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Abstract  ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Cellular automata (CA) have been utilized for decades as discrete models of many 

physical, mathematical, chemical, biological, and computing systems. The most widely known 

form of CA, the elementary cellular automaton (ECA), has been studied in particular due to its 

simple form and versatility. However, these dynamic computation systems possess evolutionary 

rules dependent on a neighborhood of adjacent cells, which limits their sampling radius and the 

environments that they can be used in.  

The purpose of this study was to explore the complex nature of one-dimensional CA in 

configurations other than that of the standard ECA. Namely, “long-distance cellular automata” 

(LDCA), a construct that had been described in the past, but never studied. I experimented with a 

class of LDCA that used spaced sample cells unlike ECA, and were described by the notation 

LDCA-x-y-n, where x and y represented the amount of spacing between the cell and its left and 

right neighbors, and n denoted the length of the initial tape for tapes of finite size. Some basic 

characteristics of ECA are explored in this paper, such as seemingly universal behavior, the 

prevalence of complexity with varying neighborhoods, and qualitative behavior as a function of 

x and y spacing. 

Focusing mainly on purely Class 4 behavior in LDCA-1-2, I found that Rule 73 could 

potentially be Turing universal through the emulation of a cyclic tag system, and revealed a 

connection between the mathematics of binary trees and Eulerian numbers that might provide 

insight into unsolved problems in both fields.  
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Introduction  –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Cellular automata (CA) have been used for decades as mathematical idealizations of 

physical systems, in which space and time are discrete, and in studies of “self-organizing” 

physical, chemical, and biological phenomena [1][2][3][4][5][6]. In the world of computational 

science, several classifications of CA have risen to prominence, ranging from one to three 

dimensional automata to those of even higher dimension. (A survey of CA classifications is 

available in [24].) However, Wolfram’s classification of elementary cellular automata (ECA) 

have become one of the most widely known forms of evolving computational systems, and have 

arguably revolutionized the exploration of cellular automata [2]. The purpose of this paper is to 

study the complexity of one-dimensional cellular automata in configurations other than that of 

Wolfram’s elementary cellular automata. I explore a new class of "long-distance cellular 

automata” (LDCA) whose properties are not governed by ECA, and demonstrate that certain 

LDCA possess interesting qualities and are candidates for computational universality, which 

implies that they may be used to solve problems in other fields of research [2][7][8]. 

ECA are defined as the simplest class of one-dimensional cellular automata, and have 

two possible states for each cell (0 or 1). These states are placed in an “array”, so that every 

“cell” dictates the condition of a particular part of the system. This array, which can be finite or 

infinite in length, when taken from a one-dimensional CA or ECA can be thought of as 

resembling a tape of a Turing machine, so it will be referred to as such through the extent of this 

paper [2][3]. The evolution of an array is the collective evolution of all individual cells, which is 

dependent only on the values of its “neighborhood”. The neighborhood is defined as containing 

the cell itself and all immediately adjacent sites; in one-dimensional cellular automata, the 

neighborhood consists of 3 adjacent cells. As a result, the evolution of any elementary cellular 
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automaton can be described through a table of evolutionary steps, specifying the state a given 

cell will have in the next generation based on the values of the cell to its left, the cell to its right, 

and the target cell itself. Since for every ECA, there must exist 23=8 such steps in a table, and 

since for every step there are 2 possible outcomes (0 or 1), there exist a total of 28=256 total 

tables to describe ECA. Each of these tables is said to be a “Rule” of evolution and so there exist 

256 defined ECA, ranging from Rule 1 to Rule 256 [2].  

Long-distance cellular automata (LDCA), an extension of ECA rules, use spaced sample 

cells unlike ECA, and are described by notation LDCA-x-y-n, where x and y represent the 

amount of spacing between the cell and its left and right neighbors, and n denotes the length of 

the initial tape (for tapes of finite size). The values for x and y must always be greater than 0, and 

since the tape of a finite LDCA is cyclic, x + y is unrestricted. In this experiment, I used LDCA-

1-2, so as to form a basis for a systematic exploration with larger x and y values. 

 
 

Figure 1: The layout of the three sampled cells and one output cell in an ECA (left), and a corresponding image for the 
configuration of LDCA-1-2-n (right). 
 

LDCA, due to their separated sample cells, provide functions that ECA cannot, and 

theoretically can be used to model chaotic systems in which every evolutionary step possesses an 

inherent random input. This is the case because as an ECA rule is applied in configurations 

LDCA-x-1 or LDCA-1-y on a tape of random initial conditions, for 1 < x or y < n-4, it behaves 

as if it were a two-cell CA, while the third, more remote cell provides a seemingly unrelated and 

potentially random source of input. We can see this form of evolution, in which an outside effect 
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or random input actively modifies a system, in maps of electrical activity where negligible but 

existent charges affect components, biological systems such as angiogenesis where capillary 

growth is predictable but non-deterministic, and chaos theory’s butterfly effect in which a 

relatively small initial change can affect a larger outcome. Additionally, when the cellular 

automaton’s configuration approaches LDCA-x-y, for 1 < x or y < n-4, the result can be 

unrecognizable in comparison to the standard ECA evolution of the same rule. 

LDCA also have the distinct property of possessing cyclic state transition diagrams. 

When applying an ordered list of all 256 ECA rules to an LDCA-x-y-n such that x + y = 0 (mod 

n) or x + y = x or y (mod n), then the rules will generate a series of repeated state transition 

diagrams. If the LDCA samples only the target cell and one other cell, so that x + y = 0 (mod n), 

then the table of rules will create two distinct list of diagrams with 4 rules each that will be 

alternated. If the LDCA samples one cell from anywhere on the tape, and one from the same cell 

as the center cell, so that x + y = x or y (mod n), then there are two possible outcomes. If x = n 

and therefore x + y = y (mod n), then the repeated lists of state transition diagrams will be 4 rules 

in length. If y = n and so x + y = x (mod n), then the lists will be 8 rules in length. And if the 

LDCA samples all three cells from the same cell so that x + y = 0 (mod n) and -x + y = 0 (mod 

n), then each repeated list of diagrams will have 2 rules each. 

 
 

 
 
Figure 2: ECA rules in 
LDCA-1-4-5. Since  
x + y = 0 (mod n), the state 
transition diagrams repeat 
in groups of 4 [11].  
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Figure 3: ECA rules in 
LDCA-1-5-5. Since  
x + y = x (mod n), the state 
transition diagrams repeat 
in groups of 8 [11]. 
 
 

 
 
 
 

Figure 4: ECA rules in 
LDCA-5-1-5. Since  
x + y = y (mod n), the state 
transition diagrams repeat 
in groups of 4 [11]. 

 
 

 
 

 
 

Figure 5: ECA rules in 
LDCA-5-5-5. Since  
x + y = 0 (mod n) and  
-x + y = 0 (mod n), the 
state transition diagrams 
repeat in groups of 2 [11]. 
 
 

 
Rules 73 and 109  –––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

The 2-color, 2-state cellular automaton we will study in the LDCA-1-2 configuration is 

known as “Rule 73” according to Wolfram’s numbering scheme [2]. In the evolution of Rule 73, 

each cell is in one of two states {0, 1}, and since the rule is being applied to a LDCA-1-2 

configuration, at each discrete time step every cell synchronously updates itself according to the 

value of itself and its nearest neighbors: F(Ci-1, Ci, Ci+2), where F is the following function [12]: 

F(1, 1, 1) = 0  F(1, 1, 0) = 1  F(1, 0, 1) = 0  F(1, 0, 0) = 0 
 

F(0, 1, 1) = 1  F(0, 1, 0) = 0  F(0, 0, 1) = 0  F(0, 0, 0) = 1 
 

 
 

Figure 6: This table depicts the evolutionary substitution “rules” of Rule 73. Rule 73 and Rule 109 are equivalent through both 
left-right and color equivalence. 
 



	   6	  

Interestingly, Rule 73 is equivalent to Rule 109, through both left-right and color 

equivalence, which means that the two rules are identical after either one’s color is inverted and 

evolution is mirrored horizontally. This entails that studying either rule implies the exploration of 

the other. Rule 109 evolves according to the function G(Ci-1, Ci, Ci+2), where G is the following 

function [13]: 

G(1, 1, 1) = 0  G(1, 1, 0) = 1  G(1, 0, 1) = 1  G(1, 0, 0) = 0 
 

G(0, 1, 1) = 1  G(0, 1, 0) = 1  G(0, 0, 1) = 0  G(0, 0, 0) = 1 
 

 
 

Figure 7: This table depicts the evolutionary substitution “rules” of Rule 109. Rule 109 and Rule 73 are equivalent through both 
left-right and color equivalence. 
 
Computational Universality  –––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Universality was a major factor in the choosing of Rule 73; it was suggested that “Class 

4” cellular automata might be capable of universal computation in 1984 [8], and Rule 73 is one 

of two purely-Class 4 automata in LDCA-1-2, with the other being Rule 109 and therefore 

equivalent. (Both Rule 73 and Rule 109 are defined as Class 2 Rules in the ECA rule space, but 

when evolved as LDCA-1-2, they exhibit purely Class 4 behavior. They have also been shown to 

possess Class 4 behavior in other contexts [25].) Besides exploring the properties and 

characteristics of Rule 73, this study will also attempt to demonstrate the universality of Rule 73. 

Universal computational systems are those that are theoretically capable of emulating any 

other system [2][8][14]. This means that a singular system would be capable of behaving as any 

other mathematically definable system, which has significant implications in computational 

science. Such systems usually require an encoding and decoding process, in order to translate 

information and behavior [14]. For example, Boolean logic systems, or computer programs, are 
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universal, but only after the system being emulated has been coded in binary, and the result of 

the program translated back into the language of the original system.  

The proving of a computational system’s universality is usually done through the 

emulation of another system, previously known to be universal. As a result of the Church-Turing 

Thesis [15], Turing machines have been defined as universal. Then, in 2004, Cook proved that 

cyclic tag systems could successfully emulate universal Turing machines, and were therefore 

universal [2][14]. While several cellular automata, have been shown or suspected to be universal, 

the most commonly known example is that of the elementary cellular automata Rule 110, which 

was shown to emulate a universal cyclic tag system [14]. 

Methodology: Visualization  –––––––––––––––––––––––––––––––––––––––––––––––––––––– 

The shift from ECA to LDCA-1-2 brings several changes to the Rule 73, including the 

way that it is visualized. When the evolution of Rule 73 in LDCA-1-2 is plotted normally, 

gliders, or “particles” as they will be referred to in this paper, tend to blend into the background, 

or become difficult to distinguish as they collide.  

 
 

Figure 8: Here we can see that LDCA 73 possesses several stationary particles (vertical lines in picture on the left). When the plot 
of Rule 73’s evolution is skewed however, collisions between gliders and the resulting particles become more apparent.  
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While it is standard to plot the tape of a cellular automaton so that cell i of a previous 

state is directly above cell i in the next state, we will skew the evolution of LDCA-1-2 so that the 

position of cell i in time step x corresponds to that of cell i-1 in x+1. By applying a rotation 

function to the CA,	  we	  can more clearly utilize the methods described in this paper: 

Table[Nest[RotateRight, #[[i]], i - 1], {i, 1, Length[#]}] & CellularAutomaton[…] 

In this study, we will assume that all calculations and plots regarding Rule 73 in LDCA-

1-2 are developed with an i  i-1 skew. 

Methodology: Block Emulation  –––––––––––––––––––––––––––––––––––––––––––––––––– 
 

Block emulation is a form of emulation that can be used to find emulations of cellular 

automata in different rule spaces. By substituting certain blocks in a certain CA, one can create a 

simpler or more complicated automaton, which may emulate other rules, or a different 

computational system. The main idea is to encode one cell of Rule A into n blocks of cells of 

Rule B. By replacing corresponding blocks according to a set of rules, one can transform a 

cellular automaton of one rule into a replica of another rule [2]. With this concept, one can show 

for example that Rule 22 is able to emulate Rule 90. However, this type of emulation is not 

possible in all cases. Some rules with blocks up to a certain block size, Rule 30 for example, are 

not able to emulate any fundamental rules at all through block emulation.	  

In an effort to see what Rule 73 in LDCA-1-2 emulates, we can use block emulation in 

the 3/2 rule space. To begin, we must convert Rule 73 to a rule in the 3/2 rule space, so we find 

all evolutionary rules in Rule 73 that return a black cell:	  

F(1, 1, 1) = 0  F(1, 1, 0) = 1  F(1, 0, 1) = 0  F(1, 0, 0) = 0 
 

F(0, 1, 1) = 1  F(0, 1, 0) = 0  F(0, 0, 1) = 0  F(0, 0, 0) = 1 
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Then, find all corresponding configurations of cells in the 3/2 rule space. In 3/2, the cells are 

formatted as a, b, c, d, with the cellular automata sampling cells a, b, and d. Since cell c remains 

unsampled, it can be either 1 or 0 in our translation from ECA to 3/2. Therefore, we end up with: 

F3/2(1, 1, 0, 0) = 1  F3/2(1, 1, 1, 0) = 1 
 

F3/2(0, 1, 0, 1) = 1  F3/2(0, 1, 1, 1) = 1 
 

F3/2(0, 0, 0, 0) = 1  F3/2(0, 0, 1, 0) = 1 
	  

Next, we must convert all of the possible inputs into base 10: 

(1, 1, 0, 0)  12  (1, 1, 1, 0)  14 
 

(0, 1, 0, 1)  5  (0, 1, 1, 1)  7 
 

(0, 0, 0, 0)  0  (0, 0, 1, 0)  2 

And sum 2 to the power of each of the results to get the rule number of 20645: 

212 + 214 + 25 + 27 + 20 + 22 = 20645 

Finally, a comparison between Rule 20645 in 3/2 and Rule 73 in ECA confirms that they are 

identical rules: 

 
 
 
 

 
Figure 9: A comparison between Rule 73 in 
LDCA-1-2 (left) and Rule 20645 in the 3/2 
rule space (right) with equivalent initial 
conditions. These two rules are identical 
(hence the identical evolutions above) and can 
be derived from one another by converting 
from an ECA rule space to the 3/2 rule space 
and vice versa. As always, the LDCA-1-2 is 
plotted with an  
i → i-1 skew. 
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Methodology: Neighbor-Dependent Substitution System  –––––––––––––––––––––––––––––– 

Substitution systems form the backbone of most computational systems, but cannot in 

general emulate cellular automata. However, when substitution systems have rules that depend 

not only on the color of a single element, but also on the color of at least one of its neighbors, 

they display more complicated behavior [2]. In order to utilize this behavior, one must be able to 

identify the current state of a CA with an array or string of values, and construct a substitution 

system for its behavior that is closed under evolution (so that as substitutions occur, no results 

arise that cannot be interpreted). “Neighbor-dependent substitution systems” are known to 

emulate certain cellular automata, and could be helpful in proving universality of Rule 73 [2]. 

 
 

Figure 10: Neighbor-dependent substitution systems that emulate Rule 90 (left) and 30 (right). The systems shown are examples 
of neighbor-dependent substitution systems with highly uniform rules that always yield one cell and correspond directly to 
known cellular automata [11]. 
 
Results: Characteristics of Rule 73  –––––––––––––––––––––––––––––––––––––––––––––––– 

 After a brief exploration of Rule 73, I found several interesting phenomena, two of which 

are below. Firstly, for Rule 73 being evolved in an LDCA-1-y configuration, as y increases in 

value from 1, complex behavior arises at y = 2 and is extinguished after y = 3, giving rise to 

pseudo-chaotic behavior. An analysis of Rule 73’s behavior for y > 3, revealed that the Gaussian 

distribution of all possible states of Rule 73 was not normally distributed. This implies that the 

chaotic nature of Rule 73 at high values of y is not random, but rather, is complex. 
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Figure 11: While evolving Rule 73 in a LDCA-1-y configuration, as y increases in value from 1, complex behavior arises and is 
extinguished, giving rise to chaotic behavior that resembles white noise. The Gaussian distribution of all possible states is not 
normally distributed in these chaotic states, which implies that the chaotic nature of Rule 73 at high values of y is not random, but 
is complex and difficult to perceive. 
 
 I also found another effect of increasing the value of y. When viewing the state transition 
diagrams, one notices a repetition of structure, not unlike that mentioned in the introduction. 
 

 
 

Figure 12: As Rule 73 is applied in different configurations the effect of having a high y value becomes apparent through state 
transition diagrams. Given Rule 73 applied as LDCA-1-y-n, the state transition diagrams are repeated with a period of n as the y 
value increases since the tape is cyclic [11]. 
 
Characteristics of Rule 73: Particles 

 
 

The gliders or “particles” that exist in Rule 73 move with 4 different velocities (0, 1/4, 

2/5, and 1) over a constant background. A single “block” of background is represented by 

“101100”, “110010” or “001011”, has an evolutionary period of 3, and spatial period of 6. In the 

naming convention for Rule 73 in LDCA-1-2, a single block of background is represented with a 

“ - ”, half of a background block is denoted with a “ ‘ ”, and a single particle is a letter (its name). 	  

	  
	  

Figure 13: An image of the background of Rule 73 
in LDCA-1-2. The background resembles a 
surface tessellated with “L” shaped units; a single 
row of background is represented by “101100”, 
“110010” or “001011”, and has period 3 
(vertically) and spatial period 6 (horizontally). 
The above image is scaled and partitioned, so that 
one can better see the structures of cells in the 
background.	  
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There are several particles in Rule 73 that act as the building blocks for larger constructs 

and “compound particles.” These are called fundamental particles, and are the main focus of this 

exploration. All fundamental particles are organized and labeled by velocity and phase shift (or 

mass), with the mass ranging in value from 0 to +6, and representing the number of cells that the 

background is shifted to the right by the presence of the particle.	  	  

Particle	   Velocity	   Mass	   Period	   Particle	   Velocity	   Mass	   Period	  
A	   0	   0	   3	   F	   1	   2	   2	  
B	   0	   5	   3	   Fbar	   1	   3	   4	  
C	   1/4	   1	   8	   G	   1	   0	   2	  
D	   2/5	   4	   5	   H	   1	   3	   2	  
E	   2/5	   2	   15	   	   	   	   	  

	  
Figure 14: Table of all fundamental particles in Rule 73 in the LDCA-1-2 configuration. All fundamental particles are organized 
and labeled by velocity, phase shift (or mass), and period. The mass ranges in value from 0 to +6, and represents the number of 
cells that the background is shifted to the right by the presence of the particle.	  
	  

 
	  
Figure 15: Particles A, B, and C; velocities 0, 0, and 1/4.	  
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Figure 16: Particles D and E; velocities 2/5, 2/5. 
	  

	  
Figure 17: Particles F, Fbar, G, H; velocities of 1 for all. 

 

 
However, merely placing 2 fundamental particles next to each other on a tape cannot 

create certain compound particles. For example, in the cases of G’G and G’H, the second particle 

in the pair must be shifted vertically by one evolutionary step.  

 
Figure 18: Particles B’B, G’G, H’H, G’H, H’G. These are unique compound particles that must be formed by  
vertically shifting one of the two particles before placing them adjacent. 
 

 

Figure 19: Particles GG, HH, GH, HG. These are documented due to their prevalence in collisions and systems  
made from Rule 73. 
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Results: Collisions  –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

This study found all viable collisions between pairs of fundamental particles A, B, C, D, 

E, F, Fbar, G, H. These do not include repeated or compound particles such as AA, ... FF, GG, 

G’G, HH, H’H, GH, HG, G’H, H’G, etc.	  

Some collisions were found to have varying resulting particles, due to their reactants 

interacting at different distances away from each other. Any collision between two fundamental 

particles in which the spacing between the particles doesn’t affect the result, is denoted by 

“A_B” for any particles A and B. The "_" in between particles’ names implies that the spacing in 

between the particles does not affect the outcome of the collision. However, in the collisions that 

have integers between the particles’ names, the integer represents the number of “spaces” 

between the two particles in that specific collision. A "space" is a full spatial period of the 

background, and consists of 6 consecutive cells. The integer must first be evaluated in a modular 

function that is specific to the collision. Below is a table of all viable collisions between 

fundamental particles. 

 

Particle A Particle B  Particle C Particle D Particle E 
A_C B_C C_D D_F E0F 
A_D B_D C_E D0Fbar E1F 
A_E B_E C_F D1Fbar E2F 
A_F B_F C_Fbar D_G E0Fbar 

A0Fbar B0Fbar C_G D_H E1Fbar 
A1Fbar B1Fbar C_H  E2Fbar 

A_G B_G   E0G 
A_H B_H   E1G 

    E2G 
    E_H 

 
Figure 20: Table of all possible collisions between fundamentals. 
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Discussion: Block Emulation  –––––––––––––––––––––––––––––––––––––––––––––––––––– 

Using Rule 20645 in the 3/2 rule space, we can identify several rules that Rule 73 can 

emulate through block emulation, with blocks ranging in size from 0 cell to 16 cells [16]. We 

must search the emulated rules for signs of universality, so let us identify the rule numbers for 

ECA Rule 110 and Rule 193 in the 3/2 rule space. Using the procedure in Methodology: Block 

Emulation, we find that Rule 110 is equivalent to Rule 23290, and Rule 193 is 61445. 

 

Figure 21: Rule 110 (left) and 193 (right) are equivalent and universal. They are Rule 232903/2 and 614453/2 respectively. 

Here we can see all of the rules that Rule 20645 emulates up to a block size of 16 cells: 

 
 

Figure 22: A diagram for all of the rules in the 3/2 rule space that Rule 20645 emulates up to a block size of 16 cells. Each tree of 
rules represents a different block size, ranging from 0 to 4 cells on the first row, 5 to 9 cells on the second row, 10 to 13 cells on 
the third row, and 14 to 16 on the last row [16]. 
 

This form of block emulation was continued until the block size was 30 cells, but none of 

the emulated rules were 23290 or 61445, so no desired result was generated. Additionally, as the 

emulation approached a block size of 40 cells, the estimated runtime jumped incredibly high, and 

the block emulation became limited by the amount of physical memory available. This prevented 
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me from getting consistent results with any block larger than 30 cells, and greatly handicapped 

my ability to prove the universality of Rule 73 through this method. 

Discussion: Neighbor-Dependent Substitution System  –––––––––––––––––––––––––––––––– 

Despite the constraints of the previous method, we can still prove universality in a variety 

of other ways. For example, let us consider the neighbor-dependent substitution system [2]. A 

particle detector that was created for Rule 73 in LDCA-1-2 returns a string of particle names and 

background that resembles “A----B--------C-GG-----H-G” at any evolutionary step. Following 

suit, we can construct a neighbor-dependent substitution system that takes a similar string as an 

input, and substitutes pairs of colliding particles with their outputs. The program should continue 

to collide particles until there aren’t any legitimate pairs of particles left, and then return a list of 

past states at every collision.  

In the neighbor-dependent substitution system, the spacing between any consecutive 

particles in a collision was replaced with an integer signifying the number of background rows 

and evaluated with modular functions, so that large numbers of background cells wouldn’t cause 

the program to malfunction. For every spacing-dependent collision, the substitution system 

would classify the result of the collision using the integer between the particles, and replace the 

pair with a corresponding result sandwiched between two additional spacing values to account 

for background that was lost as the string was modulated. Then, after every substitution, any 

adjacent numbers of background cells in the string were be added so that they behaved as a 

singular spacing. The modular function that was applied to the spacing was either mod 2 or mod 

3, depending on the pair of particles involved.  

Unfortunately, this neighbor dependent substitution system was inconclusive. The set of 

rules that dictated the substitutions in the system had to stay restricted to usable collisions, since 
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some collisions resulted in a particle generator that created an infinite number of products. 

However, the rules were unable to stay restricted as particles that had been excluded from the list 

eventually resulted from collisions, and were added to the rule set. New collisions had to be 

added to the substitution system, and ultimately, the neighbor-dependent substitution system 

failed to simplify any string of particles.  

Discussion: Collision System  ––––––––––––––––––––––––––––––––––––––––––––––––––––– 

Finally, let us turn to collision G’G_B’B which returns particles B’B and G, and collision 

G_B’B which returns particle G’G. Using these collisions, it is not difficult to construct a system 

that consists of two different substitution rules {{AB  B1C}, {CB  A}}, and plot the 

behavior of said system in which alternating rows of G’G and G are colliding with B’B.  

 
 
 
 
 

Figure 23: A chain of 
collisions between alternating 
rows of G’G and G, and B’B 
[4]. The system consists of 
two different substitution 
rules {{AB → B1C},  
{CB → A}}. 
 
 
 
 
 

 
Additionally, in every collision, the G or G’G output is released with a 3-cell shift to the 

right, while the B’B output is shifted 6 cells to the left. This means that for every pair of G_B’B 

and G’G_B’B collisions, B has an overall shift of 6 cells to the right, and the resulting G particle 

is shifted 6 cells to the right. 

As is observable, there are 3 points in total (on Figure 17) where all the particles that are 

colliding with B’B are Particle G'G (except for the G that annihilates the B’B at the end), and 
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they are all converted at once into Particle G. At those points, the first B’B converts 3 G’G 

particles, the second converts 5, and the third converts 7. These “G’G conversion” collisions 

count consecutive odd numbers as the system progresses, in the pattern 3, 5, 7, … 2n+1. 

Additionally, counting the collisions between the G’G conversion points reveals interesting 

results, as we can see in this chronological list of collisions where each number represents how 

many collisions the B’B particle endures at that relative location (“*” is a G’G conversion point): 

1 2 1 * 1 2 1 3 1 2 1 * 1 2 3 2 1 4 1 2 3 2 1 * 1 2 3 4 3 2 1 5 1 2 3 4 3 2 1 * … 

However, we notice that this string of numbers can be thought of as an inorder traversal 

of a series of binary trees [17]. And, when counting the number of collisions in which B’B 

interacts with k number of particles, we find that the sums are of the form 2n-k+1. For example, 

the total number of collisions in which B’B interacts with 1 particle, in between G’G conversion 

points, follows the pattern 2, 4, 8, … 2n. 

 
 

Figure 24: Complete binary that dictates the progression of collisions in the G’G and G, and B’B collision system [17]. 
 

We also find that when counting the total number of interactions of any type in between 

the G’G conversion points, one is left with a progression of Eulerian numbers, which follows the 

series, 4, 11, 26, 57, 120, 247, 502, … [19][20]. Interestingly though, the interactions between 

G’G conversion points don’t define the standard Eulerian numbers of Series A008292 [18][21], 

but instead correspond to the values of the second column (k = 2) of the standard Euler Triangle 
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(which define series A000295) [20]. Thus, through the G, G’G, and B’B collision system, 

sequence A000295 is inherently related to the mathematical properties of complete binary trees. 

This ability of Rule 73 in LDCA-1-2 to associate the behaviors of binary trees with Eulerian 

numbers (in series A000295 of [20]) can in turn provide valuable insight to unsolved problems 

such as those in [22], and lead to future mathematical exploration.  

Future Research  –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 

In future research, it is suggested that the connections between binary trees and Eulerian 

numbers be studied through the use of Rule 73, and not just mathematical expression. With a 

LDCA approach, one may be able to better understand, both technically and conceptually, the 

mathematical nature of both constructs, and gain an insight into problems similar to those 

presented by Baril and Pallo [22]. By utilizing the unique properties of Rule 73 in LDCA-1-2, it 

is possible that further mathematical exploration could prove more fruitful than previously 

expected.  

In addition to the above, the compound particles of Rule 73 should be studied in more 

detail, so that a functioning neighbor-dependent substitution system might be generated. With 

more complex gliders, the behavior of collisions may be diverse enough that a defined set of 

rules can be used to evolve and simplify a string of particles, which would mean that a neighbor-

dependent substitution system could become a viable option to emulate other universal systems.  

And, the block emulation of Rule 73 as Rule 20645 in the 3/2 rule space will be more 

feasible to study in the future. While the scope of this study was limited by physical constraints, 

it is likely that future attempts at proving the universality of Rule 73 could make more progress 

with the block emulation of Rule 20645 with further code optimization and improved hardware, 

and succeed in emulating rules with block sizes much larger than 6 cells [16].  
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But besides making progress on methods already used in this study, any more research 

that is done on Rule 73 in LDCA-1-2 should have an emphasis on the emulation of a cyclic tag 

system. In a cyclic tag system, a standard tag system is applied to an initial condition in 

sequential order, and in a cyclic fashion that loops back to the front of the tape [14]. The 

discovery of the G, G’G, and B’B collision system is a large step forward in the process of 

emulating a cyclic tag system with Rule 73, since it contains types of collisions that were used in 

Cook’s proof of universality for Rule 110 [14].  

 
 
 
 
 

 
Figure 25: An example of a cellular 
automaton (Rule 110) emulating a 
universal cyclic tag system [14]. Some of 
the collisions represented to the left bear 
resemblance to the G’G, G, and B’B 
collisions that were found in this study.  
 

 

 

Finally, it is advised that more research is conducted on the properties of LDCA. The 

effects of changing Rule 73’s configuration from LDCA-1-1 (ECA) to LDCA-1-2 have been 

significant, and have turned Rule 73 into a potentially universal cellular automaton. In the future, 

additional research should be conducted on the effects of different LDCA configurations on 

universality. Hopefully, the exploration of LDCA will bring to light new possibilities and help 

further our current knowledge of evolving computation systems [23][7].   

By exploring Rule 73 in LDCA-1-2, uncovering its applications to problems in other 

fields of research, and showing its candidacy for a new type of computational universality, I 

hope for the expansion and improvement of modern computation and mathematical modeling.  

10 Matthew Cook

Figure 2. A glider system emulating a cyclic tag system which has a list of two
appendants: YYY and N. Time starts at the top and increases down the picture.
The gliders that appear to be entering on the sides actually start at the top, but
the picture is not wide enough to show it. The gliders coming from the right are
a periodic sequence, as are the ones on the left. The vertical stripes in the central
chaotic swath are stationary gliders which represent the tape of the cyclic tag
system, which starts here at the top with just a single Y. Ys are shown in black,
and Ns are shown in light gray. When a light gray N meets a leader (shown as
a zig-zag) coming from the right, they produce a rejector which wipes out the
table data until it is absorbed by the next leader. When a black Y meets a leader,
an acceptor is produced, turning the table data into moving data which can
cross the tape. After crossing the tape, each piece of moving data is turned into
a new piece of stationary tape data by an ossifier coming from the left. Despite
the simplicity of the appendant list and initial tape, this particular cyclic tag
system appears to be immune to quantitative analysis, such as proving whether
the two appendants are used equally often on average.

lookup table entries have a length greater than zero, then we know that
at least once during the cycle of cyclic tag system appendants, we will
append an appendant of positive length. This gives us an upper bound
on the length of time between consecutive emerging pieces of moving
data, which means that it is indeed possible to space the ossifiers in a
fixed way so that they will always hit moving data and never tape data.

If the Turing machine that is ultimately being simulated is universal,
then we can execute any program merely by encoding the program on
its tape. This corresponds in the glider system to being able to encode

Complex Systems, 15 (2004) 1–40
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