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Abstract

Abstract: We investigate the enumeration of two families of polycubes, namely pyramids and espaliers, in

connection with the multi-indexed Dirichlet convolution.

Résumé: Nous étudions l’énumération de deux familles de polycubes, les pyramides et les espaliers, en lien avec

une version multi-indexée de la convolution de Dirichlet.

1 Introduction

In the Cartesian plane Z2, a polyomino is a finite connected union of elementary cells (unit squares) without cut point
and defined up to a translation. Even if they have been studied for a long time in combinatorics, no exact formula is
known for counting general polyominoes but many results have been found concerning certain classes of polyominoes,
see for instance [10] or [14].
Polyominoes also have a 3-dimensional equivalent: the 3-dimensional polycubes (or polycubes for short) [17].If we
consider, now, that an elementary cell is a unit cube, then a polycube is a face-connected finite set of elementary cells
defined up to a translation in Z3. Like polyominoes, polycubes appear in statistical physics, more precisely in the
phenomenon of percolation (see [11] for example). A lot of studies have led to count polycubes with respect to their
number, n say, of cells. The first values were found in 1972 up to n = 6 [17] and the last one (to our knowledge) in
2006, up to n = 18 [4].
The notion of polycube can be extended to dimension d, with d ≥ 3; d-dimensional polycubes (or d-polycubes for
short) are used in an efficient model of real-time validation [16], as well as in the representation of finite geometrical
languages [5,12]. Although the polycubes are higher dimensional natural analogues of polyominoes, very little is known
about their enumeration. In particular only few families of polycubes have been studied. In this paper, we propose to
investigate two classes of polycubes: pyramids and espaliers. The interest of these two examples lies in their connection
with Lambert and Dirichlet generating series.
The paper is organised as follows. First, in Section 2, we define pyramids and espaliers in dimension d + 1 and
investigate the first properties. In particular, we show that espaliers of height h make it possible to describe a
partial order on partitions of height h which recovers the classical division order for h = 1. In Section 3, we extend
the convolution product to multi-indexed families and we give an interpretation in terms of ordinary and Dirichlet
generating functions. Furthermore, we point out the connection with espaliers. In Section 4 we apply the properties of
the convolution product to the enumeration of pyramids and espaliers. In particular, we show that the number nv(d)
of pyramids of volume v in dimension d + 1 is a polynomial in d of degree ⌊log2(v)⌋. Finally, in Section 5 we explain
how to apply our method to other families of polycubes.

2 Some families of polycubes

2.1 Definitions

We will consider polycubes as discrete objects which are embedded in the three-dimensional discrete lattice Z3. Each
point of Z3 will be represented by the triplet of its coordinates and lexicographically ordered. An atomic cell is a cube
of volume 1 which will be identified with the smallest coordinates of its vertices. So, for our purpose and without loss
of generality, we will consider a polycube as a finite and connected (by face) collection P of cells such that its smallest
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cell is (0, 0, 0). The volume of a polycube is the number of its atomic cells and its height is the difference between the
greatest and the smallest indices of its cells according to the first coordinate.
A very particular polycube is the horizontal plateau: it is a horizontal parallelepiped of height 1. To simplify the
notations, let us call it a plateau. The notion of plateau allows us to define two new families of polycubes. They
appear in the study of two particular families of convex-directed polycubes [8]. The first family is a subclass of plane
partitions (see [6, 7, 13] for instance).

A pyramid polycube (or pyramid for short) is obtained by gluing together horizontal plateaus in such a way that

• (0, 0, 0) belongs to the first plateau, and each cell with coordinates (0, b, c) belonging to the first plateau is such
that b, c ≥ 0.

• If the cell with coordinates (a, b, c) belongs to the (a + 1)-th plateau (a > 0), then the cell with coordinates
(a− 1, b, c) belongs to the a-th plateau.

Figure 1: A pyramid

An espalier polycube is a special pyramid such that each plateau contains the cell
(a, 0, 0).

2.2 Counting pyramids

The most natural statistic to count pyramids and espaliers is the volume. The number
of pyramids and espaliers of a given volume are presented below up to volume 12:

1, 3, 7, 16, 33, 63, 117, 202, 344, 566, 908, 1419

1, 3, 5, 10, 14, 26, 34, 57, 76, 116, 150, 227

They correspond respectively to the sequences http://oeis.org/A229914A229914
and http://oeis.org/A229915A229915 in [19]. This statistic can be refined by the height (i.e. the number of
plateaus) and the volume of each plateau. If P is a pyramid of height h, we will denote by mv(P) = (v1, . . . , vh) with
v1 ≥ v2 ≥ · · · ≥ vh > 0 the sequence of the volumes of its plateaus. Let λ = (λ1 ≥ · · · ≥ λh), with λh > 0 be a
partition, we define Eλ as the set of espaliers E such that mv(E) = λ. We use the following notations where t = e if
the corresponding quantity involves espalier polycubes and t = p if it involves pyramid polycubes:

• the number of objects of volume v is denoted by nt
v; we denote by nt

v,h the number of objects of given height h

and volume v;

• there are nt
[v1,...,vh]

objects such that each plateau has volume vi, 1 ≤ i ≤ h, if v1 ≥ · · · ≥ vh.

By convention, there is no espalier nor pyramid of volume 0: nt
0 = 0. The number nt

i,j,h,v of considered polycubes
(espaliers or pyramids) of volume v, height h and such that its largest plateau is i × j is given by the recurrence:
nt
i,j,h,v =

∑
a,b α

t
a,bn

t
i+a,j+b,h−1,v−ij with αe

a,b = 1, αp
a,b = (a+ 1)(b+ 1) and nt

i,j,1,v = δij,v.

Figure 2: An espalier and a its as-
sociated quasi-espalier

The generating function of the number of considered polycubes (espaliers
or pyramids) of given height h is denoted by Et(x;h) :=

∑
v≥1 n

t
v,hx

v; we

define also Et(x) :=
∑

v≥1 n
t
vx

v =
∑

h E
t(x;h). Taking into account the

distribution of the volume among the levels, one gets Et(x1, . . . , xh;h) =∑
m1≥···≥mh

nt
[m1,...,mh]

xm1
1 . . . xmh

h .
We also present results about Dirichlet generating functions which are defined

by:

Et
D(s1, . . . , sh;h) =

∑

m1≥···≥mh

nt
[m1,...,mh]

ms1
1 . . .msh

h

.

It is interesting to note that the limit lim
h→∞

x−hEe(x;h) exists. The corresponding

series is in fact the generating function of a class of polycubes, which we call
quasi-espaliers, counted by volume. Quasi-espaliers are espaliers from which all
the cells with coordinates (a, 0, 0) have been removed. Note that quasi-espaliers
are not considered up to a translation: they are the figures obtained when we
remove the column (a, 0, 0) from an espalier based at (0, 0, 0) (see Figure 2 for
an example). For instance {(0, 1, 0)} and {(0, 0, 1)} are different quasi-espaliers.
The first values are 2, 4, 7, 12, 18, 29, 42, 61, 87, 122, 167, 229.
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If we extend the notion of quasi-espalier to pyramids, we can also extend the
previous result to pyramids. A quasi-pyramid of is obtained from a pyramid
of height h by choosing a cell (h, b, c) in the pyramid and deleting all the cells

(a, b, c) with 1 ≤ a ≤ h. Let Qp(x) be their generating function with respect to volume. Then limh→∞ x−hEp(x, h)
exists and limh→∞ x−hEp(x, h) = Qp(x) + x

1−x
.

2.3 The projection order

Figure 3: One-to-one correspon-
dence between espaliers and pairs of
partitions

We describe here an order on integer partitions of same height h. Note first, that
there is a one-to-one correspondence between espaliers of height h and pairs of
partitions of the same height h. The partitions are obtained by projecting an
espalier E of height h as Ex := {(a, 0, c) : (a, b, c) ∈ E} and Ey := {(a, b, 0) :
(a, b, c) ∈ E}. These two sets are obviously two Ferrers diagrams which represent
two partitions λx(E) and λy(E) of height h (see Fig. 3 for an example) and the
bijection is straightforward from the construction.
We define the relation � on the set of partitions of height h by λ � µ if and only
if there exists E ∈ Eµ such that λx(E) = λ.

Proposition 1 The relation � is a partial order which generalizes the

division order on integers in the following sense: (d, . . . , d) � (n, . . . , n) if and only if d|n.

Although it is not the purpose of this article, we note that the Möbius function
µh of this order seems to have interesting properties. For instance for h = 2, it
satisfies the following equalities:

µ2((1, 1), (n, n)) = µ2((1, 1), (n, 1)) = µ(n),

n∑

k=1

µ((1, 1), (n, k)) = nµ(n),

µ2((1, 1), (p,m)) = −1 for p prime and p > m,

µ2((1, 1), (pq, n)) = 2k+1 − 1 when p, q are prime and n is the product of k prime distinct integers,

µ2((1, 1), (n2,m2)) = 2 if n ≥ m2 and 0 otherwise.

2.4 Higher dimensional polycubes

The d-polycubes are a natural extension of the notion of polyomino to dimension d, with d ≥ 3 (see [8,18] for instance).
An atomic d-cell is a cube of volume 1 identified with the smallest coordinates of its vertices in Zd. A d-polycube is
then a d-face-connected finite set of elementary cells, defined up to translation. The volume of a d-polycube is the
number of its elementary cells. A d-parallelepiped is a d-polycube P such that for some (n1, · · · , nd) ∈ Nd, any cell
with coordinates (α1, · · · , αd) satisfying 0 ≤ αk ≤ nk, 1 ≤ k ≤ d, belongs to P . Then, a d-plateau is a d-parallelepiped
of height 1 (that is composed of cells ot the form (a, n1, · · · , nd) ∈ N

d for a fixed a).
A (d+ 1)-pyramid is a (d+ 1)-polycube obtained by gluing together (d+ 1)-plateaus in such a way that

• the cell (0, 0, . . . , 0) belongs to the first plateau and each cell with coordinates (0, n1, . . . , nd) belonging to the
first plateau is such that n1, . . . , nd ≥ 0.

• if the cell with coordinates (n0, n1, . . . , nd) belongs to the (n0 + 1)-th plateau (n0 > 0), then the cell with
coordinates (n0 − 1, n1, . . . , nd)) belongs to the n0-th plateau.

A (d + 1)-espalier is a (d + 1)-pyramid such that each plateau contains the cell (n0, 0, . . . , 0). As for 3-polycubes, we
define :

• the number of objects of volume v, denoted by nt
v(d); we denote by nt

v,h(d) the number of objects of given height
h and volume v;

• the number of objects such that each plateau has volume vi, 1 ≤ i ≤ h, if v1 ≥ · · · ≥ vh, denoted by nt
[v1,...,vh]

(d).

By convention, there is no espalier nor pyramid of volume 0 and one object in dimension 0+1 : nt
0 = 0 and nt

v(0) = 1.
The generating function of the number of espaliers of given height h is denoted by Et(x;h, d) =

∑
v≥1 n

t
v(d)x

v ; we
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define also Et(x; d) :=
∑

v≥1 n
t
vx

v =
∑

h E
t(x;h, d). Taking into account the distribution of the volume between the

levels, one sets

Et(x1, . . . , xh;h, d) =
∑

m1≥···≥mh

nt
[m1,...,mh]

(d)xm1
1 . . . xmh

h .

The Dirichlet generating functions will be denoted by: Et
D(s1, . . . , sh;h, d) :=

∑
m1≥···≥mh

nt
v(d)

m
s1
1 ...m

sh
h

.

3 Multivariate versions of the Lambert transform

3.1 Convolution and multivariate series

We consider a natural multidimensional generalization of the Dirichlet convolution. For each h ∈ N, we consider
the set Mh := {(an1,...,nh

)n1,...,nh≥1 : an1,...,nh
∈ C}. Let A = (an1,...,nh

)
n1,...,nh

, B = (bn1,...,nh
)
n1,...,nh

; we de-

note by C = A ⋆ B = (cn1,...,nh
)
n1≥···≥nh

∈ Mh the multivariate convolution of A and B defined by cn1,...,nh
=∑

ni=mipi, i=1,...h am1,...,mh
bp1,...,ph

.

Proposition 2 For any h ∈ N, the product ⋆ is distributive and 1 = (δ1,n1 · · · δ1,nh
)
n1,...,nh

is its identity. Hence, this

endows Mh with a structure of commutative algebra.

Denoting by SA(x1, . . . , xh) :=
∑

n1,...,nh≥1 an1,...,nh
xn1 · · ·xnh the ordinary generating function of A and SD

A (s1, . . . , sh) :=∑
n1,...,nh≥1

an1,...,nh

n
s1
1 ···n

sh
h

its Dirichlet generating function, we observe the following fact:

Proposition 3 Let A,B ∈ Mh, the three following assertions are equivalent:

1. C = A ⋆ B;

2. SC(x1, . . . , xh) =
∑

n1,...,nh

an1,...,nh
SB(x

n1
1 , . . . , xnh

h );

3. SD
C (s1, . . . , sh) = SD

A (s1, . . . , sh)S
D
B (s1, . . . , sh).

Indeed, the map A → SA allows us to endow the ideal x1 . . . xhC[x1, . . . , xh] with a structure of commutative algebra
(x1 . . . xhC[x1, . . . , xh],+, ⋆) isomorphic to Mh. With these notations, we have SA⋆B = SA ⋆ SB. The formal substitu-
tion D : xn

i → 1
nsi

is an isomorphism from (x1 . . . xhC[x1, . . . , xh],+, ⋆) to the algebra of multivariate Dirichlet formal
series in the variables {s1, . . . , sh}. Note that the isomorphism above can be realized through an iteration of Mellin
transforms (see e.g. [15, Appendix B, Section B.7]):

D[f ] =
1

Γ(s1) . . .Γ(sh)

∫ ∞

0

. . .

∫ ∞

0

f
(
e−x1, . . . , e−xh

)
xs1−1
1 · · ·xsh−1

h dx1 . . . dxh

where Γ(s) =
∫∞

0 e−xxs−1dx is the Euler Gamma function.

Let Th :=
{
(an1,...,nh

)
n1,...,nh≥1 ∈ Mh : an1,...,nh

6= 0 ⇒ n1 ≥ · · · ≥ nh

}
. Since Th is stable under the convolution,

it is a subalgebra of Mh. For simplicity, we will denote by (an1,...,nh
)
n1≥···≥nh≥1 the elements of Th.

3.2 Multivariate Lambert transform

Let △ = (1)m1≥···≥mh≥1. We call multivariate Lambert transform of A = (an1,...,nh
)
n1≥···≥nh≥1 the convolution of A

with △: TL(A) := A⋆△. Remark that the (ordinary) generating function of △ is S△ = x1...xh

(1−x1)(1−x1x2)...(1−x1...xh)
and

its Dirichlet generating function is SD
△ = Z(s1, . . . , sh) where Z denotes the large multizeta function Z(s1, . . . , sh) :=∑

n1≥···≥nh≥1
1

n
s1
1 ···n

sh
h

[1, 3]. The generating function of TL(A) is

STL(A) = S△ ⋆ SA =
∑

n1≥···≥nh≥1

an1,...,nh

xn1
1 . . . xnh

h

(1− xn1
1 )(1 − xn1

1 xn2
2 ) . . . (1− xn1

1 . . . xnh

h )

and its Dirichlet generating function is given by

SD
TL(A)(s1, . . . , sh) = Z(s1, . . . , sh)S

D
A (s1, . . . , sh).

The multivariate Lambert transform is related to the order defined in Section 2.3 by the following formula:
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Proposition 4 Setting (ân1,...,nh
)
n1,...,nh

:= TL(A), if A = (an1,...,nh
)
n1,...,nh

, we obtain:

ân1,...,nh
=

∑

(m1,...,mh)�(n1,...,nh)

am1,...,mh
.

As a consequence, the Dirichlet generating function of µh((1, . . . , 1), λ) is the inverse of Z:

Corollary 5

Z(s1, . . . , sh)
−1 =

∑

(1,...,1)�(n1,...,nh)

µh((1, . . . , 1), (n1, . . . , nh))

ns1
1 . . . nsh

h

.

Note that when h = 1, Z(s) = ζ(s) is the Riemann zeta function and Corollary 5 is the classical identity ζ(s)−1 =∑
n>0

µ(n)
ns .

3.3 Another transform

Let N =
(
(n1 − n2 + 1) . . . (nh−1 − nh + 1)

)

n1≥···≥nh≥1
. Using N and the convolution product defined above, we

construct a new transformation: TN(A) = N ⋆ A = (aNn1,...,nh
)n1≥···≥nh≥1.

Lemma 6 The generating function of N is given by the following formula:

SN :=
∑

n1≥···≥nh≥1

(n1 − n2 + 1) . . .(nh−1 − nh + 1)xn1
1 . . . xnh

h =

x1 . . . xh

(1− x1)2(1− x1x2)2 . . . (1 − x1 . . . xh−1)2(1− x1 . . . xh)
.

(1)

A simple induction on the number of variables proves the result.
Lemma 6 implies that the generating function of TN(A) is

SN ⋆ SA =
∑

n1≥···≥nh≥1

an1,...,nh

xn1
1 . . . xnh

h

(1− xn1
1 )2(1− xn1

1 xn2
2 )2 . . . (1 − xn1

1 . . . x
nh−1

h−1 )2(1− xn1
1 . . . xnh

h )

and its Dirichlet generating function is given by SD
TN(A) = ZN(s1, . . . , sh)S

D
A (s1, . . . , sh) where

ZN(s1, . . . , sh) =
∑

n1≥···≥nh≥1

(n1 − n2 + 1) . . . (nh−1 − nh + 1)

ns1
1 . . . nsh

h

.

As a consequence, we have

aNn1,...,nh
=

∑

(m1,...,mh)�(n1,...,nh)

αn1,...,nh
m1,...,mh

am1,...,mh
.

where

αn1,...,nh
m1,...,mh

=

(
n1

m1
−

n2

m2
+ 1

)
· · ·

(
nh−1

mh−1
−

nh

mh

+ 1

)

are non-negative integers.

4 Application to the enumeration of pyramids

4.1 Counting pyramids and espaliers by volume

Figure 4: The 3 (1 + 1)-pyramids of type (5, 3)

The one-to-one correspondence described in
Section 2.3 allows us to construct an es-
palier Eλ,λ′ ∈ E(λ1λ

′
1,...,λhλ

′
h
) for each cou-

ple of partitions λ = (λ1, . . . , λh) and λ′ =
(λ′

1, . . . , λ
′
h). Hence, we deduce

Lemma 7

△⋆2 =
(
ne
[m1,...,mh]

)

m1≥···≥mh≥1
.
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Figure 5: A (2 + 1)-pyramid
and its two (1 + 1)-associated
pyramids

A similar method can be used to compute the number of pyramids. We consider
pyramids in dimension 1 + 1. These objects are obtained from partitions (which are
espaliers in dimension 1+1) by shifting each (1+1)-plateau. A (1+1)-pyramid P will
be of type λ = (λ1, . . . , λh) if the first plateau is of size λ1, . . . , the h-th plateau is of
size λh; we will write mv(P) = λ as with pyramids in dimension 2+ 1. The number of
(1 + 1)-pyramids of type λ equals (λ1 − λ2 + 1) · · · (λh−1 − λh + 1) (see Fig. 4 for an
example). The pyramids of height h are in one-to-one correspondence with the pairs
of (1 + 1)-pyramids of height h. Furthermore the pyramid P corresponding to a pair
(P′,P′′) is such that mv(P) = (λ′

1λ
′′
1 , . . . , λ

′
hλ

′′
h) if mv(P′) = λ′ and mv(P′′) = λ′′. We

deduce

Lemma 8

N
⋆2 =

(
n
p

[m1,...,mh]

)

m1≥···≥mh≥1
.

Hence, we are now able to compute the generating function.

Theorem 9 The Dirichlet generating functions of espaliers and pyramids are respectively

Ee
D(s1, . . . , sh;h) = Z(s1, . . . , sh)

2, Ep
D(s1, . . . , sh;h) = ZN(s1, . . . , sh)

2. (2)

The ordinary generating functions of the espaliers and the pyramids are respectively

Ee(x1, . . . , xh;h) = S⋆2
△ =

∑

n1≥···≥nh≥1

xn1
1 · · ·xnh

h

(1− xn1
1 )(1 − xn1

1 xn2
2 ) · · · (1 − xn1

1 · · ·xnh

h )
, (3)

Ep(x1, . . . , xh;h) = S⋆2
N

=
∑

n1≥···≥nh≥1

(n1 − n2 + 1) · · · (nh−1 − nh + 1)xn1
1 · · ·xnh

h

(1− xn1
1 )2(1− xn1

1 xn2
2 )2 · · · (1 − xn1

1 · · ·x
nh−1

h−1 )2(1− xn1
1 · · ·xnh

h )
. (4)

4.2 Higher dimensions

In this section, we investigate the coefficients nt
v(d) (t = e, p). The iteration of the transformations presented above

gives the generating functions of the same objects in higher dimension. Hence, the generating function of the number
of espaliers (resp. pyramids) whose plateaus have volume v1, . . . , vh in dimension d+ 1 is given by △⋆d (resp. N

⋆d).
Therefore the Dirichlet generating function of nt

[m1,...,mn]
(d) is

Et
D(s1, . . . , sh) = Zt(s1, . . . , sh)

d, (5)

with Ze = Z and Zp = ZN. We consider now d as a formal parameter. We have:

∂k

∂dk
Et
D(s1, . . . , sh) = Zt(s1, . . . , sh)

d log
(
Zt(s1, . . . , sh)

)k
.

We observe that Zt(s1, . . . , sh) = 1 + Z̃t(s1, . . . , sh) where Z̃t(s1, . . . , sh) =
∑

n1≥2
n1≥···≥nh≥1

(∗)

n
s1
1 ...n

sh
h

; here (∗) denotes

coefficients depending on the value of t.
It follows that

∂k

∂dk
Et
D(s1, . . . , sh) =

∑

n1≥2k

n1≥···≥nh≥1

(�)

ns1
1 . . . nsh

h

. (6)

(�) denotes also coefficients. We deduce from (6) that nt
[v1,...,vh]

(d), is a polynomial in d whose degree is at most

log2(v1). Furthermore
deg(nt

[2k,1,...,1](d)) = k. (7)

Hence,

Theorem 10 The number ne
v(d) of (d+1)-espaliers of volume v and the number np

v(d) of (d+1)-pyramids of volume

v are both polynomials in d of degree ⌊log2(v)⌋.

Proof Since nt
v(d) =

∑
h≥1

∑
v1≥···≥vh≥1 n

t
[v1,...,vh]

(d), Eq. (6) implies that deg(nt
v(d)) ≤ ⌊log2(v)⌋. From (7), the

inverse inequality holds if E
(2⌊log2 v⌋, 1, . . . , 1)︸ ︷︷ ︸

(v−2⌊log2 v⌋)×

6= ∅. This is obviously the case since it suffices to consider an espalier

such that the volume of the first plateau is 2⌊log2 v⌋ and with v − 2⌊log2 v⌋ other plateaus consisting of one cell. �
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5 General construction

A 2-dimensional object is a finite set of cells (x, y) such that x ∈ N and y ∈ Z. If O is a 2-dimensional object,
its ith stratum will be the set Li(O) := {(i, y) ∈ O}. From a pair of 2-dimensional objects (O1,O2), we construct a
3-dimensional object that is a set of cells (x, y, z) with x ∈ N and y, z ∈ Z: G(O1,O2) := {(x, y, z) : (x, y) ∈ O1, (x, z) ∈
O2). The i-th stratum of a 3-dimensional object will be defined by Li(O) := {(i, y, z) ∈ O}. The height of an object
is h(O) = max{i : Li(O) 6= ∅}. The multivolume mv(O) of a 2- or 3-dimensional object O is the sequence of the
cardinals of its strata.
Note that if mv(O1) = [v1, · · · , vh] and mv(O2) = [v′1, · · · , v

′
h′ ] then

mv(G(O1,O2)) = [v1v
′
1, . . . , vmin(h,h′)v

′
min(h,h′)].

This property is obtained easily by examining the construction of each stratum (see Fig. 6 for an example). An object
O is said to be plain if for any 1 ≤ i ≤ h(O), the stratum Li(O) is not empty. Let A =

⋃
u Au and B =

⋃
v Bv be two

families of 2-dimensional plain objects of height h graded by multivolume and such that Au and Bv are finite for any mul-
tivolume u and v. Set also A = (av1,...,vh)v1,...,vh and B = (bv1,...,vh)v1,...,vh with av1,...,vh = #A[v1,...,vh] and b[v1,...,vh] =

#B[v1,...,vh]. The set G(A,B) = G(O1,O2) : {O1 ∈ Au,O2 ∈ Bu} contains only plain objects of size h. Furthermore

it is graded by multivolume G(A,B) =
⋃

v Gv and the sequence G =
(
#G[v1,...,vh]

)
v1,...,vh≥1

is given by G = A ⋆ B.

Figure 6: Construction of a stratum

Now we want to apply our method in order to construct families
of polycubes from families of 2-dimensional objects. Note that if
P1 and P2 are two polyominoes then G(P1,P2) is not necessarily a
polycube. For instance see a counterexample in Fig 7; the gray cell is
disconnected from the rest of the figure. Nevertheless it suffices that
each polyomino be horizontally connected. Consider first the family
of directed plateau polycubes as defined in [8,18] (a polycube is said
to be directed if each of its cells can be reached from a distinguished
cell, called root, by a path only made of East, North and Ahead

steps). The generating function of the number Pv,h of directed plateau polycubes of height h and volume v has been
computed in [8, 18]:

∑

v,h

Pv,hp
vth =

tτ(p)

1− tpτ ′(p)
(8)

where τ(x) =
∑

k≥1
xk

1−xk denotes the generating function of the number τ(n) of divisors of an integer n.

Figure 7: A counterexample

Figure 8: A plateau polycube from two hori-
zontally convex directed polyominoes

Let us show how to recover (8) with our method. First we re-
mark that each directed plateau polycube is obtained from two hor-
izontally convex (i.e. each horizontal line meets the polyomino in
a single line segment) directed (i.e. each cell can be reached from
(0, 0) by movements up or right one cell, without leaving the poly-
omino) polyominoes. The generating function of horizontally convex
directed polyominoes of multivolume [v1 . . . vh] is

∑

v1,...,vh≥1

v1 · · · vh−1x
v1
1 · · ·xvh

h =
x1 · · ·xh

(1− x1)2 · · · (1− xh−1)2(1− xh)

and the convolution yields

∑

v1,...,vh≥1

v1 . . . vh−1
xv1
1 . . . xvh

h

(1− xv1 )2 · · · (1− x
vh−1

h−1 )
2(1− xvh

h )
.

Setting x1 = · · · = xh−1 = p and xh = pω, we ob-
tain the generating function with respect to the volume (p) and the volume of the highest stratum (ω):
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∑
v1,...,vh≥1 v1 . . . vh−1

p
v1+···+vh−1+vhωvh

(1−pv1)2···(1−p
vh−1 )2(1−(pω)vh )

= (pτ ′(p))h−1
τ(pω). We recover (8) by summing over h and setting

ω = 1 in: ∑

h≥1

th (pτ ′(p))
h−1

τ(pω) =
tτ(pω)

1− tpτ ′(p)
. (9)

By a similar reasoning, (8) can be generalized in dimension d + 1. If we denote by P
(d+1)
v,h the number of directed

plateau (d+ 1)-polycubes of height h and volume v, we can set:

∑

v,h

P
(d+1)
v,h pvth =

tτ (d+1)(p)

1− tpτ (d+1)′(p)

where τ (d+1)(x) =
(

x
1−x

)∗d
.

The Dirichlet generating function of directed plateau polycubes of height h is Ξ(s1 − 1, . . . , sh−1 − 1, sh)
2 with

Ξ(s1, . . . , sh) =
∑

v1,...,vh≥1
1

v
s1
1 ···v

sh
h

.

We give briefly a second example by computing the generating function of the number of all plateau polycubes
(without constraint). Plateau polycubes of height h are in one-to-one correspondence with pairs of horizontally convex
polyominoes of height h. The generating function of horizontally convex polyominoes of height h is

∑

v1,...,vh≥1

(v1 + v2 − 1) · · · (vh−1 + vh − 1)xv1
1 · · ·xvh

h = αh(x1,
x2

x1
, . . . ,

xhxh−2 · · ·

xh−1xh−3 · · ·
)

with αh(t1, . . . , th) = t21 . . . t
2
h−1

d
dt1

. . . d
dth−1

t1···th
(1−t1)(1−t1t2)(1−t2t3)···(1−th−1th)

. Using the same method as above, we

obtain the following formula for the generating function of the number of plateau polycubes counted by height and
volume : ∑

h≥1

th
∑

n1,...,nh

(n1 + n2 − 1) · · · (nh−1 + nh − 1)αh(p
n1 , pn2−n1 , . . . , pnh−nh−1+nh−2−···) =

t




∑

n1,m1≥1

pn1m1



1 + t
∑

n2,m2≥1

(n1 + n2 − 1)(m1 +m2 − 1)pn2m2

(
1 + t

∑
. . .

)





 .

6 Conclusion

In this paper we have investigated the enumeration of pyramids and espaliers in connection with the Lambert transform.
In the last section, we explain that our method could be used to count other families of polycubes (or more general
3-dimensional objects). In particular, we gave two expressions for the generating function of the plateau polycubes.
Although these expressions are not closed, they can be used to enumerate this family far enough. Nevertheless, the
underlying combinatorics remains to be understood. For instance, a straightforward examination of the generating

function of the horizontally convex polyominoes (see [21, p. 153]),
∑

h t
hαh(p, 1, p, 1 . . . ) =

pt(1−p)3

(1−p)4−pt(1−p−p2+p3+p2t) ,

reveals interesting connections with Delannoy numbers Dn−k,k which count the number of lattice paths from (0, 0) to
(n, k) using steps (1, 0), (0, 1), (1, 1) (see sequence http://oeis.org/A008288A008288 of [19]) and whose generating

function is
∑

n,k Dn,kx
nyk = (1− x− y− xy)−1. More precisely, αh(p, 1, p, 1, . . . ) =

ph

(1−p)2h−1

∑h−1
k=0 Dh−k−1,kp

k. It is

natural to ask the question of analogous connections for higher dimensions.
One of the tricks allowing to enumerate polyominoes is to consider the statistic of the area of the highest stratum.
For instance, the generating function of parallelogram polyominoes is deduced from functional equations involving the
variable associated to this statistic (see e.g. [15, Example IX.14 p. 660]). Formula (9) shows that this strategy is
compatible with our method at least in certain cases. It should be interesting to see if one can adapt the “adding a
slice” method for computing functional equations to the generating functions of some families of polycubes obtained
from two polyominoes. Perhaps this method could be adapted by introducing new variables for the width and the
length of the highest plateau as suggested by Equation (9).
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