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Abstract

An odd perfect numberN is said to be given inEulerian formif N = qkn2 whereq is prime withq ≡ k ≡ 1
(mod 4) and gcd(q, n) = 1. Similarly, an even perfect numberM is said to be given inEuclidean formif
M = (2p − 1) · 2p−1 wherep and 2p − 1 are primes. In this article, we show how simple considerations
surrounding the differences between the underlying properties of the Eulerian and Euclidean forms of
perfect numbers give rise to what we will call theEuclid-Euler heuristicsfor (odd) perfect numbers.

2010Mathematics subject classification:primary 11A05; secondary 11J25, 11J99.

Keywords and phrases:odd perfect number, abundancy index, Sorli’s conjecture.

1. Introduction

If J is a positive integer, then we writeσ(J) for the sum of the divisors ofJ. A number
L is perfectif σ(L) = 2L.

An even perfect numberM is said to be given inEuclidean formif

M = (2p − 1) · 2p−1

wherep and 2p − 1 are primes. We callMp = 2p − 1 theMersenne primefactor of
M. Currently, there are only 48 known Mersenne primes, which correspond to 48 even
perfect numbers.

An odd perfect numberN is said to be given in Eulerian form if

N = qkn2

whereq is prime withq ≡ k ≡ 1 (mod 4) and gcd(q, n) = 1. We callqk theEuler part
of N while n2 is called thenon-Euler partof N.

It is currently unknown whether there are infinitely many even perfect numbers, or
whether any odd perfect numbers exist. It is widely believedthat there is an infinite
number of even perfect numbers. On the other hand, no examples for an odd perfect
number have been found (despite extensive computer searches), nor has a proof for
their nonexistence been established.
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Ochem and Rao [15] recently proved thatN > 101500. In a recent preprint, Nielsen

[13] has obtained the lower boundω(N) ≥ 10 for the number ofdistinctprime factors

of N, improving on his last resultω(N) ≥ 9 (see [14]).

Sorli conjectured in [17] that k = νq(N) = 1 always holds. Dris conjectured in [8]

and [11] that the divisorsqk andn are related by the inequalityqk < n. This conjecture

was made on the basis of the resultI (qk) <
3√
2 < I (n).

Broughan, et. al. [3] recently showed that for any odd perfect numberN = qkn2,

the ratio of the non-Euler partn2 to the Euler partqk is greater than 315/2. This

improves on a result of Dris [8].

In a recent paper, Chen and Chen [4] improves on Broughan, et. al.’s results, and

poses a related (open) problem.

We denote the abundancy indexI of the positive integerx asI (x) = σ(x)/x.

2. The General Multiplicative Form of All Perfect Numbers

Suppose thatN = qkn2 is an odd perfect number given in Eulerian form. Since

prime powers are deficient and gcd(q, n) = 1, we know thatqk
, n. (In particular, it is

also true thatq , n.) Consequently, we know that eitherqk < n or n < qk is true.

Observe that the Euclidean formM = (2p− 1) · 2p−1 for an even perfect numberM

possesses a multiplicative structure that isalmostsimilar to that of the Eulerian form

N = qkn2 for an odd perfect numberN. Here is a table comparing and contrasting the

underlying properties of these two forms, which we shall refer to as theEuclid-Euler

heuristicsfor (odd) perfect numbers:
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(E-1) (Euclid-Euler Theorem) (O-1) (Conjecture, 2010 [10])
The Mersenne primesMp are in one-to-one The Euler primesq are in one-to-one
correspondence with the even perfect numbers.correspondence with the odd perfect numbers.
(E-2) The Mersenne primesMp satisfy (O-2) The Euler primesq satisfy
Mp ≡ 3 (mod 4). q ≡ 1 (mod 4).
(Trivial) (Trivial)
(E-3) The exponents= νMp(M) is one. (O-3) The exponentk = νq(N) is one.
(Trivial) (Sorli’s Conjecture, 2003 [17])
(E-4) If M ≡ 0 (mod 2) is perfect, (O-4) If N ≡ 1 (mod 2) is perfect,
then given the Euclidean form then given the Eulerian form

M = 2p−1(2p − 1) =
2
∏

i=1

pi
αi , N = qkn2 =

ω(N)
∏

j=1

q j
β j ,

thenpi
αiσ(pi

αi )/M = i, thenq j
β jσ(q j

β j )/N ≤ 2/3 < j,
for i = 1, 2. for all j, 1 ≤ j ≤ ω(N).
(Observation, Dris 2011) (Theorem, Dris 2008 [11])
(E-5) There are infinitely (O-5) There do not exist
many even perfect numbers. any odd perfect numbers.
(EPN Conjecture) (OPN Conjecture)
(E-6) The density of even (O-6) The density of odd
perfect numbers is zero. perfect numbers is zero.
(Kanold 1954 [12]) (Kanold 1954 [12])
(E-7) 1< I (Mp) ≤ 8

7 for p ≥ 3. (O-7) 1< I (qk) < 5
4 for q ≥ 5.

7
4 ≤

2
I(Mp) = I ( Mp+1

2 ) < 2 8
5 <

2
I(qk) = I (n2) < 2

In particular, In particular,
8
7 <

√

7
4 < I (

√

Mp+1
2 ) < 2. 5

4 <

√

8
5 < I (n) < 2.

(E-8) An even perfect numberM (O-8) An odd perfect numberN
has exactly two distinct prime factors. has more than two distinct prime factors.
(i.e.,ω(M) = 2) (In fact, we know thatω(N) ≥ 9 [14].)
(E-9) gcd(2p − 1, 2p−1) = 1 (O-9) gcd(qk, n2) = gcd(q, n) = 1
(Trivial) (Euler)

Remark 2.1. We excluded p1 = 2 from (E-7) because
Mp1 + 1

2
= 2p1−1 = 22−1 = 2 is

squarefree.

In the next section, we give someknownrelationships between the divisors of even
and odd perfect numbers. We will also discuss a conjectured relationship between
certain divisors of odd perfect numbers, which first appeared in the M. Sc. thesis [11]
that was completed in August of 2008.
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3. Inequalities Relating the Divisors of Perfect Numbers

From Section2, note that the heuristic (E-4), upon settingQ = 2p − 1, K = 1, and
n̄2 = 2p−1, actually gives

σ(QK)
n̄2

=
σ(2p − 1)

2p−1
=

(2p − 1)+ 1
2p−1

=
2p

2p−1
= 2,

and
σ(n̄2)
QK

=
σ(2p−1)
2p − 1

=
2(p−1)+1 − 1

(2− 1)(2p − 1)
=

2p − 1
2p − 1

= 1.

We state this result as our first lemma for this section.

Lemma 3.1. If M = QK n̄2 = (2p−1)·2p−1 is an even perfect number given in Euclidean
form, then we have the inequality

σ(n̄2)
QK

= 1 < 2 =
σ(QK)

n̄2
.

Remark 3.2. Except for the case of the first even perfect number M= 6 (as was
pointed out in Remark2.1), the abundancy indices of the divisors of an even perfect
number given in the Euclidean form M= QK n̄2 = (2p−1)·2p−1 (where the relabelling
is done to mimic the appearance of the variables in the Eulerian form of an odd perfect
number N= qkn2) satisfy the inequality

1 < I (QK) ≤ 8
7
<

7
4
≤ I (n̄2) < 2,

as detailed out in heuristic (E-7). In particular, the inequality I (QK) < I (n̄2), together
with Lemma3.1, imply the inequality

n̄2 < QK .

(In other words, we have the inequality

2p−1 < 2p − 1

where p and Mp = 2p − 1 are both primes. Compare this with the inequality

qk < n2

for the divisors of an odd perfect number given in the Eulerian form N = qkn2 [see
[8], [ 11]].)

The following result is taken from [8] and [11].

Lemma 3.3. If N = qkn2 is an odd perfect number given in Eulerian form, then we
have the inequality

σ(qk)
n2
≤ 2

3
< 3 ≤ σ(n2)

qk
.
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Going back to the relabellingQ = 2p − 1, K = 1, andn̄2 = 2p−1 for an even perfect
numberM = QK n̄2 = (2p − 1) · 2p−1 given in Euclidean form, we now compute:

σ(QK)
n̄
=
σ(2p − 1)

2
p−1
2

=
(2p − 1)+ 1

2
p−1
2

=
2p

2
p−1
2

= 2p−( p−1
2 ) = 2

p+1
2 ,

and
σ(n̄)
QK
=
σ(2

p−1
2 )

2p − 1
=

2
p−1
2 +1 − 1

(2− 1)(2p − 1)
=

2
p+1
2 − 1

2p − 1
.

Now observe that
2

p+1
2 − 1 < 2p − 1

since 1< p+1
2 < p, while we also have

2
p+1
2 ≥ 4

becausep ≥ 3. (Again, we excluded the first (even) perfect numberM = 6 from this
analysis because it issquarefree.)

These preceding numerical inequalities imply that

σ(QK)
n̄
= 2

p+1
2 ≥ 4 > 1 >

2
p+1
2 − 1

2p − 1
=
σ(n̄)
QK
.

We state the immediately preceding result as our third lemmafor this section.

Lemma 3.4. If M = QK n̄2 = (2p−1)·2p−1 is an even perfect number given in Euclidean
form (and M, 6), then we have the inequality

σ(QK)
n̄
≥ 4 > 1 >

σ(n̄)
QK
.

Remark 3.5. In particular, observe that the inequality

σ(n̄)
QK
< 1

from Lemma3.4implies that
n̄ < QK ,

which, of course,trivially follows from the inequality

n̄2 < QK

in Remark3.2.
Likewise, compare the inequality (from Lemma3.4)

σ(n̄)
QK
<
σ(QK)

n̄
,
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for an even perfect number M= QK n̄2 = (2p − 1) · 2p−1 given in Euclidean form, with
the inequality

σ(qk)
n
<
σ(n)
qk
,

for an odd perfect number N= qkn2 given in Eulerian form. This second inequality
was originally conjectured in [9], and in fact, it has been recently shown (see [5]) to
be equivalent to the conjecture qk < n, which originally appeared in the M. Sc. thesis
[11].

Details for the proof of the biconditional

qk < n⇐⇒ σ(qk) < σ(n)⇐⇒ σ(qk)
n
<
σ(n)
qk

are clarified online inhttp://math.stackexchange.com/questions/548528.

The next section will explain our motivation for pursuing a proof for the following
conjecture:

Conjecture 3.6. If N = qkn2 is an odd perfect number given in Eulerian form, then
the conjunction

{k = νq(N) = 1} ∧ {qk < n}

always holds.

4. On the Conjectures of Sorli and Dris Regarding Odd Perfect Numbers

We begin this section with a recapitulation of the two main conjectures on odd
perfect numbers that have been mentioned earlier in this article.

Conjecture 4.1. Sorli’s conjecture states that if N= qkn2 is an odd perfect number
given in Eulerian form, then

k = νq(N) = 1

always holds.

Remark 4.2. Dris gave a sufficient condition for Sorli’s conjecture in [8]. Some errors,
however, were found in the initial published version of thatarticle, and Dris had to
retract his claim that the biconditional

k = νq(N) = 1⇐⇒ n < q

always holds. (The current published version of [8] contains a proof only for the
one-sided implication

n < q =⇒ k = νq(N) = 1.

In two [continually] evolving papers [see [5] and [6]], work is in progress to try to
disprove the converse

k = νq(N) = 1 =⇒ n < q

http://math.stackexchange.com/questions/548528
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and thereby get a proof for Conjecture3.6.)
Moreover, Acquaah and Konyagin [1] almostdisproves n< q by obtaining the

estimate q< n
√

3 under the assumption k= νq(N) = 1. (Since the contrapositive of
the implication n< q =⇒ k = 1 is k > 1 =⇒ q < n, we know that Acquaah and
Konyagin’s estimate for the Euler prime q implies that the inequality

q < n
√

3

holds unconditionally.)
Curiously enough, the two papers [8] and [7] by Dris are cited in OEIS sequence

A228059 [16], whose description is reproduced below:
Odd numbers of the form r1+4Ls2, where r is prime of the form1+ 4m, s> 1, and

gcd(r, s) = 1 that arecloser to being perfect than previous terms.
Coincidentally, the “Euler prime” of the first9 terms in this OEIS sequence all

have exponent1:

45= 5 · 32

405= 5 · 34

2205= 5 · (3 · 7)2

26325= 13 · (32 · 5)
2

236925= 13 · (33 · 5)
2

1380825= 17 · (3 · 5 · 19)2

1660725= 61 · (3 · 5 · 11)2

35698725= 61 · (32 · 5 · 17)
2

3138290325= 53 · (34 · 5 · 19)
2
.

Conjecture 4.3. Dris’s conjecture states that if N= qkn2 is an odd perfect number
given in Eulerian form, then

qk < n

always holds.

Remark 4.4. Prior to the paper [1] by Acquaah and Konyagin, and the data from OEIS
sequence A228059 [16] as detailed out in Remark4.2, the only heuristic available to
justify Dris’s conjecture that qk < n was the inequality

I (qk) <
5
4
<

3√
2 <

√

8
5
< I (n).

(See the paper [8] for a proof.) In particular, theheuristic justificationis that the divis-
ibility constraintgcd(qk, n) = gcd(q, n) = 1 appears to induce an “ordering property”
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between certain divisors of an odd perfect number related via an appropriate inequal-
ity between their abundancy indices. That is, Dris expects his conjecture qk < n to
follow from the last inequality above, in the sense that the inequality qk < n2 appears
to have followed from the related inequality

I (qk) <
5
4
<
√

2 <
8
5
< I (n2).

Additionally, note that all of the8 terms (apart from the first one) in the OEIS
sequence mentioned in Remark4.2satisfy Dris’s conjecture.

5. Conclusion

To conclude, a recent e-mail correspondence of the author with Brian D. Beasley of
Presbyterian College revealed the following information,quoted verbatim from page
25 of [2]:

“Before proceeding with Euler’s proof, we pause to note thathis result was not
quite what Descartes and Frenicle had conjectured, as they believed thatk = 1, but
it came very close. In fact, current research continues in aneffort to provek = 1.
For example, Dris has made progress in this direction, although his paper refers
to Descartes’ and Frenicle’s claim (thatk = 1) as Sorli’s conjecture; Dickson has
documented Descartes’s conjecture as occurring in a letterto Marin Mersenne in 1638,
with Frenicle’s subsequent observation occurring in 1657.”

It might be wise (at this point) to delve deeper into this little bit of history in
mathematics, to attempt to answer the particular question of whether Descartes and
Frenicle usedsimilar or totally different methods to arrive at what we have come to
call as Sorli’s conjecture on odd perfect numbers. Perhaps they both used methods
similar to the ones used in this article - who knows? Besides,Mersenne’s predictions
for succeeding primesp for which 2p − 1 turned out to be a Mersenne prime were
already stunning as they were. Did Mersenne use analgorithm, for testing primality
of Mersenne prime-number candidates, that remains unknownto the rest of us to this
day? Only time can tell.
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