

{
{

K p(p−1)
d : K ∈ N

}

, if p ∤ Q, d | p− 1;

∅, otherwise.

Then, the required computations are similar to those in the previous proof and can
be performed with Mathematica using again the inclusion-exclusion principle. �

In the case of Q9 := 8490421583559688410706771261086 it does not seem feasible
to apply the ideas and techniques from Proposition 8, because the computations
would require an unaffordable amount of time. Nevertheless, we can improve the
bounds 0 < δ(NQ9

) < 1. Namely, this density by Proposition 7 is less than 1/nQ9
,

yielding δ(NQ9
) < 10−30, and taking y = Q9nQ9

in the proof of Theorem 3 gives
δ(NQ9

) > 1.2× 10−53 from (10). To provide tighter bounds remains a possibility.
The following table summarizes the main results about the known values of Q

for which NQ is non-empty.

Table 1. Known weak primary pseudoperfect numbers Q if NQ 6= ∅

Q minNQ Bounds for δ(NQ)
1 1 1/2, 1/2
2 1 0.583874, 0.584604
6 1 0.70405, 0.707659
42 1 0.78215, 0.79399
1806 1 0.7747, 0.812570
47058 5 0.0560465, 0.080057

2214502422 5 0.0070565, 0.080057
8490421583559688410706771261086 39607528021345872635 1.2× 10−53, 10−30

Observe that we have

1/2 = δ(N1) < δ(N2) < δ(N6) < δ(N42) < 1.

However, we do not know whether the relation δ(N42) < δ(N1806) holds.
In fact, δ(NQ) is not increasing withQ since, for instance, δ(N47058) and δ(N2214502422)

are each less than δ(N1). On the other hand, if we observe that

n1 = n2 = n6 = n42 = n1806 = 1 and n47058 = n2214502422 = 5,

we can end the paper with the following prediction.

Conjecture 1. If Q and Q′ are weak primary pseudoperfect numbers such that
NQ and NQ′ are non-empty and nQ < nQ′ , then δ(NQ) > δ(NQ′).
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equation. Elem. Math., 67(4):182–186, 2012.
[12] P. Moree. Moser’s mathemagical work on the equation 1k + 2k + · · · + (m − 1)k = mk .

Rocky Mountain J. Math., 43(5):1707–1737, 2013.
[13] L. Moser. On the Diophantine equation 1n+2n+3n+ . . .+(m−1)n = mn. Scripta Math.,

19:84–88, 1953.
[14] J.B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.

Illinois J. Math., 6:64–94, 1962.

[15] J. J. Scha̋ffer. The equation 1p + 2p + · · ·+ np = mq . Acta Math., 95:155–189, 1956.
[16] N. J. A. Sloane. The On-Line Encyclopedia of Integer Sequences. https://oeis.org.
[17] J. Sondow and K. MacMillan. Reducing the Erdős-Moser equation 1n + 2n + · · · + kn =
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