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Abstract

We introduce stamp chains. A stamp chain is a finite set of integers
that is both an addition chain and an additive 2-basis, i.e., a solution to
the postage stamp problem. We provide a simple method for converting
known postage stamp solutions of length k into stamp chains of length k+
1. Using stamp chains, we construct an algorithm that computes u(xi) for
i = 1, . . . , n in less than n−1 multiplications, if u is a function that can be
computed at zero cost, and if there exists another zero-cost function v such
that v(a, b) = u(ab). This can substantially reduce the computational cost
of repeated multiplication, as illustrated by application examples related
to matrix multiplication and data clustering using subset convolution. In
addition, we report the extremal postage stamp solutions of length k = 24.

1 Introduction

An addition chain is an increasing sequence of integers starting from 1, where
each subsequent element is a sum of two earlier elements (not necessarily dis-
tinct). Addition chains are well known for their use in repeated multiplication
to compute xn. For example, the chain 1, 2, 3, 6, 12, 15 shows how x15 is com-
puted with five multiplications: xx = x2, x2x = x3, x3x3 = x6, x6x6 = x12, and
x12x3 = x15.

If all consecutive powers x, x2, . . . , xn are required, not just the final value,
then obviously n− 1 multiplications are required.
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Now suppose that the powers xi themselves are not of interest, but instead
the values yi = u(xi), i = 1, . . . , n, are sought for a given function u. Let us
also assume that computing u is free of cost (or negligible compared to the cost
of multiplication). Let us further assume that given two values a and b, there
is a method for computing v(a, b) := u(ab) for free without actually performing
the multiplication ab.

If these assumptions hold, then it is not necessary to compute all of the
powers x, x2, . . . , xn. Instead, a carefully selected subset of these powers is
computed; then each yi is obtained either by applying u to one of the computed
powers, or v to a pair of them. For instance, suppose that x5 and x7 have been
computed but x12 has not. Now there are two ways to obtain y12: either multiply
x12 = x5x7 and evaluate y12 = u(x12); or evaluate y12 = v(x5, x7) avoiding
the multiplication. The existence of such a function v is the key assumption
underlying our method of reducing the number of multiplications needed.

A straightforward application is found in matrix powers, if from each power
we only need a single element (X i)p,q =: u(X i). Let X be a large m × m
matrix, and assume that its powers X i, Xj have been computed. Then the
element (X i+j)p,q =

∑m

r=1
(X i)p,r(X

j)r,q = v(X i, Xj) can be directly evaluated
in O(m) arithmetic operations – essentially for free, compared to the alternative
of computing the full matrix product. Another application related to data
clustering using subset convolution is given in Section 6.

This setting gives raise to the problem of how to choose a minimal number of
powers of x, to be computed via repeated multiplication, such that from them
all y1, . . . , yn are obtained through u and v. Superficially, this appears like
an addition chain problem; however, for solving it we shall encounter another
problem in additive number theory, namely the postage stamp problem.

We shall start with some definitions and preliminary observations in the next
section. In Section 3 we provide an algorithm for computing y1, . . . , yn with the
help of stamp chains, and in Section 4 we present our main result, which shows
how stamp chains can be constructed from stamp bases. In Section 5 we show
how known properties of stamp bases imply similar properties for stamp chains,
and also we report three extremal stamp bases corresponding to k = 24. An
illustration of the computational benefits and some final remarks are provided
in the last two sections of the paper.

2 Definitions

Introductory texts to addition chains are provided by Guy [3, pp. 168–171] and
Knuth [4, pp. 398–422]. For information about the postage stamp problem, see
Guy [3, pp. 123–127] and Selmer [7].

Notation. In the following, k is a positive integer. Ak, Bk and Ck denote sets of
k positive integers. Their elements will be indexed in increasing order starting
with index 1, thus Ak = {a1 < . . . < ak}. When j < k, the j-prefix of Ak

is Aj = {a1, . . . , aj}. As usual in combinatorics, [c, d] denotes the consecutive
integers {c, c+ 1, . . . , d}.
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Definition 1. An integer c is generated by Ak, if c = ai or c = ah + ai for
some indices 1 ≤ h, i ≤ k. (Note that h = i is allowed.)

Definition 2. Ak is an addition chain if a1 = 1, and for j = 2, . . . , k, the
element aj is generated by Aj−1.

Remark. In addition chain literature it is customary to start indexing from
a0 = 1, and not to count this zeroth element in the length of the chain (thus
a0, . . . , ak is customarily defined to have length k). We have here departed from
this notation in order to ensure compatibility with the established notation for
postage stamps. For the same reason we have used a set notation, instead of
the more usual tuple notation.

Definition 3. Ak is a stamp basis for n, if every integer in [1, n] is generated
by Ak. The range of Ak, denoted by n(Ak), is the largest n such that Ak

generates [1, n]. The elements of a stamp basis are called stamps.

Remark. In a stamp basis a1 must be 1, since otherwise 1 is not generated.

Definition 4. The range of k, denoted by n(k), is the largest range attained
by stamp bases of length k. An extremal stamp basis is one that attains this
maximum.

A stamp basis may be interpreted as a set of k postage stamp denominations,
such that any integral postage fare up to n can be paid by attaching at most
2 stamps on an envelope. The problem of finding optimal bases is known as
the postage stamp problem. A stamp basis is also known in the literature as an
additive 2-basis. More generally, if h stamps are allowed on the envelope, the
set of stamp denominations is called an h-basis and the largest n attained is
called the h-range. In this work we consider exclusively the case h = 2.

Definition 5. A stamp chain for n is a set of integers that is both an addition
chain, and a stamp basis for n.

Definition 6. The maximum range among k-length stamp chains is denoted
by n(k). An extremal stamp chain (of length k) is one that attains this
maximum.

Example 1. A5 = {1, 2, 4, 8, 16} is an addition chain, and in fact a minimal-
length addition chain ending at 16. It is not a particularly good postage stamp
basis: its range is only 6, since it does not generate 7.

Example 2. B5 = {1, 3, 5, 7, 8} is an extremal stamp basis of length 5, and has
range n(B5) = 16. However, it is not an addition chain, since for example 5 is
not generated by the prefix {1, 3}.

Example 3. C5 = {1, 2, 4, 6, 7} is a stamp chain of length 5, and has range
n(C5) = 14. As a stamp chain, it is extremal: no stamp chain of length 5 has
range greater than 14. The proof of this extremality follows from theorems that
will be established in Section 4.

Remark. Since any stamp chain is also a stamp basis, it follows that n(k) ≤ n(k).
The inequality may be strict, as seen in the previous two examples.
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3 Multiplication algorithm

We now return to the task outlined in the introduction. Given an initial value x,
a positive integer n, an associative binary operation (multiplication), and the
zero-cost functions u and v such that v(a, b) = u(ab), the task is to compute
y1, . . . , yn, where yi = u(xi).

The straightforward method computes all powers x2, . . . , xn and uses n− 1
multiplications. To improve upon this, let k < n, and let us perform k − 1
multiplications with results xaj , where j = 2, . . . , k. Without loss of generality,
we may assume that the exponents aj are distinct and in increasing order,
otherwise some multiplications could be eliminated or rearranged. The set Ak =
{a1 < . . . < ak}, with a1 = 1, will be called a multiplication plan.

We now have two requirements for the choice of the multiplication plan Ak:

1. Ak must be an addition chain. This ensures that for each j = 2, . . . , k,
the exponent aj equals ah + ai for some 1 ≤ h, i < j, and thus xaj can be
computed with one multiplication as (xah)(xai ).

2. Ak must be a stamp basis. This ensures that for each integer c ∈ [1, n],
either c = ai or c = ah + ai for some h, i, and thus yc can be computed at
zero cost, either as u(xai) or as v(xah , xai).

Combining the requirements, we observe that a multiplication plan has to
be a stamp chain for n. Conversely, given a k-length stamp chain for n, the
following algorithm computes y1, . . . , yn using k − 1 multiplications. The first
phase performs k− 1 multiplications and the second phase performs none, since
it does only zero-cost evaluations of u and v.

Algorithm A

Phase 1. For each j = 2, . . . , k, find h, i < j such that ah + ai = aj. This is
possible because Ak is an addition chain. Compute xaj = (xah)(xai ).
Phase 2. For each integer c ∈ [1, n], either c is a stamp, or there are two stamps
ah, ai such that c = ah+ai. In the first case, compute yc = u(xc). In the second
case compute yc = v(xah , xai).

Example 4. If y1, . . . , y14 are sought, the multiplication plan has to be a stamp
chain with a range at least 14. In the previous section we mentioned that
C5 = {1, 2, 4, 6, 7} is a stamp chain for 14. Using this stamp chain, Algorithm A
will compute y1, . . . , y14 in 5− 1 = 4 multiplications as follows:

1. Compute xx = x2, x2x2 = x4, x2x4 = x6, and x6x = x7.

2. Compute y1 = u(x), y2 = u(x2), y3 = v(x, x2), . . . , y14 = v(x7, x7).

4 Constructing stamp chains

If Ak is a stamp chain for n, then Algorithm A computes the values y1, . . . , yn
using k− 1 multiplications. In order to minimize the number of multiplications,
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we would like to find a stamp chain as short as possible, with a range at least n.
Ideally, we wish to identify an extremal stamp chain, since an extremal stamp
chain attains the maximum range for any given length k.

It may not be immediately clear how a stamp chain of a given length could
be found, other than by constructing stamp bases and checking whether they
also happen to be addition chains; or vice versa. However, in this section we
shall introduce a direct method for converting any admissible stamp basis into
a stamp chain.

Definition 7. A stamp basis Ak is admissible if it generates all integers in
[1, ak].

Remark. If Ak is admissible, and 1 < c < aj, then c is generated by Aj−1.

The following lemma is an already established result for stamp bases [1].

Lemma 1. An extremal stamp basis is admissible.

A similar property holds for stamp chains.

Lemma 2. An extremal stamp chain is admissible.

Proof. Let Ak be a non-admissible stamp chain, and let c = n(Ak) + 1, that
is, c is the smallest positive integer not generated by Ak. It follows that c − 1
is generated by Ak, and also that c − 1 /∈ Ak (otherwise c = 1 + (c − 1) would
be generated). Let then Bk = Ak−1 ∪ {c − 1}. Now Bk is a stamp basis that
generates all integers in [1, c], in particular it generates c = 1 + (c − 1). Thus
n(Bk) > n(Ak). Furthermore, since c−1 is generated by Ak but not an element
of it, it follows that c− 1 = ah + ai = bh + bi for some indices h, i. Thus Bk is
also an addition chain.

Since Bk is a stamp chain with n(Bk) > n(Ak), it follows that Ak is not
extremal.

Thus, in order to maximize the range of a stamp basis (stamp chain), it is
sufficient to consider only the admissible stamp bases (stamp chains).

Notation. If Ak = {a1, . . . , ak} is a set of integers and s is an integer, then
Ak + s := {a1 + s, . . . , ak + s}.

Lemma 3. If Ak is a stamp basis for n, then Bk+1 = {1}∪ (Ak+1) is a stamp

basis for n+ 2.

Proof. Let c ∈ [1, n + 2] be arbitrary. If c ≤ 2, then Bk+1 generates it either
as b1 = 1, or as b1 + b1 = 1 + 1 = 2. If c ≥ 3, let c′ = c − 2. Since c′ ∈ [1, n],
there is either one stamp ah = c′ or two stamps ah + ai = c′. In the first case,
b1 + bh+1 = 1 + (ah + 1) = c′ + 2 = c. In the second case, bh+1 + bi+1 =
(1 + ah) + (1 + ai) = c′ + 2 = c. This proves that Bk+1 generates [1, n+ 2].

Note that the previous lemma gives only a lower bound for the range of the
new basis (considerA2 = {1, 4}, which has n(A2) = 2 but n(B3) = n({1, 2, 5}) =
7 > 2 + 2). However, for admissible bases we have a stronger result in the
following theorem.
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Theorem 1. If Ak is an admissible stamp basis with range n, then Bk+1 =
{1} ∪ (Ak + 1) is an admissible stamp chain with range n+ 2.

Proof. By Lemma 3, Bk+1 is a stamp basis for n+2. Because Ak is admissible,
n ≥ ak, thus n+ 2 ≥ ak + 1 = bk+1, and Bk+1 is admissible.

To prove that Bk+1 is also an addition chain, note first that by construction
b1 = 1. Clearly b2 = 2 = b1 + b1 is generated by the prefix B1. Let then
3 ≤ j ≤ k + 1. Since Ak is admissible, Aj−2 generates aj−1 − 1, and by
Lemma 3 the prefix Bj−1 = {1} ∪ (Aj−2 + 1) generates aj−1 + 1 = bj.

Finally, let us prove that n(Bk+1) does not exceed n+2, in particular, that
Bk+1 does not generate n+3. Since Ak is admissible, ak ≤ n, thus bk+1 ≤ n+1.
Thus n + 3 /∈ Bk+1. Suppose then n + 3 = bh + bi. This would imply that
bh, bi > 1, and then ah−1 + ai−1 = n + 1, contradicting the assumption that
n(Ak) = n.

While the construction in Theorem 1 has the consequence of extending the
range of the stamp basis by 2, this is not the main reason for the construction.
For our purposes the crucial consequence of Theorem 1 is that the new basis
Bk+1 is guaranteed to be an addition chain, even if Ak is not. This ensures that
Bk+1 can be used as a multiplication plan in Algorithm A.

Example 5. A5 = {1, 3, 5, 7, 8} is an admissible stamp basis for n = 16, but
it is not an addition chain. However, by Theorem 1, B6 = {1} ∪ (A5 + 1) =
{1, 2, 4, 6, 8, 9} is an admissible stamp chain for n = 18.

Theorem 1 shows how to construct a stamp chain of length k from any
admissible stamp basis of length k − 1. Conversely, we shall prove that this
construction produces all admissible stamp chains of length k > 1. For length
k = 1, the only stamp chain is B1 = {1}.

Theorem 2. If k > 1 and Bk is an admissible stamp chain with range n, then
Ak−1 = {b2 − 1, . . . , bk − 1} is an admissible stamp basis with range n− 2.

Proof. We will first prove that Ak−1 generates all integers in [1, n− 2]. Since by
assumption Bk is an addition chain, its smallest two elements must be 1 and 2.
Thus a1 = b2 − 1 = 1, and Ak−1 generates 1 and 2.

Let c ∈ [3, n− 2] be arbitrary, and let c′ = c+ 2. Since Bk is a stamp basis,
c′ is generated either by one stamp bj = c′ or by two stamps bh + bi = c′. But
in the first case, c′ = bj = bh + bi for some h, i < j, because Bk is an addition
chain. Thus in either case we have c′ = bh + bi for some h, i. Without loss of
generality we may assume h ≥ i. Now consider separately the possibilities i = 1
and i > 1.

If i = 1, then bi = 1, and c = c′ − 2 = bh + bi − 2 = bh − 1 = ah−1 is
generated by a single stamp ah−1. Note that we have necessarily h > 1, so ah−1

indeed exists. This is because we have assumed that c ≥ 3, and consequently
bh + bi = c′ ≥ 5 implying that bh ≥ 4.

If i > 1, then bi > 1, and c = c′ − 2 = bh + bi − 2 = (bh − 1) + (bi − 1) =
ah−1 + ai−1, so c is generated by the two stamps ah−1 and ai−1. Note that, by
assumption, h ≥ i > 1, so the stamps ah−1 and ai−1 indeed exist.
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We have now proven that any c ∈ [1, n− 2] is generated by either one or two
stamps from Ak−1. In other words, Ak−1 is a stamp basis with range at least
n− 2.

Since by assumption n(Bk) = n exactly, it follows that Bk does not generate
n + 1. From this it follows that bk < n, thus ak−1 < n − 1. Hence Ak−1 does
not generate n− 1, and the range is n(Ak−1) = n− 2 exactly.

Finally, since n(Ak−1) = n− 2 > bk − 2 = ak−1 − 1, it follows that Ak−1 is
admissible.

By Theorems 1 and 2, admissible stamp bases of length k and range n are
in one-to-one correspondence with admissible stamp chains of length k + 1 and
range n+2. Since extremal stamp bases and extremal stamp chains are always
admissible, we have the following corollaries for all k > 1.

Corollary 1. Bk is an extremal stamp chain if and only if Bk = {1}∪ (Ak−1+
1), where Ak−1 is an extremal stamp basis. Then also their ranges are related

as n(Bk) = n(Ak−1) + 2.

Corollary 2. n(k) = n(k − 1) + 2.

5 Some properties of stamp chains

Known properties of (extremal) stamp bases carry over naturally to (extremal)
stamp chains. For example, some asymptotic lower and upper bounds for n(k)
are known [3]:

2

7
k2 +O(k) ≤ n(k) ≤ 0.4802k2 +O(k).

Since n(k) = n(k − 1) + 2 by Corollary 2, it follows that also

2

7
k2 +O(k) ≤ n(k) ≤ 0.4802k2 +O(k).

This means that for large n, roughly
√

(7/2)n multiplications are sufficient to
compute y1, . . . , yn through Algorithm A.

All extremal stamp bases of lengths k = 1, . . . , 23 are previously known.
Challis and Robinson list them for k = 3, . . . , 22 [2, pp. 7–8], and for k = 23 in
an addendum. We have computed the extremal stamp bases of length k = 24,
using an exhaustive search based on the algorithm described by Challis [1]. The
search took 606 CPU days on parallel 2.6 GHz AMD Opteron processors. The
new extremal bases have range 212, and are shown in Table 1. Note that the

1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 85 91 93 96 100 102 103 105 106 *
1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 85 93 97 99 102 103 104 106 108
1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 85 93 97 99 102 103 106 108 112

Table 1: The extremal bases of length 24. The basis marked with * is symmetric.
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k n(k) stamp basis k n(k) stamp chain
1 2 1 2 4 1 2
2 4 1 3 3 6 1 2 4
3 8 1 3 4 4 10 1 2 4 5
4 12 1 3 5 6 5 14 1 2 4 6 7
5 16 1 3 5 7 8 6 18 1 2 4 6 8 9
6 20 1 2 5 8 9 10 7 22 1 2 3 6 9 10 11
7 26 1 2 5 8 11 12 13 8 28 1 2 3 6 9 12 13 14
8 32 1 2 5 8 11 14 15 16 9 34 1 2 3 6 9 12 15 16 17

Table 2: Some extremal stamp bases for k ≤ 8, and the corresponding extremal
stamp chains for k ≤ 9.

k n(k) k n(k) k n(k)
1 2 11 48 21 154
2 4 12 56 22 166
3 6 13 66 23 182
4 10 14 74 24 198
5 14 15 82 25 214
6 18 16 94
7 22 17 106
8 28 18 118
9 34 19 130
10 42 20 142

Table 3: Known values of n.

symmetric basis appears already in Mossige’s list of symmetric bases [6], but
until now it was not known to be extremal.

Extremal stamp chains of lengths k = 2, . . . , 25 can be constructed from
known extremal stamp bases by Corollary 1. Since n(25) = n(24) + 2 = 214,
these chains provide the minimum-length multiplication plans for computing
y1, . . . , yn for n ≤ 214.

The connection between stamp bases and stamp chains is illustrated in Ta-
ble 2, which contains one extremal stamp basis for each k = 1, . . . , 8, and the
corresponding extremal stamp chain constructed by Corollary 1. In Table 3 we
list all known values of n(k). They were computed by applying Corollary 2 to
the ranges of previously known extremal stamp bases [2, 8], and of our new
k = 24 stamp bases. A listing of known extremal stamp bases and extremal
stamp chains can be found in Tables 4 and 5 at the end of this article.

Several authors have observed that many extremal stamp bases (but not all)
are symmetric in the sense that ai + ak−i = ak for all i = 1, . . . , k − 1. The
corresponding extremal stamp chains are then, by construction, symmetric in
the sense that ai+ak+1−i = a1+ak for all i = 1, . . . , k. Symmetric stamp bases
up to k = 30 are reported by Mossige [6].

If a stamp chain is needed for n so large that no extremal stamp basis is
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currently known for n − 2, one can instead take any admissible stamp basis
and convert it into an admissible stamp chain using Theorem 1. Very good
admissible stamp bases (although not necessarily extremal) for up to k = 82
and n = 2100 are listed by Challis and Robinson [2, p. 6].

6 An application to subset convolution

The multiplication in Algorithm A may in general be any associative binary
operation. In the introduction a simple example related to matrix multiplica-
tion was mentioned. Here, we consider a more detailed application to a data
clustering problem.

In previous work [5], we have considered a class of Bayesian probability
models where N items of data belong to c clusters, such that c is an unknown
integer in the range 1, . . . , n, and n ≤ N . The exact posterior distribution for
c is computed using an algorithm whose time requirement is exponential in N .
The algorithm first computes a likelihood function f for each possible cluster,
that is, for each subset of {1, . . . , N}. This computation takes time O(2N ), and
its result is a table of 2N numbers.

The next, and the most time-consuming step of the algorithm is to compute
successively the values of f2 = f ∗f, f3 = f2 ∗f, . . . , fn = fn−1 ∗f , where ∗ is an
operation called subset convolution. Subset convolution takes as its input two
functions, each represented by a table of 2N numbers, and computes another
such function. The operation is associative, so for the current purposes it is
a multiplication. A single subset convolution takes either O(3N ) or O(2NN2)
time, depending on the algorithm used.

However, to obtain the posterior probability for c, the full tables f1, . . . , fn
are actually not needed. Instead, we only need the last element from each table,
corresponding to fc(U), where U = {1, . . . , N} is the set of all data items. Thus,
it is necessary to compute the values of yc = u(fc) := fc(U), for c = 1, . . . , n.
Furthermore, if fa and fb have been fully computed, and c = a + b, then the
single value fc(U) = (fa ∗ fb)(U) can be computed in only O(2N ) time. Hence,
computing v(fa, fb) := u(fa ∗ fb) is also fast, compared to performing the full
subset convolution fa ∗ fb.

Since u and v are much faster to compute than ∗, our aim is to find a minimal
set of values of c, for which the full subset convolution fc is computed, since
for these values, yc = u(fc(U)) then refers to only a table lookup. For other
c ∈ [1, . . . , n], the quantity yc is computed as v(fi, fj), where fi and fj have
been computed in full. The end result is that y1, . . . , yn are obtained with only
k − 1 subset convolutions, where k is the length of a stamp chain for n. In
comparison, the straightforward algorithm performs n− 1 subset convolutions.

To provide a concrete example, for N = 20 and n = 20 straightforward
multiplication performs n− 1 = 19 subset convolutions to compute f2, . . . , f20,
which takes approximately 7 minutes of CPU time on a 2.4 GHz AMD Opteron
processor. However, from Table 2 we find an extremal stamp chain

B7 = {1, 2, 3, 6, 9, 10, 11},
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which has range 22 ≥ n. Using this chain and Algorithm A, only 6 subset
convolutions are required:

f2 = f ∗ f

f3 = f2 ∗ f

f6 = f3 ∗ f3

f9 = f6 ∗ f3

f10 = f9 ∗ f

f11 = f10 ∗ f

Consequently, the posterior distribution for c is obtained in about one third
(6/19) of the time required by the straightforward algorithm.

7 Discussion

The existing bodies of literature on both addition chains and on postage stamps
are substantial. However, this far they seem to be almost completely disjoint.
We have here explored the connection between these two concepts, and presented
a theorem establishing a relationship between addition chains and stamp bases.
The theorem provides a way to construct an optimal procedure to perform
certain multiplicative computational operations, illustrated by an application
to data clustering using subset convolution. As a future research topic, it would
be interesting to explore possible other useful connections between addition
chains and the postage stamp problem.
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k n(k) stamp basis

1 2 1
2 4 1 3
3 8 1 3 4
4 12 1 3 5 6
5 16 1 3 5 7 8
6 20 1 3 5 7 9 10
6 20 1 2 5 8 9 10
6 20 1 3 4 8 9 11
6 20 1 3 5 6 13 14
6 20 1 3 4 9 11 16
7 26 1 3 4 9 10 12 13
7 26 1 2 5 8 11 12 13
7 26 1 3 5 7 8 17 18
8 32 1 2 5 8 11 14 15 16
8 32 1 3 5 7 9 10 21 22
9 40 1 3 4 9 11 16 17 19 20

10 46 1 2 3 7 11 15 19 21 22 24
10 46 1 2 5 7 11 15 19 21 22 24
11 54 1 3 5 6 13 14 21 22 24 26 27
11 54 1 3 4 9 11 16 18 23 24 26 27
11 54 1 2 3 7 11 15 19 23 25 26 28
11 54 1 2 5 7 11 15 19 23 25 26 28
12 64 1 3 4 9 11 16 21 23 28 29 31 32
13 72 1 3 4 9 11 16 20 25 27 32 33 35 36
14 80 1 3 4 5 8 14 20 26 32 35 36 37 39 40
14 80 1 3 4 9 10 15 16 21 22 24 25 51 53 55
14 80 1 2 5 8 11 14 17 20 23 24 25 51 53 55
15 92 1 3 4 5 8 14 20 26 32 38 41 42 43 45 46
16 104 1 3 4 5 8 14 20 26 32 38 44 47 48 49 51 52
17 116 1 3 4 5 8 14 20 26 32 38 44 50 53 54 55 57 58
18 128 1 3 4 5 8 14 20 26 32 38 44 50 56 59 60 61 63 64
19 140 1 3 4 5 8 14 20 26 32 38 44 50 56 62 65 66 67 69 70
20 152 1 3 4 5 8 14 20 26 32 38 44 50 56 62 68 71 72 73 75 76
21 164 1 3 4 6 10 13 15 21 29 37 45 53 61 67 69 72 76 78 79 81 82
21 164 1 3 4 5 8 14 20 26 32 38 44 50 56 62 68 74 77 78 79 81 82
21 164 1 3 4 6 10 13 15 21 29 37 45 53 61 69 73 75 78 79 80 82 84
21 164 1 3 4 6 10 13 15 21 29 37 45 53 61 69 73 75 78 79 82 84 88
22 180 1 3 4 6 10 13 15 21 29 37 45 53 61 69 75 77 80 84 86 87 89 90
22 180 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 81 83 86 87 88 90 92
22 180 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 81 83 86 87 90 92 96
23 196 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 83 85 88 92 94 95 97 98
23 196 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 85 89 91 94 95 96 98 100
23 196 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 85 89 91 94 95 98 100 104
24 212 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 85 91 93 96 100 102 103 105 106
24 212 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 85 93 97 99 102 103 104 106 108
24 212 1 3 4 6 10 13 15 21 29 37 45 53 61 69 77 85 93 97 99 102 103 106 108 112

Table 4: Extremal stamp bases for k = 1, . . . , 24 and their ranges.
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k n(k) stamp chain

2 4 1 2
3 6 1 2 4
4 10 1 2 4 5
5 14 1 2 4 6 7
6 18 1 2 4 6 8 9
7 22 1 2 4 6 8 10 11
7 22 1 2 3 6 9 10 11
7 22 1 2 4 5 9 10 12
7 22 1 2 4 6 7 14 15
7 22 1 2 4 5 10 12 17
8 28 1 2 4 5 10 11 13 14
8 28 1 2 3 6 9 12 13 14
8 28 1 2 4 6 8 9 18 19
9 34 1 2 3 6 9 12 15 16 17
9 34 1 2 4 6 8 10 11 22 23

10 42 1 2 4 5 10 12 17 18 20 21
11 48 1 2 3 4 8 12 16 20 22 23 25
11 48 1 2 3 6 8 12 16 20 22 23 25
12 56 1 2 4 6 7 14 15 22 23 25 27 28
12 56 1 2 4 5 10 12 17 19 24 25 27 28
12 56 1 2 3 4 8 12 16 20 24 26 27 29
12 56 1 2 3 6 8 12 16 20 24 26 27 29
13 66 1 2 4 5 10 12 17 22 24 29 30 32 33
14 74 1 2 4 5 10 12 17 21 26 28 33 34 36 37
15 82 1 2 4 5 6 9 15 21 27 33 36 37 38 40 41
15 82 1 2 4 5 10 11 16 17 22 23 25 26 52 54 56
15 82 1 2 3 6 9 12 15 18 21 24 25 26 52 54 56
16 94 1 2 4 5 6 9 15 21 27 33 39 42 43 44 46 47
17 106 1 2 4 5 6 9 15 21 27 33 39 45 48 49 50 52 53
18 118 1 2 4 5 6 9 15 21 27 33 39 45 51 54 55 56 58 59
19 130 1 2 4 5 6 9 15 21 27 33 39 45 51 57 60 61 62 64 65
20 142 1 2 4 5 6 9 15 21 27 33 39 45 51 57 63 66 67 68 70 71
21 154 1 2 4 5 6 9 15 21 27 33 39 45 51 57 63 69 72 73 74 76 77
22 166 1 2 4 5 7 11 14 16 22 30 38 46 54 62 68 70 73 77 79 80 82 83
22 166 1 2 4 5 6 9 15 21 27 33 39 45 51 57 63 69 75 78 79 80 82 83
22 166 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 74 76 79 80 81 83 85
22 166 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 74 76 79 80 83 85 89
23 182 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 76 78 81 85 87 88 90 91
23 182 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 78 82 84 87 88 89 91 93
23 182 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 78 82 84 87 88 91 93 97
24 198 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 78 84 86 89 93 95 96 98 99
24 198 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 78 86 90 92 95 96 97 99 101
24 198 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 78 86 90 92 95 96 99 101 105
25 214 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 78 86 92 94 97 101 103 104 106 107
25 214 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 78 86 94 98 100 103 104 105 107 109
25 214 1 2 4 5 7 11 14 16 22 30 38 46 54 62 70 78 86 94 98 100 103 104 107 109 113

Table 5: Extremal stamp chains for k = 2, . . . , 25 and their ranges.
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