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ON THE CONGRUENCE
∑n−1

j=1 jk(n−1) ≡ −1 (mod n). K-STRONG

GIUGA AND K-CARMICHAEL NUMBERS

JOSÉ MARÍA GRAU AND ANTONIO M. OLLER-MARCÉN

Abstract. In this work we consider the congruence
∑n−1

j=1 jk(n−1) ≡ −1

(mod n) for each k ∈ N, thus extending Giuga’s ideas for k = 1. In particular,
it is proved that a pair (n, k) ∈ N2 satisfies this congruence if and only if n
is prime or a Giuga Number and λ(n) | k(n − 1). In passing, we establish
new characterizations of Giuga numbers and we study some properties of the

numbers n satisfying λ(n) | k(n− 1).
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1. Introduction

In 1950, G. Giuga conjectured [7] that if an integer n satisfies
∑n−1

j=1 jn−1 ≡ −1

(mod n), then n must be a prime. Moreover, Giuga proved that n is a counterexam-
ple to his conjecture if and only if for each prime divisor p of n, p(p−1) | (n/p−1).
In what follows, counterexamples to Giuga’s conjecture will be called strong Giuga
numbers.

Using the above characterization, Giuga proved computationally that any strong
Giuga number has at least 1000 digits. Equipped with more computing power,
Bedocchi [3] later raised this bound to 1700 digits. Improving their method, D.
Borwein, J. M. Borwein, P. B. Borwein and R. Girgensohn [5] determined that any
strong Giuga number contains at least 3459 distinct primes and so has at least
13887 digits.

On the other hand, Luca, Pomerance and Shparlinski [13] have established the
following bound (which improves previous work by Tipu [14]) for the counting
function of the strong Giuga numbers:

|{n < X : n is a strong Giuga numbers }| ≪
X

1
2

(log(X))2
.

Kellner has stablished [11] that Giuga’s conjecture is equivalent to the following
conjecture by Agoh [1].

Conjecture 1 (Agoh, 1995). Let Bk denote the k-th Bernoulli number. Then, n
is a prime if and only if nBn−1 ≡ −1 (mod n).

Borwein et al. [5] introduced the following definition of Giuga numbers relajando
la propiedad de divisibilidad of the strong Giuga numbers.

Definition 1. A Giuga Number is a composite number n such that p | (n/p − 1)
for every prime divisor p of n.

Con esta definición pueden caracterizarse los strong Giuga number de la siguiente
manera:

1
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Proposition 1. Let n be a composite integer. Then n is a strong Giuga number if
and only if n is both a Giuga number and a Carmichael number.

There are several equivalent definitions of Giuga numbers. Some of them are the
following.

Proposition 2. Let n be a composite integer. Then, the following are equivalent:

i) n is a Giuga number.

ii) Giuga [7]:
∑

p|n

1

p
−

1

n
∈ N.

iii) Borwein et al. [5]:

n−1
∑

j=1

jφ(n) ≡ −1 (mod n), where φ is Euler’s totient

function.
iv) Agoh [1]: nBφ(n) ≡ −1 (mod n), where B is a Bernoulli number.
v) Grau and Oller [9]: n′ = an+1 for some a ∈ N, where n′ is the arithmetic

derivative of n.

Up to date only thirteen Giuga numbers are known (see A007850 in the On-Line
Encyclopedia of Integer Sequences):

g1 := 30,

g2 := 858,

g3 := 1722,

g4 := 66198,

g5 := 2214408306,

g6 := 24423128562,

g7 := 432749205173838,

g8 := 14737133470010574,

g9 := 550843391309130318,

g10 := 244197000982499715087866346,

g11 := 554079914617070801288578559178,

g12 := 1910667181420507984555759916338506,

g13 := 420001794970774706203871150967065663240419575375163060922

8764416142557211582098432545190323474818.

All known Giuga numbers are even and it is known that if an odd Giuga number
exists, it must be the product of at least 14 primes. It is not even known if there
are infinitely many Giuga numbers.

Variants of Giuga numbers have already been proposed by the authors [8]. In
this work some new characterizations of Giuga numbers are stablished. This char-

acterizations arise from the study of the congruence
∑n−1

j=1 jk(n−1) ≡ −1 (mod n)

with k ∈ N. It is proved that a pair (n, k) ∈ N
2, with composite n, satisfies this

congruence if and only if n is a Giuga number and λ(n) divides k(n − 1). This
last property leads to a generalization of Carmichael numbers (the k-Carmichael
numbers) which are also characterized in the square-free case.
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2. New characterizations of Giuga numbers

The following result establishes that in Proposition 2 iii) we can replace Euler’s
totient function φ(n) by Carmichael’s function λ(n) or by any multiple of φ(n) or
λ(n).

Lemma 1. For every natural numbers A, B and N we have that:

N−1
∑

j=1

jAλ(N) ≡
N−1
∑

j=1

jBφ(N) (mod N).

Proof. Put N = 2apr11 · · · prss with pi distinct odd primes. Choose i ∈ {1, . . . , s}.
We have that:

N−1
∑

j=1

jAλ(N) ≡
N

prii

p
ri
i

−1
∑

j=1

jAλ(N) (mod prii ).

N−1
∑

j=1

jBφ(N) ≡
N

prii

p
ri
i

−1
∑

j=1

jBφ(N) (mod prii ).

Now, since both Aλ(N), Bφ(N) ≥ ri, we get:

p
ri
i

−1
∑

j=1

jAλ(N) =
∑

1≤j≤p
ri
i

−1
(pi,j)=1

jAλ(N) +
∑

1≤j≤p
ri
i

−1
pi|j

jAλ(N) ≡ φ(prii ) + 0 (mod (prii ).

p
ri
i
−1

∑

j=1

jBφ(N) =
∑

1≤j≤p
ri
i

−1
(pi,j)=1

jBφ(N) +
∑

1≤j≤p
ri
i

−1
pi|j

jAλ(N) ≡ φ(prii ) + 0 (mod (prii ).

Consequently:

N−1
∑

j=1

jAλ(N) ≡
N−1
∑

j=1

jBφ(N) (mod prii ) for every i = 1, . . . , s.

Clearly if N is odd the proof is complete. If n is even we have that:

N−1
∑

j=1

jAλ(N) ≡
N

2a

2a−1
∑

j=1

jAλ(N) ≡
N

2a









∑

1≤j≤2a−1
j even

jAλ(N) + 2a−1









(mod 2a).

N−1
∑

j=1

jAλ(N) ≡
N

2a









∑

1≤j≤2a−1
j even

jBφ(N) + 2a−1









(mod 2a).

Now, if a = 1, 2 or 3 it can be easily verified that:
∑

1≤j≤2a−1
j even

jAλ(N) ≡
∑

1≤j≤2a−1
j even

jBφ(N) (mod 2a).



4 JOSÉ MARÍA GRAU AND ANTONIO M. OLLER-MARCÉN

On the other hand, if a ≥ 4 we have that φ(N) ≥ λ(N) ≥ a and, consequently
jAλ(N) ≡ jBφ(N) ≡ 0 (mod 2a) for every 1 ≤ j ≤ 2a−1 even. Thus:

N−1
∑

j=1

jAλ(N) ≡
N−1
∑

j=1

jBφ(N) (mod 2a)

and the result follows. �

This lemma leads to some new characterizations of Giuga numbers. Recall that
a composite integer n is said to be a Giuga number (among other characterizations)

if and only if
∑n−1

j=1 jφ(n) ≡ −1 (mod n).

Proposition 3. Let n be any composite integer. Then the following are equivalent:

i) n is a Giuga Number.

ii) For every positive integer K,

n−1
∑

j=1

jKλ(n) ≡
n−1
∑

j=1

jKφ(n) ≡ −1 (mod n).

iii) There exists a positive integer K such that

n−1
∑

j=1

jKλ(n) ≡
n−1
∑

j=1

jKφ(n) ≡ −1

(mod n).

The following result, which is a consequence of previous proposition, will allow

us to generalize Giuga’s ideas by considering the congruence
∑n−1

j=1 jk(n−1) ≡ −1

(mod n) for each positive integer k.

Corollary 1. If an integer n is a strong Giuga number, then:

n−1
∑

j=1

jk(n−1) ≡ −1 (mod n) for every positive integer k.

Proof. If n is a strong Giuga number, then it is both a Carmichael and a Giuga

number. Being a Carmichael number, we have that λ(n) | (n − 1) so if k(n−1)
λ(n) =

k′ ∈ N we get:

S :=

n−1
∑

j=1

jk(n−1) =

n−1
∑

j=1

jkλ(n)
(n−1)
λ(n) =

n−1
∑

j=1

jk
′λ(n),

and, since n is a Giuga number it is enough to apply Corollary 1 and Proposition
3 to get S ≡ −1 (mod n). �

3. k-Carmichael numbers

A Carmichael number is a composite positive integer n which satisfies the con-
gruence an−1 ≡ 1 (mod n) for every integer a coprime to n. Korselt [12] was the
first to observe the basic properties of Carmichael numbers, the most important
being the following characterization:

Proposition 4 (Korselt, 1899). A composite number n is a Carmichael number if
and only if n is square-free, and for each prime p dividing n, p− 1 divides n− 1.

Nevertheless, Korselt did not find any example and it was Carmichael [6] who
found the first and smallest of such numbers (561) and hence the name “Carmichael
number” (which was introduced by Beeger [4]). In the same paper Carmichael
presents the following characterization in terms of a reduced totient function λ.
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Proposition 5 (Carmichael, 1912). A composite number n is a Carmichael number
if and only if λ(n) divides (n− 1).

Motivated by this characterization we have the following definition.

Definition 2. Given k ∈ N we will say that n is a k-Carmichael number if λ(n)
divides k(n− 1).

Square-free k-Carmichael numbers admit, at least, the following characteriza-
tions.

Proposition 6. Let n be a square-free positive composite integer and let k ∈ N.
The following are equivalent:

i) n is a k-Carmichael number.
ii) For every prime divisor p of n, p− 1 divides k(n− 1).
iii) For every integer a, akn ≡ ak (mod n).

Proof. If n is a square-free k-Carmichael number, then λ(n) = lcm{p−1 | p divides n}
divides k(n− 1). This proves that i) implies ii).

Now, if p−1 divides k(n−1) for every prime divisor p of n and given any integer
a, it follows that ak(n−1) ≡ 1 (mod p) for every prime divisor p of n such that p does
not divide a. If p divides a the same congruence follows trivially and this proves
that ii) implies iii).

Finally, to see that iii) implies i) it is enough to consider an integer a coprime
to n. �

Remark. Observe that square-free k-Carmichael numbers are Fermat pseudo-
primes to base ak for every a such that gcd(a, n) = 1.

Remark. If n is a k-Carmichael number and p2 | n, then we trivially have that p
divides k.

We close this section with some conjectures regarding k-Carmichael numbers.
We consider Ck := {n : n is a k-Carmichael number }. It is clear that these sets
satisfy that k | s ⇒ Cs ⊂ Cs. In particular the set of Carmichael numbers, C1, is
contained in any other Cs. Although it is not the point of this work, it could be
interesting to study the relative asympotitc density of Ck with respect to Cs for
every s multiple of k. In particular the density of C1 with respect to Ck

δk := lim
n→∞

|C1

⋂

[1, n]|

|Ck

⋂

[1, n]|
.

We conjecture that it exists and that it is positive and strictly smaller than 1.

Conjecture 2. If k | t then Ck has a relative asymptotic density with respect to
Ct. Moreover, for every k, t ∈ N

lim
n→∞

|Ck

⋂

[1, n]|

|Ct

⋂

[1, n]|
=

δt
δk

.

If this conjecture was true, three interesting questions arise:

i) Given integers m and n such that none of them divides the other, which is
the case: δm < δn, δm > δn or δm = δn?

ii) Does it exist a prime p such that δp < δp for all prime p ∈ N− {p}? Soon
we will conjeture its existence and that p = 5.

iii) which is the smallest composite integer c such that δc > δ5.
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As we said we conjecture the following.

Conjecture 3. 0.18 < δ5 < δp for all prime p ∈ N− {5}.

Of course all this could just be a computational mirage and the truth is just
that δk = 1 for all k ∈ N but it seems worthwhile to find it out. The values of the
counter function Ck(n) := |Ck

⋂

[1, n]| for n ∈ {106, 107} can be found in A231575
and A231574 from the OEIS. The relative order of Ck(n) for different values of
k changes when we increase n, nevertheless it seems that for every prime p and
n > 105:

C5(n) > C3(n) > C7(n) > Cp(n)

.

4. k-strong Giuga numbers

In this section we extend Giuga’s ideas studying pairs of integers k and n such

that
∑n−1

j=1 jk(n−1) ≡ −1 (mod n). This motivates the following definition.

Definition 3. Given k ∈ N we say that a composite number n is a k-strong Giuga
number if

n−1
∑

j=1

jk(n−1) ≡ −1(mod n).

We can also define the following sets:

Gk := {n ∈ N | n is k-strong Giuga number},

Kn := {k ∈ N | n is k-strong Giuga number}.

Remark. With the previous notation, Giuga’s conjecture is equivalent to the state-
ment G1 = ∅.

A continuación tenemos el principal resultado de este trabajo con el que se
caracteriza the k-strong Giuga numbers.

Theorem 1. Let n be a composite integer. Then n is a k-strong Giuga number if
and only if n is both a Giuga number and a k-Carmichael number.

Proof. Assume that n is a Giuga number and a k-Carmichael number. Since λ(n)
divides k(n− 1) we have that:

n−1
∑

j=1

jk(n−1) =

n−1
∑

j=1

jk
′λ(n) ≡ −1

due to Corollary 1.

Conversely, assume that n is a k-strong Giuga number; i.e.,
∑n−1

j=1 jk(n−1) ≡ −1

(mod n). As a consequence (see [15, Theorem 2.3]) we have that p − 1 divides
k (n/p− 1), that p divides n/p − 1 for every p, prime divisor of n and, moreover,
that n is square-free. Since n is square-free, λ(n) = lcm{p−1 | p prime dividing n}.
Thus, λ(n) divides k(n− 1) and n is a k-Carmichael number. To get that n is also
a Giuga number, due to Proposition 1, it is enough to apply Proposition 2 with

B = 1 and A = k(n−1)
λ(n) . �
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In the particular case of k = 1, we have the characterization that was given in
proposition 1 of the strong Giuga numbers.

Taking into account now that the condition λ(n) divides k(n − 1) is equivalent

to λ(n)
gcd(λ(n),n−1) divides k, given any positive integer n, Theorem 1 gives a complete

description of the set Kn as stated in the following corollary.

Corollary 2. Let n be any composite positive integer. Then:

Kn =

{
{

t · λ(n)
gcd(λ(n),n−1) | t ∈ N

}

, if n is a Giuga number;

∅, otherwise.

Remark. Note that Kn = N if and only if n is a prime or a strong Giuga number.

Since it is easy to see that n ∈ Gk if and only if k ∈ Kn we also have the following
result.

Corollary 3. Gk is nonempty if and only if λ(n) divides k(n− 1) for some Giuga
number n.

Using this last result we can find values of k such that Gk is nonempty. To do

so, we evaluate k(n) := λ(n)
gcd(λ(n),n−1) for every known Giuga number. Thus, we

will have thirteen values of k (recall the introduction) for which Gtk is known to be
nonempty for any t:

k(g1) =4;

k(g2) =60;

k(g3) =120;

k(g4) =2320;

k(g5) =1552848;

k(g6) =10080;

k(g7) =139714902540;

k(g8) =93294624780;

k(g9) =228657996794220;

k(g10) =4756736241732916394976;

k(g11) =20024071474861042488900;

k(g12) =2176937111336664570375832140;

k(g13) =15366743578393906356665002406454800354974137359272

445859047945613961394951904884493965220.

For these values and t = 1 one gets:
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Gk(g1) = {g1, . . . };

Gk(g2) = {g1, g2, . . . };

Gk(g3) = {g1, g2, g3, . . . };

Gk(g4) = {g1, g4, . . . };

Gk(g5) = {g1, g5, . . . };

Gk(g6) = {g1, g2, g6, . . . };

Gk(g7) = {g1, g7, . . . };

Gk(g8) = {g1, g2, g8, . . . };

Gk(g9) = {g1, g2, g9, . . . };

Gk(g10) = {g1, g10, . . . };

Gk(g11) = {g1, g11, . . . };

Gk(g12) = {g1, g2, g12, . . . };

Gk(g13) = {g1, g2, g13, . . . }.

5. Reflecting about Giuga’s conjecture

In recent work by W. D. Banks, C. W. Nevans, and C. Pomerance [2], the
following bounds were given:

Theorem 2. For any fixed ε > 0, β = 0.3322408 and all sufficiently large X, we
have

| {n < X : n ∈ C1} |≥ Xβ−ε (G. Harman [10])

| {n < X : n ∈ C1\G1} |≥ Xβ−ε

The authors of the aforementioned paper consider the above bounds to be “con-
sistent” with Giuga’s conjecture. We believe, however, that the similar considera-
tion could be made with respect to conjectures that are actually false, such as G4 = ∅
or G1552848 = ∅. The authors of the present paper, in view of the generalization
presented here, are convinced that Giuga’s conjecture is not based on any sound
logical-mathematical consideration and that its strength rests only on the extreme
rarity of Giuga numbers, combined with the null asymptotic density of Carmichael
numbers. In fact, if we may be forgiven the joke, we might conjecture -without any
fear of our conjecture being refuted in many years- that G2 = G3 = G5 = ∅ or, to
be even more daring, that Gp = ∅ for all prime p. Of course, Giuga’s conjecture
has the honour of being the strongest of all of these conjectures. In fact, in virtue
of Corollary 1, should it be refuted, all the others would fall with it.
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