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Scaling of the Thue–Morse diffraction measure
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We revisit the well-known and much studied Riesz product representation of the Thue–Morse

diffraction measure, which is also the maximal spectral measure for the corresponding dynamical

spectrum in the complement of the pure point part. The known scaling relations are summarised,

and some new findings are explained.
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INTRODUCTION

The Thue–Morse (TM) sequence is defined via the bi-

nary substitution 1 7→ 11̄, 1̄ 7→ 1̄1; see [1, 4] and refer-

ences therein for general background. The corresponding

dynamical system is known to have mixed (pure point

and singular continuous) spectrum [12, 15, 17], with a

pure point part on the dyadic points and a singular con-

tinuous spectral measure in the form of a Riesz product.

The latter coincides with the diffraction measure γ̂ of the

TM Dirac comb with weights ±1; compare [2] for details.

The Riesz product representation of the TM diffraction

measure reads

γ̂ =
∏

n≥0

(
1− cos(2n+1πk)

)
, (1)

with convergence (as a measure, not as a function) in

the vague topology; see [24] for general background. The

singular continuous nature of γ̂ is traditionally proved

[7, 15] by excluding pure points by Wiener’s criterion

[14, 18] and absolutely continuous parts by the Riemann–

Lebesgue lemma [11]; compare [2, 4] and references

therein for further material.

Since diffraction measures with singular continuous

components do occur in practice [19], it is of interest to

study such measures in more detail. Below, we use the

TM paradigm to rigorously explore the scaling properties

of ‘singular peaks’ in a diffraction measure, combining

methods from harmonic analysis and number theory; for

further results of a similar type, we refer to [6, 8, 21–23]

and references therein.

UNIFORM DISTRIBUTION PROPERTIES

In what follows, arguments around uniform distribu-

tion will be important. Let us thus begin with a summary

of equivalent characterisations.

Proposition 1 Let (xn)n∈N
be a sequence of real num-

bers in the interval [0, 1]. Then, the following properties

are equivalent.

1. The sequence (xn)n∈N
is uniformly distributed in

the interval [0, 1], also known as uniform distribu-

tion mod 1.

2. For every pair a, b of real numbers subject to the

condition 0 ≤ a < b ≤ 1, one has

limN→∞
1
N card

(
{xn | n ≤ N} ∩ [a, b)

)
= b− a.

3. For every real-valued continuous function on the

closed unit interval, one has

limN→∞
1
N

∑N
n=1 f(xn) =

∫ 1

0 f(x) dx.

4. One has limN→∞
1
N

∑N
n=1 e

2πikxn = 0 for all wave

numbers k ∈ Z \ {0}.

For details and proofs, we refer to [13, Chs. 1.1 and

1.2]. Note that the continuity condition in property (3)

can be replaced by Riemann integrability [13, Cor. 1.1.1],

but not by Lebesgue integrability (for obvious reasons).

Below, we particularly need uniform distribution prop-

erties of the sequence defined by xn = 2n, which was

extensively studied in this context by Kac [10]. This is

a special case of a classic family of sequences considered

by Hardy and Littlewood [9], and by Weyl; see also [13,

Thm. 1.4.1 and Notes to Ch. 1.4].

Lemma 1 Let (xn)n∈N
be a sequence of distinct inte-

gers. Then, the sequence (xnk)n∈N
is uniformly dis-

tributed mod 1 for Lebesgue-almost all k ∈ R. In partic-

ular, this holds for xn = ℓn with any fixed integer ℓ ≥ 2.

Consider the function f(x) = log
(
1 − cos(2πx)

)
on

[0, 1]. It has singularities at x = 0 and x = 1, which are

both integrable (via standard arguments). In fact, one

has

∫ 1

0

log
(
1− cos(2πx)

)
dx = − log(2) . (2)
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We also need a discrete analogue of this formula. Via

1 − cos(2ϑ) = 2
(
sin(ϑ)

)2
together with the well-known

identity
∏n−1

m=1 sin(π
m
n ) = n/2n−1, one can derive that

n−1∑

m=1

log
(
1− cos(2πm

n )
)
= log

(
n2

2n−1

)
(3)

holds for all n ≥ 1.

In order to apply uniform distribution results, we set

f
◦
(x) =

{
f(x), if 0 < x < 1,

0, if x = 0 or x = 1,

which is Riemann integrable. By Proposition 1, we have

lim
N→∞

1

N

N∑

n=1

f
◦
(xn) = − log(2)

for any real-valued sequence (xn)n∈N
that is uniformly

distributed mod 1. Alternatively, one may directly work

with the function f itself if the sequence (xn)n∈N
avoids

the points x = 0 and x = 1.

RIESZ PRODUCT

A direct path to the Riesz product of the TM diffrac-

tion measure can be obtained as follows. Consider the re-

cursion v(n+1) = v(n)v̄(n) with initial condition v(0) = 1,

which gives an iteration towards the one-sided fixed point

v of the TM substitution on the alphabet {1, 1̄}. If we

define the exponential sum

gn(k) =

2n−1∑

ℓ=0

vℓ e
−2πikℓ,

where v = v0v1v2 · · · , the function gn is then the Fourier

transform of the weighted Dirac comb for vn, when it is

realised with Dirac measures (of weight ±1) on the left

endpoints of the unit intervals that represent the sym-

bolic sequence of vn. In particular, one has g0(k) = 1

and

gn+1(k) =
(
1− e−2πik2n

)
gn(k)

for n ≥ 0, so that

∣∣gn+1(k)
∣∣2 = 2

∣∣gn(k)
∣∣2(1− cos(2n+1πk)

)
.

One can then explicitly check that fn(k) =
1
2n

∣∣gn(k)
∣∣2 =∏n−1

ℓ=0

(
1−cos(2ℓ+1πk)

)
, which reproduces the Riesz prod-

uct of Eq. (1) in the sense that limn→∞ fn = γ̂ as mea-

sures in the vague topology.

As gn corresponds to a chain of length 2n, the growth

rate β(k) (when it is well-defined) is obtained as

β(k) = lim
n→∞

log
(
fn(k)

)

n log(2)
.

Let us now consider the growth rate for various cases of

the wave number k.

Case A. When k = m
2r with r ≥ 0 and m ∈ Z, all

but finitely many factors of the Riesz product (1) vanish,

so that no contribution can emerge from such values of

k. In fact, these are the dyadic points, which support

the pure point part of the dynamical spectrum. They

are extinction points for the diffraction measure of the

balanced weight case considered here; compare [17] for a

discussion of this connection.

Case B. When k ∈ R is such that the sequence

(2nk)n∈N
is uniformly distributed mod 1, which is true

for Lebesgue-almost all k ∈ R by Lemma 1, one obtains

the growth rate

β(k) = lim
N→∞

1

N

N∑

n=1

log
(
1− cos(2n+1πk)

)

log(2)

=

∫ 1

0

log
(
1− cos(2πx)

)

log(2)
dx = −1

by uniform distribution and Eq. (2). Note that none of

these sequences ever visits a dyadic point, so that the

limit according to Proposition 1 applies. These values

of the wave number k thus do not contribute to the TM

measure.

Note that this argument shows that limn→∞ fn(k) = 0

pointwise for almost all k ∈ R and thus provides an alter-

native proof for the fact that the measure from Eq. (1)

does not comprise an absolutely continuous part; com-

pare the Introduction as well as [2, 11].

Case C. When k = m
3 with m not divisible by 3, one

finds fn(k) = (3/2)n. Since this corresponds to a system

(or sequence) of length 2n, we have a growth rate of

β(k) =
log(3/2)

log(2)
≈ 0.584963 .

The same growth rate applies to all numbers of the form

k = m
2r · 3 with r ≥ 0 and m not divisible by 3, because

the factor 2r in the denominator has no influence on

the asymptotic scaling, due to the structure of the Riesz

product (1). Note that the points of this form are dense

in R, but countable.

Similarly, when k = m
2r · 5 with r ≥ 0 and m not a

multiple of 5, one finds

β(k) =
log(5/4)

2 log(2)
≈ 0.160964 .
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FIG. 1: Exponents β(1/q) according to Eq. (4) for all odd

3 ≤ q < 1050. Apart from q = 3 and q = 5, the exponents

are negative. The solid line is the function g from Eq. (5).

Exponents with large negative values emerge for q = 2r ± 1.

Case D. More generally, when k = p
2rq with r ≥ 0,

q ≥ 3 odd and gcd(p, q) = 1, one can determine the

growth rate explicitly. Recall that Uq := (Z/qZ)× =

{1 ≤ p < q | gcd(p, q) = 1} is the unit group of the

residue class ring Z/qZ. If Sq = {2n mod q | n ≥ 0} is

the subgroup of Uq generated by the unit 2, one finds

β(k) =
1

card(pSq)

∑

n∈pSq

log
(
1− cos(2π n

q )
)

log(2)
(4)

by an elementary calculation. When q = 2m + 1, the

integer card(Sq) is the multiplicative order of 2 mod q,

which is sequence A002326 in [16].

When gcd(p, q) = 1, one has card(pSq) = card(Sq),

even when the set pSq is considered mod q. Note that

formula (4) is written in such a way that it also holds

for all p not divisible by q. If gcd(p, q) > 1, the set pSq

may be reduced mod q, which shows that the formula

consistently gives β(p/q) in such cases.

Case E. When card(Sq) = q − 1, Eq. (3) leads to

β(1/q) = g(q) with

g(q) =
log

(
q2

2q−1

)

log
(
2q−1) =

2 log(q)

(q − 1) log(2)
− 1. (5)

For odd q ≥ 3, the function g(q) is positive precisely

for q = 3 and q = 5, and negative otherwise; compare

Figure 1. In fact, also β(1/q) seems to be negative for all

odd q ≥ 7, though this does not hold for general β(p/q).

Indeed, β(3/17) > 0, and all positive exponents for odd

7 ≤ q < 1000 are listed in Table I.

More generally, for any odd q ≥ 3, one obtains (from

Case D) the formula

1

q − 1

∑

1<d|q

card(Sd)
∑

p∈Ud/Sd

β
(
p
d

)
= g(q). (6)

TABLE I: Wave numbers k = p

q
with positive exponents, for

all odd integers 5 < q < 1000. For a given q, all p ∈ Uq/Sq

are considered (we choose the smallest element of the set pSq

mod q as representative).

p

q
β
(

p

q

)

p

q
β
(

p

q

)

p

q
β
(

p

q

)

p

q
β
(

p

q

)

p

q
β
(

p

q

)

p

q
β
(

p

q

)

3

17
0.266 25

117
0.172 37

255
0.150 65

381
0.067 47

565
0.144 65

771
0.140

5

31
0.272 19

127
0.108 43

255
0.318 47

451
0.127 81

565
0.113 161

771
0.140

11

31
0.272 21

127
0.373 53

255
0.318 65

451
0.127 61

585
0.126 69

775
0.101

5

33
0.105 27

127
0.108 91

255
0.150 67

455
0.128 97

585
0.126 83

775
0.127

7

43
0.267 43

127
0.373 37

257
0.049 69

455
0.128 53

595
0.031 111

775
0.127

11

63
0.244 19

129
0.143 43

257
0.404 53

511
0.028 87

595
0.031 117

775
0.101

13

63
0.244 11

151
0.012 45

257
0.221 75

511
0.163 51

601
0.042 57

785
0.085

11

65
0.350 35

151
0.012 23

275
0.117 83

511
0.239 63

601
0.042 137

819
0.359

11

73
0.165 25

171
0.220 49

275
0.117 85

511
0.422 53

657
0.061 145

819
0.359

13

73
0.165 19

185
0.126 25

331
0.067 87

511
0.028 101

657
0.061 67

825
0.089

13

89
0.229 17

195
0.001 35

337
0.149 107

511
0.239 51

673
0.038 173

825
0.089

19

89
0.229 41

195
0.001 57

337
0.149 109

511
0.163 57

683
0.131 67

889
0.050

9

91
0.075 17

205
0.047 49

341
0.060 171

511
0.422 71

683
0.087 95

889
0.012

19

91
0.075 31

205
0.183 57

341
0.369 43

513
0.033 103

683
0.179 129

889
0.012

11

105
0.060 19

217
0.073 71

341
0.369 77

513
0.122 111

683
0.226 157

889
0.050

17

105
0.060 37

217
0.073 73

341
0.060 83

513
0.272 113

683
0.335 83

993
0.124

17

117
0.172 35

241
0.194 31

381
0.067 85

513
0.343 55

753
0.054 149

993
0.172

Now, Möbius inversion (with the Möbius function µ)

leads to
∑

p∈Uq/Sq

β
(
p
q

)
=

1

card(Sq)

∑

16=d|q

µ
(
q
d

)
(d− 1) g(d), (7)

while a simpler formula than Eq. (4) for the individual

exponents seems difficult in general.

Case F. As is shown in [6] (by way of an explicit exam-

ple), there are wave numbers k for which the exponent

β(k) does not exist. The construction is based on a suit-

able mixture of binary expansions for wave numbers with

different exponents. Clearly, there are uncountably many

such examples, though they still form a null set. Here,

one can define a ‘spectrum’ of exponents via the limits

of all converging subsequences.

Case G. So far, we have identified countably many val-

ues of k, for which the scaling exponents can be calcu-

lated, while (due to Case B) Lebesgue-almost all k ∈ R

carry no singular peak. The remaining problem is to

cope with the uncountably many wave numbers (of zero

Lebesgue measure) that belong to the supporting set of

the TM measure and may possess well-defined exponents.

The existence of such numbers can be understood via

Diophantine approximation. Again, it is useful to start

with the binary expansion of a wave number k, and then

modify it in a suitable way. Consider first the example

k = 1
3 = 0.0101010101 . . .
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If we now switch the binary digits at positions 2r, with

r ∈ N, we obtain a different wave number k′ that is irra-

tional but nevertheless still has the same scaling exponent

β as k = 1
3 , as longer and longer stretches of the binary

expansion of k′ agree with that of k. Clearly, via similar

modifications, we can obtain uncountably many distinct

irrational numbers with β = β(1/3).

The same strategy works for all other rational wave

numbers k, and underlies the nature of the TM measure.

In particular, this explains the existence of uncountably

many ‘singular peaks’, which together (in view of Case B)

still form a Lebesgue null set. These scaling exponents

are accessible via our above arguments. It remains to

decide in which sense the above analysis is complete.

CONCLUDING REMARKS

An analogous approach works for all measures of the

form of a classic Riesz product. In particular, the gen-

eralised Thue–Morse sequences from [5] can be analysed

along these lines; compare also [12]. Likewise, the choice

of different interval lengths is possible, though technically

more complicated; compare [20] for some examples.

Higher-dimensional examples with purely singular con-

tinuous spectrum, such as the squiral tiling [3] or similar

bijective block substitutions [7], may still lead to classic

Riesz products, though they are now in more than one

variable, and the analysis is hence more involved. Nev-

ertheless, the scaling analysis will still lead to a better

understanding of such measures.
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