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Abstract

An odd perfect numbeX is said to be given iEulerian formif N = ¢“n? whereqis prime withg = k = 1
(mod 4) and gcdf, n) = 1. Similarly, an even perfect numbBt is said to be given ifcuclidean formif
M = (2P - 1)- 2°-* wherep and 2 — 1 are primes. In this article, we show how simple considensti
surrounding the dierences between the underlying properties of the EulerndnEaiclidean forms of
perfect numbers give rise to what we will call teeclid-Euler heuristic$or (odd) perfect numbers.
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1. Introduction

If Jis a positive integer, then we write(J) for the sum of the divisors af. A number
L is perfectif o(L) = 2L.
An even perfect numbeév is said to be given ifcuclidean formif

M=(2P-1).2P1

wherep and 2 — 1 are primes. We caM, = 2P — 1 theMersenne primdactor of
M. Currently, there are only 48 known Mersenne primes, whathespond to 48 even
perfect numbers.

An odd perfect numbeN is said to be given in Eulerian form if

N = g*n?

whereq is prime withq = k = 1 (mod 4) and gcdy, n) = 1. We callg® the Euler part
of N while n? is called thenon-Euler partof N.

Itis currently unknown whether there are infinitely manyreperfect numbers, or
whether any odd perfect numbers exist. It is widely belietred there is an infinite
number of even perfect numbers. On the other hand, no exarfiplen odd perfect
number have been found (despite extensive computer sajrctog has a proof for
their nonexistence been established.
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Ochem and Radlf] recently proved thall > 10*°°. In a recent preprint, Nielsen
[13] has obtained the lower boung(N) > 10 for the number oflistinctprime factors
of N, improving on his last resuib(N) > 9 (see [L4]).

Sorli conjectured in17] thatk = v4(N) = 1 always holds. Dris conjectured if][
and [L1] that the divisorg€ andn are related by the inequality < n. This conjecture
was made on the basis of the redi@) < V2 < I(n).

Broughan, et. al. g] recently showed that for any odd perfect numbee g<n?,
the ratio of the non-Euler part? to the Euler parg is greater than 31/2. This
improves on a result of Dris3].

In a recent paper, Chen and Chéhimproves on Broughan, et. al.’s results, and
poses a related (open) problem.

We denote the abundancy indegf the positive integex asl (X) = o(X)/X.

2. The General Multiplicative Form of All Perfect Numbers

Suppose thaN = g*n? is an odd perfect number given in Eulerian form. Since
prime powers are deficient and gqdf) = 1, we know that® # n. (In particular, it is
also true that] # n.) Consequently, we know that eithgt < norn < ¢ is true.

Observe that the Euclidean forkh = (2P — 1) - 2P~ for an even perfect numbét
possesses a multiplicative structure thalimostsimilar to that of the Eulerian form
N = g“n® for an odd perfect numbéd. Here is a table comparing and contrasting the
underlying properties of these two forms, which we shakreb as thecuclid-Euler
heuristicsfor (odd) perfect numbers:



Euclid-Euler Heuristics

(E-1) (Euclid-Euler Theorem)
The Mersenne primeldl, are in one-to-one
correspondence with the even perfect numb

(O-1) (Conjecture, 2010L0)
The Euler primeg| are in one-to-one
ciprrespondence with the odd perfect numbg

(E-2) The Mersenne primed, satisfy
Mp =3 (mod 4).
(Trivial)

(O-2) The Euler primeg satisfy
g=1 (mod 4).
(Trivial)

(E-3) The exponerg = vy, (M) is one.
(Trivial)

(O-3) The exponerk = v4(N) is one.
(Sorli's Conjecture, 200317])

(E-4) If M =0 (mod 2) is perfect,
then given the Euclidean form

2
M =2r42P - 1) = [ [ p”,
i=1
thenp“o(p)/M =1,
fori=1,2.
(Observation, Dris 2011)

(O-4) If N =1 (mod 2) is perfect,
then given the Eulerian form
w(N)

N = gn? = n%ﬁj,
=1

thenqjﬁia(qu;i)/N <2/3<j,
forall j, 1< j < w(N).
(Theorem, Dris 20081[1])

(E-5) There are infinitely
many even perfect numbers.
(EPN Conjecture)

(O-5) There do not exist
any odd perfect numbers.
(OPN Conjecture)

(E-6) The density of even
perfect numbers is zero.
(Kanold 1954 [L.2])

(O-6) The density of odd
perfect numbers is zero.
(Kanold 1954 [L.2])

(E-7) 1< I1(Mp) < Eforp>3.

7 2 Mp+1
ISR =) <2
In particular,

8 7 Mp+1

7 < v < I( > ) < 2.

(O-7) 1< I(gf) < 2 forq > 5.
E<igg =M <2
In particular,

5 \/§<I(n)<2.

<

(E-8) An even perfect numbéa
has exactly two distinct prime factors.
(i.e.,w(M) = 2)

2 <

(O-8) An odd perfect numbe

has more than two distinct prime factors.
(In fact, we know thato(N) > 9 [14].)

(E-9)gcd(? -1,2P 1) =1
(Trivial)

(0-9) ged, n?) = ged@,n) = 1
(Euler)

|

Mp, +1 -1 _ 521 ;
Remark 2.1. We excluded p= 2 from (E-7) becausez— =2 =2 =2is

squarefree.

In the next section, we give sorkaownrelationships between the divisors of even
and odd perfect numbers. We will also discuss a conjectweladionship between
certain divisors of odd perfect numbers, which first appgarehe M. Sc. thesisl[1]

that was completed in August of 2008.
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3. Inequalities Relating the Divisor s of Perfect Numbers

From Sectior?, note that the heuristic (E-4), upon settiQg= 2P - 1,K = 1, and
n? = 2P~ actually gives

c(Q) o(2P-1) (2P-1)+1 2P s
n 21— 2pl 1 T

and
oM@ oY) 2w D1 2pog

oK ~2»-1 (@2-1@2-1) 2p-1_
We state this result as our first lemma for this section.

Lemma 3.1. If M = Q¥n? = (2P-1)-2P-1is an even perfect number given in Euclidean
form, then we have the inequality

a n—z a K
é D) 102229
Remark 3.2. Except for the case of the first even perfect numbeeM (as was
pointed out in Remark.1), the abundancy indices of the divisors of an even perfect
number given in the Euclidean form MQXn? = (2P - 1)- 2P* (where the relabelling
is done to mimic the appearance of the variables in the Eaitefiorm of an odd perfect
number N= ¢*n?) satisfy the inequality

1<I(QK)S$<‘Z1SI(HZ)<2,

as detailed out in heuristic (E-7). In particular, the ineadity | (QX) < I(n?), together
with Lemma3.1, imply the inequality

)

< QX
(In other words, we have the inequality
L |
where p and M = 2P — 1 are both primes. Compare this with the inequality
g€ < n?
for the divisors of an odd perfect number given in the Eulefarm N = ¢“n? [see
(e}, [111.)
The following result is taken fron8] and [L1].

Levma 3.3. If N = ¢*n? is an odd perfect number given in Eulerian form, then we
have the inequality
o ()

o(@) _
qk

nz =

2
— 3<
3<
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Going back to the relabellin@ = 2P — 1, K = 1, andn? = 2P~ for an even perfect
numberM = QKn? = (2P — 1) - 2P~ given in Euclidean form, we now compute:

a(@Q) oc(2P-1) (@P-1)+1 2° (Bl oot
ﬁ = 29;21 = 2% = 29;21 = 2 2 = 2 2 S
and . . .
oM o(7) 27t-1 27 — 1

QK ~2p-1 (2-1)@-1) 2r-1
Now observe that
2% _1<2P_

p+l

since 1< < p, while we also have

p+1

27 >4

because > 3. (Again, we excluded the first (even) perfect numbke 6 from this
analysis because it sqjuarefreg
These preceding numerical inequalities imply that

+1
o(Q¥) e 2% -1 o)
ﬁ —2224>l> Zp_l—F.

We state the immediately preceding result as our third leriomgnis section.

Lemma 3.4. If M = Q¥n? = (2P-1)-2PLis an even perfect number given in Euclidean
form (and M+ 6), then we have the inequality

a(Q%) a(n)
- >4>1 .
A > 1> — QK
Remark 3.5. In particular, observe that the inequality
n
from Lemma3.4implies that
r_]< QK3

which, of coursetrivially follows from the inequality

n? < QK
in Remark3.2.
Likewise, compare the inequality (from Lemfd)
o(n) (r(QK

o “Th
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for an even perfect number M QXn? = (2P — 1) - 2P~1 given in Euclidean form, with
the inequality

o(d) _ o(n)
n gk’
for an odd perfect number N g“n? given in Eulerian form. This second inequality
was originally conjectured ing], and in fact, it has been recently shown (sé&§ to
be equivalent to the conjecturé g n, which originally appeared in the M. Sc. thesis
[11].
Details for the proof of the biconditional

n
o(d) - Uo(lk)
are clarified online inhttp://math. stackexchange. com/questions/548528.

g <ne= o(d) < o(n) = —=

The next section will explain our motivation for pursuingragf for the following
conjecture:

Coniecturk 3.6. If N = g“n? is an odd perfect number given in Eulerian form, then
the conjunction
=vg(N) = A€ <n)

always holds.

4. Onthe Conjecturesof Sorli and Dris Regarding Odd Perfect Numbers

We begin this section with a recapitulation of the two maimjeatures on odd
perfect numbers that have been mentioned earlier in thideart

Coniecture 4.1. Sorli’s conjecture states that if N g“n? is an odd perfect number
given in Eulerian form, then
k=v(N)=1

always holds.
Remark 4.2. Dris gave a sgficient condition for Sorli's conjecture irB]. Some errors,

however, were found in the initial published version of tagticle, and Dris had to
retract his claim that the biconditional

k=v(N)=1<n<q
always holds. (The current published version 8f §ontains a proof only for the
one-sided implication

n<g=k=1(N)=1
In two [continually] evolving papers [se€] and [6]], work is in progress to try to

disprove the converse
k=vw(N)=1=n<q
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and thereby get a proof for Conjectuset.)

Moreover, Acquaah and Konyagid][ almostdisproves n< ( by obtaining the
estimate g< n V3 under the assumption % vq(N) = 1. (Since the contrapositive of
the implicationn< g = k= 1is k> 1 = q < n, we know that Acquaah and
Konyagin’s estimate for the Euler prime g implies that thequality

q<nv3

holds unconditionally.)
Curiously enough, the two paperg][and [7] by Dris are cited in OEIS sequence
A228059 [L6], whose description is reproduced below:
Odd numbers of the formtt*-s?, where r is prime of the forrfh + 4m, s> 1, and
gcdt, s) = 1 that arecloser to being perfect than previous terms
Coincidentally the “Euler prime” of the first9 terms in this OEIS sequence all
have exponerit:
45=5.3?
405=5-3*
2205=5-(3- 7Y
26325= 13- (3. 5)°
236925= 13- (3 - 5
1380825= 17-(3-5- 19y
1660725= 61- (3-5- 117

35698725= 61- (32-5-17)
3138290325 53- (3*-5- 19)"

ConsecTurk 4.3. Dris's conjecture states that if N= g“n? is an odd perfect number
given in Eulerian form, then

q“<n

always holds.

Remark 4.4. Prior to the paper [L] by Acquaah and Konyagin, and the data from OEIS
sequence A228059 ] as detailed out in Remark.2, the only heuristic available to
justify Dris’s conjecture that'fg< n was the inequality

I(qk)<§< V2 < \/§<I(n).

(See the paped] for a proof.) In particular, theheuristic justificatioris that the divis-
ibility constraintgcd(@®, n) = gcd@, n) = 1 appears to induce an “ordering property”
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between certain divisors of an odd perfect number relatacwiappropriate inequal-
ity between their abundancy indices. That is, Dris expeigsbnjecture § < n to
follow from the last inequality above, in the sense that tegjuality ¢ < n? appears
to have followed from the related inequality

1(q) < g <V2< g < I(n?).

Additionally, note that all of thé3 terms (apart from the first one) in the OEIS
sequence mentioned in Remadtrk satisfy Dris’s conjecture.

5. Conclusion

To conclude, a recent e-mail correspondence of the autlibBrian D. Beasley of
Presbyterian College revealed the following informatiquoted verbatim from page
25 of [2]:

“Before proceeding with Euler’s proof, we pause to note thiatresult was not
quite what Descartes and Frenicle had conjectured, as #leved thatkk = 1, but
it came very close. In fact, current research continues ieffomt to provek = 1.
For example, Dris has made progress in this direction, afihohis paper refers
to Descartes’ and Frenicle’s claim (thiat= 1) as Sorli’s conjecture; Dickson has
documented Descartes’s conjecture as occurring in a tetMarin Mersenne in 1638,
with Frenicle’s subsequent observation occurring in 1657.

It might be wise (at this point) to delve deeper into thidditbit of history in
mathematics, to attempt to answer the particular questiavhether Descartes and
Frenicle usedimilar or totally diferent methods to arrive at what we have come to
call as Sorli's conjecture on odd perfect numbers. Perhagglioth used methods
similar to the ones used in this article - who knows? Besilflessenne’s predictions
for succeeding primep for which 2° — 1 turned out to be a Mersenne prime were
already stunning as they were. Did Mersenne usalgarithm, for testing primality
of Mersenne prime-number candidates, that remains unknowre rest of us to this
day? Only time can tell.
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