FRAME PATTERNS IN n-CYCLES

MILES JONES, SERGEY KITAEV, AND JEFFREY REMMEL

Abstract

In this paper, we study the distribution of the number of occurrences of the simplest frame pattern, called the μ pattern, in n-cycles. Given an n-cycle C, we say that a pair $\langle i, j\rangle$ matches the μ pattern if $i<j$ and as we traverse around C in a clockwise direction starting at i and ending at j, we never encounter a k with $i<k<j$. We say that $\langle i, j\rangle$ is a nontrivial μ-match if $i+1<j$. Also, an n-cycle C is incontractible if there is no i such that $i+1$ immediately follows i in C.

We show that the number of incontractible n-cycles in the symmetric group S_{n} is D_{n-1}, where D_{n} is the number of derangements in S_{n}. Further, we prove that the number of n-cycles in S_{n} with exactly $k \mu$-matches can be expressed as a linear combination of binomial coefficients of the form $\binom{n-1}{i}$ where $i \leq 2 k+1$. We also show that the generating function $N T I_{n, \mu}(q)$ of q raised to the number of nontrivial μ-matches in C over all incontractible n-cycles in S_{n} is a new q-analogue of D_{n-1}, which is different from the q-analogues of the derangement numbers that have been studied by Garsia and Remmel and by Wachs. We show that there is a rather surprising connection between the charge statistic on permutations due to Lascoux and Schüzenberger and our polynomials in that the coefficient of the smallest power of q in $N T I_{2 k+1, \mu}(q)$ is the number of permutations in $S_{2 k+1}$ whose charge path is a Dyck path. Finally, we show that $\left.N T I_{n, \mu}(q)\right|_{q}\binom{n-1}{2}-k$ and $\left.\left.N T_{n, \mu}(q)\right|_{q}{ }_{(n-1}^{2}\right)-k$ are the number of partitions of k for sufficiently large n.

1. INTRODUCTION

Mesh patterns were introduced in [2] by Brändén and Claesson, and they were studied in a series of papers (e.g. see [6] by Kitaev and Liese, and references therein). A particular class of mesh patterns is boxed patterns introduced in [1 by Avgustinovich et al., who later suggested to call this type of patterns frame patterns. The simplest frame pattern which is called the μ pattern is defined as follows. Let S_{n} denote the set of all permutations of $\{1, \ldots, n\}$. Given $\sigma=\sigma_{1} \sigma_{2} \ldots \sigma_{n} \in S_{n}$, we say that a pair $\left\langle\sigma_{i}, \sigma_{j}\right\rangle$ is an occurrence of the μ pattern in σ if $i<j, \sigma_{i}<\sigma_{j}$, and there is no $i<k<j$ such that $\sigma_{i}<\sigma_{k}<\sigma_{j}$ (the last condition is indicated by the shaded area in Figure (2). The μ pattern is shown in Figure 1 using the notation in [2].

[^0]

Figure 1. The mesh pattern μ.
Similarly, we say that the pair $\left\langle\sigma_{i}, \sigma_{j}\right\rangle$ is an occurrence of the μ^{\prime} pattern in σ if $i<j$, $\sigma_{i}>\sigma_{j}$, and there is no $i<k<j$ such that $\sigma_{i}>\sigma_{k}>\sigma_{j}$. For example, if $\sigma=48261357$, then the occurrences of μ in σ are

$$
\langle 4,8\rangle,\langle 4,6\rangle,\langle 4,5\rangle,\langle 2,6\rangle,\langle 2,3\rangle,\langle 6,7\rangle,\langle 1,3\rangle,\langle 3,5\rangle,\langle 5,7\rangle
$$

and the occurrences of μ^{\prime} in σ are

$$
\langle 4,2\rangle,\langle 4,3\rangle,\langle 8,2\rangle,\langle 8,6\rangle,\langle 8,7\rangle,\langle 2,1\rangle,\langle 6,1\rangle,\langle 6,3\rangle,\langle 6,5\rangle .
$$

We let $N_{\mu}(\sigma)$ (resp., $\left.N_{\mu^{\prime}}(\sigma)\right)$ denote the number of occurrences of the μ (resp., μ^{\prime}) in σ. The reverse of $\sigma=\sigma_{1} \ldots \sigma_{n} \in S_{n}, \sigma^{r}$, is the permutation $\sigma_{n} \sigma_{n-1} \ldots \sigma_{1}$, and the complement of σ, σ^{c}, is the permutation $\left(n+1-\sigma_{1}\right)\left(n+1-\sigma_{2}\right) \ldots\left(n+1-\sigma_{n}\right)$. It is easy to see that $N_{\mu}(\sigma)=N_{\mu^{\prime}}\left(\sigma^{r}\right)=N_{\mu^{\prime}}\left(\sigma^{c}\right)$ and thus, since the reverse and complement are trivial bijections from S_{n} to itself, studying the distribution of μ-matches in S_{n} is equivalent to studying the distribution of $\mu^{\prime}=$ mathches in S_{n}.

Figure 2. The graph of the permutation 48261357 with the occurrence $\langle 4,6\rangle$ highlighted.

If we graph a given permutation σ as dots on a grid as in Figure 2 then one can see that each occurrence of μ is a pair of increasing dots such that there are no dots within the rectangle created by the original dots. The occurrence $\langle 4,6\rangle$ is highlighted in Figure 2, in particular, there are no dots within the shaded rectangle.

Jones and Remmel studied the distribution of cycle-occurrences of classical consecutive patterns in [4]. See [5] for a comprehensive introduction to the theory of permutation patterns. In this paper, we shall study the distribution of the cycle-occurrences of μ in the cycle structure of permutations in the symmetric group S_{n}. That is, suppose that we are given a k-cycle C in a permutation σ in the symmetric group S_{n}. Then we will always write $C=\left(c_{0}, \ldots, c_{k-1}\right)$ where c_{0} is the smallest element of the cycle. We will always draw such a cycle with c_{0} at the top and assume that we traverse around the cycle in a clockwise
direction. For example, if $C=(1,4,6,2,7,5,8,3)$, then we would picture C as in Figure 3. We say that c_{s} is cyclically between c_{i} and c_{j} in C, if starting at c_{i}, we encounter c_{s} before we encounter c_{j} as we traverse around the cycle in a clockwise direction. Alternatively, we can identify C with the permutation $c_{0} c_{1} \ldots c_{k-1}$. In this notation, c_{s} is cyclically between c_{i} and c_{j} if either $i<s<j$, or $j<i<s$, or $s<j<i$. For example, in the cycle $C=(1,4,6,2,7,5,8,3), 8$ is cyclically between 2 and 3 . Then we say that the pair $\left\langle c_{i}, c_{j}\right\rangle$ is a cycle-occurrence of μ in C if $c_{i}<c_{j}$ and there is no c_{s} such that $c_{i}<c_{s}<c_{j}$ and c_{s} is cyclically between c_{i} and c_{j}. Similarly, we say that the pair $\left\langle c_{i}, c_{j}\right\rangle$ is a cycle-occurrence of μ^{\prime} in C, if $c_{i}>c_{j}$ and there is no c_{s} such that $c_{i}>c_{s}>c_{j}$ and c_{s} is cyclically between c_{i} and c_{j}. As is the case with permutations, the study of the number of cycle-occurrences of μ in the cycle structures of permutations is equivalent to the study of the number of cycle-occurrences of μ in the cycle structures of permutations. That is, given the cycle structure C_{1}, \ldots, C_{k} of a permutation $\sigma \in S_{n}$, the cycle complement of $\sigma, \sigma^{\text {cyc-c }}$, is the permutation whose cycle structure arises from the cycle structure of σ by replacing each number i by $n+1-i$. For example, if σ consists of the cycle $(1,4,2,6),(3,8)(5,9,7)$, then $\sigma^{\text {cyc-c }}$ consists of the cycles $(9,6,8,4),(7,2),(5,1,3)$. It is then easy to see that for all $\sigma \in S_{n}, \sigma$ has k cycle-occurrences of μ if and only if $\sigma^{\text {cyc-c }}$ has k cycle-occurrences of μ^{\prime}.

Let \mathcal{C}_{n} be the set of n-cycles in S_{n}. If $C=\left(1, c_{1}, \ldots, c_{n-1}\right) \in \mathcal{C}_{n}$, then it is clear that $\langle i, i+1\rangle$ is always a cycle-occurrence of μ in C. We shall call such cycle-occurrences trivial occurrences of μ or trivial μ-matches in C and all other cycle-occurrences of μ in C will be called nontrivial occurrences of μ or nontrivial μ-matches in C. We let $N_{\mu}(C)$ denote the number of occurrences of μ in C and $N T_{\mu}(C)$ denote the number of nontrivial occurrences of μ in C. For example, if $C=(1,4,6,2,7,5,8,3)$, the nontrivial occurrences of μ in C are the pairs $\langle 1,4\rangle,\langle 2,7\rangle,\langle 2,5\rangle,\langle 4,6\rangle$, and $\langle 5,8\rangle$, so that $N T_{\mu}(C)=5$. Clearly, if $C=\left(1, c_{1}, \ldots, c_{n-1}\right)$ is an n-cycle in \mathcal{C}_{n}, then $N_{\mu}(C)=(n-1)+N T_{\mu}(C)$, since for all $1 \leq i \leq n-1,\langle i, i+1\rangle$ will be a trivial occurrence of μ in C. If C is a 1 -cycle, then $N T_{\mu}(C)=N_{\mu}(C)=0$.

Figure 3. The cycle $C=(1,4,6,2,7,5,8,3)$.
If $\sigma_{1} \ldots \sigma_{n}$ is any sequence of distinct integers, we let $\operatorname{red}(\sigma)$ denote the permutation of S_{n} that is obtained by replacing the i th largest element of $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ by i for $i=$ $1, \ldots n$. For example, $\operatorname{red}(371052)=24531$. Similarly, if $C=\left(c_{0}, \ldots, c_{k-1}\right)$ is a k-cycle in some permutation $\sigma \in S_{n}$, we let $\operatorname{red}(C)$ be the k-cycle in S_{k} which is obtained by replacing the i th largest element of C by i. For example, if $C=(2,6,7,3,9)$, then
$\operatorname{red}(C)=(1,3,4,2,5)$. In such a situation, we let $N T_{\mu}(C)=N T_{\mu}(\operatorname{red}(C))$. Finally, if σ consists of cycles $C^{(1)}, \ldots, C^{(\ell)}$, then we let $C N T_{\mu}(\sigma)=\sum_{i=1}^{\ell} N T_{\mu}\left(C^{(i)}\right)$.

We note that if one wishes to study the generating function

$$
\begin{equation*}
C N T_{\mu}(q, x, t)=1+\sum_{n \geq 1} \frac{t^{n}}{n!} \sum_{\sigma \in S_{n}} q^{C N T_{\mu}(\sigma)} x^{\operatorname{cyc}(\sigma)} \tag{1}
\end{equation*}
$$

where $\operatorname{cyc}(\sigma)$ denotes the number of cycles in σ, then it is enough to study the generating function

$$
\begin{equation*}
N T_{\mu}(q, t)=\sum_{n \geq 1} \frac{t^{n}}{n!} N T_{n, \mu}(q) \tag{2}
\end{equation*}
$$

where $N T_{n, \mu}(q)=\sum_{C \in \mathcal{C}_{n}} q^{N T_{\mu}(C)}$. That is, it easily follows from the exponential formula that if w is a weight function on n-cycles $C \in \mathcal{C}_{n}$ and for any permutation σ whose cycle structure is C_{1}, \ldots, C_{k}, we define $w(\sigma)=\prod_{i=1}^{k} w\left(\operatorname{red}\left(C_{i}\right)\right)$, then

$$
1+\sum_{n \geq 1} \frac{t^{n}}{n!} \sum_{\sigma \in S_{n}} w(\sigma) x^{\operatorname{cyc}(\sigma)}=e^{x \sum_{n \geq 1} \frac{t^{n}}{n!} \sum_{C \in \mathcal{C}_{n}} w(C)} .
$$

Hence

$$
\begin{equation*}
C N T_{\mu}(q, x, t)=e^{x N T_{\mu}(q, t)} . \tag{3}
\end{equation*}
$$

The main focus of this paper is to study the polynomials $N T_{n, \mu}(q)$. In Table 1 we provide polynomials $N T_{n, \mu}(q)$ for $n \leq 10$ that were calculated using Mathematica.

Given a polynomial $f(x)=\sum_{i=0}^{n} c_{i} x_{i}$, we let $\left.f(x)\right|_{x^{i}}=c_{i}$ denote the coefficient of x^{i} in $f(x)$. It is easy to explain several of the coefficients that appear in $N T_{n, \mu}(q)$. For example, for $n \geq 2,\left.N T_{n, \mu}(q)\right|_{q^{0}}=1$ because $(1,2, \ldots, n)$ is the only n-cycle that has no nontrivial occurrences of μ. Similarly, $\left.N T_{n, \mu}(q)\right|_{q\binom{n-1}{2}}=1$ since the only n-cycle with $\binom{n-1}{2}$ nontrivial occurrences of μ is $(1, n, n-1, n-2, \ldots, 2)$. We computed that the sequence $\left(\left.N T_{n, \mu}(q)\right|_{q^{1}}\right)_{n \geq 3}$ starts out $1,3,6,10,15,21, \ldots$ which leads to a conjecture that $\left.N T_{n, \mu}(q)\right|_{q^{1}}=\binom{n-1}{2}$ for $n \geq 3$. Similarly, we computed that the sequence $\left(\left.N T_{n, \mu}(q)\right|_{q^{2}}\right)_{n \geq 4}$ starts out $1,6,20,50,105,196, \ldots$ which is the initial terms of sequence A002415 in the On-Line Encyclopedia of Integer Sequences (OEIS) whose nth term is given by the formula $\frac{n^{2}\left(n^{2}-1\right)}{12}$. We will verify this by proving that for $n \geq 5,\left.N T_{n, \mu}(q)\right|_{q^{2}}=\binom{n-1}{3}+2\binom{n-1}{4}$.

In fact, we shall show that for any fixed $k \geq 0$, there are constants $c_{0}, c_{1}, \ldots, c_{2 k+1}$ such that $\left.N T_{n, \mu}(q)\right|_{q^{k}}=\sum_{i=1}^{2 k+1} c_{i}\binom{n-1}{i}$ for all $n \geq 2 k+2$. To prove this result, we will need to study what we call incontractible n-cycles which are n-cycles C for which there are no integers i such that $i+1$ immediately follows i in C. We let $\mathcal{I C}_{n}$ denote the set of incontractible n-cycles in \mathcal{C}_{n}. We will show that $\left|\mathcal{I} \mathcal{C}_{n}\right|$ is D_{n-1} where D_{n} is the number of derangements of S_{n}, i.e. the number of $\sigma \in S_{n}$ such that σ has no fixed points. We will also study the polynomials

$$
N T I_{n, \mu}(q)=\sum_{C \in \mathcal{I C}_{n}} q^{N T_{\mu}(C)}
$$

FRAME PATTERNS IN n-CYCLES
Table 1. Polynomials $N T_{n, \mu}(q)$.

$N T_{1, \mu}(q)$	1
$N T_{2, \mu}(q)$	1
$N T_{3, \mu}(q)$	$1+q$
$N T_{4, \mu}(q)$	$1+3 q+q^{2}+q^{3}$
$N T_{5, \mu}(q)$	$1+6 q+6 q^{2}+7 q^{3}+2 q^{4}+q^{5}+q^{6}$
$N T_{6, \mu}(q)$	$1+10 q+20 q^{2}+31 q^{3}+23 q^{4}+15 q^{5}+13 q^{6}+3 q^{7}+2 q^{8}+q^{9}+q^{10}$
$N T_{7, \mu}(q)$	$1+15 q+50 q^{2}+106 q^{3}+135 q^{4}+126 q^{5}+119 q^{6}+66 q^{7}+46 q^{8}+$
	$25 q^{9}+19 q^{10}+5 q^{11}+3 q^{12}+2 q^{13}+q^{14}+q^{15}$
$N T_{8, \mu}(q)$	$1+21 q+105 q^{2}+301 q^{3}+561 q^{4}+736 q^{5}+850 q^{6}+726 q^{7}+603 q^{8}+$
	$418 q^{9}+299 q^{10}+174 q^{11}+101 q^{12}+65 q^{13}+33 q^{14}+27 q^{15}+7 q^{16}+$
	$5 q^{17}+3 q^{18}+2 q^{19}+q^{20}+q^{21}$
$N T_{9, \mu}(q)$	$1+28 q+196 q^{2}+742 q^{3}+1870 q^{4}+3311 q^{5}+4820 q^{6}+5541 q^{7}+$
	$5675 q^{8}+5007 q^{9}+4055 q^{10}+3093 q^{11}+2116 q^{12}+1461 q^{13}+888 q^{14}+$
	$646 q^{15}+338 q^{16}+217 q^{17}+126 q^{18}+80 q^{19}+44 q^{20}+35 q^{21}+$
	$11 q^{22}+7 q^{23}+5 q^{24}+3 q^{25}+2 q^{26}+q^{27}+q^{28}$
$N T_{10, \mu}(q)$	$1+36 q+336 q^{2}+1638 q^{3}+5328 q^{4}+12253 q^{5}+22392 q^{6}+$
	$32864 q^{7}+41488 q^{8}+45433 q^{9}+44119 q^{10}+40008 q^{11}+32781 q^{12}+$
	$25689 q^{13}+18551 q^{14}+13710 q^{15}+9137 q^{16}+6179 q^{17}+3971 q^{18}+$
	$2568 q^{19}+1640 q^{20}+1098 q^{21}+640 q^{22}+374 q^{23}+251 q^{24}+$
	$148 q^{25}+100 q^{26}+56 q^{27}+46 q^{28}+15 q^{29}+11 q^{30}+7 q^{31}+$
	$5 q^{32}+3 q^{33}+2 q^{34}+q^{35}+q^{36}$

We have computed Table 2 for the polynomials $N T I_{n, \mu}(q)$ using Mathematica.
We shall show that $\left.N T I_{n, \mu}(q)\right|_{q}\left(n_{2}^{2}\right)-k$ and $\left.N T_{n, \mu}(q)\right|_{q}\left(\frac{n-1}{2}\right)-k$ are the number of partitions of k for sufficiently large n. We show this by plotting the non- μ-matches of an n-cycle $C \in \mathcal{C}_{n}$, i.e. the pairs of integers $\langle i, j\rangle$ with $i<j$ which are not occurrences of the μ pattern in C, on an $n \times n$ grid and shading a cell in the j th row and i th column if and only if $\langle i, j\rangle$ is a non- μ-match of C. For example, the non- μ-matches of the cycle $C=(1,8,7,6,5,11,4,3,10,2,9)$ are $\langle 1,9\rangle,\langle 1,10\rangle,\langle 1,11\rangle,\langle 2,10\rangle,\langle 2,11\rangle,\langle 3,11\rangle$ and $\langle 4,11\rangle$. These pairs can be plotted on the 11×11 grid as shown in Figure 4. The shaded plot in Figure 4 is of the form of the Ferrers diagram of the integer partition $\lambda=(4,2,1)$. We will show that if $C \in \mathcal{C}_{n}$ and there are fewer than $n-2$ non-matches in C, then shaded squares in the plot of the non- μ-matches in C will be of the form of a Ferrers diagram of an integer partition. Moreover, we shall show that if $C \in \mathcal{C}_{n}$ has fewer than $n-2$ non-matches, then C must be incontractible. Hence, it follows that $\left.N T I_{n, \mu}(q)\right|_{q(n-1} ^{(n)-k}$ and $\left.N T_{n, \mu}(q)\right|_{q}\left(n_{2}^{n-1}\right)-k$ are the number of partitions of k for sufficiently large n.

We will show that $\left.N T I_{n, \mu}(q)\right|_{q^{k}}=0$ for $n \geq 2 k+2$ and that the lowest power of q which appears in either $N T I_{2 k, \mu}(q)$ or $N T I_{2 k+1, \mu}(q)$ is q^{k}. We computed that the sequence $\left(\left.N T I_{2 k+1, \mu}(q)\right|_{q^{k}}\right)_{k \geq 3}$ starts out $1,2,5,14, \ldots$ which led us to conjecture that

Table 2. Polynomials $N T I_{n, \mu}(q)$.

$N T I_{1, \mu}(q)$	1
$N T I_{2, \mu}(q)$	0
$N T I_{3, \mu}(q)$	q
$N T I_{4, \mu}(q)$	$q^{2}+q^{3}$
$N T I_{5, \mu}(q)$	$2 q^{2}+3 q^{3}+2 q^{4}+q^{5}+q^{6}$
$N T I_{6, \mu}(q)$	$6 q^{3}+13 q^{4}+10 q^{5}+8 q^{6}+3 q^{7}+2 q^{8}+q^{9}+q^{10}$
$N T I_{7, \mu}(q)$	$5 q^{3}+27 q^{4}+51 q^{5}+56 q^{6}+48 q^{7}+34 q^{8}+19 q^{9}+13 q^{10}$
	$+5 q^{11}+3 q^{12}+2 q^{13}+q^{14}+q^{15}$
$N T I_{8, \mu}(q)$	$29 q^{4}+134 q^{5}+255 q^{6}+327 q^{7}+323 q^{8}+264 q^{9}+187 q^{10}+139 q^{11}+$
	$80 q^{12}+51 q^{13}+26 q^{14}+20 q^{15}+7 q^{16}+5 q^{17}+3 q^{18}+2 q^{19}+q^{20}+q^{21}$
$N T I_{9, \mu}(q)$	$14 q^{4}+181 q^{5}+694 q^{6}+1413 q^{7}+2027 q^{8}+2307 q^{9}+2139 q^{10}+1841 q^{11}+$
	$1392 q^{12}+997 q^{13}+652 q^{14}+458 q^{15}+282 q^{16}+177 q^{17}+102 q^{18}+64 q^{19}+$
	$36 q^{20}+27 q^{21}+11 q^{22}+7 q^{23}+5 q^{24}+3 q^{25}+2 q^{26}+q^{27}+q^{28}$
$N T I_{10, \mu}(q)$	$130 q^{5}+1128 q^{6}+3965 q^{7}+8509 q^{8}+13444 q^{9}+16918 q^{10}+$
	$18015 q^{11}+17121 q^{12}+14712 q^{13}+11663 q^{14}+8784 q^{15}+6347 q^{16}+$
	$4406 q^{17}+2945 q^{18}+1920 q^{19}+1280 q^{20}+819 q^{21}+541 q^{22}+$
	$311 q^{23}+206 q^{24}+121 q^{25}+82 q^{26}+47 q^{27}+37 q^{28}+15 q^{29}+$
	$11 q^{30}+7 q^{31}+5 q^{32}+3 q^{33}+2 q^{34}+q^{35}+q^{36}$

Figure 4. The non-matches of $(1,8,7,6,5,11,4,3,10,2,9)$ plotted on an 11×11 grid
$\left.N T I_{2 k+1, \mu}(q)\right|_{q^{k}}=C_{k}=\frac{1}{n+1}\binom{2 n}{n}$ where C_{k} is the k th Catalan number. We shall prove this conjecture and our proof of this conjecture led to a surprising connection between the charge statistic on permutations as defined by Lascoux and Schützenberger [7] and our problem. That is, given a permutation $\sigma=\sigma_{1} \ldots \sigma_{n}$, one defines the index, $\operatorname{ind}_{\sigma}\left(\sigma_{i}\right)$, of σ_{i} in σ as follows. First, $\operatorname{ind}_{\sigma}(1)=0$. Then, inductively, $\operatorname{ind}_{\sigma}(i+1)=\operatorname{ind}_{\sigma}(i)$ if $i+1$ appears to the right of i in σ and $\operatorname{ind}_{\sigma}(i+1)=1+\operatorname{ind}_{\sigma}(i)$ if $i+1$ appears to the left i in σ. For example, if $\sigma=148596273$ and we use subscripts to indicate the index of i in σ, then
we see that the indices associated with σ are

$$
\sigma=1_{0} 4_{1} 8_{2} 5_{1} 9_{2} 6_{1} 2_{0} 7_{1} 3_{0}
$$

The charge of $\sigma, \operatorname{ch}(\sigma)$, is equal to $\sum_{i=1}^{n} \operatorname{ind}_{\sigma}(i)$. Thus, for example, if $\sigma=148596273$, then $\operatorname{ch}(\sigma)=8$. We will associate a path which we call the charge path of σ whose vertices are elements $\left(i, \operatorname{ind}_{\sigma}\left(\sigma_{i}\right)\right)$ and whose edges are $\left\{\left(i, \operatorname{ind}_{\sigma}\left(\sigma_{i}\right)\right),\left(i+1, \operatorname{ind}_{\sigma}\left(\sigma_{i+1}\right)\right)\right\}$ for $i=1, \ldots, n$. For example, if $\sigma=148596273$ as above, then charge path of σ, which we denote by chpath (σ), is pictured in Figure 5, In our particular example, the charge graph of σ is a Dyck path (a lattice path with steps $(1,1)$ and $(1,-1)$ from the origin $(0,0)$ to $(2 n, 0)$ that never goes below the x-axis) and if $C=(1,4,8,5,9,6,2,7,3)$ is the n-cycle induced by σ, then $N T_{\mu}(C)=4$. This is no accident. That is, we shall show that if $C=\left(1, \sigma_{2}, \ldots, \sigma_{2 n+1}\right)$ is $2 n+1$-cycle in $\mathcal{I C}_{2 n+1}$, then $N T_{\mu}(C)=n$ if and only if the charge path of $\sigma=1 \sigma_{2} \ldots \sigma_{2 n+1}$ is a Dyck path of length $2 n$.

Figure 5. The charge path of $\sigma=148596273$.
The outline of this paper is as follows. In Section 2, we shall introduce the notion of the contraction of an n-cycle and use it to show that for all $n \geq 1$, there are positive integers $c_{1}, \ldots, c_{2 k+1}$ such that $\left.N T_{n, \mu}(q)\right|_{q^{k}}=\sum_{s=\left\lfloor\frac{3+\sqrt{1+8 k}}{2}\right\rfloor}^{2 k+1} c_{s}\binom{n-1}{s-1}$. In Section 3, we shall study incontractible cycles and the polynomials $N T I_{n, \mu}(q)$. We shall show that for all $n \geq 1,\left.N T I_{2 n+1, \mu}(q)\right|_{q^{n}}=C_{n}$ where C_{n} is nth Catalan number. In Section [4 we study the non- μ-matches in n-cycles of \mathcal{C}_{n} and use them to show that $\left.N T I_{n, \mu}(q)\right|_{q}\left(\frac{n-1}{2}\right)-k$ and $\left.N T_{n, \mu}(q)\right|_{q}\left(\frac{n-1}{2}\right)-k$ are the number of partitions of k for sufficiently large n. In Section 5, we will state our conclusions and some open problems.

2. The contraction of a cycle.

Define a bond of an n-cycle $C \in \mathcal{C}_{n}$ to be a pair of consecutive integers $(a, a+1)$ such that a is immediately followed by $a+1$ in the cycle C. For example, the bonds of the cycle $(1,4,5,6,2,7,8,3)$ are the pairs $(4,5),(5,6)$, and $(7,8)$. If $C=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ is an n-cylce where $c_{1}=1$, define the sets $R_{1}, R_{2}, \ldots, R_{k}$ recursively as follows. First, let $1=c_{1} \in R_{1}$. Then inductively, if $c_{i} \in R_{j}$, then $c_{i+1} \in R_{j}$ if $c_{i+1}=c_{i}+1$, and $c_{i+1} \in R_{j+1}$ otherwise. For example, for the cycle $C=(1,2,4,6,7,8,3,5)$ these sets are $R_{1}=\{1,2\}, R_{2}=\{4\}, R_{3}=\{6,7,8\}, R_{4}=\{3\}, R_{5}=\{5\}$. We will call these sets
the consecutive runs of C. Define the contraction of a cycle C with consecutive runs $R_{1}, R_{2}, \ldots, R_{k}$ to be

$$
\operatorname{cont}(C)=\operatorname{red}\left(\max \left(R_{1}\right), \max \left(R_{2}\right), \ldots, \max \left(R_{k}\right)\right)
$$

where $\max \left(R_{i}\right)$ denotes the maximum element in a run R_{i}. For example, the contraction of $C=(1,2,4,6,7,8,3,5)$ is

$$
\operatorname{cont}(1,2,4,6,7,8,3,5)=\operatorname{red}(2,4,8,3,5)=(1,3,5,2,4) .
$$

We say that C contracts to A if $\operatorname{cont}(C)=A$. Clearly, a cycle C is incontractible if $\operatorname{cont}(C)=C$.

We claim that the number of non-trivial μ matches does not change as we pass from C to cont (C). That is, we have the following theorem.

Theorem 1. For any n-cycle $C \in \mathcal{C}_{n}$,

$$
N T_{\mu}(C)=N T_{\mu}(\operatorname{cont}(C)) .
$$

Proof. We proceed by induction on n. The theorem is clearly true for $n=1$. Now, suppose that we are given an n-cycle $C \in \mathcal{C}_{n}$ and R_{1}, \ldots, R_{k} are the consecutive runs. If $k=n$, then, clearly, C is incontractible. Otherwise, suppose that s is the least i such that $\left|R_{i}\right| \geq 2$. Let $R_{s}=\{i, i+1, \ldots, j\}$. Then it is easy to see that in C, there are no pairs $\langle a, t\rangle$ which are nontrivial occurrences of μ in C for $i \leq a \leq j-1$ since $a+1$ immediately follows a in C. Similarly, there are no pairs $\langle s, b\rangle$ which are nontrivial occurrences of μ in C for $i+1 \leq b \leq j$ since $b-1$ immediately precedes b in C. Now, suppose that C^{\prime} arises from C by removing $i+1, \ldots, j$ and replacing each $s>j$ by $s-(j-i)$. Then it is easy to see that
(1) if $s<t \leq i,\langle s, t\rangle$ is a nontrivial occurrence of μ in C if and only if $\langle s, t\rangle$ is a nontrivial occurrence of μ in C^{\prime},
(2) if $s \leq i<j<t$, then $\langle s, t\rangle$ is a nontrivial occurrence of μ in C if and only if $\langle s, t-(j-i)\rangle$ is a nontrivial occurrence of μ in C^{\prime}, and
(3) if $j \leq s<t$, then $\langle s, t\rangle$ is a nontrivial occurrence of μ in C if and only if $\langle s-(j-i), t-(j-i)\rangle$ is a nontrivial occurrence of μ in C^{\prime}.
It follows that $N T_{\mu}(C)=N T_{\mu}\left(C^{\prime}\right)$. Moreover, it is easy to see that $\operatorname{cont}(C)=\operatorname{cont}\left(C^{\prime}\right)$. By induction $N T_{\mu}\left(C^{\prime}\right)=N T_{\mu}\left(\operatorname{cont}\left(C^{\prime}\right)\right)$. Hence, $N T_{\mu}(C)=N T_{\mu}\left(C^{\prime}\right)=N T_{\mu}\left(\operatorname{cont}\left(C^{\prime}\right)\right)=$ $N T_{\mu}(\operatorname{cont}(C))$.

It is easy to count the number of n-cycles $C \in \mathcal{C}_{n}$ for which $\operatorname{cont}(C)=A$. That is, we have the following theorem.

Theorem 2. Let $A \in \mathcal{I C}_{\ell}$ be an incontractible cycle of length ℓ. The number of n-cycles $C \in \mathcal{C}_{n}$ such that $\operatorname{cont}(C)=A$ is $\binom{n-1}{\ell-1}$.

Proof. If $\operatorname{cont}(C)=A$, then there are ℓ consecutive runs of C, namely R_{1}, \ldots, R_{ℓ} such that $\operatorname{red}\left(\max \left(R_{1}\right), \ldots, \max \left(R_{\ell}\right)\right)=A$. Since the maximum of one of the consecutive runs must be n, there are $\binom{n-1}{\ell-1}$ ways to choose the rest of the maxima. This will determine the consecutive runs and then we order them so that $\operatorname{red}\left(\max \left(R_{1}\right), \ldots, \max \left(R_{\ell}\right)\right)=A$.

For example, suppose $A=(1,3,5,2,4)$ and $n=8$. The 8 -cycle that contracts to A corresponding to the choice $\{1,3,4,7\}$ out of the $\binom{7}{4}$ choices is obtained by letting the maxima of the consecutive runs be $\{1,3,4,7,8\}$. Therefore, the consecutive runs are $\{1\},\{2,3\},\{4\},\{5,6,7\},\{8\}$. Then we arrange them so that $\operatorname{red}\left(\max \left(R_{1}\right), \ldots, \max \left(R_{\ell}\right)\right)=$ A and you get $\{1\},\{4\},\{8\},\{2,3\},\{5,6,7\}$, and so the cycle is $(1,4,8,2,3,5,6,7)$.

Theorems 1 and 2 imply the following theorem.
Theorem 3. For any $k \geq 0$ and $n \geq 1$,

$$
\begin{equation*}
\left.N T_{n, \mu}(q)\right|_{q^{k}}=\sum_{s=1}^{n} \sum_{\substack{A \in \mathcal{I C}_{s}, N T_{\mu}(A)=k}}\binom{n-1}{s-1} . \tag{4}
\end{equation*}
$$

Proof. It is easy to see that (4) follows by partitioning the n-cycles $C \in \mathcal{C}_{n}$ such that $N T_{\mu}(C)=k$ by their contractions.

We shall prove in the next section that the smallest power of q that occurs in either $N T I_{2 n, \mu}(q)$ or $N T I_{2 n+1, \mu}(q)$ is q^{n}. Hence it follows that

$$
\sum_{s=1}^{n} \sum_{\substack{A \in \mathcal{I C}_{s}, N T_{\mu}(A)=k}}\binom{n-1}{s-1}=\sum_{s=1}^{2 k+1} \sum_{\substack{A \in \mathcal{I C} \mathcal{C}_{s}, N T_{\mu}(A)=k}}\binom{n-1}{s-1}
$$

Furthermore, the maximum number of nontrivial occurrences of μ that one can have for a cycle of length s is $\binom{s-1}{2}$, (see page [4). This means that for a cycle of length s to have k nontrivial occurrences, we must have that $\frac{(s-1)(s-2)}{2} \geq k$ or, equivalently, $s^{2}-3 s+2-2 k \geq 0$. It follows that it must be the case that $s \geq \frac{3+\sqrt{1+8 k}}{2}$. Hence,

$$
\begin{equation*}
\sum_{s=1}^{2 k+1} \sum_{\substack{A \in \mathcal{I} \mathcal{C}_{s}, N T_{\mu}(A)=k}}\binom{n-1}{s-1}=\sum_{s=\left\lfloor\frac{3+\sqrt{1+8 k}}{2}\right\rfloor}^{2 k+1} \sum_{\substack{A \in \mathcal{I C}_{s}, N T_{\mu}(A)=k}}\binom{n-1}{s-1} . \tag{5}
\end{equation*}
$$

Thus we have the following theorem.
Theorem 4. For any $k \geq 0$ and $n \geq 1$,

$$
\begin{equation*}
\left.N T_{n, \mu}(q)\right|_{q^{k}}=\sum_{s=\left\lfloor\frac{3+\sqrt{1+8 k}}{2}\right\rfloor}^{2 k+1} c_{s}\binom{n-1}{s-1} \tag{6}
\end{equation*}
$$

where $c_{s}=\left.N T I_{s, \mu}(q)\right|_{q^{k}}$.

It follows from our tables for $N T I_{n, \mu}(q)$ and the fact that $\left.N T I_{11, \mu}(q)\right|_{q^{5}}=C_{5}=42$ which we will prove in Corollary 10 that for all $n \geq 1$

$$
\begin{aligned}
\left.N T_{n, \mu}(q)\right|_{q}= & \binom{n-1}{2} \\
\left.N T_{n, \mu}(q)\right|_{q^{2}}= & \binom{n-1}{3}+2\binom{n-1}{4} \\
\left.N T_{n, \mu}(q)\right|_{q^{3}}= & \binom{n-1}{3}+3\binom{n-1}{4}+6\binom{n-1}{5}+5\binom{n-1}{6}, \\
\left.N T_{n, \mu}(q)\right|_{q^{4}}= & 2\binom{n-1}{4}+13\binom{n-1}{5}+27\binom{n-1}{6}+29\binom{n-1}{7}+14\binom{n-1}{8}, \text { and } \\
\left.N T_{n, \mu}(q)\right|_{q^{5}}= & \binom{n-1}{4}+10\binom{n-1}{5}+51\binom{n-1}{6}+134\binom{n-1}{7}+ \\
& 181\binom{n-1}{8}+130\binom{n-1}{9}+42\binom{n-1}{10} .
\end{aligned}
$$

3. Incontractible n-cycles

Let $I C_{n}$ denote the number of incontractible n-cycles in \mathcal{C}_{n}. Clearly, there is only 1 incontractible 3 -cycle, namely, $(1,3,2)$ and there are only 2 incontractible 4 -cycles, namely, $(1,4,3,2)$ and $(1,3,2,4)$. Our next theorem shows the numbers $I C_{n}$ satisfies the recursion of the number of derangements.

Theorem 5. For all $n \geq 5$,

$$
\begin{equation*}
I C_{n}=(n-2) I C_{n-1}+(n-2) I C_{n-2} . \tag{7}
\end{equation*}
$$

Proof. Let $[n]=\{1, \ldots, n\}$. Suppose that $n \geq 5$ and $C=\left(1, c_{2}, \ldots, c_{n}\right)$ is an n-cycle in $\mathcal{I C}_{n}$. Let $C \upharpoonright_{[n-1]}=\left(1, c_{2}^{\prime}, \ldots, c_{n-1}^{\prime}\right)$ be the cycle obtained from C by removing n from C. For example if $C=(1,3,6,2,4,5)$ then $C \upharpoonright_{[5]}=(1,3,2,4,5)$. We then have two cases depending on whether $C \upharpoonright_{[n-1]}$ is incontractible or not.

Case 1. $C \upharpoonright_{[n-1]} \in \mathcal{I C}_{n-1}$.
In this situation, it is easy to see that if $D=C \upharpoonright_{[n-1]}$, there are exactly $n-2$ cycles $C^{\prime} \in \mathcal{I C}_{n}$ such that $D=C^{\prime} \upharpoonright_{[n-1]}$. These cycles are the result of inserting n immediately after i in D for $i=1, \ldots, n-2$. That is, let $D^{(i)}$ be the result of inserting n immediately after i in the cycle structure of D where $1 \leq i \leq n-2$. Then it is easy to see that $D^{(i)} \in \mathcal{I C}_{n}$ and $D=D^{(i)} \upharpoonright_{[n-1]}$. For example, if $D=(1,3,5,4,2)$ is the 5 -cycle pictured at the top of Figure 6, then $D^{(1)}, \ldots, D^{(4)}$ are pictured on the second row of Figure 6, reading from left to right. Thus, there are $(n-2) I C_{n-1} n$-cycles $C \in \mathcal{I C}_{n}$ such that $C \upharpoonright_{[n-1]}$ is an element of $\mathcal{I C}_{n-1}$. (Note that $D^{(n-1)}$ is not incontractible because it is obtained by inserting n directly after $n-1$.)

Figure 6. The four elements of $\mathcal{I C}_{6}$ that arise by inserting 6 into $C=(1,3,5,4,2)$.

We note that if $D=\left(1=d_{1}, \ldots, d_{n-1}\right)$ is an $(n-1)$-cycle in $\mathcal{I C} \mathcal{C}_{n-1}$, then

$$
N T_{\mu}\left(D^{(i)}\right) \geq 1+N T_{\mu}(D) \text { for } i=1, \ldots, n-2
$$

That is, if $\left\langle d_{s}, d_{t}\right\rangle$ is a nontrivial occurrence of μ in D, then the insertion of n does not effect whether $\left\langle d_{s}, d_{t}\right\rangle$ is a nontrivial occurrence of μ in $D^{(i)}$. Moreover, we are always guaranteed that $\langle i, n\rangle$ is a nontrivial occurrence of μ in $D^{(i)}$ since $i \leq n-2$. It is possible that $N T_{\mu}\left(D^{(i)}\right)-N T_{\mu}(D)$ is greater than or equal to 1 . For example, in Figure6, it is easy to see that if $D=(1,3,5,4,2)$, then there is only two pairs which are nontrivial occurrences of μ in C, namely $\langle 1,3\rangle$ and $\langle 3,5\rangle$, while in $D^{(1)}$, the insertion of 6 after 1 created three new nontrivial occurrences of μ in $D^{(1)}$ namely, the pairs $\langle 1,6\rangle,\langle 2,6\rangle$, and $\langle 4,6\rangle$. Thus, $N T_{\mu}\left(D^{(1)}\right)-N T_{\mu}(D)=5-2=3$. On the other hand, it is easy to see that if $D \in \mathcal{I C}{ }_{n-1}$, then

$$
\begin{equation*}
N T_{\mu}\left(D^{(n-2)}\right)=1+N T_{\mu}(D) . \tag{8}
\end{equation*}
$$

That is, if we insert n immediately after $n-2$ in D, then for $i=1, \ldots, n-3,\langle i, n\rangle$ cannot be a nontrivial occurrence of μ in $D^{(n-2)}$ because $n-2$ will be between i and n in D. Thus, we will create exactly one more pair which is a nontrivial occurrence of μ in $D^{(n-2)}$ that was not in D, namely, $\langle n-2, n\rangle$.

Case $2 C \upharpoonright_{[n-1]} \notin \mathcal{I} \mathcal{C}_{n}$.
In this case, it must be that in C, n is the only element between i and $i+1$ in C for some i so that in $C \upharpoonright_{[n-1]}, i+1$ immediately follows i. Clearly, i is the only j in $C \upharpoonright_{[n-1]}$ such that $j+1$ immediately follows j. Hence, we can construct an element of $D \in \mathcal{I C}_{n-2}$ from $C \upharpoonright_{[n-1]}$ by removing $i+1$ and then replacing j by $j-1$ for $i+1<j \leq n-1$. Vice versa, given $D \in \mathcal{I C}_{n-2}$ and $1 \leq i \leq n-2$, let $D^{[i]}$ be the cycle that results from D by first replacing elements $j \geq i+1$, by $j+1$, then replacing i by a pair i immediately followed by $i+1$, and finally inserting n between i and $i+1$. This process is pictured in Figure 7 for the cycle $D=(1,3,2,4)$. In such a situation, we shall say that $D^{[i]}$ arises by expanding D at i.

Figure 7. The four elements of $\mathcal{I C}_{6}$ that arise by expanding $D=(1,3,2,4)$.
We should note that if $D=\left(1=d_{1}, \ldots, d_{n-2}\right)$ is an $(n-2)$-cycle in $\mathcal{I C}_{n-2}$, then

$$
N T_{\mu}\left(D^{[i]}\right) \geq 1+N T_{\mu}(D) \text { for } i=1, \ldots, n-2
$$

In the first step of the expansion of D at i, we replace each $j \geq i+1$ by $j+1$ and then replace i by a consecutive pair i followed by $i+1$ to get a cycle D_{i}. It is clear that this keeps the number of nontrivial occurrences of μ the same. That is, it is easy to see that there will be no pair $\langle i, t\rangle$ which is a nontrivial occurrence of μ in D_{i} since i is immediately followed by $i+1$ in D_{i}. Moreover, it is easy to check that
(1) if $s<t \leq i$, then $\langle s, t\rangle$ is a nontrivial occurrence of μ in D if and only if $\langle s, t\rangle$ is a nontrivial occurrence of μ in D_{i},
(2) if $s<i<t$, then $\langle s, t\rangle$ is a nontrivial occurrence of μ in D if and only if $\langle s, t+1\rangle$ is a nontrivial occurrence of μ in D_{i}.
(3) $\langle i, t\rangle$ is a nontrivial occurrence of μ in D if and only if $\langle i+1, t+1\rangle$ is a nontrivial occurrence of μ in D_{i}, and
(4) if $i<s<t$, then $\langle s, t\rangle$ is a nontrivial occurrence of μ in D if and only if $\langle s+1, t+1\rangle$ is a nontrivial occurrence of μ in D_{i}.
Then for every pair $\langle r, s\rangle$ which is a nontrivial occurrence of μ in D_{i}, there exists a nontrivial occurrence of μ in $D^{[i]}$ after inserting n between i and $i+1$. Finally we will create at least one new nontrivial occurrence of μ in D, namely $\langle i, n\rangle$.

Again it is possible that $N T_{\mu}\left(D^{[i]}\right)-N T_{\mu}(D)$ is greater than or equal to 1 . For example, in Figure 7, it is easy to see that if $D=(1,3,5,4,2)$, there are only two pairs that are nontrivial occurrences of μ in D, namely $\langle 1,3\rangle$ and $\langle 2,4\rangle$, which correspond to the pairs $\langle 1,4\rangle$ and $\langle 3,5\rangle$ that are nontrivial occurrences of μ in $D^{[2]}$. However, the insertion of 6 between 2 and 3 in D_{2} created two new nontrivial occurrences of μ in $D^{[2]}$, namely, $\langle 2,6\rangle$ and $\langle 4,6\rangle$. Thus, $N T_{\mu}\left(D^{[2]}\right)-N T_{\mu}(D)=4-2=2$. On the other hand, it is easy to see
that if $D \in \mathcal{I C}_{n-2}$, then

$$
\begin{equation*}
N T_{\mu}\left(D^{[n-2]}\right)=1+N T_{\mu}(D) . \tag{9}
\end{equation*}
$$

That is, if we insert n immediately after $n-2$ in D_{n-2}, then for $i=1, \ldots, n-3,\langle i, n\rangle$ cannot be a nontrivial occurrences of μ in $D^{[n-2]}$ because $n-2$ will be between i and n in $D^{[n-2]}$. Thus, we will create exactly one occurrence of μ in $D^{[n-2]}$ that was not in D_{n-2}, namely, $\langle n-2, n\rangle$.

We have two important corollaries to our proof of Theorem 5 .
Corollary 6. For all $n \geq 2, I C_{n}=D_{n-1}$ where D_{n} is the number of derangements of S_{n}.
Proof. It is well-known that $D_{1}=0=I C_{2}, D_{2}=1=I C_{3}$, and that for $n \geq 2$,
$D_{n+1}=n D_{n-1}+n D_{n-2}$. Thus, the corollary follows by recursion.
Corollary 7. For all $n \geq 2$, the lowest power of q appearing in $N T I_{2 n, \mu}(q)$ and $N T I_{2 n+1, \mu}(q)$ is q^{n}.
Proof. We have shown by direct calculation that the lowest power of q appearing in $N T I_{4, \mu}(q)$ and $N T I_{5, \mu}(q)$ is q^{2}. Thus, the corollary holds for $n=2$. Now, assume the corollary holds for $n \geq 2$. Then we shall show the corollary holds for $n+1$. We have shown that each $(2 n+2)$-cycle C in $\mathcal{I C}_{2 n+2}$ is either of the form $D^{(i)}$ for some $D \in \mathcal{I C}_{2 n+1}$ and $1 \leq i \leq 2 n$ in which case $N T_{\mu}\left(D^{(i)}\right) \geq 1+N T_{\mu}(D)$, or of the form $E^{[i]}$ for some $E \in \mathcal{I C}_{2 n}$ and $1 \leq i \leq 2 n$ in which case $N T_{\mu}\left(E^{[i]}\right) \geq 1+N T_{\mu}(E)$. But by induction, we know that $N T_{\mu}(D) \geq n$ and $N T_{\mu}(E) \geq n$ so that $N T_{\mu}(C) \geq n+1$. Thus, the smallest possible power of q that can appear in $N T I_{2 n+2, \mu}(q)$ is $n+1$. On the other hand, we can assume by induction that there is a $D \in \mathcal{I C}_{2 n+1}$ such that $N T_{\mu}(D)=n$ in which case we know that $N T_{\mu}\left(D^{(n-2)}\right)=1+N T_{\mu}(D)=n+1$. Hence, the coefficient of q^{n+1} in $N T_{2 n+2, \mu}(q)$ is non-zero.

We have shown that each $(2 n+3)$-cycle C in $\mathcal{I C}_{2 n+3}$ is either of the form $D^{(i)}$ for some $D \in \mathcal{I C} \mathcal{C}_{2 n+2}$ and $1 \leq i \leq 2 n+1$ in which case $N T_{\mu}\left(D^{(i)}\right) \geq 1+N T_{\mu}(D)$, or of the form $E^{[i]}$ for some $E \in \mathcal{I C} \mathcal{C}_{2 n+1}$ and $1 \leq i \leq 2 n+1$ in which case $N T_{\mu}\left(E^{[i]}\right) \geq 1+N T_{\mu}(E)$. But by induction, we know that $N T_{\mu}(D) \geq n+1$ and $N T_{\mu}(E) \geq n$ so that $N T_{\mu}(C) \geq n+1$. Thus, the smallest possible power of q that can appear in $N T I_{2 n+3, \mu}(q)$ is $n+1$. On the other hand, we can assume by induction that there is a $D \in \mathcal{I C}_{2 n+1}$ such that $N T_{\mu}(D)=n$ in which case we know that $N T_{\mu}\left(D^{[n-2]}\right)=1+N T_{\mu}(D)=n+1$. Hence, the coefficient of q^{n+1} in $N T_{2 n+3, \mu}(q)$ is non-zero.

We have not been able to find a recursion for the polynomials $N T I_{n, \mu}(q)$. The problem with the recursion implicit in the proof of Theorem 5 is that for n-cycles $D \in \mathcal{I C}_{n}$, the contributions of $\sum_{i \geq 1} q^{N T_{\mu}\left(D^{(i)}\right)}$ are not uniform. For example, if $D=(1,3,5,4,2)$, then $N T_{\mu}(D)=2, N T_{\mu}\left(D^{(1)}\right)=5, N T_{\mu}\left(D^{(2)}\right)=4, N T_{\mu}\left(D^{(3)}\right)=4$, and $N T_{\mu}\left(D^{(4)}\right)=$ 3 so that $\sum_{i=1}^{4} q^{N T_{\mu}\left(D^{(i)}\right)}=\left(q+2 q+q^{3}\right) q^{N T_{\mu}(D)}$. However, $D=(1,5,4,3,2)$, then
$N T_{\mu}(D)=6, N T_{\mu}\left(D^{(1)}\right)=10, N T_{\mu}\left(D^{(2)}\right)=9, N T_{\mu}\left(D^{(3)}\right)=8$, and $N T_{\mu}\left(D^{(4)}\right)=7$ so that $\sum_{i=1}^{4} q^{N T_{\mu}\left(D^{(i)}\right)}=\left(q+q^{2}+q^{3}+q^{4}\right) q^{N T_{\mu}(D)}$. A similar phenomenon occurs for $\sum_{i \geq 1} N T_{\mu}\left(D^{[i]}\right)$. For example, it is easy to see from Figure 6 that if $D=(1,3,2,4)$, then $N T_{\mu}(D)=2, N T_{\mu}\left(D^{[1]}\right)=3, N T_{\mu}\left(D^{[2]}\right)=4, N T_{\mu}\left(D^{[3]}\right)=3$, and $N T_{\mu}\left(D^{[4]}\right)=3$, so that $\sum_{i=1}^{4} q^{N T_{\mu}\left(D^{[i]}\right)}=\left(3 q+q^{2}\right) q^{N T_{\mu}(D)}$. However, as one can see from Figure 8 below that if $D=(1,4,3,2)$, then $N T_{\mu}(D)=3, N T_{\mu}\left(D^{[1]}\right)=6, N T_{\mu}\left(D^{[2]}\right)=5, N T_{\mu}\left(D^{[3]}\right)=4$, and $N T_{\mu}\left(D^{[4]}\right)=4$, so that $\sum_{i=1}^{4} q^{N T_{\mu}\left(D^{[i]}\right)}=\left(2 q+q^{2}+q^{3}\right) q^{N T_{\mu}(D)}$.

Figure 8. The four elements of $\mathcal{I C}_{6}$ that arise by expanding $D=(1,4,3,2)$.
Our next goal is to show that $\left.N T I_{2 n+1, \mu}(q)\right|_{q^{n}}=C_{n}$ where C_{n} is the nth Catalan number.

Theorem 8. Suppose that $\sigma=\sigma_{1} \ldots \sigma_{2 n+1} \in S_{2 n+1}$ and chpath $(\sigma)=P$ is a Dyck path of length $2 n$. Then the n-cycle $C_{\sigma}=\left(\sigma_{1}, \ldots, \sigma_{2 n+1}\right)$ is incontractible and $N T_{\mu}(C)=n$.
Proof. Since the path P starts at $(0,0)$, it follows that $\operatorname{ind}_{\sigma}\left(\sigma_{1}\right)=0$. This can only happen if $\sigma_{1}=1$. Thus, $C_{\sigma}=\left(1, \sigma_{2}, \ldots, \sigma_{2 n+1}\right)$ has the standard form of an n-cycle. Note that the only way $i+1$ immediately follows i in C_{σ} is if there is a j such that $\sigma_{j}=i$ and $\sigma_{j+1}=i+1$. But then $\operatorname{ind}_{\sigma}\left(\sigma_{j}\right)=\operatorname{ind}_{\sigma}\left(\sigma_{j+1}\right)$ which would imply that the charge path of σ has a level which means that there is an edge drawn horizontally. Since we are assuming that the charge path of C_{σ} is a Dyck path, there can be no such i and, hence, C_{σ} is incontractible.

Next we claim that if the i th step of P is an up-step, then $\left\langle\sigma_{i}, \sigma_{i+1}\right\rangle$ is a nontrivial occurrence of μ in C_{σ}. That is, if the i th step of P is an up-step, then $\operatorname{ind}_{\sigma}\left(\sigma_{i}\right)=k$ and $\operatorname{ind}_{\sigma}\left(\sigma_{i+1}\right)=k+1$ for some $k \geq 0$. Since P is a Dyck path, there must be some $j>i+1$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{j}\right)=k$ because we must pass through level k from the point $(i+1, k+1)$ in chpath (σ) to get back to the point $(2 n, 0)$ which is the end point of the path. Let i_{j} denote the smallest $j>i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{j}\right)=k$. It follows from the definition of the
function $\operatorname{ind}_{\sigma}$ that it must be the case that $\sigma_{i}=\ell$ and $\sigma_{i_{j}}=\ell+1$. Moreover, it must be the case that $\sigma_{i+1}>\ell+1$ so that $\left\langle\sigma_{i}, \sigma_{i+1}\right\rangle$ is a nontrivial occurrence of μ in C_{σ}. We claim that there can be no $t \neq \sigma_{i+1}$ such that $\left\langle\sigma_{i}, t\right\rangle$ is a nontrivial occurrence of μ in C_{σ}. That is, since P is a Dyck path, we know that all the vertices on P between (i, k) and $\left(i_{j}, k\right)$ lie on levels strictly greater than k. It is easy to see from our inductive definition of $\operatorname{ind}_{\sigma}$ that it must be the case that σ_{i+1} is the least element of $\sigma_{i+1}, \sigma_{i+2}, \ldots, \sigma_{i_{j}-1}$ and hence the fact that σ_{i+1} immediately follows σ_{i} in C_{σ} implies that none of the pairs $\left\langle\sigma_{i}, \sigma_{s}\right\rangle$ is a nontrivial occurrence of μ in C_{σ} for $i+1<s<i_{j}$. But then as we traverse around the cycle C_{σ}, the fact that $\sigma_{i}=\ell$ and $\sigma_{i_{j}}=\ell+1$ implies that none of the pairs $\left\langle\sigma_{i}, \sigma_{s}\right\rangle$ where either $i_{j}<s \leq 2 n+1$ or $1 \leq s<i$ are nontrivial occurrences of μ in C_{σ}. Thus, if the i th step of P is an up-step, then $\left\langle\sigma_{i}, t\right\rangle$ is an occurrence of μ in C_{σ} for exactly one t, namely $t=\sigma_{i+1}$.

Next suppose that the i th step of P is a down-step. Then, we claim that there is no t such that $\left\langle\sigma_{i}, t\right\rangle$ is an occurrence of μ in C_{σ}. We then have two cases.

Case 1. $\operatorname{ind}_{\sigma}\left(\sigma_{i}\right)=k$ and there is a $j>i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{j}\right)=k$.
In this case, let i_{j} be the least $j>i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{j}\right)=k$. It then follows that if $\sigma_{i}=\ell$, then $\sigma_{i_{j}}=\ell+1$. Because P is a Dyck path, it must be the case that $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)<k$ for all $i<s<i_{j}$ so that $\sigma_{s}<\ell$ for all $i<s<i_{j}$. But this means that as we traverse around the cycle C_{σ}, the first element that we encounter after $\sigma_{i}=\ell$ which is bigger than ℓ is $\sigma_{i_{j}}=\ell+1$ and hence there is no $t>\sigma_{i}$ such that $\left\langle\sigma_{i}, t\right\rangle$ is a nontrivial occurrence of μ in C_{σ}.

Case 2. $\operatorname{ind}_{\sigma}\left(\sigma_{i}\right)=k$ and there is no $j>i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{j}\right)=k$.
In this case since P is a Dyck path, all the elements σ_{s} such that $s>i$ must have $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)<k$ and hence $\sigma_{s}<\sigma_{i}$ since, in a charge graph, all the elements whose index in σ is less than k are smaller than all the elements whose index is equal to k in σ. We now have two subcases.

Subcase 2.1. There is an $s<i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k+1$.
Let s_{j} be the smallest $s<i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k+1$. Since σ_{i} was the rightmost element whose index relative to σ equals k, it follows that if $\sigma_{i}=\ell$, then $\sigma_{s_{j}}=\ell+1$ since it is the leftmost element whose index relative to σ equals $k+1$. Moreover, for all $t<s_{j}$, either σ_{t} has index less than k in σ or σ_{t} has index k in σ. In either case, our definition of ind ${ }_{\sigma}$ ensures that $\sigma_{t}<\ell$. But this means that as we traverse around the cycle C_{σ}, the first element that we encounter after $\sigma_{i}=\ell$ which is bigger than ℓ is $\sigma_{s_{j}}=\ell+1$ and hence there is no $t>\sigma_{i}$ such that $\left\langle\sigma_{i}, t\right\rangle$ is a nontrivial occurrence of μ in C_{σ}.

Subcase 2.2. There is no $s<i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k+1$.
In this case, σ_{i} has the highest possible index in σ and it is the rightmost element whose index in σ is k which means that $\sigma_{i}=2 n+1$. Hence, there is no $t>\sigma_{i}$ such that $\left\langle\sigma_{i}, t\right\rangle$ is an occurrence of μ in C_{σ}.

The only other possibility is that we have not considered is that $i=2 n+1$. Since P is a Dyck path, we know that $\operatorname{ind}_{\sigma}\left(\sigma_{2 n+1}\right)=0, \operatorname{ind}_{\sigma}\left(\sigma_{1}\right)=0$, and $\operatorname{ind}_{\sigma}\left(\sigma_{2}\right)=1$. But then it follows that if $\sigma_{2 n+1}=\ell$, then $\sigma_{1}<\ell$ and $\sigma_{2}=\ell+1$. But this means that as we traverse around the cycle C_{σ}, the first element that we encounter after $\sigma_{2 n+1}=\ell$ which is bigger than ℓ is $\sigma_{2}=\ell+1$ and hence there is no $t>\sigma_{i}$ such that $\left\langle\sigma_{2 n+1}, t\right\rangle$ is a nontrivial occurrence of μ in C_{σ}.

Thus, we have shown that the nontrivial occurrences of μ in C_{σ} correspond to the upsteps of $\operatorname{chpath}(\sigma)$ and hence $N T_{\mu}\left(C_{\sigma}\right)=n$.

Our next theorem will show that if $C=\left(1, \sigma_{2}, \ldots, \sigma_{2 n+1}\right)$ is a $(2 n+1)$-cycle in $\mathcal{I C}_{2 n+1}$ where $N T_{\mu}(C)=n$, then the charge path of $\sigma_{C}=1 \sigma_{2} \ldots \sigma_{2 n+1}$ must be a Dyck path.
Theorem 9. Let $C=\left(1, \sigma_{2}, \ldots, \sigma_{2 n+1}\right) \in \mathcal{I C}_{2 n+1}$ and $\sigma_{C}=1 \sigma_{2} \ldots \sigma_{2 n+1}$. Then, if $N T_{\mu}(C)=n$, the charge path of σ_{C} must be a Dyck path.
Proof. Our proof proceeds by induction on n. For $n=1$, the only element of $\mathcal{I C}_{3}$ is $C=(1,3,2)$ and it is easy to see that chpath(132) is a Dyck path.

Now assume by induction that if $D=\left(1, \sigma_{2}, \ldots, \sigma_{2 n+1}\right)$ is a $(2 n+1)$-cycle in $\mathcal{I C}_{2 n+1}$ such that $N T_{\mu}(D)=n$, then the charge path of $\sigma_{D}=1 \sigma_{2} \ldots \sigma_{2 n+1}$ is a Dyck path. Now suppose that $C=\left(1, \sigma_{2}, \ldots, \sigma_{2 n+3}\right)$ is a $(2 n+3)$-cycle in $\mathcal{I C}_{2 n+3}$ such that $N T_{\mu}(C)=n+1$. Let $\sigma_{C}=\sigma=1 \sigma_{2} \ldots \sigma_{2 n+3}$. Then, we know by our proof of Theorem 5 that either $C=D^{(j)}$ for some $D \in \mathcal{I C}_{2 n+2}$ or $C=D^{[j]}$ for some $D \in \mathcal{I C}_{2 n+1}$. We claim that C cannot be of the form $D^{(j)}$ for some $D \in \mathcal{I C}_{2 n+2}$. That is, we know that for all $D \in \mathcal{I C}_{2 n+2}$ we have $N T_{\mu}(D) \geq n+1$ and, hence, $N T_{\mu}\left(D^{(j)}\right) \geq 1+N T_{\mu}(D) \geq n+2$. Thus, there must be some $D \in \mathcal{I C}_{2 n+1}$ such that $C=D^{[j]}$ for some j. But then we know that $P_{D}=\operatorname{chpath}(D)$ is a Dyck path. Let $D=\left(1, \tau_{2}, \ldots, \tau_{2 n+1}\right)$ and $\sigma_{D}=\tau=\tau_{1} \ldots \tau_{2 n+1}$. Note that it follows from our arguments in Theorem 5 that $N T_{\mu}\left(D^{[j]}\right)-N T_{\mu}(D)$ is equal to the number of pairs $\langle s, 2 n+3\rangle$ which are nontrivial occurrences of μ in $D^{[j]}$. It is also the case that the charge path of σ is easily constructed from the charge path of τ. That is, suppose that $\tau_{i}=j$. Then $1, \ldots, j$ are in the same order in σ and τ so that $\operatorname{ind}_{\sigma}(s)=\operatorname{ind}_{\tau}(s)$ for $1 \leq s \leq j$. In going from τ to σ, we first increased the value of any $t>j$ by one and then inserted $j+1$ immediately after j to get a permutation α. Thus $\operatorname{ind}_{\alpha}(j)=\operatorname{ind}_{\alpha}(j+1)$. Moreover, $j+1, \ldots, 2 n+2$ are in the same relative order in α as $j, \ldots, 2 n+1$ in τ so that for $j+1 \leq t \leq 2 n+1, \operatorname{ind}_{\tau}(t)=\operatorname{ind}_{\alpha}(t+1)$. Finally, inserting $2 n+3$ in α between j and $j+1$ has no effect on the indices assigned to $1, \ldots, 2 n+2$. Thus for $1 \leq s \leq j, \operatorname{ind}_{\sigma}(j)=\operatorname{ind}_{\tau}(j)$ and for $j+1 \leq t \leq 2 n+1, \operatorname{ind}_{\sigma}(t+1)=\operatorname{ind}_{\tau}(t)$. This means that one can construct the charge path of σ by essentially starting with the charge graph of τ, then replacing the vertex $\left(i, \operatorname{ind}_{\tau}\left(\tau_{i}\right)\right)$ by a horizontal edge, and finally replacing that horizontal edge by a pair of edges $\left\{\left(i, \operatorname{ind}_{\sigma}\left(\sigma_{i}\right)\right),\left(i+1, \operatorname{ind}_{\sigma}(2 n+3)\right\}\right.$ and $\left\{\left(i+1, \operatorname{ind}_{\sigma}(2 n+3)\right),\left((i+2), \operatorname{ind}_{\sigma}\left(\sigma_{i+2}\right)\right\}\right.$. In particular, this means the charge paths from 1 up to i are identical for both σ and τ and the charge path from $i+2$ to $2 n+3$ in σ is identical to the charge path from i to $2 n+1$ in τ.

We now consider several cases depending on which i is such that $\tau_{i}=j$ and the value $\operatorname{ind}_{\tau}\left(\tau_{i}\right)$ in the Dyck path P_{D}.

Case 1. $j=\tau_{i}$ where $\operatorname{ind}_{\tau}\left(\tau_{i}\right)<\operatorname{ind}_{\tau}\left(\tau_{i+1}\right)$.
In this case, we will have $\sigma_{i}=\tau_{i}, \sigma_{i+1}=2 n+3, \sigma_{i+2}=1+\tau_{i}$, and $\sigma_{i+3}=1+\tau_{i+1}$. Since P_{D} is a Dyck path, there will be some k such that $\operatorname{ind}_{\tau}\left(\tau_{i}\right)=k$, and $\operatorname{ind}_{\tau}\left(\tau_{i+1}\right)=k+1$ so that we will be in the situation pictured in Figure 9. Because $\operatorname{ind}_{\sigma}\left(\sigma_{i+3}\right)=k+1$, it must be the case that $\operatorname{ind}_{\sigma}(2 n+3)>k+1$. It is easy to see that $\left\langle\sigma_{i}, 2 n+3\right\rangle$ is an occurrence of μ in C. We then have two subcases.

Subcase 1A. There is an $s<i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k+1$.
In this case, let s_{i} be the largest s such that $s<i$ and $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k+1$. Because P_{D} is a Dyck path, it must be the case that for all $s_{i}<t<i, \operatorname{ind}_{\sigma}\left(\sigma_{s_{i}}\right) \leq k$ because on the path from $(s, k+1)$ to (i, k), we cannot have an $s<t<i \operatorname{such}$ that $\operatorname{ind}_{\sigma}\left(\sigma_{t}\right)>k+1$ without having some $t<u<i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{u}\right)=k+1$ which would violate our choice of s_{i}. But this means that $\sigma_{t}<\sigma_{i}$ for all $s_{i}<t<\sigma_{i}$ and hence, $\left\langle\sigma_{s_{i}}, 2 n+3\right\rangle$ is a nontrivial occurrence of μ in C. Thus, $N T_{\mu}(C) \geq N T_{\mu}(D)+2=n+2$.

Subcase 1B. There is no $s<i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k+1$.
In this case, let s_{i} be the largest s such that $i<s$ and $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k$. Because P_{D} is a Dyck path such an s must exist since $\operatorname{ind}_{\sigma}\left(\sigma_{i+3}\right)=k+1$ and a Dyck path that reaches level $k+1$ must subsequently descend to level k. But this means that for all $t<i, \operatorname{ind}_{\sigma}\left(\sigma_{t}\right) \leq k$ and hence, $\sigma_{t} \leq \sigma_{i}$. Moreover, for all $r>s_{i}, \operatorname{ind}_{\sigma}\left(\sigma_{r}\right)<k$ and hence, $\sigma_{r} \leq \sigma_{i}$. But it then follows that since $\sigma_{s_{i}}>\sigma_{i},\left\langle\sigma_{s_{i}}, 2 n+3\right\rangle$ is a nontrivial occurrence of μ in C. Thus, $N T_{\mu}(C) \geq N T_{\mu}(D)+2=n+2$.

Figure 9. The charge path of $D^{\left[\tau_{2 n+1}\right]}$ in Case 1.
Case 2. $j=\tau_{2 n+1}$.
In this case, we will have $\sigma_{2 n+1}=\tau_{2 n+1}, \sigma_{2 n+2}=2 n+3$ and $\sigma_{2 n+3}=\tau_{2 n+1}+1$. Thus, the charge path of $D^{\left[\tau_{2 n+1}\right]}$ looks like one of the two situations pictured in Figure 10. That is, we have two subcases.

Subcase 2A. $\operatorname{ind}_{\sigma}\left(\sigma_{2 n+2}\right)=1$.
In this case, $\operatorname{chpath}(\sigma)$ will be a Dyck path. This case can only happen if $\operatorname{ind}_{\tau}\left(\tau_{i}\right) \leq 1$ for
all $1 \leq i \leq 2 n+1$.
Subcase 2B. $\operatorname{ind}_{\sigma}\left(\sigma_{2 n+2}\right) \geq 2$.
In this case, chpath (σ) will not be a Dyck path. This case can only happen if there is an s such that $\operatorname{ind}_{\tau}\left(\tau_{s}\right)=\operatorname{ind}_{\sigma}\left(\tau_{i}+s\right) \geq 2$. But then since $\operatorname{ind}_{\sigma}\left(\sigma_{2 n}\right)=1$, it must be the case that $\sigma_{2 n}<\tau_{s}+1<2 n+3$. Hence both $\left\langle\sigma_{2 n+1}, 2 n+3\right\rangle$ and $\left\langle\sigma_{2 n}, 2 n+3\right\rangle$ are nontrivial occurrences of μ in C so that $N T_{\mu}(C) \geq N T_{\mu}(D)+2=n+2$.

Figure 10. The charge path of $D^{\left[\tau_{2 n+1}\right]}$ in Case 2.

Case 3. $j=\tau_{i}$ where $\operatorname{ind}_{\tau}\left(\tau_{i-1}\right)>\operatorname{ind}_{\tau}\left(\tau_{i}\right)>\operatorname{ind}_{\tau}\left(\tau_{i+1}\right)$.
In this case, we will have $\sigma_{i-1}=1+\tau_{i-1}, \sigma_{i}=\tau_{i}, \sigma_{i+1}=2 n+3, \sigma_{i+2}=1+\tau_{i}$, and $\sigma_{i+3}=\tau_{i+1}$. There are now two cases.

Case 3A. $\tau_{i-1}<2 n+1$.
In this case, we will have the situation pictured in Figure 11. That is, since $\sigma_{i-1}=$ $1+\tau_{i-1}<2 n+2$, it must be the case the either $2 n+2$ is to the left of σ_{i-1} in which case $\operatorname{ind}_{\sigma}(2 n+2)>k+1$ or $2 n+2$ is the right of σ_{i+3} in which case $\operatorname{ind}_{\sigma}(2 n+2) \geq k+1$ and $2 n+3$ is to the left of $2 n+2$ in σ. In either case, it must be that $\operatorname{ind}_{\sigma}(2 n+3)>k+1$. It is then easy to see that both $\left\langle\sigma_{i-1}, 2 n+3\right\rangle$ and $\left\langle\sigma_{i}, 2 n+3\right\rangle$ are nontrivial occurrences of μ in C so that $N T_{\mu}(C) \geq N T_{\mu}(D)+2=n+2$.

Case 3B. $\tau_{i-1}=2 n+1$.
In this case, we will have the situation pictured in Figure 12. In this situation, the charge path of $D^{\left[\tau_{i}\right]}$ will be a Dyck path.

Figure 11. The charge path of $D^{\left[\tau_{i}\right]}$ in Case 3A.

Figure 12. The charge path of $D^{\left[\tau_{i}\right]}$ in Case 3B.

Case 4. $j=\tau_{i}$ where $\operatorname{ind}_{\tau}\left(\tau_{i-1}\right)<\operatorname{ind}_{\tau}\left(\tau_{i}\right)>\operatorname{ind}_{\tau}\left(\tau_{i+1}\right)$.
In this case, we will have $\sigma_{i-1}=\tau_{i-1}, \sigma_{i}=\tau_{i}, \sigma_{i+1}=2 n+3, \sigma_{i+2}=1+\tau_{i}$, and $\sigma_{i+3}=\tau_{i+1}$. There are now two subcases.

Subcase 4A. $\operatorname{ind}_{\sigma}(2 n+3)>k+1$.
In this case, we have the situation pictured in Figure 13, It will always be the case that $\left\langle\sigma_{i}, 2 n+3\right\rangle$ is a nontrivial occurrence of μ in C. We then have two more subcases.

Subcase 4A1. There is an $s<i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k+1$.
In this case, let s_{i} be the largest s such that $s<i$ and $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k+1$. Because P_{D} is a Dyck path, we can argue as in Case 1A that it must be the case that for all $s_{i}<t<i$, $\operatorname{ind}_{\sigma}\left(\sigma_{s_{t}}\right) \leq k$. But this means that $\sigma_{t}<\sigma_{i}$ for all $s_{i}<t<\sigma_{i}$ and hence, $\left\langle\sigma_{s_{i}}, 2 n+3\right\rangle$ is also a nontrivial occurrence of μ in C. Thus, $N T_{\mu}(C) \geq N T_{\mu}(D)+2=n+2$.

Subcase 4A2. There is no $s<i$ such that $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k+1$.
In this case, let s_{i} be the largest s such that $i<s$ and $\operatorname{ind}_{\sigma}\left(\sigma_{s}\right)=k$. Note that s_{i} exists since $\operatorname{ind}_{\sigma}\left(\sigma_{i+2}\right)=k$. But this means that for all $t<i, \operatorname{ind}_{\sigma}\left(\sigma_{t}\right) \leq k$ and, hence, $\sigma_{t}<\sigma_{i}$. Moreover, for all $r>s_{i}, \operatorname{ind}_{\sigma}\left(\sigma_{r}\right)<k-1$ and hence, $\sigma_{r}<\sigma_{i}$. But it then follows that since $\sigma_{s_{i}}>\sigma_{i},\left\langle\sigma_{s_{i}}, 2 n+3\right\rangle$ is also a nontrivial occurrence of μ in C. Thus, $N T_{\mu}(C) \geq N T_{\mu}(D)+2=n+2$.

Figure 13. The charge path of $D^{\left[\tau_{i}\right]}$ in Case 4A.

Subcase 4B. $\operatorname{ind}_{\sigma}(2 n+3)=k+1$.
In this case, we have the situation pictured in Figure 14 and, hence, $\operatorname{chpath}(\sigma)$ will be a Dyck path.

Thus, we have shown that if $D \in \mathcal{I C} \mathcal{C}_{2 n+1}$ is such that $N T_{\mu}(D)=n$ and $D^{[i]}=C$, then either $\operatorname{chpath}(\sigma)$ is a Dyck path or $N T_{\mu}\left(D^{[i]}\right) \geq n+2$. Hence, if $N T_{\mu}(C)=n+1$, then $\operatorname{chpath}(\sigma)$ is a Dyck path.

Theorems 8 and 9 yield the following corollary.
Corollary 10. $\left.N T I_{2 n+1, \mu}(q)\right|_{q^{n}}=C_{n}$ where $C_{n}=\frac{1}{n+1}\binom{2 n}{n}$ is the nth Catalan number.

Figure 14. The charge path of $D^{\left[\tau_{i}\right]}$ in Case 4B.

4. Plots and Integer Partitions

In this section we will show that $\left.N T I_{n, \mu}(q)\right|_{q}\left({ }_{\left(\frac{n}{2}-1\right.}^{2}\right)^{-k}$ and $\left.N T_{n, \mu}(q)\right|_{q}\left(\frac{n-1}{2}\right)-k$ are equal to the number of partitions of k for sufficiently large n by plotting the non- μ-matches on a grid and mapping them to integer partitions.

Given an n-cycle $C \in \mathcal{C}_{n}$, we say that a pair $\langle i, j\rangle$ with $i<j$ is a non- μ-match of C if $\langle i, j\rangle$ is not an occurrence of μ in C. In other words, $\langle i, j\rangle$ is a non- μ-match if there exists an integer x such that $i<x<j$ and x is cyclically between i and j in C. Furthermore, let $\mathcal{N} \mathcal{M}_{\mu}(C)$ be the set of non- μ-matches in C and let $N M_{\mu}(C)=\left|\mathcal{N} \mathcal{M}_{\mu}(C)\right|$. Let

$$
\begin{equation*}
N M_{n, \mu}(q)=\sum_{C \in \mathcal{C}_{n}} q^{N M_{\mu}(C)} . \tag{10}
\end{equation*}
$$

Note that for any $C \in \mathcal{C}_{n}, N M_{\mu}(C)+N T_{\mu}(C)=\binom{n-1}{2}$ so that
$\left.N M_{n, \mu}(q)\right|_{q^{k}}=\left.N T_{n, \mu}(q)\right|_{q}\left(n^{n-1}\right)-k$. Table 3 shows the polynomials $N M_{n, \mu}(q)$ for $1 \leq n \leq$
10. Our data suggests the following theorem.

Theorem 11. For $k<n-2,\left.N M_{n, \mu}(q)\right|_{q^{k}}=a(k)$ where $a(k)$ is the number of integer partitions of k.

To prove Theorem 11, we need to define what we call the plot of non- μ-matches in $C \in \mathcal{C}_{n}$. We consider an $n \times n$ grid where the rows are labeled with $1,2, \ldots, n$, reading from bottom to top, and the columns are labeled with $1,2, \ldots, n$, reading from left to right. The cell (i, j) is the cell which lies in the i th row and j th column. Then, given a set S of ordered pairs $\langle i, j\rangle$ with $1 \leq i \leq n$, we let $\operatorname{plot}_{n}(S)$ denote the diagram that arises by shading a cell (j, i) on the $n \times n$ grid if and only if $\langle i, j\rangle \in S$. Given an n-cycle $C \in \mathcal{C}_{n}$, we let $N \operatorname{Mplot}(C)=\operatorname{plot}_{n}\left(\mathcal{N} \mathcal{M}_{\mu}(C)\right)$. For example, if $C=(1,4,5,3,8,7,2,6)$, then

$$
\mathcal{N} \mathcal{M}_{\mu}(C)=\{\langle 1,5\rangle,\langle 1,6\rangle,\langle 1,7\rangle,\langle 1,8\rangle,\langle 2,5\rangle,\langle 2,7\rangle,\langle 2,8\rangle,\langle 3,5\rangle,\langle 4,6\rangle,\langle 4,7\rangle,\langle 4,8\rangle\}
$$

Table 3. Polynomials $N M_{n, \mu}(q)$

$n=1$	1
2	1
3	$1+q$
4	$1+q+3 q^{2}+q^{3}$
5	$1+q+2 q^{2}+7 q^{3}+6 q^{4}+6 q^{5}+q^{6}$
6	$1+q+2 q^{2}+3 q^{3}+13 q^{4}+15 q^{5}+23 q^{6}+31 q^{7}+20 q^{8}+10 q^{9}+q^{10}$
7	$1+q+2 q^{2}+3 q^{3}+5 q^{4}+19 q^{5}+25 q^{6}+46 q^{7}+66 q^{8}+119 q^{9}+126 q^{10}+$
	$135 q^{11}+106 q^{12}+50 q^{13}+15 q^{14}+q^{15}$
8	$1+q+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+27 q^{6}+33 q^{7}+65 q^{8}+101 q^{9}+174 q^{10}+$
	$299 q^{11}+418 q^{12}+603 q^{13}+726 q^{14}+850 q^{15}+736 q^{16}+561 q^{17}+$
	$301 q^{18}+105 q^{19}+21 q^{20}+q^{21}$
9	$1+q+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+11 q^{6}+35 q^{7}+44 q^{8}+80 q^{9}+126 q^{10}+$
	$217 q^{11}+338 q^{12}+646 q^{13}+888 q^{14}+1461 q^{15}+2116 q^{16}+3093 q^{17}+$
	$4055 q^{18}+5007 q^{19}+5675 q^{20}+5541 q^{21}+4820 q^{22}+3311 q^{23}+1870 q^{24}+$
	$742 q^{25}+196 q^{26}+28 q^{27}+q^{28}$
10	$1+q+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+11 q^{6}+15 q^{7}+46 q^{8}+56 q^{9}+100 q^{10}+$
	$148 q^{11}+251 q^{12}+374 q^{13}+640 q^{14}+1098 q^{15}+1640 q^{16}+2568 q^{17}+$
	$3971 q^{18}+619 q^{19}+9137 q^{20}+13710 q^{21}+18551 q^{22}+25689 q^{23}+$
	$32781 q^{24}+40008 q^{25}+44119 q^{26}+45433 q^{27}+41488 q^{28}+33264 q^{29}+$
	$22392 q^{30}+12253 q^{31}+5328 q^{32}+1638 q^{33}+336 q^{34}+36 q^{35}+q^{36}$

and $N M p l o t(C)$ is pictured in Figure 15 .

Figure 15. $N \operatorname{Mplot}((1,4,5,3,8,7,2,6))$.
First, we observe that if $C \in \mathcal{C}_{n}$, then $\mathcal{N} \mathcal{M}_{\mu}(C)$ completely determines C. That is, we have the following theorem.

Theorem 12. If S is a set of ordered pairs such that $\mathcal{N} \mathcal{M}_{\mu}(C)=S$ for some n-cycle $C \in \mathcal{C}_{n}$, then C is the only n-cycle such that $\mathcal{N} \mathcal{M}_{\mu}(C)=S$.

Proof. Our proof proceeds by induction on n. Clearly, the theorem holds for $n=1$ and $n=2$. Now, assume that the theorem holds for n. Let $C^{\prime} \in \mathcal{C}_{n+1}$ and $S=\mathcal{N} \mathcal{M}_{\mu}\left(C^{\prime}\right)$. Let $C=\left(1, c_{2}, \ldots, c_{n}\right)$ be the n-cycle that is obtained from C by removing $n+1$. Then it is easy to see that $\mathcal{N} \mathcal{M}_{\mu}(C)=S-\{\langle i, n+1\rangle:\langle i, n+1\rangle \in S\}$. Hence, C is the unique n-cycle in \mathcal{C}_{n} such that $\mathcal{N} \mathcal{M}_{\mu}(C)=S-\{\langle i, n+1\rangle:\langle i, n+1\rangle \in S\}$. Let $C^{(i)}$ denote the cycle that results by inserting $n+1$ immediately after i in C. Since C is unique, it follows that C^{\prime} must equal $C^{(i)}$ for some $1 \leq i \leq n$. However, it is easy to see that if $1 \leq i<n$, then $\langle j, n+1\rangle \in \mathcal{N} \mathcal{M}_{\mu}\left(C^{(i)}\right)$ for $1 \leq j<i$ and $\langle i, n+1\rangle \notin \mathcal{N} \mathcal{M}_{\mu}\left(C^{(i)}\right)$. If $i=n$, then $\langle j, n+1\rangle \in \mathcal{N} \mathcal{M}_{\mu}\left(C^{(i)}\right)$ for $1 \leq j<n$. Thus, it follows that $\mathcal{N} \mathcal{M}_{\mu}\left(C^{(1)}\right), \ldots, \mathcal{N} \mathcal{M}_{\mu}\left(C^{(n)}\right)$ are pairwise distinct. Hence, there is exactly one cycle C^{\prime} such that $\mathcal{N} \mathcal{M}_{\mu}\left(C^{\prime}\right)=S$.

An integer sequence $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ is a partition of n if $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{\ell}>0$ and $\sum_{i=1}^{\ell} \lambda_{i}=n$. If $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\ell}\right)$ is a partition of n, we will write $\lambda \vdash n$, and let $|\lambda|=n$ denote the size of λ and $\ell(\lambda)=\ell$ denote the length of λ. The Ferrers diagram of a partition λ on the $m \times m$ grid, denoted $F D_{m}(\lambda)$, is the diagram that results by shading the squares $(1, m),(2, m), \ldots,\left(\lambda_{1}, m\right)$ in the top row, shading the squares $(1, m-1),(2, m-$ 1), $\ldots,\left(\lambda_{2}, m-1\right)$ in the second row from the top, and, in general, shading the squares $(1, m-i+1),(2, m-i+1), \ldots,\left(\lambda_{i}, m-i+1\right)$ in the i th row from the top. For example, the Ferrers diagram of $\lambda=(5,4,3,1,1)$ on a 8×8 grid is pictured in Figure 16,

Figure 16. $F D_{8}(5,4,3,1,1)$
It is easy to see that the following three properties characterize the Ferrers diagrams of partitions λ in an $n \times n$ grid.
(1) If λ is not empty, then the square $(n, 1)$ is shaded in $F D_{m}(\lambda)$.
(2) If $x \neq 1$ and the square (y, x) is shaded in $F D_{m}(\lambda)$, then the square $(y, x-1)$ is shaded in $F D_{m}(\lambda)$.
(3) If $y \neq n$ and the square (y, x) is shaded in $F D_{m}(\lambda)$, then the square $(y+1, x)$ is shaded in $F D_{m}(\lambda)$.
This means that if S is a set of pairs (i, j) such that $\operatorname{plot}_{n}(S)$ is a Ferrers diagram, then it must be the case that
(1) If S is not empty, then the square $(1, n) \in S$.
(2) If $x \neq 1$ and the square $(x, y) \in S$, then $(x-1, y) \in S$.
(3) If $y \neq n$ and the square $(x, y) \in S$, then $(x, y+1) \in S$.

Our next lemma and corollary will show that if $C \in \mathcal{C}_{n}$ and $N M_{\mu}(C)<n-2$, then $\mathcal{N} \mathcal{M}_{\mu}(C)$ has the same three properties.

Lemma 13. Assume that $C \in \mathcal{C}_{n}$.
(1) If $\langle 1, n\rangle \notin \mathcal{N} \mathcal{M}_{\mu}(C)$ and $N M_{\mu}(C) \neq 0$, then $N M_{\mu}(C) \geq n-2$.
(2) If $x \neq 1,\langle x, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$, and $\langle x-1, y\rangle \notin \mathcal{N} \mathcal{M}_{\mu}(C)$, then $N M_{\mu}(C) \geq n-2$.
(3) If $y \neq n,\langle x, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$, and $\langle x, y+1\rangle \notin \mathcal{N} \mathcal{M}_{\mu}(C)$, then $N M_{\mu}(C) \geq n-2$.

Proof. Let $C=\left(1, c_{1}, \ldots, c_{n-1}\right) \in \mathcal{C}_{n}$ be an n-cycle where $n \geq 4$.
For part (1), suppose that $\langle 1, n\rangle \notin \mathcal{N} \mathcal{M}_{\mu}(C)$ and $N M_{\mu}(C) \neq 0$. Then, there are no integers that are cyclically in between 1 and n in C so that $c_{1}=n$. Since $N M_{\mu}(C) \neq 0$, $C \neq(1, n, n-1, \ldots, 3,2)$. Thus, C must be of the form

$$
C=(1, n, n-1, \ldots, n-a, b, \underbrace{\ldots b}_{A} b+1 \underbrace{\ldots}_{B})
$$

where $b+1<n-a$. That is, the sequence $c_{1}>c_{2}>\cdots>c_{a+1}$ consists of the decreasing interval from n to $n-a$ and then $b \leq n-a-2$. It follows that the pairs $\langle 1, b+1\rangle,\langle b, n\rangle, \ldots,\langle b, n-a\rangle$ are all non- μ-matches in C which accounts for $a+2$ non- μ matches in C. Let A be the set of integers cyclically between b and $b+1$ in C and let B be the set of integers cyclically between $b+1$ and 1 in C. Note that
(1) if $x \in A$ and $x<b$, then $\langle x, n\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(2) if $x \in A$ and $x>b$, then $\langle 1, x\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(3) if $x \in B$ and $x<b$, then $\langle x, b+1\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$, and
(4) if $x \in B$ and $x>b$, then $\langle 1, x\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$.

It follows that each element in A and B is part of at least one non- μ-match in C so that we know that $N M_{\mu}(C) \geq a+2+|A|+|B|$. Thus, since $|A|+|B|=n-a-4$, we have $N M_{\mu}(C) \geq n-2$.

For part (2), suppose that $x \neq 1,\langle x, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$, and $\langle x-1, y\rangle \notin \mathcal{N} \mathcal{M}_{\mu}(C)$. Then x cannot be cyclically between $x-1$ and y in C. Also, there exists an integer z with $x<z<y$ such that z is cyclically between x and y in C, but z is not cyclically between $x-1$ and y in C. It follows that C is of the form

$$
C=(\underbrace{1, \ldots}_{A_{3}}, x, \underbrace{\ldots, z, \ldots}_{A_{1}}, x-1, \underbrace{\ldots}_{A_{2}}, y, \underbrace{\ldots}_{A_{3}})
$$

where A_{1} is the set of integers cyclically between x and $x-1$ in C that are not equal to z, A_{2} is the set of integers cyclically between $x-1$ and y in C, and A_{3} is the set of integers between y and x in C. Note that $\langle x, y\rangle$ and $\langle x-1, z\rangle$ are in $\mathcal{N} \mathcal{M}_{\mu}(C)$. Moreover,
(1) if $a \in A_{1}$ and $a<x-1$, then $\langle a, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(2) if $a \in A_{1}$ and $a>x$, then $\langle x-1, a\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(3) if $a \in A_{2}$ and $a<x-1$, then $\langle a, z\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(4) there are no $a \in A_{2}$ with $x-1<a<y$ since $\langle x-1, y\rangle \notin \mathcal{N} \mathcal{M}_{\mu}(C)$,
(5) if $a \in A_{2}$ and $a>y$, then $\langle 1, a\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(6) if $a \in A_{3}$ and $a<z$, then $\langle a, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$, and
(7) if $a \in A_{3}$ and $a>z$, then $\langle x, a\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$.

Therefore, any integer $a \in A_{1} \cup A_{2} \cup A_{3}$ is part of a distinct non- μ-match in C. Since $\left|A_{1} \cup A_{2} \cup A_{3}\right|=n-4$, it follows that $N M_{\mu}(C) \geq 2+n-4=n-2$.

For part (3), suppose that $y \neq n,\langle x, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$, and $\langle x, y+1\rangle \notin \mathcal{N} \mathcal{M}_{\mu}(C)$. Then y cannot be cyclically between x and $y+1$ in C. Also, there exists an integer z with $x<z<y$ such that z is cyclically between x and y in C, but z is not cyclically between x and $y+1$ in C. Thus, C must be of the form

$$
C=(\underbrace{1, \ldots}_{B_{3}}, x, \underbrace{\ldots}_{B_{1}}, y+1, \underbrace{\ldots, z, \ldots}_{B_{2}}, y, \underbrace{\ldots}_{B_{3}})
$$

where B_{1} is the set of integers cyclically between x and $y+1$ in C, B_{2} is the set of integers cyclically between $y+1$ and y in C that are not equal to z, and B_{3} is the set of integers cyclically between y and x in C. Note that $\langle x, y\rangle$ and $\langle z, y+1\rangle$ are in $\mathcal{N} \mathcal{M}_{\mu}(C)$. Moreover,
(1) if $b \in B_{1}$ and $b<x$, then $\langle b, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(2) there is no $b \in B_{1}$ with $x<b<y+1$ since $\langle x, y+1\rangle \notin \mathcal{N} \mathcal{M}_{\mu}(C)$,
(3) if $b \in B_{1}$ and $b>y+1$, then $\langle z, b\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(4) if $b \in B_{2}$ and $b<y$, then $\langle b, y+1\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(5) if $b \in B_{2}$ and $b>y+1$, then $\langle x, b\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$,
(6) if $b \in B_{3}$ and $b<z$, then $\langle b, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$, and
(7) if $b \in B_{3}$ and $b>z$ then $\langle x, b\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$.

Therefore, any integer $b \in B_{1} \cup B_{2} \cup B_{3}$ is part of a distinct non- μ-match in C. Since $\left|B_{1} \cup B_{2} \cup B_{3}\right|=n-4$, it follows that $N M_{\mu}(C) \geq 2+n-4=n-2$.
Corollary 14. If $N M_{\mu}(C)<n-2$, then $N M p l o t(C)$ is a Ferrers diagram.
Proof. This corollary follows directly from Lemma 13. That is, suppose that $C \in \mathcal{C}_{n}$ and $N M_{\mu}(C)<n-2$. First, if $N M_{\mu}(C)=0$, then $C=(1, n, n-1, \ldots, 2)$ in which case $F D_{n}(C)$ has no shaded squares which correspond to the empty partition. Thus, assume that $1 \leq N M_{\mu}(C)<n-2$. Then, it follows from part (1) of Lemma 13 that $\langle 1, n\rangle \in$ $\mathcal{N} \mathcal{M}_{\mu}(C)$. Next it follows from part (2) of Lemma 13 that if $x \neq 1$ and $\langle x, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$, then $\langle x-1, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$. Finally, it follows from part (3) of Lemma 13 that if $y \neq n$ and $\langle x, y\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$, then $\langle x, y+1\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$. Hence, the shaded cells $N \operatorname{Mplot}(C)$ must be a Ferrers diagram of a partition λ of $N M_{\mu}(C)$.

If $n \geq 3$, we let T_{n} be the plot of the Ferrers diagram in the $n \times n$ grid corresponding the to partition $\lambda=(n-2, n-3, \ldots, 1)$. Thus, for example, T_{7} is pictured in Figure 17, One can see that the sets that T_{n} have the property that $\mid\left\{\lambda: \lambda\right.$ is a partition and $F D_{n}(\lambda) \subseteq$ $\left.T_{n}\right\} \mid=C_{n}$ where C_{n} is the nth Catalan number since the lower boundaries of the plots of $F D(\lambda)$ for such λ correspond to Dyck paths.

Our next theorem will show that for any $n \geq 3$ and any partition $\lambda \subseteq T_{n}$, we can construct an n-cycle $C \in \mathcal{C}_{n}$ such that $N \operatorname{Mplot}(C)=F D_{n}(\lambda)$.

Figure 17. The Ferrers diagram T_{7} on the 7×7 grid.
Theorem 15. Suppose that $n \geq 3$ and λ is a partition such that $\lambda \subseteq T_{n}$. Then, there is an n-cycle $C \in \mathcal{C}_{n}$ such that $\operatorname{NMplot}(C)=F D_{n}(\lambda)$.
Proof. We proceed by induction on n. For $n=3$, it is easy to see that if $C^{(1)}=(1,3,2)$, the $\operatorname{NMplot}\left(C^{(1)}\right)$ is empty and if $C^{(2)}=(1,2,3)$, then $\operatorname{NMPlot}\left(C^{(2)}\right)=T_{3}$. Note that $C^{(1)}$ and $C^{(2)}$ have the property that if the largest part of the corresponding partition is of size i, then 3 immediately follows $i+1$ in the cycle. Thus, our theorem holds for $n=3$.

Now, suppose that $n>3$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k}\right)$ is a partition which is contained in T_{n}. It follows that $\lambda^{-}=\left(\lambda_{2}, \ldots, \lambda_{k}\right)$ is contained in T_{n-1}. Assume by induction that there is an ($n-1$)-cycle C^{\prime} such that $N M p l o t\left(C^{\prime}\right)=F D_{n-1}\left(\lambda^{-}\right)$and $n-1$ immediately follows $\lambda_{2}+1$ in C^{\prime}. Thus, in C^{\prime}, the pairs $\left\langle\lambda_{2}+1, n-1\right\rangle,\left\langle\lambda_{2}+2, n-1\right\rangle, \ldots,\langle n-3, n-1\rangle$ must match μ in C^{\prime}. This means that if $\lambda_{2}+1 \leq n-3$, then $n-3$ must lie between $n-2$ and $n-1$ in C^{\prime}. Next if $\lambda_{2}+1 \leq n-4$, then $n-4$ must lie between $n-3$ and $n-1$ in C^{\prime}. In general, if $\lambda_{2}+1 \leq n-k$, then $n-k$ must lie between $n-k+1$ and $n-1$ in C^{\prime}. Thus, C^{\prime} must be of the following form

$$
C^{\prime}=(\underbrace{\ldots}_{A_{n-1}} n-2 \underbrace{\ldots)^{n}}_{A_{n-2}} \underbrace{\ldots)^{n}}_{A_{n-3}}-4 \underbrace{\ldots \omega_{A_{2}+2}}_{A_{n-4}} \cdots\left(\lambda_{2}+2\right) \underbrace{\ldots}_{A_{n-1}}\left(\lambda_{2}+1\right),(n-1) \underbrace{\ldots}) .
$$

where A_{i} is the set of elements cyclically between $n-i$ and $n-i-1$ in C^{\prime} for $i=1, \ldots, n-$ $\lambda_{2}-2$. Now let C be the cycle that results from C^{\prime} by inserting n immediately after $\lambda_{1}+1$ in C^{\prime}. Inserting n into C^{\prime} does not effect on whether pairs $\langle i, j\rangle$ with $1 \leq i<j \leq n-1$ are μ-matches in C. That is, for such pairs $\langle i, j\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$ if and only if $\langle i, j\rangle \in \mathcal{N} \mathcal{M}_{\mu}\left(C^{\prime}\right)$. Thus, the diagram of $N M p l o t\left(C^{\prime}\right)$ and $N \operatorname{Mplot}(C)$ are the same up to row $n-1$. Now, in row n, we know that the cells $(n, 1), \ldots,\left(n, \lambda_{1}\right)$ are shaded since the fact that n immediately follows $\lambda_{1}+1$ in C means that $\langle i, n\rangle \in \mathcal{N} \mathcal{M}_{\mu}(C)$ for $i=1, \ldots, \lambda_{1}$. However, it is easy to see from the form of C^{\prime} above that $\langle n-2, n\rangle,\langle n-3, n\rangle, \ldots,\left\langle\lambda_{1}+1, n\right\rangle$ are μ-matches in C since $n-2, n-3, \ldots, \lambda_{1}+1$ appear in decreasing order as we traverse clockwise around the cycle C. Thus, $N M p l o t(C)=F D_{n}(\lambda)$.

Note the proof of Theorem 15 gives a simple algorithm to construct an n-cycle C_{λ} such that $\operatorname{NMplot}\left(C_{\lambda}\right)=F D_{n}(\lambda)$ for any $\lambda \subseteq T_{n}$. For example, suppose that $n=12$ and $\lambda=(3,3,2,1)$ so that the Ferrers diagram in the 12×12 grid is pictured in Figure 18 ,

Figure 18. $s h_{12}(3,3,2,1)$.

Since there are no non- μ-matches in the first eight rows, we must start with the cycle $C_{8}=(1,8,7,6,5,4,3,2)$. Then, our proof of Theorem 15 tells us that we should build up the cycle structure by first creating a cycle $C_{9} \in \mathcal{C}_{9}$ by inserting 9 immediately after 2 in C_{8}, since the number of non- μ-matches in row 9 is 1 . Then we create a cycle $C_{10} \in \mathcal{C}_{10}$ by inserting 10 immediately after 3 in C_{9} since the number of non- μ-matches in row 10 is 2. Then, we create a cycle $C_{11} \in \mathcal{C}_{11}$ by inserting 11 immediately after 4 in C_{10} since the number of non- μ-matches in row 11 is 3 . Finally, we create a cycle $C_{12}=C_{\lambda} \in \mathcal{C}_{12}$ by inserting 12 immediately after 4 in C_{11} since the number of non- μ-matches in row 12 is 3 . Thus,

$$
\begin{aligned}
C_{9} & =(1,8,7,6,5,4,3,2,9), \\
C_{10} & =(1,8,7,6,5,4,3,10,2,9), \\
C_{11} & =(1,8,7,6,5,4,11,3,10,2,9), \text { and } \\
C_{12} & =(1,8,7,6,5,4,12,11,3,10,2,9) .
\end{aligned}
$$

Then we have that

$$
\begin{aligned}
\mathcal{N} \mathcal{M}_{\mu}((1,8,7,6,5,4,12,11,3,10,2,9))= & \langle 1,12\rangle,\langle 2,12\rangle,\langle 3,12\rangle, \\
& \langle 1,11\rangle,\langle 2,11\rangle,\langle 3,11\rangle, \\
& \langle 1,10\rangle,\langle 2,10\rangle, \\
& \langle 1,9\rangle .
\end{aligned}
$$

Now we can prove Theorem 11 .
Proof. Suppose that $k \leq n-2$. Let

$$
\begin{aligned}
F D_{n}(k) & =\left\{C \in \mathcal{C}_{n}: N M p l o t(C)=F D_{n}(\lambda) \text { for some } \lambda \vdash k\right\} \text { and } \\
N M_{n}(k) & =\left\{C \in \mathcal{C}_{n}: N M_{\mu}(C)=k\right\} .
\end{aligned}
$$

Theorem 14 shows that $N M p_{n}(k) \subseteq F D_{n}(k)$ and Theorem 15 shows that $F D_{n}(k) \subseteq$ $N M p_{n}(k)$. Thus, $\left.N M_{n, \mu}(q)\right|_{q^{k}}=\left|N M p_{n}(k)\right|=\left|F D_{n}(k)\right|$. Hence, $\left.N M_{n, \mu}(q)\right|_{q^{k}}$ equals the number of partitions of k.

Now, we will show that for $k<n-2,\left.N T I_{n, \mu}(q)\right|_{q}{ }_{\left(n_{2}^{n-1}\right)-k}=\left.N T_{n, \mu}(q)\right|_{q}\binom{n-1}{2}-k=a(k)$, where $a(k)$ is the number of partitions of k. First we shall show that if $C \in \mathcal{C}_{n}$ has fewer than $n-2$ non-matches, then C must be incontractible.

Lemma 16. If $C \in \mathcal{C}_{n}$ has fewer than $n-2$ non-matches, then C must be incontractible.
Proof. If $i+1$ immediately follows i in an n-cycle $C \in \mathcal{C}_{n}$, then, clearly, $\langle j, i+1\rangle$ are non- μ-matches for $1 \leq j<i$ and $\langle i, k\rangle$ is a non- μ-match for $i+2 \leq k \leq n$. This gives $n-2$ non- μ-matches.

Corollary 17. For $k<n-2,\left.N T I_{n, \mu}(q)\right|_{q}\binom{n-1}{2}-k=\left.N T_{n, \mu}(q)\right|_{q}\binom{n-1}{2}-k=a(k)$ where $a(k)$ is the number of partitions of k.

Proof. By definition, $\left.N T_{n, \mu}(q)\right|_{\left.q^{(n-1}\right)^{(n)-k}}=\left.N M_{n, \mu}(q)\right|_{q^{k}}$. Thus, by Theorem 11 for $k<$ $n-2,\left.N T_{n, \mu}(q)\right|_{q}{ }_{\left(n_{2}^{2}\right)-k}=a(k)$.

By Lemma 16, we have that if a cycle C has k non- μ-matches where $k<n-2$, then C is incontractible. It follows that if a cycle has $\binom{n-1}{2}-k$ non-trivial μ-matches, then it is incontractible. Thus, for $k<n-2,\left.N T I_{n, \mu}(q)\right|_{q\binom{n-1}{2}-k}=\left.N T_{n, \mu}(q)\right|_{q}\binom{n-1}{2}-k$. And so $\left.N T I_{n, \mu}(q)\right|_{q}\left(\begin{array}{c}n-1\end{array}\right)-k=a(k)$ for $k<n-2$.

5. Conclusions and direction for further research

In this paper, we studied the polynomials $N T_{n, \mu}(q)=\sum_{C \in \mathcal{C}_{n}} q^{N T_{\mu}(C)}$ and $N T I_{n, \mu}(q)=$ $\sum_{C \in \mathcal{I C} \mathcal{C}_{n}} q^{N T_{\mu}(C)}$. We showed that $N T I_{n, \mu}(1)$ is the number of derangements of S_{n-1}. Thus, the polynomial $N T I_{n, \mu}(q)$ is a q-analogue of the derangement number D_{n-1}. There are several q-analogues of the derangement numbers that have been studied in the literature, see the papers by Garsia and Remmel [3] and Wachs [9]. Our q-analogue of D_{n-1} is different from either the Garsia-Remmel q-analogue or the Wachs q-analogue of the derangement numbers. Moreover, we proved that

$$
\left.N T_{n, \mu}(q)\right|_{q^{k}}=\sum_{s=1}^{2 k+1} \sum_{\substack{A \in \mathcal{I C}_{s}, N T_{\mu}(A)=k}}\binom{n-1}{s-1}
$$

so that the coefficients of the polynomial $N T_{n, \mu}(q)$ can be expressed in terms of the coefficients of the polynomials $N T I_{j, \mu}(q)$. We also showed that $\left.N T I_{n, \mu}(q)\right|_{q}{ }_{\left(n_{2}^{n-1}\right)-k}$ equals the number of partition of k for $k<n-2$.

The main open question is to find some sort of recursion or generating function that would allow us to compute $N T I_{n, \mu}(q)$. Note that several of the sequences $\left(\left.N T_{n, \mu}(q)\right|_{q^{k}}\right)_{n \geq 2}$ appear in the OEIS [8]. For example, we showed that $\left.N T_{n, \mu}(q)\right|_{q^{2}}=\binom{n-1}{3}+2\binom{n-1}{4}$ so
that the sequence $\left(\left.N T_{n, \mu}(q)\right|_{q^{2}}\right)_{n \geq 4}$ starts out $1,6,20,50,105,196,336,540,825, \ldots$. The nth term of this sequence has several combinatorial interpretations including being the number of $\sigma \in S_{n}$ which are 132-avoiding and have exactly two descents, the number of Dyck paths on length $2 n+2$ with $n-1$ peaks, and the number of squares with corners on the $n \times n$ grid. Thus, it would be interesting to find bijections from these objects to our ($n+4$)-cycles $C \in \mathcal{C}_{n}$ such that $N T_{\mu}(C)=2$. We also showed that $\left.N T_{n, \mu}(q)\right|_{q^{3}}=$ $\binom{n-1}{3}+3\binom{n-1}{4}+6\binom{n-1}{5}+5\binom{n-1}{6}$ so that the sequence $\left(\left.N T_{n, \mu}(q)\right|_{q^{3}}\right)_{n \geq 4}$ starts out

$$
1,7,31,102,273,630,1302,2472,4389 \ldots
$$

This sequences does not appear in the OEIS. Similarly, the sequence $\left(\left.N T_{n, \mu}(q)\right|_{q^{4}}\right)_{n \geq 5}$ starts out $2,23,135,561,1870,5328,13476, \ldots$ and it does not appear in the OEIS.

Finally, it would be interesting to characterize the charge graphs of those cycles $C \in \mathcal{I C}_{2 n}$ for which $N M_{\mu}(C)=n$. One can see from our tables that sequence $\left(\left.N T I_{2 n, \mu}(q)\right|_{q^{n}}\right)_{n \geq 2}$ starts out $1,6,29,130, \ldots$. Moreover, we have computed the $\left.N T I_{12, \mu}(q)\right|_{q^{6}}=562$. This suggests that this sequence is sequence A008549 in the OEIS. If so, this would mean that $\left.N T I_{2 n, \mu}(q)\right|_{q^{n}}=\sum_{i=0}^{n-2}\binom{2 n-1}{i}$ for $n \geq 2$.

References

[1] S. Avgustinovich, S. Kitaev and A. Valyuzhenich, Avoidance of boxed mesh patterns on permutations, Discrete Appl. Math., 161 (2013) 43-51.
[2] P. Brändén and A. Claesson, Mesh patterns and the expansion of permutation statistics as sums of permutation patterns, Elect. J. Comb., 18(2) (2011), \#P5, 14pp.
[3] A.M. Garsia and J.B. Remmel, A combinatorial interpretation of q-derangement and q-Laguerre numbers, European J. Comb., 1 (1980), 47-59.
[4] M. Jones and J. Remmel, Pattern matching in the cycle structure of permutations, Pure Math. and Appl., 22 (2011), 173-208.
[5] S. Kitaev, Patterns in permutations and words, Springer-Verlag, 2011.
[6] S. Kitaev and J. Liese, Harmonic numbers, Catalan triangle and mesh patterns, Discrete Math., 313 (2013) 1515-1531.
[7] A. Lascoux and M.P. Schützenbeger, Sur une conjecture de H.0. Foulkes, C.R. Acad. Sci. Paris Sér I Math., 288 (1979), 95-98.
[8] N. J. A. Sloane, The on-line encyclopedia of integer sequences, published electronically at http://oeis.org
[9] M. Wachs, On q-derangement numbers, Proc. Amer. Math. Soc., 106(1) (1989), 273-278.

[^0]: Instituto de Matemática, Universidad de Talca, Camino Lircay S / N Talca, Chile mjones@inst-mat.utalca.cl Supported by FONDECYT (Fondo Nacional de Desarrollo Científico y Tecnológico de Chile) postdoctoral grant \#3130631.

 Department of Computer and Information Sciences, University of Strathclyde, Glasgow G1 1XH, UK. Email: sergey.kitaev@cis.strath.ac.uk.

 Department of Mathematics, University of California, San Diego, La Jolla, CA 92093-0112. USA. Email: jremmel@ucsd.edu.

