
Project page: http://LaPushDB.com

Dissociation and Propagation for Efficient Query Evaluation over
Probabilistic Databases

Wolfgang Gatterbauer · Dan Suciu

Abstract Probabilistic inference over large data sets is an
increasingly important data management challenge. The
central problem is that exact inference is generally #P-
hard, which limits the size of data that can be efficiently
queried. This paper proposes a new approach for approxi-
mate evaluation of queries over probabilistic databases: in
this approach, every query is evaluated entirely in the data-
base engine by evaluating a fixed number of query plans,
each providing an upper bound on the true probability, then
taking their minimum. We provide an algorithm that takes
into account important schema information to enumerate
only the minimal necessary plans among all possible plans.
Importantly, this algorithm is a strict generalization of all
known results of PTIME self-join free conjunctive queries:
the query is safe if and only if our algorithm returns one sin-
gle plan. Furthermore, our approach is a generalization of
a family of efficient network ranking functions from graphs
to hypergraphs. We also describe three relational query op-
timization techniques that allow us to evaluate all minimal
safe plans in a single query and very fast. We give a detailed
experimental evaluation of our approach and, in the process,
provide new way of thinking about the value of probabilistic
methods over non-probabilistic methods for ranking query
answers. We also note that the techniques developed in this
paper apply immediately to lifted inference from statistical
relational models since lifted inference corresponds to safe
plans in probabilistic databases.

Keywords Probabilistic databases · Approximate lifted
inference · Ranking semantics ·Multi-query optimization

Wolfgang Gatterbauer
Tepper School of Business
Carnegie Mellon University
E-mail: gatt@cmu.edu

Dan Suciu
Department of Computer Science & Engineering
University of Washington

1 Introduction

Probabilistic inference over large data sets is becoming a
central data management problem. Recent large knowledge
bases, such as Nell [10], DeepDive [17], Yago [39], or
Google’s Knowledge Vault [23], have millions to billions
of uncertain tuples. Data sets with missing values are of-
ten “completed” using inference in graphical models [11,
57,68] or sophisticated low rank matrix factorization tech-
niques [24,67], which ultimately results in a large, proba-
bilistic database. Data sets that use crowdsourcing are also
uncertain [4]. And probabilistic databases have also been
applied to bootstrapping over samples of data [73].

However, probabilistic inference is known to be #P-
hard in the size of the database, even for some very sim-
ple queries [15]. Today’s state of the art inference engines
use either sampling-based methods or are based on some
variant of the DPLL algorithm for weighted model count-
ing. For example, Tuffy [49], a popular implementation of
Markov Logic Networks (MLN) over relational databases,
uses Markov Chain Monte Carlo methods (MCMC). Gibbs
sampling can be significantly improved by adapting some
classical relational optimization techniques [74]. For an-
other example, MayBMS [6] and its successor Sprout [51]
use query plans to guide a DPLL-based algorithm for weighted
model counting [34]. While both approaches deploy some
advanced relational optimization techniques, at their core
they are based on general purpose probabilistic inference
techniques, which either run in exponential time (DPLL-
based algorithms have been proven recently to take expo-
nential time even for queries computable in polynomial
time [7]), or require many iterations until convergence.

In this paper, we propose a different approach to query
evaluation on probabilistic databases (PDB). In our ap-
proach, every query is evaluated entirely in the database
engine. Probability computation is done at query time, using
simple arithmetic operations and aggregates. Thus, proba-

ar
X

iv
:1

31
0.

62
57

v2
 [

cs
.D

B
]

 1
2

A
ug

 2
01

4

http://LaPushDB.com

2 Wolfgang Gatterbauer, Dan Suciu

s	
 t	
a	

c	

b	
p1	

p2	

p3	

p4	

p5	

(a)

q :−R(′s′,x),S(x,y),T (y,′t ′)

R C A
p1 s a

S A B
p2 a b
p3 a c

T B C
p4 b t
p5 c t

(b)

s	
 t	

a'ʹ	
 c	

b	

p1	

p2	

p3	

p4	

p5	

a"ʺ	
p1	

(c)

q(1) :− R̃(′s′,x, ỹ),S(x,y),T (y,′t ′)

R̃ C A B̃
p1 s a b
p1 s a c

S A B
p2 a b
p3 a c

T B C
p4 b t
p5 c t

(d)

Fig. 1 Example 1. The propagation score ρ(t) in graph (a) corre-
sponds to the reliability score r(t) in graph (c) with node a dissociated.
(b,d): Corresponding chain queries with respective database instances.

bilistic inference is entirely reduced to a standard query eval-
uation problem with aggregates. There are no iterations and
no exponential blowups. All benefits of relational engines,
like cost-based optimizations, multi-core query processing,
shared-nothing parallelization are immediately available to
queries over probabilistic databases. We achieve this by re-
placing the standard semantics based on reliability, with a
related but much more efficient semantics based on prop-
agation, and which is guaranteed to be an upper bound on
reliability. We explain this alternative semantics next.

The semantics of a query over a PDB is based on the
possible world semantics, which is equivalent to query reli-
ability [36]. Among its roots are network reliability [12],
which is defined as the probability that a source node s
remains connected to a target node t in a directed graph
if edges fail independently with known probabilities. How-
ever, computing network reliability is #P-hard. Hence, many
applications where an exact probabilistic semantics is not
critical (especially for ranking alternative answers) have re-
placed network reliability with another semantics based on
a propagation scheme. We illustrate with an example.

Example 1 (Propagation in k-partite digraphs) Consider
the 4-partite graph in Fig. 1a. Intuitively, let’s call a node
x “active” if there exists a directed path from the source
node to x. Then, the reliability score r(x) of a node x is the
probability that x is active if every edge e is included in the
graph independently with probability pe. The score of in-
terest is the reliability of a target node t: r(t) = p1(1−(1−
p2 p4)(1− p3 p5)). While reliability can be computed effi-
ciently for series-parallel graphs as in Fig. 1a, it is #P-hard
in general, even on 4-partite networks [12]. The probability
of a query over a PDB corresponds precisely to network
reliability. For example, in the case of a 4-partite graph,
reliability is given by the probability of the chain query
q :−R(s,x),S(x,y),T (y, t) over the PDB shown in Fig. 1b
(we use the terms query reliability and query probability in-
terchangeably in this paper). Notice that the reliability of a
node is a global property of the entire graph. In contrast, the

r(x) =
O

ei

m(ei)

r(x) = Â
ei

m(ei)m(ei) = r(x) · 1
dx

m(ei) = r(x) · pe1

Relevance
of nodes	

"ʺPseudo-­‐‑
probabilistic"ʺ	

PageRank	

x	

Messages
across edges	

x	

we1	

we2	
 m(e2)	

m(e1)	

m(e2)	

m(e1)	

and	
 or	

product	
 sum	

Fig. 2 Relevance propagation in graph works by iteratively calculat-
ing messages across edges and relevance scores of nodes. The prop-
agation we consider is pseudoprobabilistic in that the two operations
are a probabilistic-and (·) and an independent-or (⊗); the latter com-
bines two probabilities as if calculating the disjunction between two
independent events and is defined as p1⊗ p2 := 1− (1−p1)(1−p2).

propagation score of a node x is a value that recursively de-
pends on the scores of its parent nodes and the probabilities
of the incoming edges:

ρ(x) = 1−∏
e

(
1−ρ(ye) · pe

)
(1)

where e is the edge (ye,x). By definition, ρ(s) = 1. In our
example, the propagation score of the target node t is ρ(t) =
1− (1− p1 p2 p4)(1− p1 p3 p5). Notice that the propagation
score of a node is a local property since it depends only on
its parents. �

With “propagation”, we refer to a family of techniques
for calculating the relative importance of nodes in networks
with iterative models of computation: relevance is propa-
gated across edges from node to node while ignoring past
dependencies (see Fig. 2). Thus, unlike reliability, propa-
gation scores can always be computed efficiently, even on
very large graphs. Variants of propagation have been suc-
cessfully used in a range of applications for calculating
relevance where exact probabilities are not necessary. Ex-
amples include similarity ranking of proteins [71], inte-
grating and ranking uncertain scientific data [21], models
of human comprehension [56], activation in feedforward
networks [63], search in associative networks [14], trust
propagation [37] and influence propagation [35] in social
networks, keyword search in databases [8], the noisy-or
gate [54, Sect. 4.3.2], computing web page reputation with
PageRank [9], node labeling in graphs [28], or finding true
facts from a large amount of conflicting information [72].
Note that the thus calculated relevance scores commonly do
not have an exact probabilistic semantics, and may be used
as a heuristics instead.1 For example, the PageRank of a web

1 For example, the PageRank of a web page is not necessarily
smaller than 1. See [53] for a related, recent discussion of fact find-
ing algorithms, in which the approach of [72] and its use of the iterative
propagation formula Equation 1 is referred to as “pseudoprobabilistic.”

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 3

page is not necessarily smaller than 1. However, they have
in common that the score of a node is recursively defined
only in terms of the scores of its neighbors and not in terms
of the entire topology of the graph.

While Example 1 shows how the propagation score can
be defined on graphs, queries are not represented by graphs
but hypergraphs, in general. To the best of our knowledge,
no definition of a propagation score on hypergraphs exists,
and it is not obvious how to define such a score. Also, the
propagation score between two nodes depends on the direc-
tionality of the graph, which can be best illustrated with our
example of k-partite graphs: In Fig.1a the propagation score
from s to t is different from that from t to s (in fact, the lat-
ter coincides with the reliability score). It is unclear what
this directionality corresponds to for arbitrary queries with
arbitrary hypergraphs.

With this paper, we introduce a propagation score for
queries over PDBs, describe the connection to the reliabil-
ity score, and give a method to compute the propagation
score for every self-join-free conjunctive query efficiently
with a standard relational database engine. While the propa-
gation score differs from the reliability score, we prove sev-
eral properties showing that it is a reasonable substitute: (i)
propagation and reliability are guaranteed to coincide for all
safe queries: our score are thus strict generalization of ef-
ficient evaluation methods from safe to unsafe queries, (ii)
propagation is in PTIME. In addition, we show that every
query can be evaluated with a standard relational DBMS
without any changes to the underlying relational query en-
gine; (iii) propagation is inspired by the above listed number
of successful ranking schemes on graphs: yet our score ex-
tends the underlying idea of propagation on graphs to prop-
agation on hypergraphs; (iv) the propagation score is always
an upper bound to the reliability score: it can thus be applied
as efficient filter; and (v) the ranking given by the propaga-
tion score is very close to the ranking given by the reliability
score in our experimental validation.

Example 1 (continued) We have seen that the propagation
score differs from the reliability score on the DAG (Directed
Acyclic Graph) in Fig.1a. By inspecting the expressions of
the two scores, one can see that they differ in the way they
treat p1: reliability treats it as a single event, while propa-
gation treats it as two independent events. In fact, the prop-
agation score is precisely the reliability score of the DAG
in Fig. 1c, which has two copies of p1. We call this DAG
the dissociation of the DAG in Fig. 1a. At the level of the
database instance, dissociation can be obtained by adding a
new attribute B to the first relation R (Fig.1d). The dissoci-
ated query is q(1):−R̃(s,x, ỹ),S(x,y),T (y, t), where the tilde
symbol (˜) indicates dissociated relations or variables with
ỹ≡ y, and its probability is indeed the same as the propaga-
tion score for the graph in Fig. 1a. The important observa-
tion here is that, while the evaluation problem for q is #P-

hard because it is an unsafe query [15], the query q(1) is safe
and can therefore be computed efficiently. A query q usu-
ally has more than one dissociation: q has a second disso-
ciation q(2) :− R(s,x),S(x,y), T̃ (x̃,y, t) obtained by adding
the attribute A to T (not shown in the figure). Its probability
corresponds to the propagation score from t to s, i.e. from
right to left. And q(3) :− R̃(s,x, ỹ),S(x,y), T̃ (x̃,y, t) is a third
dissociation. We prove that each dissociation step can only
increase the probability, hence r(q) ≤ r(q(1)) ≤ r(q(3)) and
r(q)≤ r(q(2))≤ r(q(3)). We define the propagation score of
q as the smallest probability of these three dissociations. The
database system has to compute r(q(1)) and r(q(2)) and re-
turn the smallest score: on the graph in Fig.1a, this is r(q(2)),
since r(q) = r(q(2)). �

Main contributions. Our first main contribution is defin-
ing the propagation score for any self-join-free conjunctive
query in terms of dissociations (Section 3). A dissociation
is a rewriting of both the data and the query. On the data,
a dissociation is obtained by making multiple, independent
copies of some of the tuples in the database. Technically,
this is achieved by extending the relational schema with ad-
ditional attributes. On a query, a dissociation extends atoms
with additional variables. We prove that a dissociation can
only increase the probability of a query, and define the prop-
agation score of a query as the minimum reliability of all
dissociated queries that are safe. This is justified by the
fact that, in a k-partite graph, the propagation score is pre-
cisely the probability of one dissociated safe query. Thus,
in our definition, choosing a direction for the network in or-
der to define the propagation score corresponds to choos-
ing a particular dissociation that makes the query safe. Safe
queries [15] can be evaluated efficiently on any probabilistic
database, and we show that every query (safe or not) ad-
mits at least one safe dissociation. Therefore, the propaga-
tion score can always be computed in PTIME.

Our second main contribution is establishing a one-to-
one correspondence between safe dissociations and tradi-
tional query plans (Section 4). We show that every query
plan computes a probability that is an upper bound of query
reliability. Moreover, we describe a natural partial order on
the plans that guarantees that their probabilities satisfy this
partial order. Thus, in order to obtain the propagation score
of a query, it suffices to iterate over all minimal plans, com-
pute their probabilities, then take the minimum. We give an
intuitive system R-style algorithm [64] that enumerates all
plans that correspond to minimal safe dissociations.

Our third main contribution is the unified treatment and
generalization of all previously known safe queries, i.e.
those that can be evaluated with a query plan in polynomial
time in the size of the database (Section 5). Safe conjunctive
queries without self-joins have so far been defined for query
reliability based on the occurrence of variables across sub-
goals (“hierarchical queries”), or taking into account func-

4 Wolfgang Gatterbauer, Dan Suciu

tional dependencies, notably keys [15,51], or if a subset of
relations is deterministic [15]. We show that our approach
naturally generalizes all safe queries: for every query that
is either safe (whether due to variable co-occurrence, key
constraints, or presence of deterministic tables) or just data-
safe2, reliability and propagation scores always coincide;
for every query that is not safe, our approach still returns a
unique, well-defined score in polynomial time.

Our forth main contribution is a set targeted multi-query
optimization techniques that considerably speed up the time
needed to evaluate the propagation score (Section 6). Instead
of evaluating each minimal plan separately, we merge them
into one single query plan and further use views to reuse
intermediate results to reduce the amount of redundant cal-
culation. We further show how to simplify the plan in the
presence of functional dependencies or a subset of relations
which are deterministic.

Outline. We review and introduce basic definitions and
notations (Section 2), then formally introduce query disso-
ciation and the propagation score (Section 3). We prove its
strong connection to query plans (Section 4), then give two
optimizations based on schema knowledge (Section 5) and
three general optimizations to calculate propagation very ef-
ficiently (Section 6). We evaluate our approach (Section 7),
discuss related work (Section 8), before we conclude (Sec-
tion 9). All proofs are included in the appendix.

Prior publications. Section 3, and parts of Section 4
are based on a workshop paper [29]. Section 4 includes a
new, simpler minimal query enumeration algorithm. The
optimizations from Section 5 and Section 6 make query
evaluations actually practical and are new, as well as the ex-
tensive evaluations of Section 7. The appendix includes the
complete set of proofs, plus new connections between rele-
vance on graph and hypergraphs. In very recent work [30],
we apply the idea of dissociation to both upper and lower
bound the probability of Boolean functions, but discuss the
connection to query evaluation only in passing. In this pa-
per, we only focus on upper bounds for ranking, as we had
previously shown them to be tighter than lower bounds.

2 Background

We consider probabilistic databases (PDBs) where each tu-
ple t has an independent probability p(t) ∈ [0,1]. We denote
with D the database instance, i.e. the collection of tuples
and their probabilities. We use bold notation (e.g., x) to
denote both sets or tuples, [k] to denote the set {1, . . . ,k},
and x[i, j] as short form for (xi, . . . ,x j). A possible world is
generated by independently including each tuple t in the

2 A query q over a database D is “data-safe” if there exists a query
plan that calculates the query reliability q over D correctly. The notion
of data-safety thus generalizes the query-centric notion of safety by
including the database instance (see [42] for details).

world with probability p(t). Thus, the database D is tuple-
independent. Consider a self-join-free conjunctive query
q(x) :−g1, . . . ,gm, where g1, . . . ,gm are relational atoms,
also called subgoals, over a vocabulary R1, . . . ,Rm. This no-
tation is an abbreviation for the first-order formula q(x) =
∃x1 . . .∃xk.(g1∧. . .∧gm) where x1, . . . ,xk are the bound vari-
ables and x the free variables in the formula. “Self-join-free”
implies that every subgoal gi refers to a different relation Ri.
We denote by Var(q) the set of all variables, by HVar(q) the
set of head variables x, and by EVar(q) the set of non-head
or existential variables of a query q. For a Boolean query:
HVar(q) = /0 and Var(q) = EVar(q). We also write Var(gi)

for the variables in a subgoal gi, and A for the active domain
of a database D. The focus of probabilistic query evaluation
is to compute P [q], which is the probability that the query
is true in a randomly chosen world, and which we call the
query reliability r(q) [36].

It is known that the data complexity [69] of any conjunc-
tive query q is either PTIME or #P-hard [16]. The class of
PTIME queries, also called safe queries, for the case of self-
join-free conjunctive queries are precisely the hierarchical
queries [15] defined as follows:

Definition 2 (Hierarchical queries) For every variable x in
q, denote sg(x) the set of subgoals that contain x. Then q is
called hierarchical iff for any two existential variables x,y,
one of the following three conditions hold: sg(x) ⊆ sg(y),
sg(x)∩ sg(y) = /0, or sg(x)⊇ sg(y).

For example, the query q1 :−R(x,y),S(y,z),T (y,z,u) is
hierarchical, while q2 :−R(x,y),S(y,z),T (z,u) is not, as nei-
ther of the three conditions holds for the variables y and z.
Every hierarchical query can be computed in PTIME, but
non-hierarchical queries are #P-hard, in general.3

We next define query plans for conjunctive queries:

Definition 3 (Query plan) Let R1, . . . ,Rm be a relational
vocabulary. A query plan is given by the grammar

P ::=Ri(x) | πxP | on
[
P1, . . . ,Pk

]

where Ri(x) is a relational atom containing the variables x
and constants, πx is the project operator with duplicate elim-
ination, and on

[
. . .
]

is the natural join in prefix notation,
which we allow to be k-ary, for k ≥ 2. We require that joins
and projections alternate in a plan. We do not distinguish
between join orders, i.e. on

[
P1,P2

]
is the same as on

[
P2,P1

]
.

Note the requirement in our definition that joins and
projections alternate. Hence, we do not consider permu-
tations in the joins (called join orderings [48]). Also, we
do not allow join trees such as on

[
on
[
R1,R2

]
,R3
]

or on[
R1,on

[
R2,R3

]]
. Instead, both are considered equivalent and

3 Non-hierarchical queries can become safe when considering func-
tional dependencies [15,51] or deterministic tables [15].

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 5

uniquely represented by the query plan on
[
R1,R2,R3

]
, up to

reordering of the operands. The reason is that those differ-
ent join orderings all have the same probabilistic semantics,
i.e. they result in the same query scores as defined further
below. We do not focus on query optimization in this paper
until Section 6.

Denote qP the query consisting of all atoms mentioned
in (sub-)plan P. We define the head variables HVar(P) in-
ductively as

HVar(Ri(x)) = x
HVar(πx(P)) = x

HVar(on
[
P1, . . . ,Pk

]
) =

⋃k
i=1 HVar(Pi)

A plan is called Boolean if HVar(P) = /0. We assume the
usual sanity conditions on plans to be satisfied: in a project
operator πx(P) we assume x ⊆ HVar(P), and each variable
y is projected away at most once in a plan, i.e. there exists
at most one operator πx(P) s.t. y ∈ HVar(P)− x. For nota-
tional convenience, we also use the “project-away” notation:
Given a subplan P with head variables HVar(P) = x∪y, the
project-away operator π−yP projects a subset of the vari-
ables y 6= /0 away and onto x: π−yP≡ πxP.

A plan P is evaluated on a probabilistic database D using
an extensional semantics [27,54]4: Each subplan P returns
an intermediate relation of arity |HVar(P)|+ 1. The extra
probability attribute stores the probability of each tuple. To
compute the probability, each operator assumes the input tu-
ples to be independent, i.e. the probabilistic join operator
onp
[
. . .
]

multiplies the tuple probabilities ∏k
i=1 pi for k tu-

ples that are joined, and the probabilistic project operator
with duplicate elimination π p computes the probability as
1−∏k

i=1(1− pi) for k tuples with the same projection at-
tributes [27,58]. For a Boolean plan P, this results in a sin-
gle probability value, which we denote score(P). In general,
this is not the correct query reliability r(qP), which, recall,
is defined in terms of possible worlds: score(P) 6= r(qp).

Definition 4 (Safe plan) A plan P is called safe if for any
join operator onp

[
P1, . . . ,Pk

]
all subplans have the same head

variables: HVar(Pi) = HVar(Pj), for all 1≤ i, j ≤ k.

The following are known facts about the relation be-
tween safe queries and safe plans [15].

Proposition 5 (Safety) Let P be a plan for the conjunc-
tive self-join-free query q. Then: (1) score(P) = r(q) for any
probabilistic database iff P is safe; (2) q admits a safe plan
iff q is hierarchical. Moreover, the safe plan is unique (up to
permutation in the join orders).

4 Extensional approaches compute the probability of any formula as
a function of the probabilities of its subformulas according to syntactic
rules, regardless of how those were derived. Intensional approaches
reason in terms of possible worlds and keep track of dependencies.

Example 6 (Safe plans and SQL) We illustrate safe plans of
hierarchical queries with two examples, starting with a sim-
ple hierarchical query, its unique safe plan, and its transla-
tion into SQL assuming the schema R(A,B),S(A) and each
table having one additional attribute P for the probability of
a tuple. Here IOR(X) is a user-defined aggregate that calcu-
lates the independent-or for the probabilities of grouped tu-
ples, i.e. IOR(p1, p2, . . . , pn) = 1−(1−p1)(1−p2) · · ·(1−pn)

(the exact UDA definition for PostgreSQL is stated in [30]).

q1(x) :−R(x,y),S(x)

P1 =onp[π p
−yR(x,y),S(x)

]

select R2.A, R2.P * S.P as P
from (select A, IOR(P) as P

from R
group by A) as R2, S

where R2.A = S.A

The second one is a slightly more complicated Boolean
query:

q2 :−R(x,y),S(y,z),T (y,z,u)

P2 = π p
−y onp[π p

−xR(x,y),π p
−z onp[S(y,z),π p

−uT (y,z,u)
]]

�

3 Dissociation and Propagation

In this section, we define our technique of query dissocia-
tion and the propagation score of a query. We first define the
approach formally, then describe in the following sections
efficient methods to evaluate query dissociation and propa-
gation. We commonly first give formal definitions, then pro-
vide the intuition with examples later.

Definition 7 (Query dissociation) A dissociation of a con-
junctive query q :−R1(x1), . . . ,Rm(xm) is a collection of sets
of variables ∆ = (y1, . . . ,ym) with yi ⊆ Var(q)− Var(gi).
The dissociated query is:

q∆ :−Ry1
1 (x1,y1), . . . ,R

ym
m (xm,ym)

Thus syntactically, query dissociation adds to some sub-
goals, variables of other subgoals. The natural abstraction to
understand query dissociation is with the help of the inci-
dence matrix of a query.

Definition 8 (Incidence matrix) The incidence matrix of
query q includes one row for each subgoal and one column
for each variable in Var(q). An empty circle in a particular
row and column indicates that the corresponding subgoal
contains the corresponding variable. A full circle indicates
that the corresponding subgoal is dissociated on the corre-
sponding variable.

6 Wolfgang Gatterbauer, Dan Suciu

Thus conceptually, a dissociation of a table is the multi-
cross product with the active domain so that each tuple in
the original table is copied to multiple tuples in the disso-
ciated table. Recall that each tuple in the original table rep-
resents an independent probabilistic event. The dissociated
table now contains multiple copies of each tuple, all with
the same probability, yet considered to represent indepen-
dent events. Thus, the dissociated table has a different prob-
abilistic interpretation than the original table.

Definition 9 (Table dissociation) Given a conjunctive query
q :−R1(x1), . . . ,Rm(xm), the active domain A, and a query
dissociation ∆ = (y1, . . . ,ym). The dissociation of table Ri
on yi = {yi1, . . . ,yik} is the relation given by query

Ryi
i (xi,yi) :−Ri(xi),A(yi1), . . . ,A(yik)

Together, both definitions define the semantics of query
dissociation as follows: Add some variables to some atoms
in the query; this results in a dissociated query over a new
schema. Transform the probabilistic database by replicating
some of their tuples and by adding new attributes to match
the new schema; this is the dissociated database. Finally,
compute the probability of the dissociated query on the dis-
sociated database. Note that this is the semantics of a disso-
ciated query, and not the way we actually evaluate queries.
In the following sections we describe methods that evalu-
ate the dissociated query without modifying the tables in the
database.

Example 10 (Query dissociation) We illustrate with the query
q :−R(x),S(x,y),T (y), the dissociation ∆ = ({y}, /0, /0), and
the database instance in Fig. 3c. The active domain A is
{a,b,c}, and a variable pi stands for the independent proba-
bility of a tuple with index i. The resulting dissociated query
is q∆ :−R{y}(x,y),S /0(x,y),T /0(y), which we also abbreviate
as q∆ :− R̃(x, ỹ),S(x,y),T (y). Thus, we use the tilde (˜) as
a short notation to indicate dissociated relations and vari-
ables, e.g., R̃(x, ỹ) for the dissociation of R(x) on y. Fig. 3d
shows the new database instance with table R̃ as the original
table R dissociated on variable y. Note that the original tu-
ple R(a) got dissociated into two tuples R(a,b) and R(a,c)
with the same probability p1

5. Fig. 3a and Fig. 3b show the
incidence matrices of both q and its dissociation q∆ . Finally,
note the similarity of this example to the example from the
introduction (Example 1 and Fig.1). �

Our first major technical result shows that query disso-
ciation can only increase the probability. We state it in a
slightly more general form, by noting that the set of dissoci-
ations forms a partial order.

5 A third tuple R(a,a) is not shown since it does not join with any
other tuple in q. Hence, a semi-join reduction on the input tables can
be applied without changing the semantics of dissociation.

x y
R ◦
S ◦ ◦
T ◦
(a) q

x y
R ◦ •
S ◦ ◦
T ◦
(b) q∆

R A
p1 a

S A B
p2 a b
p3 a c

T B
p4 b
p5 c

(c) D

R̃ A B̃
p1 a b
p1 a c

S A B
p2 a b
p3 a c

T B
p4 b
p5 c

(d) D∆

Fig. 3 Example 10. Incidence matrices of query q :−R(x),S(x,y),T (y)
and dissociation q∆ :− R̃(x, ỹ),S(x,y),T (y). Original database instance
D and new instance D∆ with table R dissociated on variable y.

Definition 11 (Partial dissociation order) We define the
partial order on the dissociations of a query as:

∆ � ∆ ′ ⇔ ∀i : yi ⊇ y′i

Theorem 12 (Partial dissociation order) For every two
dissociations ∆ and ∆ ′ of a query q, the following holds
over every database instance:

∆ � ∆ ′ ⇔ r(q∆)≥ r(q∆ ′)

Corollary 13 (Upper query bounds) For every database
and every dissociation ∆ of a query q: r(q∆)≥ r(q).

Corollary 13 immediately follows from Theorem 12 as
every query is a dissociation of itself on the collection of
empty sets. The total number of dissociations corresponds
to the cardinality of the power set of variables that can be
added to subgoals. Hence, for every query with n non-head
variables and m subgoals, there are 2|K| possible dissocia-
tions with K = ∑m

i=1
(
n−|Var(gi)|

)
forming a partial order

in the shape of a power set (see Fig. 4a for Example 16).
Notice that the dissociation scores r(q∆) can be evaluated
efficiently for the subset of dissociations that are safe:

Definition 14 (Safe dissociation) A dissociation ∆ of a
query q is called safe if the dissociated query q∆ is safe.

Note that “safetyzation by dissociation” is not mono-
tone, and dissociation can also make a safe query unsafe. For
example, the query q :−R(x),S(x,y),T (x,y,z) is safe, but its
dissociation q∆ :− R̃(x, z̃),S(x,y),T (x,y,z) is not.

Recall at this point, that the motivation of this work is
to develop an efficient and unique semantics analogous to
propagation on directed graphs. Queries have no concept of
direction, and we suggest that the choice of direction in a
graph corresponds to a particular choice of dissociation for
a query that makes the query safe. To get uniqueness inde-
pendent of a particular dissociation, we suggest in this pa-
per the propagation score ρ(q) of a query as the minimum
probability of all those dissociations in the partial dissocia-
tion order of a query that are safe, i.e. those which admit a
safe plan given the dissociated tables.

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 7

x y

R � •
S �
T � �
U �

x y

R � •
S � •
T � �
U �

x y

R � •
S � •
T � �
U • �

x y

R �
S � •
T � �
U • �

x y

R �
S �
T � �
U • �

x y

R �
S �
T � �
U �

x y

R �
S � •
T � �
U �

7
 !

5
 !

2
 !

0
 !

4
 !

1
 !

6

3
 !

x y

R � •
S �
T � �
U • �

(a)

⇡p
�x

⇡p
�y

⇡p
�x

⇡p
�y

⇡p
�y

⇡p
�x

⇡p
�y

⇡p
�x⇡p

�x,y 6!7 !

4 ! 5 ! 3 !

U(y)T (x, y)S(x)R(x)

onp

U(y)

S(x)

T (x, y)R(x)

onp

onp

T (x, y)

R(x)

S(x) U(y)

onp

onp

S(x)R(x)

T (x, y) U(y)

onp

onp

U(y)

T (x, y)S(x)R(x)

onp

onp

q(3):�R(x), S(x), T (x, y), Ũ(x̃, y)q(5):�R̃(x, ỹ), S(x), T (x, y), Ũ(x̃, y)q(4):�R̃(x, ỹ), S̃(x, ỹ), T (x, y), U(y)

q(6):�R(x), S̃(x, ỹ), T (x, y), Ũ(x̃, y)q(7):�R̃(x, ỹ), S̃(x, ỹ), T (x, y), Ũ(x̃, y)

(b)

Fig. 4 Example 16. (a): Partial dissociation order for q :−R(x),S(x),T (x,y),U(y). Safe dissociations are shaded in green (3 to 7), minimal safe
dissociations in dark green (3 and 4). (b): All 5 possible query plans for q, their partial order and the correspondence to safe dissociations (3 to 7).

Definition 15 (Propagation) The propagation score ρ(q)
for a query q is the minimum score of all safe dissociations:
ρ(q) = min∆ r(q∆), where ∆ ranges over safe dissociations.

Example 16 (Partial dissociation order) Consider the query
q :−R(x),S(x),T (x,y),U(y). It is unsafe and allows 23 = 8
dissociations shown in Fig.4a. Of those 8 dissociations, five
are safe and shaded in green. Furthermore, two of those safe
dissociations are minimal and emphasized in dark green:

q(3) :−R(x),S(x),T (x,y),Ũ(x̃,y)

q(4) :− R̃(x, ỹ), S̃(x, ỹ),T (x,y),U(y)

To illustrate that these plans are upper bounds, consider
a database with S = {(1,1),(1,2),(2,2)}, R = T = U =

{1,2}, and all tuples having probability p = 1/2. Then q
has probability 83/29≈ 0.161, while the q(3) has probability
169/210 ≈ 0.165, and q(4) has probability 353/211 ≈ 0.172,
both of which are upper bounds. The propagation score is
the minimum score of all minimal safe dissociations, and
thus 0.165: ρ(q) = mini∈{3,4}

[
r
(
q(i)
)]

. �

We propose to adopt the propagation score as an alter-
native semantics for ranking query results over probabilistic
databases. While the data complexity of computing the reli-
ability r(q) is #P-hard in general, computing the propagation
score ρ(q) is always in PTIME in the size of the database.
Furthermore, ρ(q)≥ r(q) and, if q is safe, then ρ(q) = r(q).
Both claims follow immediately from Corollary 13. Hence,
query propagation is a natural generalization of reliability
from safe queries to all queries: If the query is safe, both
scores coincide; if the query is unsafe, propagation still al-
lows to evaluate the query in PTIME. In addition, the next

two sections will show how to evaluate the propagation very
efficiently without first dissociating the tables.

Also recall that our original motivation was to develop
for queries a concept that is analogous to propagation on
directed networks. We now justify our definitions of query
dissociation and propagation by drawing the connection to
network reliability and propagation: When a digraph is k+1-
partite, then its two terminal reliability can be expressed by
a conjunctive k-chain query6. Further, the propagation score
over this network corresponds to one of several possible dis-
sociations of this query q. Thus, query dissociation is a strict
generalization of network propagation on k-partite graphs.
And we define query propagation as corresponding to a cer-
tain dissociation with minimum reliability (see Fig.5).

Proposition 17 (Connection to networks) Let G = (V,E)
be a k+1-partite digraph with a source node s and a target
node t, where each edge has a probability. The nodes are
partitioned into V = {s}∪V2∪ . . .∪Vk ∪{t}, and the edges
are E =

⋃
i Ri, where Ri denotes the set of edges from Vi to

Vi+1 with i ∈ [k]. Then:
(a) The (s, t)-network reliability of G is r(q) with:

q :−R1(s,x2),R2(x2,x3), . . . ,Rk(xk, t)

6 A conjunctive k-chain query is a query q without self-joins in
which each relation is binary, all relations are joined together, and
there is no single variable common to more than two relations. Further-
more, the first and last variable are head variables and can be replaced
by constants: q(x1,xk+1) :−R1(x1,x2),R2(x2,x3), . . . ,Rk(xk,xk+1). The
fact that relations are binary entails that the query hypergraph is ac-
tually a standard graph. The expression chain query derives from the
observation that its (hyper)graph resembles a simple chain.

8 Wolfgang Gatterbauer, Dan Suciu

Networks / Graphs Conjunctive queries
Network reliability: Probability
that two nodes are connected. In-
dependent of edge direction.

Query reliability: Probability
that query is true in a random
world. Independent of query plan.

Propagation score: ‘Relatedness’
propagates from source to target.
Dependent on edge direction. Up-
per bound to reliability.

Dissociation score: A query plan
evaluates from leafs to root. De-
pendent on choice of dissociation.
Upper bound to reliability.
Propagation score: Minimum
over all possible safe dissocia-
tions. Unique for given query.

Fig. 5 Connection between reliability and propagation in networks and
conjunctive queries: In contrast to the propagation score on networks,
the propagation score for CQs is the minimum over all possible disso-
ciations, and is therefore unique for every query and database.

(b) The directed propagation score from s to t (as defined in
Example 1) is r(q∆) with:

q∆ :−R
x[3,k]
1 (s,x[2,k]),R

x[4,k]
2 (x[2,k]), . . . ,R /0

k(xk, t)

4 Dissociations and Plans

So far, in order to compute the propagation score of a query
q, we need to dissociate its tables and compute several disso-
ciated safe queries q∆ . In practice, we will not apply naively
query dissociation (Definition 7) because the table dissoci-
ation part (Definition 9) computes several cartesian prod-
ucts and is very inefficient. Our second technical result is a
deep connection between safe dissociations and query plans,
which allows us to perform dissociation very efficiently.

Theorem 18 (Safe dissociation) Let q be a conjunctive
query without self-joins. There exists an isomorphism be-
tween safe dissociations ∆ of q and query plans P for q.
Moreover, the reliability of the dissociated query is equal to
the score of the corresponding plan: r(q∆) = score(P∆).

We next describe this isomorphism. Consider a safe dis-
sociation q∆ and denote its corresponding unique safe plan
P∆ . This plan uses dissociated relations, hence each rela-
tion Ryi

i (xi,yi) has some extraneous variables yi. Drop all
the variables yi from the relations, and from all operators
that use them: this transforms P∆ into a regular, generally
unsafe plan P for q. Conversely, consider any plan P for q.
We define its corresponding safe dissociation ∆ as follows.
For each join operation onp

[
P1, . . . ,Pk

]
, let its join variables

JVar be the union of the head variables of all subplans:
JVar =

⋃
j HVar(Pj). For every relation Ri occurring in Pj,

add the missing variables JVar−HVar(Pj) to yi. For exam-
ple, consider the lower join in query plan 5 of Fig.4b:

onp[R(x),T (x,y),U(y)
]

Here, JVar= {x,y}, and the corresponding safe dissociation
of this subplan is

q̃(x,y) :− R̃(x, ỹ),T (x,y),Ũ(x̃,y)

The complete Boolean query q(5) is shown at the top of
query plan 5. Note that while there is a one-to-one mapping
between safe dissociations and query plans, unsafe dissocia-
tions do not correspond to plans. For example, dissociations
0 to 2 in Fig.4a are still hard.

We have seen in Section 2 that the extensional seman-
tics of an unsafe plan P differs from the true reliability:
score(P) 6= r(q). Since we have shown that score(P) =
r(q∆) for some dissociation ∆ , we derive the following im-
portant corollary:

Corollary 19 (Query plans as upper bounds) Let P be
any plan for a query q. Then score(P)≥ r(q).

In other words, any query plan as defined in Definition 3
always gives an upper bound to the actual query reliability
r(q). To the best of our knowledge, this common property of
query plans was only previously mentioned in [15], but has
never been proven.

To summarize, Theorem 18 gives us a much more effi-
cient method for computing the propagation score ρ(q) of
a query: iterate over all plans P, compute their scores, and
retain the minimum score minP[score(P)]. Each plan P is
evaluated directly on the original probabilistic database, and
there no need to dissociate the input tables. However, this
approach is still inefficient as it computes some “redundant”
plans: for example, in Fig. 4 plans 5, 6, 7 are redundant as
they are all greater than plan 3 in the partial dissociation or-
der. We also say that plan 3 dominates plans 5, 6, and 7. It
thus suffices to evaluate only the minimal query plans, i.e.
those for which the corresponding dissociation is minimal
(or not dominated) among all safe dissociations: in our Ex-
ample 16, these are plans 3 and 4.

Example 20 (Query Plans) We saw in Example 16 that the
query q :−R(x),S(x),T (x,y),U(y) has 8 dissociations de-
picted in Fig. 4a. Among those, five are safe, and Fig. 4b
shows their corresponding query plans. The two dissocia-
tions q(3) and q(4) are both safe and minimal, and their cor-
responding query plans over the original tables are:

P(3) = π p
−x onp[R(x),S(x),π p

−y onp[T (x,y),U(y)
]]

P(4) = π p
−y onp[U(y),π p

−x onp[R(x),S(x),T (x,y)
]]

The propagation score is thus the minimum of the scores of
the two minimal plans: ρ(q) = mini∈{3,4}

[
score

(
P(i)
)]

. �

We next describe our third technical result, the recur-
sive Algorithm 1 that generates all minimal plans for a
given query q. We start with some necessary notions: We

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 9

Recursive algorithm: MP (EnumerateMinimalPlans)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)
Output: Set of all minimal query plans P

1 if m = 1 then P ←{π p
x Ri(xi)} else

2 Set P ← /0
3 if q is disconnected then
4 Let q = q1, . . . ,qk be the components connected by EVar(q)
5 foreach qi do Let HVar(qi)← HVar(q)∩Var(qi) foreach

(P1, . . . ,Pk) ∈ MP(q1)×·· ·×MP(qk) do
6 P ←P ∪{onp

[
P1, . . . ,Pk

]
}

7 else
8 foreach y ∈ TopSets(q) do
9 Let q′← q with HVar(q′)← HVar(q)∪y

10 foreach P ∈ MP(q′) do P ←P ∪{π p
−y P}

Algorithm 1 generates all minimal query plans for a given query q.

call a variable x a root variable of a query plan P and
write x ∈ RVar(P) if x is projected away in the last oper-
ation: P = π p

−xP′ and x ∈ x. We say a query is connected
if all subgoals are connected by considering only existen-
tial variables EVar(q)7. For a connected query q, we write
TopSets(q) for the set of minimal subsets of existential
variables, for which removing them disconnects the query.
We call each such set of variables a top set. Minimal implies
that no proper subset y′ ⊂ y ∈ TopSets(q) can disconnect
the query. The algorithm works as follows: If the query has
one subgoal (line 1), then we only need to project on the
head variables. 8. If the query has more than one subgoal,
then we first see whether the query is connected. When the
query is disconnected (line 3), then the algorithm recursively
computes the minimal query subplans for each connected
component, then creates a query plan for each combination
of those subplans. When the query is connected (line 7), the
algorithm creates a separate plan for each top set of vari-
ables y ∈ TopSets(q) by moving them from the existential
variables EVar(q) to the head variables HVar(q), thereby
disconnecting the query. In sum, the algorithm recursively
alternates between the two steps of independent projection
and independent join until reaching a single subgoal. And at
each independent project, the algorithm considers all possi-
ble minimal subplans.

Example 21 (Enumerate minimal query plans) Consider
the non-Boolean query q(v) :−R(x,y,u),S(y,z,u,v),T (z,v).
Fig. 6a shows its incidence matrix with its variables sepa-
rated into the head variable HVar(q) = {v} and existential
variables EVar(q) = {x,y,z,u}. The query is connected, and

7 An alternative way to write this is to first substitute all head vari-
ables by constants q′ = q[a/x] (here q[a/x] denotes the query obtained
by substituting each head variable xi ∈ x with the constant ai ∈ a),
then to let q1, . . . ,qk be the connected components of q′ by any vari-
able. The query is connected if k = 1, otherwise it is disconnected, and
∀i 6= j : Var(qi)∩Var(q j)⊆ HVar(q).

8 Note that if there are no existential variables (x = xi), then there is
no need for the projection operator and one could instead simplify to
P ←{Ri(x)}, instead of P ←{π p

x Ri(xi)}.

v x y z u
R ◦ ◦ ◦
S ◦ ◦ ◦ ◦
T ◦ ◦

(a) q

v z y u x
R • ◦ ◦ ◦
S ◦ ◦ ◦ ◦
T ◦ ◦

(b) q∆1

v y u x z
R ◦ ◦ ◦
S ◦ ◦ ◦ ◦
T ◦ • • ◦

(c) q∆2

Fig. 6 Example 21. Query q and its two minimal safe dissociations.
Note the hierarchy between EVar(q) for each safe dissociation.

out of 24 different subsets of EVar(q), there are 2 top sets,
i.e. minimum sets of variables which after removing them
disconnects the query: TopSets(q) = {{z},{y,u}}. Project-
ing on the first top set {z} allows to separate the query into
q1(z,v) :−R(x,y,u),S(y,z,u,v) and q2(z,v) :−T (z,v). Note
that q1 and q2 have no existential variables in common. Oth-
erwise stated, they share only head variables z and v. Project-
ing on the top set {y,u} separates q into q3(y,u) :−R(x,y,u)
and q4(y,u,v) :−S(y,z,u,v),T (z,v). Recursive evaluation of
q1 to q4 shows that they are all hierarchical, from which
follows that q has 2 minimal query plans:

P(1) = π p
−z onp[π p

−y,u onp[π p
−xR(x,y,u),S(y,z,u,v)

]
,T (z,v)

]

P(2) = π p
−y,u onp[π p

−xR(x,y,u),π p
−z onp[S(y,z,u,v),T (z,v)

]]

Fig. 6b and Fig. 6c show their respective safe dissociations,
where the existential variables are ordered so that the hier-
archy implied by the query plans can be seen. �

Theorem 22 (Algorithm 1) Algorithm 1 returns a sound
and complete enumeration of minimal query plans. It is
sound in that only plans are generated which are not domi-
nated by any other plan. It is complete in that the minimum
score of all generated plans is equal to the propagation
score of the query.

We next comment on approximation quality. It is known
that approximating probabilistic reasoning is NP-hard, and
thus deterministic approximation scheme can not give gen-
eral approximation guarantees [61]. However, it is interest-
ing to note that the approximation quality of dissociation
increases as the input probabilities decrease. The practical
implication is that the rankings returned by dissociation are
better if the input probabilities are small.

Proposition 23 (Small probabilities) Given a query q and
database D. Consider the operation of scaling down the
probabilities of all tuples in D with a positive factor f < 1.
Then the relative error of approximation of query reliability
r(q) by the propagation score ρ(q) decreases as f goes to
0: lim f→0+

ρ(q)−r(q)
r(q) → 0.

In the following analytic example, we illustrate Prop. 23
by calculating the relative ratio between propagation and re-
liability for changing input probabilities.

10 Wolfgang Gatterbauer, Dan Suciu

p

P
[q
]
a
n
d
P
[q

∆
1
]

0 0.5 1
0

0.36

0.75

0.99

q=0.9	

q=0.5	

q=0.2	

ρ	

r	

(a) Probability r, dissociation ρ

0 0.5 1
1

1.2

1.4

1.6

1.8

2

R
el
a
ti
v
e
ra

ti
o

p

q=0.9	

q=0.5	

q=0.2	

q=p	

(b) Relative ratio ρ
r

0 0.5 1
1

1.5

2

2.5

3

3.5

R
el
a
ti
v
e
“
fr
o
m

1
”
ra

ti
o

p

q=0.9	

q=0.5	
 q=0.2	

q=p	

(c) Relative “from 1”-ratio 1−r
1−ρ

0 0.5 1
1

1.5

2

2.5

3

3.5

O
d
d
s
ra

ti
o

p

q=0.9	

q=0.5	

q=0.2	

q=p	

(d) Odds ratio ρ/(1−ρ)
r/(1−r)

Fig. 7 Example 24: Comparing the probabilities r := P [q] and ρ := P
[
q∆] for varying input probabilities.

Example 24 (Small probabilities) We consider the Boolean
query q :−R(x),Sd(x,y),T (y,z) and the dissociation q∆ :−
R̃(x, ỹ), Sd(x,y),T (y,z) over the database instance r1 =R(a),
s1 = Sd(a,b), s2 = Sd(a,c), t1 = T (b), and t2 = T (c). With
deterministic relation Sd , the lineages of q and q∆ are Lin(q)=
r1t1 ∨ r1t2 and Lin(q∆) = r1t1 ∨ r′1t2, respectively. Assum-
ing P [r1] = p and P [t1] = P [t2] = q, the respective prob-
abilities become r := P [q] = p(1− q̄2) = pq(2− q) and
ρ := P

[
q∆] = 1− (1− pq)2 = pq(2− pq). There are four

justifiable metrics to measure the approximation quality of
dissociation ρ with regard to the actual probability r: (1)
their absolute difference ρ − r, which is not meaningful
when both are too close to either 0 or 1; (2) their relative
ratio ρ

r , which is not meaningful close to 1; (3) their relative
“from 1”-ratio 1−r

1−ρ , which is not meaningful close to 0; or

(4) the odds ratio ρ/(1−ρ)
r/(1−r) , which is the product of the for-

mer two ratios and which is meaningful everywhere in [0,1].
Notice that all four metrics are defined so they are≥ 1. Also
notice that the relative error ρ−r

r is equal to the relative ratio
ρ
r minus 1.

Fig.7a shows the original probabilities r (full lines) and
those of their dissociations ρ (border of shaded areas) for
various values of p and q. The horizontal axis varies the
probability of the dissociated tuple x within [0,1], and the
different lines keep the non-dissociated tuples y1, y2 at the
same probability either 0.2, 0.5, or 0.9. Fig.7b, Fig.7c, and
Fig.7d show the approximation quality in terms of our three
previously defined ratios. Notice that the red line varies both
p and q at the same time by keeping p = q. We see that
the approximation is good when both input probabilities are
small, but get increasingly worse when the probability of the
non-dissociated variables gets close to 1. �

We end this section by commenting on the number of
minimal safe dissociations. Not surprisingly, this number is
exponential in the size of the query. To see this, consider a
Boolean k-star query9 q :−R1(x1), . . . ,Rk(xk),U(x1, . . . ,xk).
There are exactly k! minimal safe dissociations: Take any

9 A Boolean conjunctive k-star query is a query with k unary rela-
tions and one k-ary relation: q :−R1(x1), . . . ,Rk(xk),U(x1, . . . ,xk). The

k-star query k-chain query
k #MP #P #∆ k #MP #P #∆
1 1 1 1 2 1 1 1
2 2 3 4 3 2 3 4
3 6 13 64 4 5 11 64
4 24 75 4096 5 14 45 4096
5 120 541 > 106 6 42 197 > 106

6 720 4683 > 109 7 132 903 > 109

7 5040 47293 > 1012 8 429 4279 > 1012

seq k! A000670 2k(k−1) seq A000108 A001003 2(k+1)k

Fig. 8 Number of minimal plans, total plans, and total dissociations for
star and chain queries. A stands for the corresponding OEIS sequence.

consistent preorder � on the variables. It must be a total
preorder, i.e. for any i, j, either xi � x j or x j � xi, because
xi,x j occur together in U . Since it is minimal, � must be an
order, i.e. we can’t have both xi � x j and x j � xi for i 6= j.
Therefore, � is a total order, and there are k! such. Note
that while the number of safe dissociations is exponential
in the size of the query, the number of query plans is inde-
pendent of the size of the database, and hence our approach
has PTIME data complexity [69] for all queries. Figure 8
gives an overview of the number of minimal query plans, to-
tal query plans, and dissociations for star and chain queries.
Appendix H contains the derivation. Recall that in our defi-
nition of query plans, we do not consider permutations in the
joins (called join orderings [48]). Also, our problem differs
from the standard problem of optimal join enumeration in
relational database engines. For example, every safe query
has only one single minimal query plan, whereas any rela-
tional database engine compares several query plans.

In summary, our approach allows to rank answers to both
safe and unsafe queries in polynomial time in the size of
the database, and is conservative w.r.t. the ranking accord-
ing to exact probabilistic inference for both safe queries and
for data-safe queries [42]. The latter follows easily from the
point that if a query over a particular database instance al-

fact that each variable appears in exactly two relations implies that the
dual hypergraph is actually a standard graph. The expression star query
derives from the observation that its dual (hyper)graph resembles a star
with the table U connected to all other relations.

http://oeis.org/classic/A000670
http://oeis.org/classic/A000108
http://oeis.org/classic/A001003

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 11

x z y u
M ◦ ◦ ◦ ◦
R ◦ ◦
T ◦
S ◦ ◦
U ◦

(a) q

x z y u
M ◦ ◦ ◦ ◦
R ◦ ◦ • •
T ◦ • •
S ◦ ◦
U ◦

(b) q∆4

ρ(q) = min




π p
−z onp[T (z),π p

−x onp[R(x,z),π p
−u onp[U(u),π p

−y onp[S(y,u),M(x,y,z,u)
]]]]

π p
−z onp[T (z),π p

−u onp[U(u),π p
−x onp[R(x,z),π p

−y onp[S(y,u),M(x,y,z,u)
]]]]

π p
−z onp[T (z),π p

−u onp[U(u),π p
−y onp[S(y,u),π p

−x onp[R(x,z),M(x,y,z,u)
]]]]

π p
−u onp[U(u),π p

−y onp[S(y,u),π p
−z onp[T (z),π p

−x onp[R(x,z),M(x,y,z,u)
]]]]

π p
−u onp[U(u),π p

−z onp[T (z),π p
−x onp[R(x,z),π p

−y onp[S(y,u),M(x,y,z,u)
]]]]

π p
−u onp[U(u),π p

−z onp[T (z),π p
−y onp[S(y,u),π p

−x onp[R(x,z),M(x,y,z,u)
]]]]




(c)

Fig. 9 Example 25. Incidence matrix (a) for our running example q :−R(x,z),S(y,u),T (z),U(u),M(x,y,z,u) together with (b) one minimal safe
dissociation. (c): All 6 minimal query plans generated by algorithm 1. The propagation score is the minimum of the scores of those plans.

lows one single safe plan, then this plan must be among the
minimal plans in the partial dissociation order.

5 Optimizations with Schema Knowledge

In this section, we show how to leverage schema knowledge
to simplify and reduce the number of minimal query plans.
We consider deterministic relations (i.e. relations with all
tuple having probabilities of 1), and functional dependen-
cies (e.g., keys). We will use the following running example
throughout this and the next section:

Example 25 (Running example) Consider the query q:

q :−R(x,z),S(y,u),T (z),U(u),M(x,y,z,u)

Our default is to evaluate all minimal plans returned by Al-
gorithm 1, then take the minimum score. Figure 9 shows the
incidence matrix of q together with the 6 minimal plans. �

5.1 Deterministic relations

We denote deterministic tables with an exponent, i.e. a table
R is probabilistic, and a table Rd is deterministic. We call
separator variables of a query q the set of existential vari-
ables which appear in all probabilistic subgoals and denote
them as SVar(q). We start with the following lemma:

Lemma 26 (Deterministic table dissociation) Dissociat-
ing a deterministic table in a query q on any variable does
not affect the query reliability: r(q∆) = r(q).

In the following, whenever we dissociate a deterministic
relation, we mark the dissociated variables in the incidence
matrix with a star (?) instead of a bullet (•) to emphasize
that this dissociation does not change the query reliability.
Lemma 26 seems to suggest that we could dissociate all de-
terministic relations and then apply our standard algorithm
to find the set of minimal plans of a query. However, this is
not correct as we illustrate with a counter-example:

Recursive algorithm: DP (PlansWithDeterministicTables)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)

Schema information on deterministic relations
Output: Set of all minimal query plans P

1 if m = 1 then P ←{π p
x Ri(xi)} else

2 Set P ← /0
3 if q is disconnected then
4 Let q = q1, . . . ,qk be the components connected by EVar(q)
5 foreach qi do Let HVar(qi)← HVar(q)∩Var(qi) foreach

(P1, . . . ,Pk) ∈ DP(q1)×·· ·×DP(qk) do
6 P ←P ∪{onp

[
P1, . . . ,Pk

]
}

7 else
8 if there are separator variables z = SVar(q) 6= /0 then
9 Let q′← q with HVar(q′)← HVar(q)∪ z

10 if q′ is disconnected then
11 foreach P ∈ DP(q′) do P ←P ∪{π p

−z P}
12 else
13 foreach y ∈ TopSets(q′) do
14 Let q′′← q with HVar(q′′)← HVar(q)∪ z∪y
15 foreach P ∈ DP(q′′) do P ←P ∪{π p

−(z∪y) P}

16 else
17 foreach y ∈ TopSets(q) do
18 Let q′← q with HVar(q′)← HVar(q)∪y
19 foreach P ∈ DP(q′) do P ←P ∪{π p

−y P}

Algorithm 2 generates all minimal query plans for a query q with
deterministic relations. Lines 8 to 16 extend Algorithm 1.

Example 27 (Incorrect deterministic dissociation) Consider
the query q :−R(x),S(x,y),T d(y,z),U(z) with deterministic
relation T d over the database instance D from Fig.10a. Here,
indexed small letters refer to tuples in the respective rela-
tions, e.g., r1 for tuple R(a). The lineage of q is Lin(q) =
r1s1t1u1∨ r1s1t2u2∨ r2s2t1u1∨ r2s2t2u2. Replacing t1 and t2
with 1, the lineage can be factored into Lin(q) =

(
(r1s1)∨

(r2s2)
)
(u1 ∨ u2), which is a read-once formula. Assuming

all non-deterministic tuples to have the same probability 0.5,
the query reliability becomes P [q] = 21/64≈ 0.328. Query
q has three top sets TopSets(q) = {{x},{y},{z}}, as easily
seen from its incidence matrix (Fig.10b). Dissociating q on
y (Fig. 10c) results in a safe dissociation q∆1 that turns out
to have, on the particular database instance D, exactly the
same lineage expression as the original query: Lin(q∆1) =

Lin(q). Since it is a safe dissociation, there is a plan P(q∆)

that calculates the reliability of q∆1 and its score is exactly
the reliability of the original query: score(P(q∆1)) = r(q)≈

12 Wolfgang Gatterbauer, Dan Suciu

x z y u
M ◦ ◦ ◦ ◦
Rd ◦ ◦
T d ◦
S ◦ ◦
U ◦

(a) qd

x z y u
M ◦ ◦ ◦ ◦
Rd ◦ ◦ ? ?
T d ? ◦ ? ?
S ◦ ◦
U ◦

(b) q′d

ρ(qd) = π p
−u onp[U(u),π p

−y onp[S(y,u),π p
−x,z onp[T d(z),Rd(x,z),M(x,y,z,u)

]]]

(c)

Fig. 11 Example 30: Knowing that relations Rd and T d in Example 25 are deterministic allows us to selectively dissociate and thereby reduce the
number of minimal plans. In this case, q′d becomes hierarchical. Thus, Algorithm 2 returns one single minimal plan and ρ(qd) = r(qd).

R A
r1 a
r2 b

S A B
s1 a c
s2 b c

T d B C
t1 c e
t2 c f

U C
u1 e
u2 f

(a) D

x y z
R ◦
S ◦ ◦
U ◦
T d ◦ ◦

(b) q

x y z
R ◦ •
S ◦ ◦
U • ◦
T d ◦ ◦

(c) q∆1

x y z
R ◦
S ◦ ◦
U ◦
T d ? ◦ ◦

(d) q∆2

Fig. 10 Example 27. Query q :−R(x),S(x,y),T d(y,z),U(z) and min-
imal safe dissociation q∆1 for which ρ(q∆1) = r(q) happens to hold
on D. Dissociation q∆2 replaces T d(y,z) with T̃ d(x̃,y,z), and thus
r(q∆2) = r(q). However, q∆2 is not safe, and any further minimal safe
dissociation increases the score on D. Therefore, ρ(q∆2)≥ ρ(q∆1).

0.328. However, if we had first dissociated the determinis-
tic relation T d into T̃ d(x̃,y,z) (q∆2 in Fig. 10d), we would
have a dissociated query q∆2 that, despite having the same
reliability as the original query r(q∆2) = r(q), is not safe.
Thus, in order to calculate its propagation score, we have
to find the minimum query reliability over all safe dissocia-
tions of q∆2 , each of which requires at least two more disso-
ciations. This turns out to increase the propagation score to
ρ(q∆2) = 87/256≈ 0.340 > 0.328≈ ρ(q∆1) = r(q). �

Lemma 28 (Separator variables) If q is connected by its
existential variables and x ∈ SVar(q), then all minimal
query plans have x as root variable.

Lemma 28 gives us immediately Algorithm 2 which extends
Algorithm 1 with lines 8 to 16: whenever we have separator
variables z at a projection, then we verify if they disconnect
the query (line 10). If they alone don’t disconnect it (line 13),
then we iterate over all minimum variable sets that include z
(i.e. z∪y) and that disconnect the query.

Theorem 29 (Algorithm 2) Algorithm 2 returns a sound
and complete enumeration of minimal query plans in the
presence of deterministic relations.

Note that as before, if the query is safe, the algorithm
will produce one single query plan. Further note that, if all
relations are deterministic, then the single minimal query
plan consists of one multi-join between all relations fol-
lowed by a single projection: πx on

[
R(xi), . . . ,R(xm)

]
. The

translation into SQL is thus one single standard determin-
istic SQL query and the query optimizer is unconstrained
to determine the optimal join order between the relations.
Therefore, Algorithm 2 conservatively extends deterministic
SQL queries to probabilistic SQL queries in that fully deter-
ministic queries are evaluated exactly in the same way.

Example 30 (Running example continued) Assume rela-
tions R and T from Example 25 to be deterministic: Al-
gorithm 2 then returns one single minimal plan (Fig. 11c),
which implies that the query is safe and our plan returns the
exact probabilities. �

We end with a short comment on actual implementa-
tion. In practice, deterministic relations do not have a proba-
bilistic attribute, which simplifies the calculations. Consider
the subplan P =onp

[
T d(z),Rd(x,z),M(x,y,z,u)

]
in Fig.11c.

This subquery is specified as join with standard semantics
T (x,y,z,u, p) :−T (z),R(x,z),M(x,y,z,u, p) over the input
relations with p as the probability attribute.

5.2 Functional dependencies

Functional dependencies (FDs), such as keys, can also re-
duce the number of minimal safe dissociations and thus sim-
plify the resulting query plans. The main insight lies in the
following two lemmas.

Lemma 31 (FD dissociation and reliability) Given a query
q with a functional dependency Γ : x→ y on relation Ri, and
another relation R j with x⊆ Var(R j), but y 6∈ Var(R j). Then
dissociating R j on y does not change the query reliability.

This lemma is similar to Lemma 26, and we will mark vari-
ables in the incidence matrix that are dissociated as result of
an FD also with a star (?) instead of a bullet (•) .

Lemma 32 (FD dissociation and hierarchies) Given a safe
query q and a functional dependency Γ : x→ y. Dissociating
all relations R j with x⊆ Var(R j) on all dependent variables
y\Var(R j) results in a dissociation that is still safe.

The second lemma has no analogy for deterministic rela-
tions. Recall from Example 27 and Fig.10c that eagerly dis-
sociating all deterministic tables in the safe dissociation q∆1

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 13

x z y u
M ◦ ◦ ◦ ◦
R ◦ ◦
T ? ◦
S ◦ ◦
U ? ◦

(a) q f

x z y u
M ◦ ◦ ◦ ◦
R ◦ ◦
T ? ◦
S • • ◦ ◦
U • • ? ◦

(b) q∆1
f

x z y u
M ◦ ◦ ◦ ◦
R ◦ ◦ • •
T ? ◦ • •
S ◦ ◦
U ? ◦

(c) q∆2
f

x z y u
M ◦ ◦ ◦ ◦
Rd ◦ ◦ ? ?
T d ? ◦ ? ?
S ◦ ◦
U ? ◦

(d) q f d

ρ(q f) = min

[
π p
−x,z onp[R(x,z),T (z),π p

−y,u onp[S(y,u),U(u),M(x,y,z,u)
]]

π p
−y,u onp[S(y,u),U(u),π p

−x,z onp[T (z),R(x,z),M(x,y,z,u)
]]
]

(e)

ρ(q f d) =π p
−y,u onp[S(y,u),U(u),π p

−x,z onp[T d(z),Rd(x,z),M(x,y,z,u)
]]

(f)

Fig. 12 Example 37: The query q f (a) from our running example Example 25, after assuming two FDs z→ x and u→ y, has two minimal safe
dissociations (b & c), and two corresponding minimal query plans returned by Algorithm 3 (e). If we know, in addition, that Rd and T d are
deterministic, then the query becomes safe (d) and has one single minimal query plan (f).

x y z
R ◦ ◦ ◦
S ◦
U ◦ ◦

(a) q

x y z
R ◦ ◦ ◦
S ◦ ?
U ◦ ◦

(b) q′

x y z
R ◦ ◦ ◦
S ◦ ?
U ◦ ? ◦

(c) q′′

Fig. 13 Example 33. Applying an FD x→ y only to a subset of rela-
tions can turn the previously safe query q into an unsafe q′. However,
q cannot become unsafe when applying Γ to all relation (here q′′).

would lead to an unsafe dissociation. With a functional de-
pendency Γ : x→ y, however, we can first eagerly dissociate
the dependent variables y in all relations that include x as
variables, then apply our previous algorithm. Note the em-
phasis on all relations as this property does not hold for arbi-
trary subsets as we illustrate again with a counter-example.

Example 33 (Incorrect FD dissociation) Consider the query
q :−R(x,y,z),S(x),T (x,z) with functional dependency Γ :
x → y holding in relation R. The query is safe (the hi-
erarchy is shown in gray in Fig. 13a) and has one single
plan P = π p

−x onp
[
S(x),π p

−z onp
[
π p
−yR(x,y,z),U(x,z)

]]
. Dis-

sociating relation S on y does not change the reliability,
however it makes the query unsafe (q′ in Fig. 13b) with
now two minimal plans. If we instead dissociate y in both
S and U , the resulting query q′′ is safe as well (Fig. 13c)
with one single minimal plan P′′ = π p

−x,y onp
[
S(x),π p

−z onp
[
R(x,y,z),U(x,z)

]]
. Note that P′′ has one projection less

than P′. �

Algorithm 3 applies Lemma 32 to dissociate eagerly on
all functional dependencies, before it calls Algorithm 2.

Theorem 34 (Algorithm 3) Algorithm 3 returns a sound
and complete enumeration of minimal query plans in the
presence of functional dependencies and deterministic re-
lations.

From the completeness of Algorithm 1, Algorithm 2,
and Algorithm 3, and the fact that both Algorithm 2 and
Algorithm 3 exploit equivalences in the partial dissociation
order to reduce the number of minimal plans, it follows that
exploiting schema knowledge when available can never in-
crease the number of minimal plans.

Algorithm: FP (PlansWithFunctionalDependencies)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)

Set of FDs Γ , Schema information on deterministic tables
Output: Set of all minimal query plans P

1 forall (Γ : y→ z) ∈ Γ and Ri ∈ R do
2 if y⊆ Var(Ri) then dissociate Ri on all variables z\xi

3 Let R′i(x′i) be the resulting relations
4 Let q′(x) :−R′1(x′1), . . . ,R′m(x′m)
5 DP(q′) // call to Algorithm 2

Algorithm 3 uses knowledge of functional dependencies to apply
selective dissociations before calling Algorithm 2.

Corollary 35 (Minimal plans with schema knowledge)
Knowledge about deterministic tables and functional depen-
dencies cannot increase the number of minimal query plans.

It is easy to see that Algorithm 3 returns one single query
plan iff the query is safe, taking into account its structure, de-
terministic relations and functional dependencies. It is thus
a strict generalization of all known safe self-join-free con-
junctive queries [15,51].

Corollary 36 (Dichotomy) A query is safe if and only if
Algorithm 3 returns one single plan.

Example 37 (Running example continued) Assume keys
R(z,x) and S(u,y), and hence the FDs z→ x and u→ y hold.
Dissociating all dependent variables leads to a new query
q f (Fig. 12a) that has only two minimal safe dissociations
(Fig. 12b and Fig. 12c) with two minimal plans (Fig. 12e)
returned by Algorithm 3. If we know, in addition, that re-
lations R and T are deterministic, then the query becomes
q f d which is safe (the hierarchy is shown in Fig. 12c) and
has thus only one single plan (Fig. 12f). We encourage the
reader to take a moment and study plus compare the inci-
dence matrices Fig.9b, Fig.11b, and Fig.12d carefully. �

6 Multi-query Optimizations

So far, Algorithm 3 enumerates all minimal query plans. We
then take the minimum score of those plans in order to cal-
culate the propagation score ρ(q). In this section, we de-
velop three optimizations that can considerably reduce the
necessary calculations needed to evaluate all minimal query

14 Wolfgang Gatterbauer, Dan Suciu

Recursive algorithm: SP (SinglePlan)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)
Output: Single query plan P

1 if m = 1 then P← π p
x Ri(xi) else

2 if q is disconnected then
3 Let q = q1, . . . ,qk be the components connected by EVar(q)
4 Let HVar(qi)← HVar(q)∩Var(qi)

5 P←onp
[
SP(q1), . . . ,SP(qk)

]

6 else
7 Let TopSets(q) = {y1, . . . ,y j}
8 Let q′i← qi with HVar(q′i)← HVar(q)∪yi
9 if j=1 then P← π p

−y1
SP(q′1)

10 else P←min
[
π p
−y1

SP(q′1), . . . ,π
p
−y j

SP(q′j)
]

Algorithm 4 Optimization 1 recursively pushes the min operator
into the leaves and generates one single query plan.

plans. Note that these three optimizations and the two opti-
mizations from the previous section are orthogonal and can
be arbitrarily combined in the obvious way.

6.1 Opt. 1: One single query plan

Our first optimization creates one single query plan by push-
ing the min-operator down into the leaves. It thus avoids cal-
culations when it is clear that other calculations must have
lower bounds. The idea is simple: instead of creating one
query subplan for each top set y ∈ TopSets(q) in line 10 of
Algorithm 1, the adapted Algorithm 4 takes the minimum
score over those top sets, for each tuple of the head vari-
ables in line 10. It thus creates one single query plan. Fig.14
shows this single plan for our running example.

6.2 Opt. 2: Re-using common subplans

Our second optimization calculates only once, then re-uses
common subplans shared between the minimal plans. Thus,
whereas our first optimization reduces computation by com-
bining plans at their roots, the second optimization stores
and re-uses common results in the branches. The adapted
Algorithm 5 works as follows: it first traverses the whole sin-
gle query plan (FindingCommonSubplans) and remembers
each subplan by the subgoals used and its head variables in
a HashSet HS (line 12). If it sees a subplan twice (line 12), it
creates a new view for this subplan, mapping the subplan to
a new view definition. The actual plan (ViewReusingPlan)
then uses these views whenever possible (line 16). The or-
der in which the views are created (line 5) assures that the
algorithm also discovers and exploits nested common subex-
pressions. Fig. 15 shows the generated views and plans for
our running example: Notice that the main plan and the view
V3 both re-use views V1 and V2.

Algorithm: UsingCommonSubplans
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)
Output: Ordered set of view definitions V , final query plan P

1 HS← /0 // HashSet of all subplans
2 HM←(/0, /0) // HashMap from subplans to unique view names
3 V ← /0 // Set of view definitions
4 FS(q)
5 foreach qi ∈ HM.keys in increasing size of HVar(qi) and Var(qi) do
6 V ← V ∪{HM.val = ViewReusingPlan(qi)}
7 P = RP(q)

Recursive function: FS (FindingCommonSubplans)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)

8 if q is disconnected then
9 Let q = q1, . . . ,qk be the components connected by EVar(q)

10 foreach qi do FS(qi(xi))

11 else
12 if (m = 1∧x = xi)∨HM(q) 6= /0 then return if q ∈ HS∧HM(q) = /0 then

HM(q)← new view name HS← HS∪{q}
13 foreach y ∈ TopSets(q) do
14 Let q′← q with HVar(q′)← HVar(q)∪y
15 FS(q′)

Recursive function: RP (ViewReusingPlan)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)
Output: Query plan P that reuses views from HashMap HM

16 if HM(q) 6= /0 then P← HM(q)
17 else
18 Insert here lines 1-11 from Algorithm 4, replacing SP with RP

Algorithm 5 Optimizations 1 & 2 together create a query plan which
re-uses several previously defined temporary views.

Algorithm: SR (SemiJoinReduction)
Input: Query q(x) :−R1(x1), . . . ,Rm(xm)
Output: Set of view definitions: BV,R∗1, . . . ,R

∗
m,

New query q∗ over those views

1 BV =on
[
R1(x1, p1), . . . ,Rm(xm, pm)

]

2 foreach i ∈ [m] do
3 R∗i = πxi ,pi BV (Var(q),p)

4 Let q∗(x) :−R∗1(x1), . . . ,R∗m(xm)
5 UsingCommonSubplans(q∗) // applying Algorithm 5

Algorithm 6 Optimization 3 performs a full deterministic semi-join
reduction before the actual probabilistic query evaluation.

6.3 Opt. 3: Deterministic semi-join reduction

The most expensive operations in probabilistic query plans
are the group-bys for the probabilistic project operations.
These are often applied early in the plans to tuples which
are later pruned and do not contribute to the final query re-
sult. The idea of the third optimization is to first apply a
full semi-join reduction on the input relations before start-
ing the probabilistic plan evaluation from these reduced in-
put relations. Algorithm 6 gives the pseudocode of this re-
duction. As it operates on the actual representation of the
probabilistic tables, we explicitly write the probabilistic at-
tributes of the input tables in our formalism in contrast to the
rest of this paper: πxi,pi stands for the deterministic project
with duplicate elimination on the variables of a relation Ri
including its probabilistic attribute pi, and on

[
. . .
]

for the
natural join operator. The schema of the big view is thus:
BV (Var(q), p1, . . . , pm). Figure 16 shows this reduction ap-
plied to our running example.

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 15

ρ(q) = min




π p
−z onp[T (z),min




π p
−x onp[R(x,z),π p

−u onp[U(u),π p
−y onp[S(y,u),M(x,y,z,u)

]]]

π p
−u onp[U(u),min

[
π p
−x onp[R(x,z),π p

−y onp[S(y,u),M(x,y,z,u)
]]

π p
−y onp[S(y,u),π p

−x onp[R(x,z),M(x,y,z,u)
]]
]
]



]

π p
−u onp[U(u),min




π p
−y onp[S(y,u),π p

−z onp[T (z),π p
−x onp[R(x,z),M(x,y,z,u)

]]]

π p
−z onp[T (z),min

[
π p
−x onp[R(x,z),π p

−y onp[S(y,u),M(x,y,z,u)
]]

π p
−y onp[S(y,u),π p

−x onp[R(x,z),M(x,y,z,u)
]]
]
]



]




Fig. 14 Algorithm 4 (Optimization 1) evaluates only one single query plan by pushing the min operator down into the leaves.

V1(x,z,u) = π p
−y onp[S(y,u),M(x,y,z,u)

]

V2(y,z,u) = π p
−x onp[R(x,z),M(x,y,z,u)

]

V3(z,u) = min

[
π p
−x onp[R(x,z),V1(x,z,u)

]

π p
−y onp[S(y,u),V2(y,z,u)

]
] ρ(q) = min




π p
−z onp[T (z),min

[
π p
−x onp[R(x,z),π p

−u onp[U(u),V1(x,z,u)
]]

π p
−u onp[U(u),V3(z,u)

]
]
]

π p
−u onp[U(u),min

[
π p
−y onp[S(y,u),π p

−z onp[T (z),V2(y,z,u)
]]

π p
−z onp[T (z),V3(z,u)

]
]
]




Fig. 15 Algorithm 5 (Optimizations 1 & 2) exploits common subexpressions within a query plan by creating several possibly nested views.

BV (x,y,z,u, pR, pS, pT , pU , pM) :−R(x,z, pR),S(y,u, pS),T (z, pT),

U(u, pU),M(x,y,z,u, pM)

R∗(x,z, pR) :−BV (x,y,z,u, pR, pS, pT , pU , pM)

S∗(y,u, pS) :−BV (x,y,z,u, pR, pS, pT , pU , pM)

T ∗(z, pT) :−BV (x,y,z,u, pR, pS, pT , pU , pM)

U∗(u, pU) :−BV (x,y,z,u, pR, pS, pT , pU , pM)

M∗(x,y,z,u, pM) :−BV (x,y,z,u, pR, pS, pT , pU , pM)

Fig. 16 Algorithm 6 (Optimization 3) performs a full semi-join reduc-
tion before the actual probabilistic evaluation. Note that these queries
are deterministic and that the variables pRi stand here for the proba-
bilistic attributes of tables, which we otherwise do not explicitly write.

7 Experiments

We are interested in the quality and the efficiency of disso-
ciation as compared to exact probabilistic inference, Monte
Carlo simulation (MC), and standard deterministic query
evaluation (“deterministic SQL”). Our experiments, thus,
investigate the following questions: How much can our
three optimizations improve dissociation? How fast is dis-
sociation as compared to exact probabilistic inference, MC,
and deterministic query evaluation? How good is the rank-
ing from dissociation as compared to MC and ranking by
lineage size? What are the most important parameters de-
termining the ranking quality for each of the three methods?

Ranking quality. We use mean average precision (MAP)
to evaluate the quality of ranking of a method by comparing
it against the ranking from exact probabilistic inference as
ground truth (GT). MAP rewards rankings that place rele-
vant items earlier; the best possible value is 1, and the worst
possible 0 [46]. Average Precision at 10 (AP@10) is defined

as AP@10 =
∑10

k=1 P@k
n , where P@k is the precision at kth an-

swer returned. Averaging over several rankings yields MAP.

Scoring functions sometimes lead to ties between functions
and, therefore, only partially ordered result lists. We use a
variant of the analytic method proposed in [47] to calculate
AP in the presence of ties, which is equivalent to calculating
the mean AP over all allowed complete orders of the partial
order imposed by the scores. We refer to their paper for de-
tails of the method. As baseline for no ranking, we assume
all tuples to have the same score and thus be tied for the
same position and call this random average precision.

Exact probabilistic inference. Whenever possible, we
calculate GT rankings with a tool called SampleSearch [31,
32], which also serves to evaluate the cost of exact proba-
bilistic inference. We describe the method of evaluating the
lineage DNF with SampleSearch in [30].

Monte Carlo (MC). We evaluate the MC simulations for
different numbers of samples and write MC(x) for x sam-
ples. For example, AP for MC(10k) is the result of sampling
the individual tuple scores 10 000 times from their lineages
and then evaluating AP once over the sampled scores. The
MAP scores together with the standard deviations are then
the average over several repetitions.

Ranking by lineage size. To evaluate the potential of non-
probabilistic methods for ranking answers, we also rank the
answer tuples by decreasing size of their lineages, i.e. num-
ber of clauses. Intuitively, a larger lineage size should in-
dicate that an answer tuple has more “support” and should
thus be more important.

Setup 1. We use the TPC-H DBGEN data generator [3]
to generate a 1GB database to which we add a column P for
each table and store it in PostgreSQL 9.2 [2]. We assign to
each input tuple i a random probability pi, uniformly chosen
from the interval [0, pimax] resulting in an expected average
input probability avg[pi] = pimax/2. By using databases with
avg[pi] < 0.5, we can avoid answer probabilities close to 1
for queries with very large lineages. We use the following

16 Wolfgang Gatterbauer, Dan Suciu

select distinct s nationkey
from Supplier, Partsupp, Part
where s suppkey = ps suppkey
and ps partkey = p partkey
and s suppkey <= $1
and p name like $2

(a) ...

a s p n
S ◦ ◦

PS ◦ ◦
P ◦ ◦

(b) Q(a)

a s p n
S ◦ ◦ •

PS ◦ ◦
P ◦ ◦

(c) QS(a)

a s p n
S ◦ ◦

PS ◦ ◦
P • ◦ ◦
(d) QP(a)

Fig. 17 Parameterized Deterministic SQL query Q(a) over TPC-H.
Incidence matrices for TPC-H query Q(a) and its two minimal safe
dissociations from either dissociating table S or table P.

parameterized query (Fig.17a):

Q(a) :−S(s,a),PS(s,u),P(u,n),s≤ $1,n like $2 (2)

Relations S, PS and P represent tables Supplier, PartSupp and
Part, respectively. Variable a stands for attribute nationkey

(“answer tuple”), s for suppkey, u for partkey (“unit”), and n
for name. The probabilistic version of this query is: “Which
nations (as determined by the attribute nationkey) are most
likely to have suppliers with suppkey ≤ $1 that supply parts
with a name like $2?” Parameters $1 and $2 allow us to
change the lineage sizes: Tables Supplier, Partsupp and Part

have 10k, 800k and 200k tuples, respectively. There are 25
different numeric attributes for nationkey and our goal is to
efficiently rank these 25 nations. As baseline for not rank-
ing, we use random average precision for 25 answers, which
leads to MAP@10 = 0.220.

This query has the following two minimal query plans
(Fig.17):

PS(a) = π p
a onp[π p

a,u onp[S(s,a),PS(s,u),s≤ $1
]
,P(u,n),n like $2

]

PP(a) = π p
a onp[S(s,a),π p

s onp[PS(s,u),s≤ $1,P(u,n),n like $2
]]

Here, PS and PP stand for the plans that dissociate tables Sup-

plier or Part, respectively. We take the minimum of the two
bounds to determine the propagation score for each answer
tuple a. We will also evaluate the speed-up from applying
the following deterministic semi-join reduction (Optimiza-
tion 3) on the input tables and then reusing intermediate
query results across both query plans:

PS∗(s,u) :−PS(s,u),S(s,a),P(u,n),s≤ $1,n like $2

P∗(u,n) :−P(u,n),PS∗(s,u)

Setup 2. We compare the runtimes for the our three opti-
mizations against evaluation of all plans for k-chain queries
and k-star queries over varying database sizes (data com-
plexities) and varying query sizes (query complexities). The
k-chain queries have arity = 2 and several results, whereas

the star queries have arity=1 and cardinality=1, represent-
ing a Boolean query:

k-chain: q(x0,xk) :−R1(x0,x1),R2(x1,x2), . . . ,Rk(xk−1,xk)

k-star: q(′a′) :−R1(
′a′,x1),R2(x2), . . . ,Rk(xk),R0(x1, . . . ,xk)

We denote the length of the query with k, the number of tu-
ples per table with n, and the domain size with N. We use
integer values which are uniformly randomly drawn from
the range {0,1, . . .N − 1}. This parameter determines the
selectivity and is varied as to keep the answer cardinality
constant around 20-50 for chain queries, and the answer
probability between 0.90 and 0.95 for star queries. For the
data complexity experiments, we vary the number of tuples
n per table from 100 to 106. For the query complexity exper-
iments, we vary k from 2 and 7, or 2 and 8 for chain and star
queries, respectively. For these experiments, the optimized
(and often extremely long) SQL statements are “calculated”
in JAVA and then sent to Microsoft SQL server [1] (we have
used Microsoft SQL server for these experiments due to its
superior handling of complex queries).

7.1 Runtime experiments

Question 1 When and how much do our three query opti-
mizations speed up query evaluation?

Result 1. Combining plans (Opt. 1) and using intermediate
views (Opt. 2) almost always speeds up query times. The
semi-join reduction (Opt. 3) slows down queries with high
selectivities, but considerably speeds up queries with small
selectivities, bringing probabilistic query evaluation close
to deterministic evaluation.

Fig. 18a to through Fig. 18d show the results on setup 2 for
increasing database sizes or query sizes. Figure 19 shows
results on setup 2 for increasing query sizes. For example,
Fig. 18b shows the performance of computing a 7-chain
query which has 132 safe dissociations. Evaluating each of
these queries separately takes a long time, while our op-
timization techniques brings evaluation time close to de-
terministic query evaluation. Especially on larger databases,
where the running time is I/O bound, the penalty of the prob-
abilistic inference is only a factor of 2-3 in this example.
Notice here the trade-off between optimization 1,2 and op-
timization 1,2,3: Optimization 3 applies a full semi-join re-
duction on the input relations before starting the probabilis-
tic plan evaluation from these reduced input relations. This
operation imposes a rather large constant overhead, both at
the query optimizer and at query execution. For larger data-
bases (but constant selectivity), this overhead is amortized.
Without self-join reductions, opimization 1,2 would not ex-
ecute on the 6-star query with 720 minimal query plans at
all (“The query processor ran out of internal resources and

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 17

102 103 104 105 106
10−2

10−1

100

101

Tuples per table (n)

Q
u
e
ry

ti
m
e
[s
ec

]

Standard SQL	

Opt1-­‐‑3	

All plans	

Opt1	

Opt1-­‐‑2	

(a) 4-chain queries

102 103 104 105 106

100

101

102

Tuples per table (n)

Q
u
e
ry

ti
m
e
[s
ec

]

Standard SQL	

Opt1-­‐‑3	

All plans	

Opt1-­‐‑2	

Opt1	

(b) 7-chain queries

102 103 104 105 106
10−2

10−1

100

Tuples per table (n)

Q
u
e
ry

ti
m
e
[s
ec

]

Standard SQL	

Opt1-­‐‑3	

All plans	

Opt1 = Opt1-­‐‑2	

(c) 2-star queries

102 103 104 105 106

100

101

102

Tuples per table (n)

Q
u
e
ry

ti
m
e
[s
ec

]

Standard SQL	

Opt1-­‐‑3	

All plans	

Opt1-­‐‑2	

Opt1	

(d) k-chain queries

1k 5k 10k

0.1

1

10

$1

T
im

e
[s
ec
]

Diss	

MC(1k)	

SampleSearch	

Diss + Opt3	

Standard SQL	
Lineage query	

(e) $2 = %red%green%

1k 5k 10k
0.2

1

10

100

$1

T
im

e
[s
ec
]

MC(1k)	

SampleSearch	

Diss + Opt3	

Diss	

Standard SQL	

Lineage query	

(f) $2 = %red%

1k 5k 10k
0.5

1

10

100

$1

T
im

e
[s
ec
]

MC(1k)	

Standard SQL	

SampleSearch	

Lineage query	

Diss + Opt3	

Diss	

(g) $2 = %

10 100 1k 10k 50k
0.1

1

10

100

1k

max[Lineage size]

T
im

e
[s
ec
] Diss + Opt3	

Standard SQL	

SampleSearch	

Lineage query	

MC(1k)	

Diss	

(h) Combining (a)-(c)

Fig. 18 Timing results: (a)-(d) For increasing database sizes and constant cardinalities, our optimizations approach deterministic SQL performance.
(e)-(h) For the TPC-H query, the best evaluation for dissociation is within a factor of 6 of that for deterministic query evaluation.

Size of query (k)

Q
u
e
ry

ti
m
e
[s
ec

]

2 3 4 5 6 7 8

10−1

100

101

2 3 4 5 6 7 8
1

2

5

14

42

132

429

Standard SQL	

Opt1-­‐‑3	

All plans	

Opt1-­‐‑2	

# minimal plans (right axis)	

Opt1	

(a) k-chain queries

Size of query (k)

Q
u
e
ry

ti
m
e
[s
ec

]

2 3 4 5 6 7

10−1

100

101

2 3 4 5 6 7
2

6

24

120

720

5040

Standard SQL	

Opt1-­‐‑3	
Opt1	

Opt1-­‐‑2	

# minimal plans (right axis)	

(b) k-star queries

Fig. 19 While the query complexity is exponential (number of min-
imal plans are shown on the right side), our optimizations can even
evaluate a very large number of minimal plans (here shown up to 429
for a 8-chain query and 5040 minimal plans (!) for a 7-star query).

could not produce a query plan”). In practice, this suggests
that dissociation allows a large space of optimizations de-
pending on the query and particular database instance that
can conservatively extend the space of optimizations per-
formed today in deterministic query optimizers.

Fig. 18e to Fig. 18g compare the running times for dis-
sociation with two minimal query plans (“Diss”), dissocia-
tion with semi-join reduction (“Diss + Opt3”), exact proba-
bilistic inference (“SampleSearch”), Monte Carlo with 1000
samples (“MC(1k)”), retrieving the lineage only (“Lineage
query”), and deterministic query evaluation without rank-

ing (“Standard SQL”) on setup 1. As experimental platform,
we use a 2.5 Ghz Intel Core i5 with 16G of main memory.
We run each query 5 times and take the average execution
time. We fixed $2∈ {’%red%green%’, ’%red%’, ’%’} and varied
$1 ∈ {500,1000, . . .10k}. Fig.18h combines all three previ-
ous plots and shows the times as function of the maximum
lineage size (i.e. the size of the lineage for the tuple with
the maximum lineage) of a query. We see here again that the
semi-join reduction speeds up evaluation considerably for
small lineage sizes (Fig. 18e shows speedups of up to 36).
For large lineages, however, the semi-join reduction is an
unnecessary overhead as most tuples are participating in the
join anyway (Fig.18f shows overhead of up to 2).

We would like to draw here an important connection to
[51] who introduces the idea of “lazy plans” and show orders
of magnitude performance improvements for safe plans by
computing confidences not after each join and projection but
rather at the very end of the plan. We note that our semi-
join reduction (Opt. 3) serve the same purpose with similar
performance improvements and also for safe queries. The
advantage of our semi-join reductions, however, is that we
do not require any modifications to the query engine.

18 Wolfgang Gatterbauer, Dan Suciu

$2 %red%green% %red% %red% % %
$1 500 10 000 500 10 000 500 10 000

max[lineage size] 5 48 131 1,941 2320 35040
total lineage size 42 1004 2218 44152 40000 800000

SampleSearch [sec] 0.43 0.66 1.23 100.71 75.47 −
MC(1k) [sec] 0.13 0.29 0.86 26.87 22.75 −

Dissociation & SJ [sec] 0.14 0.16 0.88 2.11 2.11 19.14
Dissociation [sec] 1.10 5.76 1.39 6.83 2.00 10.52

Lineage SQL [sec] 0.12 0.11 0.43 1.19 0.86 5.80
Deterministic SQL [sec] 0.12 0.13 0.42 0.73 0.61 1.93

Fig. 20 Overview timing results TPC-H.

Question 2 How does dissociation compare against other
probabilistic methods and standard query evaluation?

Result 2. The best evaluation strategy for dissociation
takes only a small overhead over standard SQL evaluation
and is considerably faster than other probabilistic meth-
ods for large lineages.

Fig. 18e to Fig. 18h show that SampleSearch does not scale
to larger lineages as the performance of exact probabilistic
inference depends on the tree-width of the Boolean lineage
formula, which generally increases with the size of the data.
In contrast, dissociation is independent of the treewidth. For
example, SampleSearch needed 780 sec for calculating the
ground truth for a query with max[lin] = 5.9k for which
dissociation took 3.0 sec, and MC(1k) took 42 sec for a
query with max[lin] = 4.2k for which dissociation took 2.4
sec. Dissociation takes only 10.5 sec for our largest query
$2 = ’%’ and $1 = 10k with max[lin] = 35k. Retrieving the
lineage for that query alone takes 5.8 sec, which implies that
any probabilistic method that evaluates the probabilities out-
side of the database engine needs to issue this query to re-
trieve the DNF for each answer and would thus have to eval-
uate lineages of sizes around 35k in only 4.7 (= 10.5 - 5.8)
sec to be faster than dissociation.10

Further optimizations.: We found that materialized views
performed better than just views. For example, the query
$1 = 500 and $2 = ’%red%green%’ takes over 3 sec with
common views instead of our reported 0.88 sec for mate-
rialized views. We also found that using standard database-
provided aggregates (which requires use to use the logarithm
for products) instead of user-defined aggregates consider-
ably notably speeds up query evaluation for large lineages.
Concretely, instead of every occurrence of ’ior(T.P) as P’ in
our queries, we used the following nested SQL expression:
’case when (sum(case T.P when 1 then -746 else ln(1-T.P) end))

< -745 then 1 else 1-exp(sum(case T.P when 1 then -746 else ln(1-

T.P) end)) end as P’. The outer case statement prevents errors
for deterministic tuples (i.e. with pi = 1), and the inner case
statement prevents errors due to underflows. As illustration

10 The time needed for the lineage query thus serves as minimum
benchmark for any probabilistic approximation. The reported times for
SampleSearch and MC are the sum of time for retrieving the lineage
plus the actual calculations, without the time for reading and writing
the input and output files for SampleSearch.

of the improvements, the query $1= 10k and $2= ’%’ would
take 42.2 sec instead of 20.7 with semi-join reduction, and
32.5 sec instead of 11.3 for the two individual query plans
when using a UDF instead of the above expression. We also
found that removing the outer case statement would reduce
the time by 5% (which could be used if there were no de-
terministic tuples in a table), and removing the inner case
by another 1% (which could be used if there was no risk
of underflows). An important by-product of using standard
database-defined aggregates is that dissociated queries (and
their optimized versions) can be executed with the help of
any standard relational database, even cloud-based data-
bases that commonly do not allow users to define their own
UDAs, e.g. Microsoft SQL Azure. To our best knowledge,
this is the currently only technique to approximate rank-
ings of probabilistic queries without any modifications to
the database engine nor performing any calculations out-
side the database.

7.2 Ranking experiments

For the following experiments, we are limited to those query
parameters $1 and $2 for which we can get the ground truth
(and results from MC) in acceptable time. We systematically
vary pimax between 0.1 and 1 (and thus avg[pi] between
0.05 and 0.5) and evaluate the rankings several times over
randomly assigned input tuple probabilities. We only keep
data points (i.e. results of individual ranking experiments)
for which the output probabilities are not too close to 1 to be
meaningful (max[pa]< 0.999999).

Question 3 How does ranking quality compare for our three
ranking methods and which are the most important factors
that determine the quality for each method?

Result 3. Dissociation performs better than MC which per-
forms better than ranking by lineage size.

Fig.21a shows averaged results of our probabilistic methods
for $2 = ’%red%green%’.11 Shaded areas indicate standard
deviations and the x-axis shows varying numbers of MC
samples. We only used those data points for which avg[pa]

of the top 10 ranked tuples is between 0.1 and 0.9 accord-
ing to ground truth (≈ 6k data points for dissociation and
lineage, ≈ 60k data points for MC, as we repeated each
MC simulation 10 times) as this the best regime for MC
according to Result 4. Figure 22 gives an overview of the
performance of each method, depending on the most impor-
tant parameters which we will explain next. We also evalu-
ated quality for dissociation and ranking by lineage for more
queries by choosing parameter values for $2 from a set of 28

11 Results for MC and other parameters of $2 are similar. However,
the evaluation time for the experiments becomes quickly infeasible.

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 19

10 30 100 300 1k 3k 10k
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of MC samples

M
A
P
@
1
0

0.472

0.596

0.727

0.823

0.894
0.936 0.9640.998

0.515

Dissociation	

MC with
1000 samples	

Ranking by lineage size	

(a) Result 3

0 0.9 0.99 0.999
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

avg[pa] of top 10 answers

M
A
P
@
1
0

Dissociation	

Ranking by lineage	

MC(10k)	

MC(1k)	

MC(100)	

MC(10)	

(b) Result 4

10 100 1k
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

max[lineage size]

M
A
P
@
1
0

pi=0.1	

pi=0.5	

avg[pi]=0.5	

avg[pi]=0.1	

(c) Result 5

1 2 3 4 5
0.7

0.75

0.8

0.85

0.9

0.95

1

avg[d]

M
A
P
@
1
0

avg[pi]=0.5	

Other full lines above top to
down: avg[pi]=0.05, 0.1, ..., 0.45	

(d) Result 6

1 2 3 4 5
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

avg[d]

av
g
[p

i]

MC be&er	

Dissociation be&er	
 MC(10k)	

MC(1k)	

MC(3k)	

(e) Result 6

00.20.40.60.81
0.8

0.85

0.9

0.95

1

Scaling factor f

M
A
P
@
1
0

avg[pi]=0.5	

avg[pi]=0.4	

avg[pi]=0.1	
 0.998	

0.959	

0.879	

(f) Result 8

Baseline: Random
ranking 	

Exact probabilistic
inference = GT	

Ranking by "ʺrelative
input weights"ʺ	

M
A
P@

10
	

38%

47%

15%

0.220

1

0.515

0.879

Ranking by lineage
size	

(g) Result 8

00.20.40.60.81
0.5

0.6

0.7

0.8

0.9

1

Scaling factor f

M
A
P
@
1
0

Scaled GT
w.r.t. GT	

0.810	

0.602	

0.854	

0.538	

 Scaled Diss	

w.r.t. Scaled GT	

Scaled Diss w.r.t. GT	

Lineage size
w.r.t. Scaled GT	

(h) Result 9

Fig. 21 Timing results: (a)-(c) For increasing database sizes and constant cardinalities, our optimizations approach deterministic SQL performance.
(d) Our optimizations can even evaluate very large number of minimal plans efficiently (here shown up to 429 for a 8-chain query). (e)-(h) For the
TPC-H query, the best evaluation for dissociation is within a factor of 6 of that for deterministic query evaluation. (i)-(p) Ranking experiments on
TPC-H: Assumptions for from each plot and conclusions are described below each respective result in the text.

strings, such as ’%r%g%r%a%n%d%’ and ’%re%re%’. The av-
erage MAP over all 28 choices for parameters $2 is 0.997
for ranking by dissociation and 0.520 for ranking by lineage
size (≈ 100k data points). Most of those queries have too
large of a lineage to evaluate MC. Note that ranking by lin-
eage always returns the same ranking for given parameters
$1 and $2, but the GT ranking would change with different
input probabilities.

Result 4. Ranking quality of MC increases with the number
of samples and decreases when the average probability of
the answer tuples avg[pa] is close to 0 or 1.

Fig. 21b shows the AP as a function of avg[pa] of the
top 10 ranked tuples according to ground truth by logarith-
mic scaling of the x-axis (each point in the plot averages
AP over≈ 450 experiments for dissociation and lineage and
over≈ 4.5k experiments for MC). We see that MC performs
increasingly poor for ranking answer tuples with probabili-
ties close to 0 or 1 and even approach the quality of ran-
dom ranking (MAP@10 = 0.22). This is so because because,
for these parameters, the probabilities of the top 10 answers
are very close, and MC needs many iterations to distinguish
them. Therefore, MC performs increasingly poorly for in-
creasing size of lineage but fixed average input probability

avg[pi] ≈ 0.5, as the average answer probabilities avg[pa]

will be close to 1. In order not to “bias against our com-
petitor,” we compared against MC in its best regime with
0.1 < avg[pa]< 0.9 in Fig.21a.

Result 5. Ranking by lineage size has good quality only
when all input tuples have the same probability.

Fig.21c shows that ranking by lineage is good only when
all tuples in the database have the same probability (labeled
by pi = const as compared to avg[pi] = const). This is a con-
sequence of the output probabilities depending mostly on
the size of the lineages if all probabilities are equal. Depen-
dence on other parameters, such as overall lineage size and
magnitude of input probabilities (here shown for pi = 0.1
and pi = 0.5), seem to matter only slightly.

Result 6. The quality of dissociation decreases with the av-
erage number of dissociations per tuple avg[d] and with
the average input probabilities avg[pi]. Dissociation per-
forms very well and notably better then MC(10k) if either
avg[d] or avg[pi] are small.

Each answer tuple a gets its score pa from one of two query
plans PS and PP that dissociate tuples in tables S and P, re-
spectively. For example, if the lineage size for tuple a is

20 Wolfgang Gatterbauer, Dan Suciu

100 and the lineage contains 20 unique suppliers from ta-
ble S and 50 unique parts from table P, then PS dissoci-
ates each tuple from S into 5 tuples and PP each tuple from
P into 2 tuples, on average. Most often, PP will then give
the better bounds as it has fewer average dissociations. Let
avg[d] be the mean number of dissociations for each tu-
ple in the dissociated table of its respective optimal query
plan, averaged across all top 10 ranked answer tuples. For
all our queries (even those with $1 = 10k and $2 = ’%’),
avg[d] stays below 1.1 as, for each tuple, there is usually one
plan that dissociates few variables. In order to understand
the impact of higher numbers of dissociations (increasing
avg[d]), we also measured AP for the ranking for each query
plan individually. Hence, for each choice of random pa-
rameters, we record two new data points – one for rank-
ing all answer tuples by using only PS and one for using
only PP – together with the values of avg[d] in the respec-
tive table that gets dissociated: this allows us to draw con-
clusions for a larger set of parameters. Fig. 21d plots MAP
values as a function of avg[d] of the top 10 ranked tuples on
the horizontal axis, and various values of avg[pi] (avg[pi] =

0.05,0.10, . . . ,0.5). Each plotted point averages over at least
10 data points (some have 10, other several 1000s). Dashed
lines show a fitted parameterized curve to the data points on
avg[pi] and avg[d]. The figure also shows the standard devia-
tions as shaded area for avg[pi] = 0.5. We see that the quality
is very dependent on avg[pi], as predicted by Prop. 23.

Notice that one should not confuse the AP score of
each of the two plans taken separately, with the AP score
of the min between the two plans; the ranking produced
by the minimal probability of the two plans can be much
better than each of the two rankings produced by each
plan separately. For example, one experiment ($1 = 10k,
and $2 = ’%re%bl%re%’) with maximal lineage size 106 has
avg[d] equal 1.053 and 1.099 for PP and PS, respectively.
None of the two plans gets perfect AP@10. However, using
the minimum score of both plans for each tuple individually
has avg[d] = 1.049 and perfect AP@10 = 1. We also eval-
uated MAP for ranking all tuples by the plan that has the
minimal mean avg[d] as compared to ranking by the mini-
mum scores for each tuple individually. MAP over all 100k
data points would then drop from 0.997 (Fig. 21g) to only
0.995, which shows the value of taking the minimum score
for each tuple individually.

Question 4 When does dissociation perform better than
MC?

Result 7. Dissociation performs very well and notably bet-
ter then MC(10k) if either avg[d] or avg[pi] is small.

Fig.21e maps the trade-off between dissociation and MC
for the two important parameters for the quality of dissoci-
ation (avg[d] and avg[pi]) and the number of samples for

Dissociation avg[pi] avg[d] MAP@10 stdv
0.05 5 0.997 0.011
0.25 2 0.967 0.036
0.50 1.1 0.968 0.035
0.50 2 0.894 0.061
0.50 5 0.833 0.074

MC avg[pa] trials MAP@10 stdv
0.1−0.9 10k 0.964 0.040
0.1−0.9 3k 0.936 0.055
0.1−0.9 1k 0.894 0.074
≈ 0.99 10k 0.945 0.046
≈ 0.99 3k 0.897 0.059
≈ 0.99 1k 0.827 0.076

Lineage size pi MAP@10 stdv
random 0.520 0.130
all equal 0.949 0.033

Random ranking MAP@10 stdv
0.220 0.112

Fig. 22 Quality results TPC-H: Our three methods, their respectively
most important parameters, and their average ranking qualities.

MC. For example, MC(1k) gives a better expected ranking
than dissociation only for the small area above the thick red
curve marked MC(1k). For MC, we used the test results
from Fig. 21a, i.e. assuming 0.1 < avg[pa] < 0.9 for MC
(recall that MC would perform notably worse if including
data points with avg[pa] > 0.9). Also recall that for large
lineages, having an input probability with avg[pi] = 0.5 will
often lead to answer probabilities close to 1 for which rank-
ing is not possible anymore (recall Fig.21c). Thus, for large
lineages, we need small input probabilities to have meaning-
ful interpretations. And for small input probabilities, disso-
ciation considerably outperforms any other method.

Question 5 How much would the ranking change according
to exact probabilistic inference if we scale down all input
tuples?

Result 8. If the probabilities of all input tuples are already
small, then scaling them further down does not affect the
ranking much.

This result is a more general statement about the applica-
bility of ranking over probabilistic databases, and motivated
by the observation that dissociation works surprisingly well
for small input probabilities. Here, we repeatedly evaluated
the exact ranking for 7 different parameterized queries over
randomly generated databases with one query plan that has
on average avg[d] ≈ 3 for two conditions: first on a proba-
bilistic database with avg[pi] input probabilities (we defined
the resulting ranking as GT); then again on a scaled version,
where all input probabilities in the database are multiplied
by the same scaling factor 1 > f > 0, then compare the new
ranking against GT. Fig.21f shows that if all input probabili-
ties are already small (and dissociation already works well),
then scaling has little to no effect on the ranking. However,
for avg[pi] = 0.5 (and thus many tuples with pi close to 1),
we have a few tuples with pi close to 1. These tuples are very
influential for the final ranking, but they loose their relative
importance if scaled down even slightly. Also note that even

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 21

for avg[pi] = 0.5, scaling a database by a factor f = 0.01
instead of f = 0.2 does not make a big difference. However,
the quality remains well above ranking by lineage size (!).
This suggests that the difference between ranking by lineage
size (MAP = 0.529) and the ranking on a scaled database
for f → 0 (MAP = 0.879) can be attributed to the relative
weights of the input tuples (we thus refer to this as “rank-
ing by relative input weights”). The remaining difference in
quality then comes from the actual probabilities assigned
to each tuple. Using MAP = 0.220 as baseline for random
ranking, 38% of the ranking quality can be found by the lin-
eage size alone vs. 85% by the lineage size plus the relative
weights of input tuples. The remaining 15% come from the
actual probabilities (Fig. 21g). While these particular num-
bers only hold for this particular scenario (the average of the
chosen 7 queries) and while the implicit assumption that the
quality of ranking were a linear scale of MA is debatable,
we think that this “thought experiment” provides an inter-
esting way to think about “the value” of exact probabilistic
inference.

Question 6 Does the expected ranking quality of dissocia-
tion decrease to random ranking for increasing fractions of
dissociation (just like MC does for decreasing number of
samples)?

Result 9. The expected performance of dissociation for in-
creasing avg[d] for a particular query is lower bounded by
the quality of ranking by relative input weights.

Here, we use a similar setup as before and now compare
various rankings against each other: SampleSearch on the
original database (“GT”); SampleSearch on the scaled data-
base (“Scaled GT”); dissociation on the scaled database
(“Scaled Diss”); and ranking by lineage size (which is un-
affected by scaling). From Fig. 21h, we see that the quality
of Scaled Diss w.r.t. Scaled GT → 1 for f → 0 since dis-
sociation works increasingly well for small avg[pi] (recall
Prop. 23). We also see that Scaled Diss w.r.t. GT decreases
towards Scaled GT w.r.t. GT for f → 0. Since dissociation
can always reproduce the ranking quality of ranking by rel-
ative input weights by first downscaling the database (thus
though loosing information about the actual probabilities)
the expected quality of dissociation for smaller scales does
not decrease to random ranking but rather to ranking by rel-
ative weights. Note this result only holds for the expected
MAP; any particular ranking can still be very much off.

8 Related Work

Probabilistic databases. Current approaches to query evalu-
ation on probabilistic databases can be classified into three
categories (Fig. 23): (i) incomplete approaches identify
tractable cases either at the query-level [15,16,26] or the

all
qu

er
ies

all
da

ta
ex

ac
t s

co
re

pe
rfo

rm
an

ce
re

l.
alg

eb
ra

Safe query plans [15,16] • • • • }
(1) incomplete

Read-once formulas [50,66] • • •
Exact prob. inference [42,51] • • • } (2) slow

Approx. prob. inference [52] • • ◦ }
(3) approximate

Monte Carlo [41,45,59] • • ◦

Fig. 23 Current techniques for evaluating probabilistic queries are ei-
ther (1) incomplete and work only on a subset of queries and data in-
stances, or (2) always work but may become arbitrarily slow on general
data instances, or (3) only approximate the actual score.

data-level [50,62,66]; (ii) exact approaches [5,42,50,51,
65] work well on queries with simple lineage expressions,
but perform poorly on database instances with complex lin-
eage expressions. (iii) approximate approaches either apply
general purpose sampling methods [41,44,45,59], or ap-
proximate the number of models of the Boolean lineage
expression [25,52,60]. We note that the approach described
in this paper generalizes several of these techniques: our al-
gorithm returns the exact score if the query is safe [15,51]
or data-safe [42].

Lifted inference. Lifted inference was introduced in the
AI literature as an approach to efficient probabilistic in-
ference that exploits symmetries at the grounded level of
a first-order formula [55]. This research evolved indepen-
dently of that on probabilistic databases, and the two have
many analogies: a formula is called domain liftable iff its
data complexity is in polynomial time [40], which is the
same as a safe query in probabilistic databases, and the FO-
d-DNNF circuits described in [20] correspond to safe plans.
See [19] for a recent discussion on the similarities and dif-
ferences.

Representing Correlations. The most popular approach
to represent correlations between the tuples in a probabilistic
database is by a Markov Logic network (MLN), which is a
set of soft constraints [22]. Quite remarkably, all complex
correlations introduced by an MLN can be rewritten into a
query over a tuple-independent probabilistic database [33,
38,43]. Using these techniques, the work described in this
paper extends to MLNs as well.

Dissociation. We introduced dissociation first in the
workshop paper [29] as a generalization of graph propa-
gation [21] to hypergraphs. In [30] we provide a general
framework for approximating the probability of Boolean
functions with both upper and lower bounds. We also il-
lustrate how upper bounds to hard queries can be com-
plemented by lower bounds; those lower bounds, however
are not as tight as upper bounds, which is why we only
use upper bounds for ranking in this paper. Dissociation
is closely related to a number of recent approaches in the
graphical model and constraint satisfaction literature which

22 Wolfgang Gatterbauer, Dan Suciu

approximate an intractable problem with a tractable relaxed
version after treating multiple occurrences of variables or
nodes as independent or ignoring some equivalence con-
straints. Those approaches are usually referred to as relax-
ation [18]. See [30] for a detailed discussion on the simi-
larities and differences. Query dissociation is also related to
recent work that gives upper bounds on the partition func-
tion of a Markov random field. [70] develops a method to
obtain optimal upper bounds by replacing the original distri-
bution using a collection of tractable distributions, i.e. such
for which the partition function can be calculated efficiently
by a recursive algorithm. In our work, efficient approxima-
tions of distributions at the schema level are those that allow
a safe query plan, and can thus be evaluated in a standard
DBMS.

9 Conclusions and Outlook

This paper developed a new scoring function called propa-
gation for ranking query results over probabilistic databases.
Our semantics is based on a sound and principled theory of
query dissociation, and can be evaluated efficiently in an off-
the-shelf relational database engine for any type of self-join-
free conjunctive query. We proved that the propagation score
is an upper bound to query reliability, that both scores coin-
cide for safe queries, and that propagation naturally extends
the case of safe queries to unsafe queries. We further showed
that the scores for chain queries before and after dissociation
correspond to two well-known scoring functions on graphs,
namely network reliability (which is #P-hard) and propaga-
tion (which is related to PageRank and in PTIME), and that
our dissociation scores are thus generalizations of the prop-
agation score from graphs to hypergraphs. We calculated
the propagation score by evaluating a fixed number of safe
queries, each providing an upper bound on the true probabil-
ity, then taking their minimum. We provided algorithms that
takes into account schema information to enumerate only
the minimal necessary plans among all possible plans, and
prove our method to be a strict generalization of all known
results of PTIME self-join free conjunctive queries. We de-
scribed relational query optimization techniques that allow
us to evaluate all minimal queries in a single query and very
fast. Our evaluations show that the optimizations of our ap-
proach bring probabilistic query evaluation close to standard
query evaluation while providing high ranking quality. In
future work, we plan to generalize the approach to full first-
order queries.

Acknowledgements This work was supported in part by NSF grants
IIS-0915054 and IIS-1115188. We like to thank Abhay Jha for help
with the experiments in the workshop version of this paper [29]. WG
would also like to thank Manfred Hauswirth for a small side comment
in 2007 that was crucial for the development of the ideas in this paper.

References

1. Microsoft SQL Server 2008 R2: http://www.microsoft.com/
sqlserver.

2. PostgreSQL 9.2: http://www.postgresql.org/download/.
3. TPC-H benchmark: http://www.tpc.org/tpch/.
4. Antoine Amarilli, Yael Amsterdamer, and Tova Milo. Uncertainty

in crowd data sourcing under structural constraints. In DASFAA
Workshops, pages 351–359, 2014.

5. Lyublena Antova, Thomas Jansen, Christoph Koch, and Dan
Olteanu. Fast and simple relational processing of uncertain data.
In ICDE, pages 983–992, 2008.

6. Lyublena Antova, Christoph Koch, and Dan Olteanu. MayBMS:
Managing incomplete information with probabilistic world-set de-
compositions. In ICDE, pages 1479–1480, 2007.

7. Paul Beame, Jerry Li, Sudeepa Roy, and Dan Suciu. Model count-
ing of query expressions: Limitations of propositional methods. In
ICDT, pages 177–188, 2014.

8. Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen
Chakrabarti, and S. Sudarshan. Keyword searching and browsing
in databases using BANKS. In ICDE, pages 431–440, 2002.

9. Sergey Brin and Lawrence Page. The anatomy of a large-scale hy-
pertextual web search engine. Computer Networks, 30(1-7):107–
117, 1998.

10. Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Es-
tevam R. Hruschka Jr., and Tom M. Mitchell. Toward an architec-
ture for never-ending language learning. In AAAI, 2010.

11. Yang Chen and Daisy Zhe Wang. Knowledge expansion over
probabilistic knowledge bases. In SIGMOD, pages 649–660,
2014.

12. Charles J. Colbourn. The combinatorics of network reliability.
Oxford University Press, New York, 1987.

13. Yves Crama and Peter L. Hammer. Boolean Functions: Theory,
Algorithms, and Applications. Cambridge University Press, 2011.

14. Fabio Crestani. Application of spreading activation techniques in
information retrieval. Artif. Intell. Rev., 11(6):453–482, 1997.

15. Nilesh N. Dalvi and Dan Suciu. Efficient query evaluation on
probabilistic databases. VLDB J., 16(4):523–544, 2007.

16. Nilesh N. Dalvi and Dan Suciu. The dichotomy of probabilistic
inference for unions of conjunctive queries. J. ACM, 59(6):30,
2012.

17. DeepDive: http://deepdive.stanford.edu/.
18. Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. Lifted

relax, compensate and then recover: From approximate to exact
lifted probabilistic inference. In UAI, pages 131–141, 2012.

19. Guy Van den Broeck and Dan Suciu. Lifted probabilistic inference
in relational models. In UAI tutorials, 2014.

20. Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse
Davis, and Luc De Raedt. Lifted probabilistic inference by first-
order knowledge compilation. In IJCAI, pages 2178–2185, 2011.

21. Landon Detwiler, Wolfgang Gatterbauer, Brent Louie, Dan Suciu,
and Peter Tarczy-Hornoch. Integrating and ranking uncertain sci-
entific data. In ICDE, pages 1235–1238, 2009.

22. Pedro Domingos and Daniel Lowd. Markov Logic: An Interface
Layer for Artificial Intelligence. Morgan & Claypool Publishers,
2009.

23. X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy,
T. Strohmann, S. Sun, and W. Zhang. Knowledge vault: A web-
scale approach to probabilistic knowledge fusion. In KDD, 2014.

24. Beyza Ermis and Guillaume Bouchard. Scalable binary tensor
factorization. In UAI, 2014.

25. Robert Fink and Dan Olteanu. On the optimal approximation of
queries using tractable propositional languages. In ICDT, pages
174–185, 2011.

26. Robert Fink and Dan Olteanu. A dichotomy for non-repeating
queries with negation in probabilistic databases. In PODS, pages
144–155, 2014.

http://www.microsoft.com/sqlserver
http://www.microsoft.com/sqlserver
http://www.postgresql.org/download/
http://www.tpc.org/tpch/
http://deepdive.stanford.edu/

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 23

27. Norbert Fuhr and Thomas Rölleke. A probabilistic relational al-
gebra for the integration of information retrieval and database sys-
tems. ACM Trans. Inf. Syst., 15(1):32–66, 1997.

28. Wolfgang Gatterbauer, Stephan Günnemann, Danai Koutra, and
Christos Faloutsos. Linearized and Turbo Belief Propagation, June
2014. (CoRR abs/1406.7288).

29. Wolfgang Gatterbauer, Abhay K. Jha, and Dan Suciu. Dissoci-
ation and propagation for efficient query evaluation over proba-
bilistic databases. In Proc. 4th International VLDB workshop on
Management of Uncertain Data (MUD), pages 83–97, 2010.

30. Wolfgang Gatterbauer and Dan Suciu. Oblivious bounds on the
probability of Boolean functions. ACM Trans. Database Syst.
(TODS), 39(1):5, 2014.

31. V. Gogate and R. Dechter. SampleSearch: Importance sampling in
presence of determinism. Artificial Intelligence, 175(2):694–729,
2011.

32. Vibhav Gogate and Pedro Domingos. Formula-based probabilistic
inference. In UAI, pages 210–219, 2010.

33. Vibhav Gogate and Pedro Domingos. Probabilistic theorem prov-
ing. In UAI, pages 256–265, 2011.

34. Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model
counting. In Handbook of Satisfiability, pages 633–654. 2009.

35. Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan.
Learning influence probabilities in social networks. In WSDM,
pages 241–250, 2010.

36. Erich Grädel, Yuri Gurevich, and Colin Hirsch. The complexity
of query reliability. In PODS, pages 227 – 234, 1998.

37. Ramanathan V. Guha, Ravi Kumar, Prabhakar Raghavan, and An-
drew Tomkins. Propagation of trust and distrust. In WWW, pages
403 – 412, 2004.

38. Adnan Darwiche Guy Van den Broeck, Wannes Meert. Skolem-
ization for weighted first-order model counting. In KR, 2014. (to
appear).

39. Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Ger-
hard Weikum. Yago2: A spatially and temporally enhanced knowl-
edge base from wikipedia. Artif. Intell., 194:28–61, 2013.

40. Manfred Jaeger and Guy Van den Broeck. Liftability of proba-
bilistic inference: Upper and lower bounds. In StaRAI, 2012.

41. Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christo-
pher M. Jermaine, and Peter J. Haas. MCDB: a Monte Carlo ap-
proach to managing uncertain data. In SIGMOD, pages 687–700,
2008.

42. Abhay Jha, Dan Olteanu, and Dan Suciu. Bridging the gap be-
tween intensional and extensional query evaluation in probabilis-
tic databases. In EDBT, pages 323–334, 2010.

43. Abhay Jha and Dan Suciu. Probabilistic databases with
markoviews. PVLDB, 5(11):1160–1171, 2012.

44. Shantanu Joshi and Christopher M. Jermaine. Sampling-based es-
timators for subset-based queries. VLDB J., 18(1):181–202, 2009.

45. Oliver Kennedy and Christoph Koch. Pip: A database system for
great and small expectations. In ICDE, pages 157–168, 2010.

46. Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge Uni-
versity Press, New York, NY, USA, 2008.

47. Frank McSherry and Marc Najork. Computing information re-
trieval performance measures efficiently in the presence of tied
scores. In ECIR, pages 414–421, 2008.

48. Guido Moerkotte. Building query compilers. Draft version
03.03.09, Sept. 2009.

49. Feng Niu, Christopher Ré, AnHai Doan, and Jude W. Shavlik.
Tuffy: Scaling up statistical inference in markov logic networks
using an RDBMS. PVLDB, 4(6):373–384, 2011.

50. Dan Olteanu and Jiewen Huang. Using OBDDs for efficient query
evaluation on probabilistic databases. In SUM, pages 326–340,
2008.

51. Dan Olteanu, Jiewen Huang, and Christoph Koch. Sprout: Lazy
vs. eager query plans for tuple-independent probabilistic data-
bases. In ICDE, pages 640–651, 2009.

52. Dan Olteanu, Jiewen Huang, and Christoph Koch. Approximate
confidence computation in probabilistic databases. In ICDE, pages
145–156, 2010.

53. Jeff Pasternack and Dan Roth. Knowing what to believe (when
you already know something). In COLING, pages 877–885, 2010.

54. Judea Pearl. Probabilistic reasoning in intelligent systems: net-
works of plausible inference. Morgan Kaufmann Publishers, San
Mateo, Calif., 1988.

55. David Poole. First-order probabilistic inference. In IJCAI, pages
985–991, 2003.

56. M. R. Quillian. Semantic memory. In Semantic Information Pro-
cessing, pages 227–270. MIT Press, 1968.

57. Rohit Raghunathan, Sushovan De, and Subbarao Kambhampati.
Bayesian networks for supporting query processing over incom-
plete autonomous databases. J. Intell. Inf. Syst., 42(3):595–618,
2014.

58. Christopher Ré, Nilesh N. Dalvi, and Dan Suciu. Query evaluation
on probabilistic databases. IEEE Data Eng. Bull., 29(1):25–31,
2006.

59. Christopher Ré, Nilesh N. Dalvi, and Dan Suciu. Efficient top-k
query evaluation on probabilistic data. In ICDE, pages 886–895,
2007.

60. Christopher Ré and Dan Suciu. Approximate lineage for proba-
bilistic databases. PVLDB, 1(1):797–808, 2008.

61. Dan Roth. On the hardness of approximate reasoning. Artif. Intell.,
82(1-2):273–302, 1996.

62. Sudeepa Roy, Vittorio Perduca, and Val Tannen. Faster query an-
swering in probabilistic databases using read-once functions. In
ICDT, pages 232–243, 2011.

63. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. In Parallel
distributed processing: explorations in the microstructure of cog-
nition, vol. 1, chapter Learning internal representations by error
propagation, pages 318–362. MIT Press, 1986.

64. Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin,
Raymond A. Lorie, and Thomas G. Price. Access path selection
in a relational database management system. In SIGMOD, pages
23 – 34, 1979.

65. Prithviraj Sen and Amol Deshpande. Representing and querying
correlated tuples in probabilistic databases. In ICDE, pages 596–
605, 2007.

66. Prithviraj Sen, Amol Deshpande, and Lise Getoor. Read-once
functions and query evaluation in probabilistic databases. PVLDB,
3(1):1068–1079, 2010.

67. Ajit Paul Singh and Geoffrey J. Gordon. Relational learning via
collective matrix factorization. In KDD, pages 650–658, 2008.

68. Julia Stoyanovich, Susan B. Davidson, Tova Milo, and Val Tan-
nen. Deriving probabilistic databases with inference ensembles.
In ICDE, pages 303–314, 2011.

69. Moshe Y. Vardi. The complexity of relational query languages
(extended abstract). In STOC, pages 137–146, 1982.

70. Martin J. Wainwright, Tommi Jaakkola, and Alan S. Willsky. A
new class of upper bounds on the log partition function. IEEE
Transactions on Information Theory, 51(7):2313–2335, 2005.

71. Jason Weston, Andre Elisseeff, Dengyong Zhou, Christina S
Leslie, and William Stafford Noble. Protein ranking: from local to
global structure in the protein similarity network. Proc Natl Acad
Sci U S A, 101(17):6559–63, Apr 2004.

72. Xiaoxin Yin, Jiawei Han, and Philip S. Yu. Truth discovery
with multiple conflicting information providers on the web. IEEE
Trans. Knowl. Data Eng., 20(6):796–808, 2008.

73. Kai Zeng, Shi Gao, Barzan Mozafari, and Carlo Zaniolo. The
analytical bootstrap: a new method for fast error estimation in ap-
proximate query processing. In SIGMOD, pages 277–288, 2014.

74. Ce Zhang and Christopher Ré. Towards high-throughput Gibbs
sampling at scale: a study across storage managers. In SIGMOD,
pages 397–408, 2013.

http://arxiv.org/pdf/1406.7288
http://arxiv.org/abs/1406.7288

24 Wolfgang Gatterbauer, Dan Suciu

A Nomenclature

R,S,T,U relational tables
ri,si, ti,ui tuple identifiers
A,B,C attribute names
a, . . . , f ,s, t constants
s, t source and target nodes
x,y,z variables
q query
g atom or subgoal
sg(x) set of subgoals that contain x
Var(q) set of variables of a query q or subgoal g
HVar(q) set of head variables of a query q or a plan P
EVar(q) set of existential variables: EVar(q)=Var(q)−HVar(q)
TopSets(q) set of top sets of query q: a top set is a minimal subset of

EVar(q), removing of which disconnects q
SVar(q) separator variables of a query q: only those existential

variables that appear in all probabilistic subgoals
p concrete probability
r(q) reliability score of q
ρ(q) propagation score of q
φ ,ψ Boolean expression
P [φ] probability of a Boolean expression
m number of subgoals
n number of variables
D database instance
A active domain
∆ dissociation, collection of m sets of variables,

∆ = (y1, . . . ,ym) with yi ⊆ Var(q)−Var(gi)

q∆ ,q(i) dissociated query
P query plan
onp
[
. . .
]

probabilistic join operator in prefix notation
π p

x ,π
p
−y probabilistic project operators: onto x, or project y away

score(P) score of a query plan
JVar join variables for a join operator
RVar(P) root variables of plan P: P = π p

−xP′

P set of plans
qP query consisting of all atoms mentioned in plan P
Ryi

i dissociated relation Ri(xi) on variables yi: Ri(xi,yi)
R̃, x̃ short notation for dissociated relation or variable
x unordered set or ordered tuple
[a/x] substitute value a for variable x

B Section 2: Proof Proposition 5

Proof (Prop. 5: Safety) (1) is proven in [15]; we prove here only (2):
(a): Hierarchical query⇒ unique safe plan: We prove the follow-

ing statement by induction: Let x be a set of root variables for a query
q(x), i.e. every variable in x occurs in every atom in q; then q(x) ad-
mits a unique safe plan either as onp

[
P1, . . . ,Pk

]
or as π p

x P: Define a
graph where the nodes are the atoms of q and any two nodes are con-
nected by an edge iff they share an existential variable, i.e. a variable
not occurring in x. If the graph has k connected components repre-
sented by the queries q1, . . . ,qk, then q≡onp

[
q1, . . . ,qk

]
, and we apply

induction hypothesis to each qi(x). If the graph has a single connected
component with additional variables y 6= /0, then q≡ π p

x q(x,y), and we
apply induction hypothesis to q(x,y). Finally, if the graph has a single
component and only the variables x, then q has a single atom, hence
q≡ R(x).

(b): Safe plan ⇒ hierarchical query: We construct inductively
q from its derivation by noting that onp

[
P1, . . . ,Pk

]
≡ q1 ∧ . . . ∧ qk,

where q1, . . . ,qk are the hierarchical queries obtained inductively from

P1, . . . ,Pk, and π p
x P≡ ∃x.q, where q is obtained inductively from P. It

is easy to check inductively that all resulting queries are hierarchical.
ut

C Section 3: Proof Theorem 12

Before we prove Theorem 12, we need to develop some notions and
lemmas for Boolean functions and their probabilistic interpretation.

C.1 Preliminaries

Boolean notions [13]. Let x = {x1, . . . ,xn} be a set of n Boolean vari-
ables. We use the bar sign (e.g. x) to denote an ordered or unordered
set, depending on the context. A truth assignment or valuation θ for
x is an n-vector in {0,1}n, i.e. it is a function θ : x→ {0,1}n where
θi = θ(xi) denotes the value assigned to xi by θ . A positive term or
conjunct is c =

∧
i∈c xi, where c ⊆ x. Note that variable c represents

a conjunct, whereas the set c represents the variables of c. A positive
DNF (Disjunctive Normal Form) of size m is an expression of the form
∨m

j=1 c j =
∨m

j=1

(∧
i∈c j

xi

)
, where each c j (j ∈ {1, . . . ,m}) is a positive

term of the DNF. A positive k-uniform DNF is one where each term
contains exactly k variables. A positive k-partite k-uniform DNF is one
where the set of variables x can be partitioned into k sets (x1, . . . ,xk) so
that each term consists of exactly k variables with each variable coming
from a different partition.

Event expressions. We assign to each Boolean variable xi a primitive
event (we do not formally distinguish between the independent random
variable xi and the event xi that it is true) which is true with probabil-
ity P [xi] = pi. All primitive events are assumed to be independent, i.e.
P [xi∧ x j] = P [xi] ·P [x j] = pi · p j , ∀i, j ∈ {1, . . . ,n} with i 6= j. We are
interested in the computation of probabilities of composed events [27]
and write φ(x) to indicate that x = Var(φ) is the set of variables ap-
pearing in the expression φ . Our focus is on calculating the probability
of positive DNF event expressions. Given independence of primitive
events, the probability of a conjunct c is

P [c] = ∏
i∈c

P [xi] = ∏
i∈c

pi

Using the inclusion-exclusion principle, the event probability for a pos-
itive DNF is then

P

[
m∨

j=1

c j

]
=

m

∑
k=1

(−1)k−1 ∑
1≤ j1<...< jk≤m

P

[
k∧

i=1

c ji

]
(3)

Correlations and positive DNF dissociation. Two events φ1 and φ2 are
positively correlated iff

P [φ1∧φ2]> P [φ1] ·P [φ2] ,

By application of the inclusion-exclusion principle, it follows

P [φ1∨φ2]< 1−P [¬φ1] ·P [¬φ2]

Lemma 38 (Positive correlations of terms) Two positive terms c1
and c2 over the random variables x are positively correlated if and
only if neither of them has probability 0, and they have at least one
variable xi in common with pi 6= 1.

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 25

Proof (Lemma 38) Assume c1 and c2 have a possibly empty set
c1∩2 := c1 ∩ c2 of variables in common. We use c1\2 for c1 \ c2 and
can write P [c1] = ∏i∈c1

pi = ∏i∈c1\2 pi ·∏i∈c1∩2
pi. Hence,

P [c1] ·P [c2] = ∏
i∈c1\2

pi · ∏
i∈c2\1

pi · ∏
i∈c1∩2

p2
i

whereas

P [c1∧ c2] = ∏
i∈c1\2

pi · ∏
i∈c2\1

pi · ∏
i∈c1∩2

pi

Therefore,

P [c1] ·P [c2] = P [c1∧ c2] · ∏
i∈c1∩2

pi

from which the proposition follows. ut

Corollary 39 (Positive correlations of terms) For any two positive
terms c1 and c2 over the random variables x, the following hold:

P [c1∧ c2]≥ P [c1] ·P [c2]

P [c1∨ c2]≤ 1−P [¬c1] ·P [¬c2]

Definition 40 (Expression dissociation) Assume a Boolean expres-
sion φ over variables x. A dissociation of φ is a new expression φ ′ over
variables x′ so that there exists a substitution θ : x′→ x that transforms
the new into the original expression: φ ′(θ(x′)) = φ(x). The probability
of the new event expression P [φ ′] is evaluated by assigning each new
variable independently the probability corresponding to its substitution
in its event expression: P [x′] = P [θ(x′)] ,∀x′ ∈ x′.

Example 41 (Expression dissociation) Take the two DNF expressions:

φ(x1,x2,x3,x4) = x1x3∨ x1x4∨ x2x4

φ ′(x1,x2,x3,x4,x′4) = x1x3∨ x1x4∨ x2x′4

Then φ ′(x′) is a dissociation of φ(x) because φ(x) = φ ′(θ(x′)) for
the substitution θ = {(x1,x1),(x2,x2),(x3,x3),(x4,x4), (x′4,x4)}. Fur-
ther, P [φ] = p1 p3 + p1 p4 + p2 p4 − p1 p3 p4 − p1 p3 p2 p4 − p1 p4 p2 +
p1 p3 p4 p2, whereas P [φ ′] = p1 p3+ p1 p4+ p2 p4− p1 p3 p4− p1 p3 p2 p4−
p1 p2

4 p2 + p1 p3 p2
4 p2. Note that

P
[
φ ′
]
−P [φ] = (p1 p2 p3 p4− p1 p2 p4)(p4−1)

= (p1 p2 p4)(1− p3)(1− p4)≥ 0 .

Lemma 42 (Positive DNF dissociation) For every dissociation φ ′(x′)
of a positive DNF φ(x), the following holds: P [φ ′]≥ P [φ].

Proof (Lemma 42) We will proceed in two steps. We first show that
(a) the proposition holds for any single-step dissociations. We then (b)
infer by induction for multi-step dissociations.

(a) Single-step dissociation: A single step dissociation is one
where |x′| = |x|+ 1, i.e. there is exactly one more variable appear-
ing in the dissociation φ ′ then φ . We know that the substitution θ must
be surjective, i.e. each variable ∈ x must be mapped to at least once,
since all variables must appear at least once in φ ′(θ(x′)) = φ(x). It
follows that the size |x′| ≥ |x|. It follows that a single-step dissociation
is the simplest dissociation for which φ and φ ′ are not trivially isomor-
phic. From the pigeonhole principle, it also follows that there must be
exactly two variables in x′ that are mapped to the same variable in x. It
also follows that the dissociation φ ′ must have the same structure, i.e.
that there must be a one-to-one mapping between conjuncts in φ and
φ ′ with corresponding conjuncts containing the same number of vari-
ables, and that two variables that θ maps to the same variable cannot
appear in the same conjunct.

We assume w.l.o.g. that θ(x1) = θ(x′1) = x1 and θ(xi) = xi,∀i ∈
{2, . . . ,n}. W.l.o.g., we further assume that x1 appears in the terms
c1, . . . ,ck (k ≤ m) of the DNF φ , but not in ck+1, . . . ,cm. W.l.o.g.,
we further consider a dissociation φ ′ where x1 appears in the terms
c1, . . . ,cl (1 ≤ l < k) and x′1 in the terms cl+1, . . . ,ck. We write c∗j for
c j = x1c∗j ,(j∈{1, . . . ,k}), i.e. a conjunct c1, . . . ,ck without the variable
x1. We can then write φ(x) and φ ′(x′), respectively, as

φ(x) =
(

x1∧
l∨

j=1

c∗j
)
∨
(

x1∧
k∨

j=l+1

c∗j
)
∨
(m∨

j=k+1

c j

)

φ ′(x′) =
(

x1∧
l∨

j=1

c∗j
)
∨
(

x′1∧
k∨

j=l+1

c∗j
)
∨
(m∨

j=k+1

c j

)

with (1≤ l < k≤m). Substituting the disjunctive expressions with Di,
we can write more compactly

φ(x) = x1D1∨ x1D2∨D3

φ ′(x′) = x1D1∨ x′1D2∨D3

Using the inclusion-exclusion principle, we can write the event proba-
bilities as

P [φ] = p1P [D1]+ p1P [D2]+P [D3]

− p1P [D1D2]− p1P [D1D3]− p1P [D2D3]+ p1P [D1D2D3]

P
[
φ ′
]
= p1P [D1]+ p1P [D2]+P [D3]

− p2
1P [D1D2]− p1P [D1D3]− p1P [D2D3]+ p2

1P [D1D2D3]

Comparing the two expressions, we get

P
[
φ ′
]
−P [φ] = p1(1− p1)(P [D1D2]−P [D1D2D3])≥ 0 (4)

since P [ψ1]≥ P [ψ1ψ2].
(b) Multi-step dissociation: A k-step dissociation is one where

single-step dissociations are consecutively applied (φ → φ ′ → φ ′ →
. . .→ φ (k)). It trivially follows from transitivity that the proposition
also holds for a k-step dissociation. It also follows that a k-step disso-
ciation φ (k) has |x(k)|= |x|+ k variables.

Vice versa, every dissociation with |x′|= |x|+k can be constructed
as a k-step dissociation as follows: Denote the number that a variable
xi ∈ x is mapped to in θ by k(i). Then consider the following multi-
step dissociation with k = ∑n

i=1 k(i)− 1 steps: Iterate over all vari-
ables xi. For each variable with has k(i) > 1 dissociate the variable in
k(i)−1 steps so that afterwards the substitution θ(xi) = θ(x′i) = . . .=

θ(x(k−1)
i) = xi. This can be done by partitioning the appearances of xi

in φ according to the appearances of the variables in φ ′ and dissociat-
ing these appearances one after the other. Hence, the proposition holds
for any dissociation. ut

Note that Equation 4 holds in any of 3 conditions:
(i) p1 is either 0 or 1.

(ii) D1 = 0 or D2 = 0, which requires that in all conjuncts c∗j of either
D1 or D2 (written as D1/2) there must exist at least one variable
with 0 probability: ∀c∗j ∈ D1/2.∃i.xi ∈ c∗j : pi = 0.

(iii) D3 = 1, which requires that there is at least one conjunct in which
x1 does not appear that is 1: ∃c j ∈ D3.∀i.xi ∈ c j : pi = 1.

C.2 Actual proof of Theorem 12 (Partial dissociation order)

Proof (Theorem 12: Partial dissociation order) (a) We have to show
both directions and start with

∆ � ∆ ′ ⇒ ∀D : r(q∆)≥ r(q∆ ′)

26 Wolfgang Gatterbauer, Dan Suciu

i.e. whenever two dissociations are comparable, then we know which
has a higher reliability scores on every database instance D. This fol-
lows from Lemma 42 and the observation that there is a one-to-one
correspondence between a query dissociations and a positive DNF dis-
sociation. Concretely, at the level of its lineage expression, a query
dissociation is a dissociation of a k-partite DNF.

(b) We next prove

∆ � ∆ ′ ⇐ ∀D : r(q∆)≥ r(q∆ ′)

i.e. whenever r(q∆)≥ r(q∆ ′) holds for two dissociations over any data-
base instance D, then ∆ � ∆ ′ in the partial dissociation order. In other
words, for any two dissociations ∆ and ∆ ′ of a query q that are incom-
parable, i.e. ∆ 6� ∆ ′ and ∆ 6� ∆ ′, there exist two database instances so
that the dissociated probability of either dissociation becomes bigger.
We prove this by showing the contrapositive

∆ 6� ∆ ′ ⇒ ∃D : r(q∆)< r(q∆ ′)

i.e. for any two dissociations ∆ and ∆ ′ of q, with ∆ 6� ∆ ′, there exists a
database instance so that r(q∆)< r(q∆ ′). We will achieve this by con-
structing a database instance D so that r(q∆) = r(q), but r(q∆ ′)> r(q):
Since ∆ 6�∆ ′, there must exist one variable xi ∈ y j that is dissociated in
relation R j of ∆ ′ which is not dissociated in ∆ . W.l.o.g. let x1 ∈ Var(q)
be this variable, and R1 be the relation. W.l.o.g. consider the active
domain A of the database to be {a,b}. Then construct the following
database instance D:
1. For each relation Ri 6= R1 with x1 6∈ Var(Ri), insert one determin-

istic tuple (p = 1) with ’a’ as value for each attribute xi ∈ Var(Ri):

Ri(a,a, . . . ,a), p = 1

2. For each relation Ri 6= R1 with x1 ∈ Var(Ri), insert two determin-
istic tuples (p = 1) with ’a’ as value for each attribute xi 6= x1, and
either ’a’ or ’b’ as value for attribute x1:

Ri(a,a, . . . ,a), p = 1

Ri(b,a, . . . ,a), p = 1

3. For relation R1 with x1 6∈ Var(Ri), insert one uncertain tuple (p =
0.5) with ’a’ as value for each attribute:

R1(a,a, . . . ,a), p = 0.5

Then for every dissociation ∆ for which x1 6∈ y1: r(q∆) = r(q) =
0.5. This follows from two facts: (i) certain tuples that get dissociated
do not change the query probability; (ii) the only probabilistic tuple in
R1 only gets dissociated if the dissociation includes x1 since all other
variables only include one single value in the active domain. On the
other hand, for every dissociation ∆ ′ for which x1 ∈ y1: r(q∆ ′)= 0.75>
r(q). Hence, we have shown that for D: r(q∆)< r(q∆ ′). ut

D Section 3: Proof Proposition 17

Proof (Prop. 17: connection to networks) Note that we use digraphs
to enforce that each path from s to t has exactly k edges.

(a) We first establish the connection between graph reliability and
query reliability. The first claim is obvious: a possible world contains
a path from s to t iff the query is true on that world: The chain query
is true exactly if, in a randomly chosen world, there is a set of tuples
of each relation that forms at least one output tuple. This corresponds
exactly to the graph reliability, i.e. the probability that the nodes s and
t are connected in a randomly chosen subgraph.

(b) We next establish the connection between propagation in net-
works and dissociation in databases. Consider the unique safe query
plan for the dissociated query q∆ :

P = π p
−xk

onp[R /0
k(xk, t),π

p
−xk−1

onp[R /0
k−1(x[k−1,k]) . . . ,

π p
−x2

onp[Rx[3,k]
1 (s,x[2,k]),R

x[4,k]
2 (x[2,k])

]
. . .
]]

This plan is evaluated from the inside out. The table R1 is dissoci-
ated on all variables except x2, i.e. each consequent project on pre-
vious join results from R1 will treat each tuple as independent. The
independent project corresponds exactly to the way propagation is cal-
culated at each node iteratively from the probabilities of its parents and
incoming edges. We prove this by induction on k: When k = 1 then
R1 contains a single edge (s, t), whose probability is equal to r(q), to
r(q∆), and to the network propagation score. To prove for k ≥ 1, let
Vk = {a1, . . . ,an} be the nodes in the before-last partition (the last par-
tition is Vk+1 = {t}).

...

a1

a2

an

t

p1

Vk Vk+1

pn

p2

We defined in Example 1 the network propagation score to be:

ρ(t) = 1−∏
i

(
1−ρ(ai) · pi

)

where pi is the probability of the edge (ai, t). On the other hand, the
reliability of the dissociated query is given by the following formula
which represents a probabilistic join with Rk(xk, t), followed by a prob-
abilistic projection on the variable xk, and where an expression [a/x]
stands for substitution of a variable x by a constant a:

r(q∆) = 1−∏
i

(
1− r(q∆ [ai/xk])

)

= 1−∏
i

(
1− r

(
R1(s,x[2,k−1],ai), . . . ,Rk−1(xk−1,ai)) · r(Rk(ai, t)

))

= 1−∏
i

(
1−ρ(ai) · pi

)
ut

E Section 4: Proof Theorem 18

Proof (Theorem 18: Safe dissociation) The isomorphism is as follows:
we go from a safe dissociation ∆ to the corresponding plan P = f (∆)
by taking the unique plan P∆ and dropping all dissociated variables
from the relations. Since we only remove existential variables from
subgoals, the usual sanity conditions for projections are satisfied and
each variable is still projected away in at most one project operator. We
go from a plan P to a safe dissociation ∆ = g(P) by recursively disso-
ciating each relation Ri occurring in a subplan Pj of a join operation
onp
[
P1, . . . ,Pk

]
on the missing existential variables JVar− HVar(Pj).

To prove the isomorphism, we have to show both directions:
(a) g(f (∆)) = ∆ : Consider a safe dissociation q∆ and denote its

corresponding unique safe plan P∆ . This plan uses dissociated rela-
tions, hence each relation Ryi

i (xi,yi) has possibly some extraneous vari-
ables yi. If we drop all variables yi from the relations, then this trans-
forms P∆ into a regular (unsafe) plan P for q. If we now consider all
those variables yi that we have thus dropped from a relation Ri, then
these are exactly those variables that are added by recursively adding
all existential variables JVar−HVar(Pj) for each join operator.

(b) f (g(P)) = P: Consider a possibly unsafe plan P for q and
recursively dissociate each relation Ri occurring in a subplan Pj of

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 27

a join operation onp
[
P1, . . . ,Pk

]
on the missing existential variables

JVar−EVar(Pj). Then this defines a unique dissociation ∆ of q. Now
consider the unique safe plan for q∆ . Since the safe plan P∆ is the only
plan for which all subplans share the same head variables, it must be
the same plan as the original unsafe plan for q. ut

F Section 4: Proof Algorithm 1

Proof (Theorem 22: Algorithm 1) First, recall from the proof of The-
orem 18 that we go from a plan P to a safe dissociation by recur-
sively dissociating each relation Ri occurring in a subplan Pj of a join
operation onp

[
P1, . . . ,Pk

]
on the missing existential variables JVar−

HVar(Pj). Hence, in a project plan P = π p
−xP′, all relations occurring in

P′ either already contain or are dissociated on each variable in x. This
is since x are the join variables if P′ is a join plan, and it holds trivially
if P′ is a single relation.

(1) Soundness: We show that every plan produced by Algorithm 1
corresponds to a minimal safe dissociation, i.e. it is not dominated by
(that means always bigger than) any other plan. We show this by induc-
tion on the set of relations in a plan. At each step, any query must either
project or join. Joins are only possible if the join variables are identical
to the head variables of the plan, hence if the subplans share no exis-
tential variables. If at a step, there are disconnected components, then
all minimal plans need to join on those components (as any project on
a set of variables is clearly dominated by a join), then project on those
variables only in the component that contains this set. If the relations
are connected, then each plan needs to project on variables so that the
query becomes disconnected. We need to show that projecting on a
minimal set of variables that disconnects the query cannot be domi-
nated by any other safe dissociation. This follows immediately, as any
projection on a subset does not disconnect the query, and every projec-
tion on a superset is dominated, and any overlapping set of variables
cannot dominate this dissociation.

(2) Completeness: We show that Algorithm 1 returns a plan for
each minimal safe dissociation. We again show this by induction on
the set of relations in a plan. Recall from before that if a query is dis-
connected, then the minimal query plan needs to join all components
and we only need to focus on the case when the query is not discon-
nected. We need to consider all possible subsets of the variables that
disconnect the query. We have shown that only those can be minimal
that are not supersets of variables that alone disconnect. Since the al-
gorithm iterates over all minimal subsets that disconnect the query, it
is complete. ut

G Section 4: Proof Proposition 23

In the following, we write P>k([n]) for the set of subsets of the pow-
erset P([n]) of cardinality bigger or equal to k.

Lemma 43 (DNF polynomial) Let φ(x) be a positive minimal k-
uniform DNF of size m containing n total variables. Then the multilin-
ear polynomial for φ(x) is

P [φ(x)] =
m

∑
j=i

∏
i∈c j

pi + ∑
S∈P>k([n])

c(S)∏
i∈S

pi

In other words, all of the terms of the multilinear polynomial for φ are
of order bigger or equal to k. Furthermore, most are of order > k except
for ∑m

j=i ∏i∈c j pi, which corresponds to summing up the probabilities
of each conjunct.

Proof (Lemma 43) Lemma 43 follows immediately from Inclusion-
Exclusion (Equation 3) and noting that any conjunction of terms c j1 ∧

c j2 needs to consist of at least k+1 factors. This follows from the fact
that any two terms c j1 6= c j2 need to have at least one different variable.
For example, x1x2x3∧ x1x2x4 = x1x2x3x4.

Proof (Prop. 23) The lineage for a self-join-free conjunctive query q
is a positive k-uniform DNF of size m. Also, the lineage of any disso-
ciation q′ of this query (in particular the one with the minimal score) is
a positive k-uniform DNF of size m. It follows that

P [q] =
m

∑
j=i

∏
i∈c j

pi + ∑
S∈P>k([n])

c(S)∏
i∈S

pi

P
[
q′
]
=

m

∑
j=i

∏
i∈c j

pi + ∑
S∈P>k([n])

c′(S)∏
i∈S

pi

Next consider the operation of scaling down all probabilities by f , p′i =

f pi, and the implication on ε := ρ(q)−r(q)
r(q) =

P[q′]−P[q]
P[q] . Observe that in

the nominator, the terms of order k cancel out and it becomes a sum of
terms with minimum order k+1. In contrast, the denominator still has
minimum order of k. After dividing both nominator and denominator
by f k, we have the each term in the denominator is multiplied with at
least f , whereas the denominator has some terms without f . We thus
have lim f→0+ ε = 0.

H Section 4: Number of minimal query plans

Star queries. Consider the k-star query q :−R1(x1), . . . ,Rk(xk),U(x)
and the k! permutations on the order on x. To simplify notation and
w.l.o.g., we consider the permutation σ = (x1, . . . ,xk). We show the
following query plan is minimal:

P = π p
−x1

onp[R1(x1),π p
−x2

onp[. . . ,π p
−xk

onp[Rk(xk),U(x)
]]]

P has k projections and corresponds to a dissociation ∆ , where relation
Ri is dissociated on i−1 variables x[1,i−1]. Each query plan according
to Definition 3 must have either one projection and a single relation, or
a join between more relations at the end of its branches. No query plan
for q can have a projection at the leaf since each variable appears in at
least 2 relations. Since there is only one relation U that joins with other
relations, there can only be one leaf with a join between U and at least
one other relation Ri and there cannot be several branches. Further any
query plan for q can have at maximum k projections for each of the k
variables. As a consequence, each plan with k projections is isomorph
to a total order on x. Next consider a query plan that has less then k
projections while keeping the order of σ . This plan must have at least
one Ri that is dissociated on at least i variables and is, hence, dominated
by P. Hence, P is minimal. Since there are k! possible permutations,
there are k! such minimal plans.

The total number of plans (or safe dissociations) is equal to the
number of weak orderings definable on k alternatives. This is a conse-
quence of the relation U(x) which contains all variables. Hence, each
query plan must define a hierarchy between the variables in which all
variables are comparable, and in which ties are allowed. This is exactly
the definition of a weak ordering (or total preorder), and the number of
such is given by the OEIS sequence A00067012: 1, 3, 13, 75, 541, 4683,
47293, 545835,

Chain queries. Next consider the Boolean k+1-chain query q :−
R1(x1),R2(x1,x2), . . . ,Rk+1(xk). Note that each variable is shared only
by two subsequent relations. The leaves of each query plan must thus
have exactly two relations. Furthermore, every minimal query plan
must have exactly k joins between subplan corresponding to combin-
ing one variable at a time. Hence, the number of minimal query plans
for a k+1-chain query is equal to the number of ways to insert k pairs

12 http://oeis.org/classic/A000670

http://oeis.org/classic/A000670

28 Wolfgang Gatterbauer, Dan Suciu

of parentheses in a word of k+1 letters. This corresponds to OEIS se-
quence A00010813: 1, 2, 5, 14, 42, 132, 429, 1430,

The number of total query plans corresponds to OEIS sequence
A00100314: 1, 3, 11, 45, 197, 903, 4279, 20793, This is the number
of ways to insert parentheses in a string of k symbols. The parentheses
must be balanced but there is no restriction on the number of pairs of
parentheses. The number of letters inside a pair of parentheses must be
at least 2. Parentheses enclosing the whole string are ignored.

The total number of dissociations for both, k-star query and k+1-
chain query, is given by 2K , where K = k(k−1) is the number of undis-
sociated variables. Figure 8 summarizes these numbers in one table.

I Section 5.1: Deterministic Tables

Proof (Lemma 26: deterministic table dissociation) This lemma fol-
lows immediately from Equation 4 in the proof for Lemma 42 in
Appendix C: Whenever a positive DNF expression φ gets dissoci-
ated only on variables with probability 1 into expression φ ′, then their
probabilities are the same: P [φ] = P [φ ′]. Adding variables to deter-
ministic tables corresponds to dissociating only deterministic tuples
with probability 1. Hence, the original and the dissociated query have
the same query reliability. ut

Lemma 44 (Deleting variables from safe queries) If q is safe and
x ∈ EVar(q), then deleting x from q leads to a query q′ that is still safe.

Proof (Lemma 44) q is safe iff for any two existential variables y,z, one
of the following three conditions hold: sg(y)⊆ sg(z), sg(y)∩sg(z) = /0,
or sg(y) ⊇ sg(z). Deleting another variable x from the query does not
change the hierarchy between the other variables. ut

Proof (Lemma 28) Let q be connected by its existential variables and
x ∈ SVar(q). If x is contained in all subgoals, then x is a root variable.
If x is not contained in all subgoals, then there exists a top set y consid-
ered by Algorithm 1 that does not contain x. We need to show that, for
any safe dissociation ∆y with y as root variables, there is another safe
dissociation ∆x with x as root variable and r(q∆x)≤ r(q∆y).

For that, consider the dissociation ∆yx obtained by further dissoci-
ating ∆y on x. According to Lemma 26, r(q∆yx) = r(q∆y), and accord-
ing to Lemma 44, ∆yx must be safe. As a consequence, ∆yx is a safe
dissociation that has y∪ x as root variables. Therefore, there exists a
minimal safe dissociation ∆x (which may or may not be the same as
∆yx) with x as root variable and r(q∆x)≤ r(q∆yx) = r(q∆y). As a conse-
quence, minimal query plans with x as root variable will always have a
lower or equal score as plans with y as root variables. Hence, all mini-
mal plans have x as root variable. ut

Proof (Theorem 29) Soundness: We show that every plan produced
by Algorithm 2 corresponds to a minimal safe dissociation, i.e. there
are no two plans produced by Algorithm 2 where one plan dominates
the other. Note that Algorithm 2 can only create two different plans in
line 16, i.e. whenever we don’t have a separator variable and need to
iterate over all top sets. For each two different top sets, the algorithm
needs to dissociate at least one non-deterministic relation on a variable
that the other one does not dissociate on. Hence no query plan produced
by Algorithm 2 can dominate another one.

Completeness: We show that Algorithm 2 returns a plan for each
minimal safe dissociation, i.e. for every plan P′ from Algorithm 1, there
is a plan P from Algorithm 2 with lower or equal score. If q is discon-
nected, then nothing changes from Algorithm 1, and we only need to
focus on the case when the query is not disconnected. If q is connected,
then completeness follows immediately from Lemma 28: all minimal
plans need to have all separator variables as root variables. ut

13 http://oeis.org/classic/A000108
14 http://oeis.org/classic/A001003

R A
r1 a
r2 b

Sd A C
s1 a c
s2 b c

T d B C
d1 e c
d2 f c

U B
t1 e
t2 f

(a) D

x y z
R ◦
U ◦
Sd ◦ ◦
T d ◦ ◦

(b) q

x y z
R ◦ •
U ◦ •
Sd ◦ ◦
T d ◦ ◦

(c) q∆

x y z
R ◦
U ◦
Nd ◦ ◦ ◦

(d) q′

x y
R ◦
U ◦

N∗d ◦ ◦

(e) q′′

Fig. 24 Example 45: Query q :−R(x),Sd(x,z),T d(y,z),U(y) and min-
imal safe dissociation q∆ that calculates r(q) exactly on database in-
stance D. (d,e): First joining both deterministic tables into Nd =on[
Sd ,T d

]
and projecting z away does not change the query reliability.

However, there is no minimal safe dissociation anymore that allows to
calculate the original reliability exactly: ρ(q′′)> ρ(q).

I.1 Remark on completeness for deterministic relations

We give an example, similar in spirit to Example 27, that illustrates
that the sound and complete enumeration in the presence of determin-
istic relations is non-trivial. A reasonable idea would be to first join all
deterministic relations, thereby eagerly reducing variables that appear
only in deterministic relations. However, this process would not lead
to completeness, as we will illustrate with a counter-example.

Example 45 (Incorrect deterministic dissociation 2) Consider the query
q :−R(x),Sd(x,z),T d(y,z),U(y) with two deterministic relation Sd and
T d with incidence matrix Fig.24b over the database instance D2 from
Fig. 24a. Then lineage of q is again Lin(q) = r1s1t1u1 ∨ r1s1t2u2 ∨
r2s2t1u1 ∨ r2s2t2u2. Replacing s1,s2, t1 and t2 with 1, the lineage can
be simplified and factored into Lin(q) = (r1 ∨ r2)(u1 ∨u2), which is a
read-once formula. Assuming all non-deterministic tuples to have the
same probability 0.5, the query reliability can easily be calculated as
P [q] = 9/16 ≈ 0.563. Dissociating q on z (Fig. 24c) results in a safe
dissociation q∆ that turns out to have, on the particular database in-
stance D2, exactly the same lineage expression as the original query:
Lin(q∆) = Lin(q). Since it is a safe dissociation, there is a unique plan
P(q∆) that calculates the reliability of q∆ , and its score is exactly the
reliability of the original query: ρ(q) = score(P(q∆)) = r(q)≈ 0.563.
However, if we had first joined the two deterministic relation Sd and
T d into Nd(x,y,z) =on

[
Sd(x,z),T d(y,z)

]
(Fig.24d), and then projected

the variable z away into N∗d = π−zNd(x,y,z), then the propagation
score of q′′ turns out to be bigger then the one of the original query:
ρ(q′′) = 39/64≈ 0.609 > r(q′′) = ρ(q).

J Section 5.2: Functional Dependencies

Proof (Lemma 31: FD dissociation and reliability) Assume that Γ :
x→ y holds on relation Ri, and that there exists another relation R j
with x ⊆ Var(R j), but y 6∈ Var(R j). Then Γ also holds for the natural
join between Ri and R j . Furthermore, any join result with the same
values a for x has exactly one tuple from R j in its lineage, which does
not change after dissociating R j on y. Therefore, also the lineage and
the query reliability remain the same. ut

Proof (Lemma 32: FD dissociation and hierarchies) Assume that the
FD Γ : x→ y holds and that query q is safe and thus hierarchical. We
show that applying Γ eagerly to all relations in q results in a query q∆

that is still hierarchical. Let sg(x) denote the subgoals containing all

http://oeis.org/classic/A000108
http://oeis.org/classic/A001003

Dissociation and Propagation for Efficient Query Evaluation over Probabilistic Databases 29

variables of x, sg(y) the subgoals containing y in q, and sg(ỹ) the sub-
goals containing y or ỹ in q∆ . First note that sg(x)∩ sg(y) 6= /0 since we
have one relation that enforces Γ . If sg(x)⊇ sg(y), then sg(x) = sg(ỹ)
and q∆ is still hierarchical, as removing y from the original hierar-
chy cannot invalidate the hierarchy. If, however, sg(x) ⊂ sg(y), then
sg(y) = sg(ỹ) and thus the hierarchy remains unchanged. ut

Proof (Theorem 34: Algorithm 3) (1) Soundness: We show that every
plan P1 produced by Algorithm 3 corresponds to a minimal safe dis-
sociation, i.e. there is no other plan P2 produced by Algorithm 3 that
strictly dominates P1. This follows immediately from Algorithm 2: let
q̃ be the query dissociated on all functional dependencies. If q̃ is safe,
then there is just one query plan. If q̃ is not safe, then there are at least
two different top sets, either of which dissociates at least one relation
on a variable that the other one does not. Hence no query plan produced
by Algorithm 3 can strictly dominate another one.

(2) Completeness: We show that Algorithm 3 returns a plan for
each minimal safe dissociation, i.e. for every plan P′ produced by Al-
gorithm 2, there is one plan P produced by Algorithm 3 that dominates
P′. Suppose the contrary and let P′ be such a plan that dominates all
plans produced by Algorithm 2. Then let q′ be the dissociated query
corresponding to P′ and let q′′ be the query after applying the eager FD
dissociation to q′. Then, we know from Lemma 31 that r(q′′) = r(q′).
Furthermore, since q′ is safe, we know from Lemma 32 that q′′ must
be safe as well. Furthermore, we know that q′′ � q̃ in the partial dis-
sociation order of q̃. As a consequence, Algorithm 3 will enumerate a
query plan P′′ with score(P′′) = r(q′′) = r(q′) in one of the produced
minimal query plan which violates our assumption. ut

	1 Introduction
	2 Background
	3 Dissociation and Propagation
	4 Dissociations and Plans
	5 Optimizations with Schema Knowledge
	6 Multi-query Optimizations
	7 Experiments
	8 Related Work
	9 Conclusions and Outlook
	A Nomenclature
	B Section 2: Proof prop:uniqueSafePlan
	C Section 3: Proof Theorem 12
	D Section 3: Proof prop:connectionPropagationScore
	E Section 4: Proof th:safeDissociation
	F Section 4: Proof alg:basicAlgorithm
	G Section 4: Proof prop:smallProbabilities
	H Section 4: Number of minimal query plans
	I Section 5.1: Deterministic Tables
	J Section 5.2: Functional Dependencies

